计算机组成原理实验二算术逻辑运算实验
计算机组成原理实验(接线、实验步骤)

计算机组成原理实验(接线、实验步骤)实验⼀运算器[实验⽬的]1.掌握算术逻辑运算加、减、乘、与的⼯作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。
[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]⼀、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输⼊10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输⼊10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显⽰灯的显⽰与进位结果C的显⽰)6.改变S2S1S0的值,对同⼀组数做不同的运算,观察显⽰灯的结果。
⼆、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执⾏不同的运算[思考]M1、M2控制信号的作⽤是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输⼊时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验⼆双端⼝存储器[实验⽬的]1.了解双端⼝存储器的读写;2.了解双端⼝存储器的读写并⾏读写及产⽣冲突的情况。
计算机组成原理--实验报告

实验一寄存器实验实验目的:了解模型机中各种寄存器结构、工作原理及其控制方法。
实验要求:利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,将数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据寄存器组R0..R3,地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。
实验电路:寄存器的作用是用于保存数据的CPTH 用74HC574 来构成寄存器。
74HC574 的功能如下:- 1 -实验1:A,W 寄存器实验原理图寄存器A原理图寄存器W 原理图连接线表:- 2 -系统清零和手动状态设定:K23-K16开关置零,按[RST]钮,按[TV/ME]键三次,进入"Hand......"手动状态。
在后面实验中实验模式为手动的操作方法不再详述.将55H写入A寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据55H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据55H被写入A寄存器。
将66H写入W寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据66H- 3 -置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器W 的黄色选择指示灯亮,表明选择W寄存器。
放开STEP 键,CK 由低变高,产生一个上升沿,数据66H 被写入W 寄存器。
注意观察:1.数据是在放开STEP键后改变的,也就是CK的上升沿数据被打入。
2.WEN,AEN为高时,即使CK有上升沿,寄存器的数据也不会改变。
实验2:R0,R1,R2,R3 寄存器实验连接线表- 4 -将11H、22H、33H、44H写入R0、R1、R2、R3寄存器将二进制开关K23-K16,置数据分别为11H、22H、33H、44H置控制信号为:K11、K10为10,K1、k0分别为00、01、10、11并分别按住STEP 脉冲键,CK 由高变低,这时寄存器R0、R1\R2\R3 的黄色选择指示灯分别亮,放开STEP键,CK由低变高,产生一个上升沿,数据被写入寄存器。
计算机组成原理--实验二算术逻辑运算实验

计算机组成原理--实验⼆算术逻辑运算实验实验⼆算术逻辑运算实验⼀、实验⽬的(1)了解运算器芯⽚(74LS181)的逻辑功能。
(2)掌握运算器数据的载⼊、读取⽅法,掌握运算器⼯作模式的设置。
(3)观察在不同⼯作模式下数据运算的规则。
⼆、实验原理1.运算器芯⽚(74LS181)的逻辑功能74LS181是⼀种数据宽度为4个⼆进制位的多功能运算器芯⽚,封装在壳中,封装形式如图2-3所⽰。
5V A1 B1 A2 B2 A3 B3 Cn4 F3BO A0 S3 S2 S1 S0 Cn M F0 F1 F2 GND图2-374LS181封装图主要引脚有:(1)A0—A3:第⼀组操作数据输⼊端。
(2)B0—B3:第⼆组操作数据输⼊端。
(3)F0—F3:操作结果数据输⼊端。
(4)F0—F3:操作功能控制端。
(5)Cn:低端进位接收端。
(6)(7)M:算数/逻辑功能控制端。
芯⽚的逻辑功能见表2-1.从表中可以看到当控制端S0—S3为1001、M为0、Cn为1时,操作结果数据输出端F0—F3上的数据等于第⼀组操作数据输⼊端A0—A3上的数据加第⼆组操作数据输⼊端B0—B3上的数据。
当S0—S3、M、Cn上控制信号电平不同时,74LS181芯⽚完成不同功能的逻辑运算操作或算数运算操作。
在加法运算操作时,Cn、Cn4进位信号低电平有效;减法运算操作时,Cn、Cn4借位信号⾼电平有效;⽽逻辑运算操作时,Cn、进位信号⽆意义。
2.运算器实验逻辑电路试验台运算器实验逻辑电路中,两⽚74LS181芯⽚构成⼀个长度为8位的运算器,两⽚74LS181分别作为第⼀操作数据寄存器和第⼆操作数据寄存器,⼀⽚74LS254作为操作结果数据输出缓冲器,逻辑结构如图2-4所⽰。
途中算术运算操作时的进位Cy 判别进位指⽰电路;判零Zi和零标志电路指⽰电路,将在实验三中使⽤。
第⼀操作数据由B-DA1(BUS TO DATA1)负脉冲控制信号送⼊名为DA1的第⼀操作数据寄存器,第⼆操作数据由B-DA2(BUS TO DATA2)负脉冲控制信号送⼊名为DA2的第⼆操作数据寄存器。
计算机组成实验报告二8位算术逻辑运算

1、目的与要求1、验证带进位控制的算术逻辑运算发生器74LSl8l 的功能。
2、按指定数据完成几种指定的算术运算。
实验性质:验证性参见《计算机组成原理实验指导书》2、实验设备DVCC 计算机组成原理实验箱,排线若干。
3、实验步骤与源程序⑴ 连接线路,仔细查线无误后,接通电源。
本实验用到4个主要模块:⑴低8位运算器模块,⑵数据输入并显示模块,⑶数据总线显示模块,⑷功能开关模块(借用微地址输入模块)。
根据实验原理详细接线如下: ⑴ ALUBUS 连EXJ3; ⑵ ALUO1连BUS1; ⑶ SJ2连UJ2;⑷ 跳线器J23上T4连SD ;⑸ LDDR1、LDDR2、ALUB 、SWB 四个跳线器拨在左边(手动方式); ⑹ AR 跳线器拨在左边,同时开关AR 拨在“1”电平。
⑵ 用二进制数码开关KD0~KD7向DR1和DR2寄存器置数。
方法:关闭ALU 输出三态门(ALUB`=1),开启输入三态门(SWB`=0),输入脉冲T4按手动脉冲发生按钮产生。
设置数据开关具体操作步骤图示如下:说明:LDDR1、LDDR2、ALUB`、SWB`四个信号电平由对应的开关LDDR1、LDDR2、ALUB 、SWB 给出,ALUB=1 LDDR1=1 LDDR2=0 ALUB=1 LDDR2=1 LDDR1=0拨在上面为“1”,拨在下面为“0”,电平值由对应的显示灯显示,T4由手动脉冲开关给出。
⑶检验DR1和DR2中存入的数据是否正确,利用算术逻辑运算功能发生器 74LS181的逻辑功能,即M=1。
具体操作为:关闭数据输入三态门SWB`=1,打开ALU输出三态门ALUB`=0,当置S3、S2、S1、S0、M为1 1 1 1 1时,总线指示灯显示DR1中的数,而置成1 0 1 0 1时总线指示灯显示DR2中的数。
⑷验证74LS181的算术运算和逻辑运算功能(采用正逻辑)在给定DR1=35、DR2=48的情况下,改变算术逻辑运算功能发生器的功能设置,观察运算器的输出,填入表2.1.1中,并和理论分析进行比较、验证。
计算机组成原理算术逻辑运算实验

实验2 算术逻辑运算实验一、实验目的1.掌握简单运算器的组成以及数据传送通路2.验证运算功能发生器(74LS181)的组合功能二、实验设备74LS181(两片),74LS273(两片), 74LS245(一片),开关若干,灯泡若干,单脉冲一片三、实验原理实验中的运算器由两片74LS181以并/串形式构成8位字长的ALU。
运算器的输出经过一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74LS373)锁存,锁存器的输入连至数据总线,数据开关用来给出参与运算的数据(A和B),并经过一个三态门(74LS245)和数据显示灯相连,显示结果。
74LS181:完成加法运算74LS273:输入端接数据开关,输出端181。
在收到上升沿的时钟信号前181和其输出数据线之间是隔断的。
在收到上升沿信号后,其将输出端的数据将传到181,同时,作为触发器,其也将输入的数据进行保存。
因此,通过增加该芯片,可以通过顺序输入时钟信号,将不同寄存器中的数据通过同一组输出数据线传输到181芯片的不同引脚之中74LS245:相当于181的输出和数据显示灯泡组件之间的一个开关,在开始实验后将其打开,可以使181的运算结果输出并显示到灯泡上四、实验步骤1. 选择实验设备:根据实验原理图,将所需要的组件从组件列表中拖到实验设计流程栏中。
2. 搭建实验流程:将已选择的组件进行连线(鼠标从一个引脚的端点拖动到另一组件的引脚端,即完成连线)。
搭建好的实验流程图如图2所示。
具体操作如下:①将74LS273芯片的0-7号引脚(数据端从低到高)及9号引脚(复位端)接到开关上,8号引脚接至单脉冲组件,左右两个74LS273芯片分别保存参与运算的数据A和B。
接着把两个74LS273组件的11-14号引脚(数据的低四位)分别接到74LS181组件(左)的0-7号引脚上,其中0-3号引脚为A的低四位,4-7号引脚为B的低四位。
计算机组成原理实验报告 算术逻辑运算单元实验

西华大学数学与计算机学院实验报告课程名称:计算机组成原理年级:2011级实验成绩:指导教师:祝昌宇姓名:蒋俊实验名称:算术逻辑运算单元实验学号:312011*********实验日期:2013-12-15一、目的1. 掌握简单运算器的数据传输方式2. 掌握74LS181的功能和应用二、实验原理(1)ALU单元实验构成1、结构试验箱上的算术逻辑运算单元上的运算器是由运算器由2片74LS181构成8字长的ALU 单元。
2、2片74LS373作为2个数据锁存器(DR1、DR2),8芯插座ALU-OUT作为数据输入端,可通过短8芯扁平电缆,把数据输入端连接到数据总线上。
3、运算器的数据输出由一片74LS244(输出缓冲器)来控制,8芯插座ALU-OUT作为数据输出端,可通过短8芯扁平电缆把数据输出端连接到数据总线上。
(2)ALU单元的工作原理数据输入锁存器DR1的EDR1为低电平,并且D1CK有上升沿时,把来自数据总线上的数据打入锁存器DR1。
同样,使EDR2为低电平,并且D2CK有上升沿时,把来自数据总线上的数据打入锁存器DR2。
算术逻辑运算单元的核心是由2片74LS181构成,它可以进行2个8位二进制数的算术逻辑运算,74LS181的各种工作方式可通过设置其控制信号来实现(S0、S1、S2、S3、M、CN)。
当实验者正确设置了74LS181的各个控制信号,74LS181会运算数据锁存器DR1、DR2内的数据。
由于DR1、DR2已经把数据锁存,只要74LS181的控制信号不变,那么74LS181的输出数据也不会发生改变。
输出缓冲器采用74LS244,当控制信号ALU-O为低电平时,74LS244导通,把74LS181的运算结果输出到数据总线;ALU-O为高电平时,74LS244的输出为高阻。
图1 算术逻辑单元原理图三、使用环境计算机组成原理实验箱四、实验步骤(一).逻辑或运算实验1.把ALU-IN(8芯的盒型插座)与CPT-B板上的二进制开关单元中J1插座相连(对应二进制开关H16~H23), 把ALU-OUT(8芯的盒型插座)与数据总线上的DJ2相连。
《计算机组成原理》实验

实验一、运算实验算术逻辑一、实验目的1、掌握简单运算器的数据传送通路2、验证运算功能发生器(74LS181)的组合功能二、实验设备CCT-IV计算机组成原理教学实验系统一台,排线若干。
三、实验原理实验中的运算器由两片74LS181构成。
运算器的输出经过一个三态门74LS245和数据总线相连,运算器的两个数据输入端,分别由二个锁存器74LS273锁存,锁存器的输入端和数据总线相连,数据输入输出都通过总线完成;数据显示灯(“BUS UNIT”)与数据总线相连,用来显示数据总线内容。
实验中的数据输入由数据开关(“INPUT DEVICE”)给出,并经过三态门74LS245和数据总线相连,数据输出可以经总线输出至七段数码管(“OUTPUT DEVICE”)显示S3S2S1S0MLDDR1 T4 LDDR2SW-B图1-2运算器数据通路图1-2中T4为脉冲信号,其它均为电平信号。
在实验中,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲,而S3、S2、S1、S0、Cn、M、LDDR、ALU-B、SW-B各电平控制信号用“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDR1,LDDR2为高电平有效进位控制运算的实验,是在前面实验的基础上增加进位控制部分(如1-3图所示),其中181的进位进入一个74锁存器,其写入是由T4的AR信号控制,T4是脉冲信号,实验时将T4连至“STATE UNIT”的微动开关KK2上。
AR是电平控制信号,可用于实现带进位控制实验,而T4脉冲是将本次运算的进位结果锁存到进位锁存器中。
四、实验内容1、按图1-1实验接线图连接线路,仔细查线无误后,接通电源。
2、用二进制数码开关分别向DR1和DR2寄存器臵数01100101,10100111。
①打开数据输入三态门SW-B=0 关闭运算器输出三态门ALU-B=1②向寄存器DR1传送数据,数据开关臵01100101,LDDR1=1,LDDR2=0,按下KK2,产生T4信号③向寄存器DR2传送数据,数据开关臵10100111,LDDR1=0,LDDR2=1,按下KK2,产生T4信号④关闭数据输入三态门SW-B=1,打开运算器输出三态门ALU-B=0⑤当臵S3、S2、S1、S0、M为11111时,总线指示灯DR1中的数,而臵成10101时总线指示DR2中的数。
计算机组成原理实验报告

计算机组成原理实验报告实验报告运算器实验⼀、实验⽬的掌握⼋位运算器的数据传输格式,验证运算功能发⽣器及进位控制的组合功能。
⼆、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运⽤。
三、实验原理实验中所⽤的运算器数据通路如图2-3-1所⽰。
ALU运算器由CPLD描述。
运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输⼊端分别由2个74LS574锁存器锁存,锁存器的输⼊端与数据总线相连,准双向I/O 输⼊输出端⼝⽤来给出参与运算的数据,经2⽚74LS245三态门与数据总线相连。
图2-3-1运算器数据通路图中A WR、BWR在“搭接态”由实验连接对应的⼆进制开关控制,“0”有效,通过【单拍】按钮产⽣的脉冲把总线上的数据打⼊,实现运算源寄存器A、暂存器B的写⼊操作。
四、运算器功能编码算术运算逻辑运算K23~K0置“1”,灭M23~M0控位显⽰灯。
然后按下表要求“搭接”部件控制路。
表2.3.2 运算实验电路搭接表算术运算1.运算源寄存器写流程通过I/O单元“S7~S0”开关向累加器A和暂存器B置数,具体操作步骤如下:2.运算源寄存器读流程关闭A、B写使能,令K18=K17=“1”,按下流程分别读A、B。
3.加法与减法运算令M S2 S1 S0(K15 K13~K11=0100),为算术加,FUN及总线单元显⽰A+B的结果令M S2 S1 S0(K15 K13~K11=0101),为算术减,FUN及总线单元显⽰A-B的结果。
逻辑运算1.运算源寄存器写流程通过“I/O输⼊输出单元”开关向寄存器A和B置数,具体操作步骤如下:2.运算源寄存器读流程关闭A、B写使能,令K17= K18=1,按下流程分别读A、B。
①若运算控制位设为(M S2 S1 S0=1111)则F=A,即A内容送到数据总线。
②若运算控制位设为(M S2 S1 S0=1000)则F=B,即B内容送到数据总线。
运算器实验-计算机组成原理

实验题目运算器实验一、算术逻辑运算器1.实验目的与要求:1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
2.掌握简单运算器的数据传送通道。
3.验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。
4.能够按给定数据,完成实验指定的算术/逻辑运算。
2.实验方案:(一)实验方法与步骤1实验连线按书中图1-2在实验仪上接好线后,仔细检查正确与否,无误后才接通电源。
每次实验都要接一些线,先接线再开电源,这样可以避免烧坏实验仪。
2 用二进制数据开关分别向DR1寄存器和DR2寄存器置数。
3 通过总线输出寄存器DR1和DR2的内容。
(二)测试结果3.实验结果和数据处理:1)SW-B=0时有效,SW-B=1时无效,因其是低电平有效。
ALU-B=0时有效,ALU-B=1时无效,因其是低电平有效。
S3,S2,S1,S0高电平有效。
2)做算术运算和逻辑运算时应设以下各控制端:ALU-B SW-B S3 S2 S1 S0 M Cn DR1 DR23)输入三态门控制端SW-B和输出三态门控制端ALU-B不能同时为“0”状态,否则存在寄存器中的数据无法准确输出。
4)S3,S2,S1,S0是运算选择控制端,有它们决定运算器执行哪一种运算;M是算术逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算;Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关;、ALU-B是输出三态门控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
SW-B是输入三态门的控制端,控制“INPUT DEVICE”中的8位数据开关D7~D0的数据是否送到数据总线BUS上。
低电平有效。
5)DR1、DR2置数完成后之所以要关闭控制端LDDR1、LDDR2是为了确保输入数据不会丢失。
6)A+B是逻辑运算,控制信号状态000101;A加B是算术运算,控制信号状态100101。
计算机组成原理实验教案

计算机组成原理实验教案目录实验一运算器实验 (1)一.实验目的 (1)二.实验设备 (1)三.实验原理 (1)四.实验步骤 (2)实验二存储器实验 (5)一.实验目的 (5)二.实验设备 (5)三.实验原理 (5)四.实验步骤 (5)实验三时序实验 (8)一.实验目的 (8)二.实验设备 (8)三.实验原理 (8)四.实验内容 (8)实验四总线控制实验 (10)一.实验目的 (10)二.实验设备 (10)三.实验原理 (10)四.实验步骤 (10)实验五微程序控制器的组成与微程序设计实验 (12)一.实验目的 (12)二.实验设备 (12)三.实验原理 (12)四.实验步骤 (14)实验一运算器实验一.实验目的1. 掌握简单运算器的组成以及数据传送通路。
2. 验证运算功能发生器(74LS181)的组合功能。
二.实验设备ZY15Comp12BB计算机组成原理教学实验箱一台,排线若干。
三.实验原理图1-l 运算器数据通路图实验中所用的运算器数据通路如图1-1所示。
其中运算器由两片74LS181以并/串形式构成8位字长的ALU。
运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关(INPUT)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连。
运算器的输出经过一个三态门(74LS245)和数据总线相连。
数据显示灯已和数据总线(“DA TA BUS”)相连,用来显示数据总线内容。
图1-2中已将实验需要连接的控制信号用箭头标明(其他实验相同,不再说明)。
其中除T4为脉冲信号,其它均为电平控制信号。
实验电路中的控制时序信号均已内部连至相应时序信号引出端,进行实验时,还需将S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU_G、SW_G 各电平控制信号与“SWITCH”单元中的二进制数据开关进行跳线连接。
其中ALU_G、SW_G 为低电平有效,LDDR1、LDDR2为高电平有效。
实验2 运算器 实验报告

实验2 运算器实验报告一、实验目的本次实验的主要目的是深入了解运算器的工作原理和功能,通过实际操作和观察,掌握运算器在计算机系统中的重要作用,提高对计算机硬件结构的理解和认识。
二、实验设备本次实验使用了以下设备:1、计算机一台,配置为_____处理器、_____内存、_____硬盘。
2、实验软件:_____。
三、实验原理运算器是计算机中执行算术和逻辑运算的部件。
它主要由算术逻辑单元(ALU)、寄存器、数据通路和控制电路等组成。
算术逻辑单元(ALU)能够进行加、减、乘、除等算术运算,以及与、或、非、异或等逻辑运算。
寄存器用于暂存操作数和运算结果,数据通路负责在各个部件之间传输数据,控制电路则根据指令控制运算器的操作。
在运算过程中,数据从寄存器或内存中读取,经过 ALU 处理后,结果再存回寄存器或内存中。
四、实验内容与步骤(一)加法运算实验1、打开实验软件,进入运算器实验界面。
2、在操作数输入框中分别输入两个整数,例如 5 和 10。
3、点击“加法”按钮,观察运算结果显示框中的数值。
4、重复上述步骤,输入不同的操作数,验证加法运算的正确性。
(二)减法运算实验1、在实验界面中,输入被减数和减数,例如 15 和 8。
2、点击“减法”按钮,查看结果是否正确。
3、尝试输入负数作为操作数,观察减法运算的处理方式。
(三)乘法运算实验1、输入两个整数作为乘数和被乘数,例如 3 和 7。
2、启动乘法运算功能,检查结果的准确性。
3、对较大的数值进行乘法运算,观察运算时间和结果。
(四)除法运算实验1、给定被除数和除数,如 20 和 4。
2、执行除法运算,查看商和余数的显示。
3、尝试除数为 0 的情况,观察系统的处理方式。
(五)逻辑运算实验1、分别进行与、或、非、异或等逻辑运算,输入相应的操作数。
2、观察逻辑运算的结果,理解不同逻辑运算的特点和用途。
五、实验结果与分析(一)加法运算结果通过多次输入不同的操作数进行加法运算,结果均准确无误。
计组实验-运算器实验

计算机组成原理实验课程实验报告实验名称运算器实验
实验二运算器
一.实验目的
了解简单运算器的数据传输通路。
验证运算功能发生器的组合功能。
掌握算术逻辑运算加、减、与的工作原理。
二.实验环境
Quartus 2 9.1
三.实验基本原理及步骤
算术逻辑单元运算器ALU181根据74LS181的功能,用VHDL硬件描述语言编辑而成,构成8位字长的ALU。
参加运算的两个8位数据分别为A[7..0]和B[7..0],运算模式由S[3..0]的16种组合决定,S[3..0]的值由4位2进制计数器LPM_COUNTER产生,计数时钟是Sclk(图2-1);此外,设M=0,选择算术运算,M=1为逻辑运算,C N为低位的进位位;
F[7..0]为输出结果,C O为运算后的输出进位位。
两个8位数据由总线IN[7..0]分别通过两个电平锁存器74373锁入,ALU功能如表所示。
四.仿真及软件设计
Vhd编程(非自己写,粘贴了群里文件):
将编程存为器件以及定制74373b,如图
bdf电路图:
五.实验结果分析及回答问题(或测试环境及测试结果)实验问题:
发现是
后来将IN[7…0]改为IN[7..0]
运行成功
仿真结果:
经检验结果正确:。
计算机组成原理实验二

Vcc
右移门
4.ALU左移输出原理图
数据输出选择器输出信号L_OE
左移门
当CN=1 Cy 移入DBUS0 当CN=0 0 移入DBUS0
二. 实验任务
1. 计算37H+56H后左移一位的值送OUT 输出。 2. 把36H取反后同54H相与的值送入R1 寄存器。
三. 实验过程举例(1)
例:实验任务:输出ACH-BDH的值(用外部输入门IN进行数据输入) 1. 实验箱没有一条微命令能完成这个操作任务。所以要考虑一个微命令序 列——微程序来完成任务。故先把任务分解成有微命令对应的基本操作,并有序 排列这些基本操作。 2. 选择基本操作:由背景知识1,可以选用“A-W”微命令;这要求先把值 ACH送入寄存器A,值BDH送入寄存器W;题意没有要求对运算结果做进一步处 理,所以直通门D中保存的值是计算结果;把D的值送OUT寄存器输出。
控制电键
k9
k8
k7Leabharlann k6k4k3k2
k1
k0
被控对象
OUTEN
X2 X1 X0
S2
S1
S0
WEN
AEN
三. 实验过程举例(2)
第三步、实验:
① 注视仪器,打开电源,手不要远离电源开关,随时准备关闭电源, 注意各数码管、发光管的稳定性,静待10秒,确信仪器稳定、无焦糊味。
② 设置实验箱进入手动模式。 ③ ACH送入寄存器A。X2x1x0(k8k7k6)=000,AEN(k0)=0, k23-k16=10101100 按下STEP键数值打入A寄存器。 ④ BDH送入寄存器W。方法同上。 ⑤ 计算A-W:按“运算器选择表”置:k4k3k2=001;
计算机组成原理实验课程
实验二 运算器实验
《计算机组成原理》运算器实验报告(总结报告范文模板)

《计算机组成原理》运算器实验报告实验目录:一、实验1 Quartus Ⅱ的使用(一)实验目的(二)实验任务(三)实验要求(四)实验步骤(五)74138、74244、74273的原理图与仿真图二、实验2 运算器组成实验(一)实验目的(二)实验任务(三)实验要求(四)实验原理图与仿真图三、实验3 半导体存储器原理实验(一)实验目的(二)实验要求(三)实验原理图与仿真图四、实验4 数据通路的组成与故障分析实验(一)实验目的(二)实验电路(三)实验原理图与仿真图五、本次实验总结及体会:一、实验1 Quartus Ⅱ的使用(一)实验目的1.掌握Quartus Ⅱ的基本使用方法。
2.了解74138(3:8)译码器、74244、74273的功能。
3.利用Quartus Ⅱ验证74138(3:8)译码器、74244、74273的功能。
(二)实验任务1、熟悉Quartus Ⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。
2、新建项目,利用原理编辑方式输入74138、74244、74273的功能特性,依照其功能表分别进行仿真,验证这三种期间的功能。
(三)实验要求1.做好实验预习,掌握74138、74244、74273的功能特性。
2.写出实验报告,内容如下:(1)实验目的;(2)写出完整的实验步骤;(3)画出74138、74244和74273的仿真波形,有关输入输出信号要标注清楚。
(四)实验步骤1.新建项目:首先一个项目管理索要新建的各种文件,在Quartus Ⅱ环境下,打开File,选择New Project Wizard后,打开New Project Wizard:Introduction窗口,按照提示创建新项目,点击“Next”按钮,再打开的窗口中输入有关的路径名和项目名称后,按“Finish”按钮,完成新建项目工作。
2.原理图设计与编译:原理图的设计与编译在Compile Mode(编译模式)下进行。
2.1.新建原理图文件打开File菜单,选择New,打开“新建”窗口。
计组实验报告

计算机组成原理实验报告一一、算术逻辑运算器1.实验目的与要求:目的: ①掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
②掌握简单运算器的数据传输通道。
③验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。
④能够按给定数据, 完成实验指定的算术/逻辑运算。
要求: 完成实验接线和所有练习题操作。
实验前, 要求做好实验预习, 掌握运算器的数据传送通道和ALU的特性, 并熟悉本实验中所用的模拟开关的作用和使用方法。
实验过程中, 要认真进行实验操作, 仔细思考实验有关的内容, 把自己想得不太明白的问题通过实验去理解清楚, 争取得到最好的实验结果, 达到预期的实验教学目的。
实验完成后, 要求每个学生写出实验报告。
2.实验方案:1. 两片74LS181(每片4位)以并/串联形式构成字长为8为的运算器。
2. 8为运算器的输出经过一个输入双向三态门(74LS245)与数据总线相连, 运算器的两个数据输入端分别与两个8位寄存器(74LS273)DR1和DR2的输出端相连, DR1和DR2寄存器是用于保存参加运算的数据和运算的结果。
寄存器的输入端于数据总线相连。
3. 8位数据D7~D0(在“INPUT DEVICE”中)用来产生参与运算的数据, 并经过一个输出三态门(74LS245)与数据总线相连。
数据显示灯(BUS UNIT)已与数据总线相连, 用来显示数据总线上所内容。
4. S3.S2.S1.S0是运算选择控制端, 由它们决定运算器执行哪一种运算(16种算术运算或16种逻辑运算)。
5. M是算术/逻辑运算选择, M=0时, 执行算术运算, M=1时, 执行逻辑运算。
6. Cn是算术运算的进位控制端, Cn=0(低电平), 表示有进位, 运算时相当于在最低位上加进位1, Cn=1(高电平), 表示无进位。
逻辑运算与进位无关。
7. ALU-B是输出三态门的控制端, 控制运算器的运算结果是否送到数据总线BUS上。
计算机组成原理实验-运算器实验报告

当A=10000000,B=00110010时
F=01111111
(5)S3S2S1S0=1101时,F=A加1。例如:
当A=00110101,B=00110101时,F=00 Nhomakorabea10110
当A=11100011,B=00100010时
F=11100100
F=00100000,FC灯亮,表示有进位
(3)S3S2S1S0=1011时,F=A减B。例如:
当A=00110101,B=00110101时,
F=00000000
当A=01011011,B=00111010时
F=00100001
(4)S3S2S1S0=1100时,F=A减1。例如:
当A=00110101,B=00110101时,
计算机组成原理实验运算器实验报告基本运算器实验报告运算器的组成部分运算器实验报告运算器及移位实验计算机组成原理实验运算器运算器的主要功能是运算器的主要功能运算器的功能
1.逻辑运算
(1)S3S2S1S0=0000时,F=A,例如:
当A=00010101,B=01101001时
F=00010101;
当A=01011000时,B=01011110时
当A=11000011,B=00111100时
F=00000000
(4)S3S2S1S0=0011时,F=A+B。例如:
当A=00110101,B=11001010时,
F=11111111
当A=01011011,B=11000101时
F=11011111
(5)S3S2S1S0=0100时,F=/A。例如:
F=00011101
当A=01000111,B=00000101时
《计算机组成原理》实验1寄存器试验,2运算器试验

实验指导书课程:计算机组成原理实验教师:班级:第一章系统概述1.1 实验系统组成第二章基础模块实验实验一寄存器实验实验目的:熟悉试验仪各部分功能。
掌握寄存器结构、工作原理及其控制方法。
实验内容:利用实验仪开关区上的开关sk23-sk16提供数据,其它开关做为控制信号,将数据通过DBUS写入OUT 寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光二极管显示。
实验原理:实验箱用74HC273 来构成寄存器。
(1)74HC273的功能如下:(2)实验箱中74HC273的连接方式:(3)实验逻辑框图12、打开实验仪电源,按CON单元的nRST按键,系统复位;如果EXEC键上方指示灯不亮,请按一次EXEC键,点亮指示灯,表示实验仪在运行状态。
3、利用开关和控制信号将数据通过DBUS写入OUT寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光二极管显示。
并写出将数据5FH写入OUT寄存器的操作过程。
实验二运算器实验实验目的:了解运算器的组成结构;掌握运算器的工作原理和控制方法。
实验内容:利用实验仪提供的运算器,通过开关提供数据信号,将数据写入寄存器A和寄存器B,并用开关控制ALU的运算方式,验证运算器的功能。
实验原理:(1)实验逻辑框图:信号说明:IN0~IN7:ALU数据输入信号ALU_D0~ALU_D7:ALU数据输出信号:寄存器A写信号,低电平有效。
当T1节拍信号到来,该信号有效时,IN0~IN7数据可以写入寄存器A。
:寄存器B写信号,低电平有效。
当T2节拍信号到来,该信号有效时,IN0~IN7数据可以写入寄存器B。
:ALU计算结果读出信号,当T3节拍信号到来,该信号有效时,ALU计算结果送往ALU_D0~ALU_D7。
S3~S0,CN_I:ALU运算控制信号,控制ALU的运算方法。
T1,T2,T3:三个节拍信号,高电平有效,由con区的uSTEP按键控制,在运行状态时,依次按下uSTEP 键会依次发出T1、T2、T3节拍。
计算机组成原理 运算器实验—算术逻辑运算实验复习过程

计算机组成原理运算器实验—算术逻辑运算实验实验报告一、实验名称运算器实验—算术逻辑运算实验二、实验目的1、了解运算器的组成原理。
2、掌握运算器的工作原理。
3、掌握简单运算器的数据传送通路。
4、验证运算功能发生器(74LS181)的组合功能。
三、实验设备TDN-CM++计算机组成原理教学实验系统一套,导线若干。
四、实验原理实验中所用的运算器数据通路如图1-1所示。
其中两片74LSl81以串行方式构成8位字长的ALU,ALU的输出经过一个三态门(74LS245)和数据总线相连。
三态门由ALU-R控制,控制运算器运算的结果能否送往总线,低电平有效。
为实现双操作数的运算,ALU的两个数据输入端分别由二个锁存器DR1、DR2(由74LS273实现)锁存数据。
要将数据总线上的数据锁存到DRl、DR2中,锁存器的控制端LDDR1和DDR2必须为高电平,同时由T4脉冲到来。
数据开关(“INPUT DEVICE")用来给出参与运算的数据,经过三态(74LS245)后送入数据总线,三态门由SW—B控制,低电平有效。
数据显示灯(“BUS UNIT")已和数据总线相连,用来显示数据总线上的内容。
图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号外,其它均为电平信号。
由于实验电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT"的T4接至“STATE UNIT”的微动开关KK2的输入端,按动微动开关,即可获得实验所需的单脉冲。
ALU运算所需的电平控制信号S3、S2、S1、S0 、Cn、M、LDDRl、LDDR2、ALU-B、SW-B均由“ SWITCH UNIT ”中的二进制数据开关来模拟,其中Cn、ALU—B、SW一B为低电平有效LDDR1、LDDR2为高电平有效。
对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。
计算机组成原理--实验报告

实验一寄存器实验实验目的:了解模型机中各种寄存器结构、工作原理及其控制方法。
实验要求:利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,将数据写入寄存器,这些寄存器包括累加器A,工作寄存器W,数据寄存器组R0..R3,地址寄存器MAR,堆栈寄存器ST,输出寄存器OUT。
实验电路:寄存器的作用是用于保存数据的CPTH 用74HC574 来构成寄存器。
74HC574 的功能如下:--实验1:A,W 寄存器实验原理图寄存器A原理图寄存器W 原理图连接线表:--系统清零和手动状态设定:K23-K16开关置零,按[RST]钮,按[TV/ME]键三次,进入"Hand......"手动状态。
在后面实验中实验模式为手动的操作方法不再详述.将55H写入A寄存器二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据55H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器A的黄色选择指示灯亮,表明选择A寄存器。
放开STEP键,CK由低变高,产生一个上升沿,数据55H被写入A寄存器。
将66H写入W寄存器--二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据66H置控制信号为:按住STEP脉冲键,CK由高变低,这时寄存器W 的黄色选择指示灯亮,表明选择W寄存器。
放开STEP 键,CK 由低变高,产生一个上升沿,数据66H 被写入W 寄存器。
注意观察:1.数据是在放开STEP键后改变的,也就是CK的上升沿数据被打入。
2.WEN,AEN为高时,即使CK有上升沿,寄存器的数据也不会改变。
实验2:R0,R1,R2,R3 寄存器实验连接线表--将11H、22H、33H、44H写入R0、R1、R2、R3寄存器将二进制开关K23-K16,置数据分别为11H、22H、33H、44H置控制信号为:K11、K10为10,K1、k0分别为00、01、10、11并分别按住STEP 脉冲键,CK 由高变低,这时寄存器R0、R1\R2\R3 的黄色选择指示灯分别亮,放开STEP键,CK由低变高,产生一个上升沿,数据被写入寄存器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机组成原理实验二
算术逻辑运算实验 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
实验二算术逻辑运算实验
一、实验目的
(1)了解运算器芯片(74LS181)的逻辑功能。
(2)掌握运算器数据的载入、读取方法,掌握运算器工作模式的设置。
(3)观察在不同工作模式下数据运算的规则。
二、实验原理
1.运算器芯片(74LS181)的逻辑功能
74LS181是一种数据宽度为4个二进制位的多功能运算器芯片,封装在壳中,封装形式如图2-3所示。
图2-3 74LS181封装图
主要引脚有:
(1)A0—A3:第一组操作数据输入端。
(2)B0—B3:第二组操作数据输入端。
(3)F0—F3:操作结果数据输入端。
(4)F0—F3:操作功能控制端。
̅̅̅̅̅̅:低端进位接收端。
(5)CC
(6)CC4:高端进位输出端。
(7)M:算数/逻辑功能控制端。
芯片的逻辑功能见表2-1.从表中可以看到当控制端S0—S3为1001、M为̅̅̅̅̅̅为1时,操作结果数据输出端F0—F3上的数据等于第一组操作数据输0、CC
入端A0—A3上的数据加第二组操作数据输入端B0—B3上的数据。
当S0—S3、̅̅̅̅̅̅上控制信号电平不同时,74LS181芯片完成不同功能的逻辑运算操作或M、CC
̅̅̅̅̅̅、CC4进位信号低电平有效;减法运算数运算操作。
在加法运算操作时,CC
̅̅̅̅̅̅、
算操作时,CC
̅̅̅̅̅̅、CC4借位信号高电平有效;而逻辑运算操作时,CC
CC4进位信号无意义。
2.运算器实验逻辑电路
试验台运算器实验逻辑电路中,两片74LS181芯片构成一个长度为8位的运算器,两片74LS181分别作为第一操作数据寄存器和第二操作数据寄存器,一片74LS254作为操作结果数据输出缓冲器,逻辑结构如图2-4所示。
途中算
术运算操作时的进位Cy 判别进位指示电路;判零Zi 和零标志电路指示电路,将在实验三中使用。
第一操作数据由B-DA1(BUSTODATA1)负脉冲控制信号送入名为DA1的第一操作数据寄存器,第二操作数据由B-DA2(BUSTODATA2)负脉冲控制信号送入名为DA2的第二操作数据寄存器。
74LS181的运算结果数据由ALU −B
̅̅̅̅̅̅̅̅̅̅(ALUTOBUS )低电平控制信号送总线。
S0—S3、M 芯片模式控制信号同时与两片74LS181的S0—S3、M 端相连,保证二者以同一工作模式工作。
实验电路的低端进位接收端Ci 与低4位74LS181的CC ̅̅̅̅̅̅相连,用于接收外部进位信号。
低4为74LS181的CC ̅̅̅̅̅̅与高4位74LS181的CC ̅̅̅̅̅̅上相连,实现高、低4位之间进位信号的传递。
高4位之间进位信号的传递。
高4位74LS181的CC4送进位Cy 判别和进位指示电路。
表2-174LS181芯片逻辑功能表
三、实验过程
1.连线
参照实验逻辑原理图进行连线,实验台上数据线用总线连接器连接好后一般不动,控制信号线需手工连接,本实验要连接的控制线如下。
逻辑操作符说明:“—”表示非操作,“+”表示“或”操作,“?”表示“与”操作,“⊕”表示“异或”
算术操作符说明:“加”表示加法操作,“减”表示减法操作
(1)把输入、输出单元(INPUT/OUTPUTUNIT)的IO −R ̅̅̅̅̅̅̅̅、IO −W ̅̅̅̅̅̅̅̅与手动控制开关单元(MANUALUNIT )的IO −R ̅̅̅̅̅̅̅̅、IO −W ̅̅̅̅̅̅̅̅相连接。
(INPUT/OUTPUTUNIT)的Ai 接地。
把算术逻辑部件(ALUUNIT)的S3—S0、M 、Ci 与手动控制开关单元
(MANUALUNIT)的S3-S0、M 、Ci 相连接。
把算术逻辑部件(ALUUNIT)的B-DA1、B-DA2、ALU −B ̅̅̅̅̅̅̅̅̅̅与手动控制开关单元(MANUALUNIT)的B-DA1、B-DA2、ALU −B ̅̅̅̅̅̅̅̅̅̅相连接。
图2-4算数逻辑运算部件原理图
2.数据输入过程
(1)把开关IO −R ̅̅̅̅̅̅̅̅、IO −W ̅̅̅̅̅̅̅̅、B-DAI 、B-DAI2、ALU −B ̅̅̅̅̅̅̅̅̅̅拔上,确保为高电平,
使这些信号处于无效状态。
(2)在输入数据的开关上拨好数据代码,例如“00010001”,即16进制数11H(以后再许多情况下要使用16进制表达方式)。
(3)把输入控制信号IO −R ̅̅̅̅̅̅̅̅开关拔下成低电平。
这时总线上显示的状态应该与输入数据一致。
(4)把第一组数据输入控制信号B-DAI 的开关拨动一次,即实现“1-0-
1”,产生一个负脉冲,作用是把数据“11H ”送第一数据寄存器DAI 中。
3.数据输出过程
(1)为了检验数据送入的正确性,现把DAI 中的内容送到总线上。
(2)把输入数据的开关上的输入数据代码拨成00H ,与刚才送第一数据寄存器DAI 的数据区分开。
(3)把输入控制信号IO −R ̅̅̅̅̅̅̅̅开关拨上成高电平无效,这是总线上的状态应该与输入数据无关,显示为FFH 。
(4)把74LS181功能控制端S3—S0设置为1111,M 为1,参照表2—
174LS181逻辑功能表,其输出数据F 等于第一组数据输入端A ,既DA1上的数据。
(5)把ALU −B ̅̅̅̅̅̅̅̅̅̅控制信号拨成低电平,可以看到第一数据寄存器DA1中的数据“11H ”经74LS181的A 输入端传送到输出口F ,再传送到总线BUS 。
(6)使用类似的方法把“00100001”(即16进制数21H )用第二数据寄存器输入控制信号B -DA2,将其送到第二数据寄存器DA2,再把第二数据寄存器DA2中的数据送总线。
74LS181的功能控制端S3-S0为“1010”,M 为1的功能是把第二组数据输入端B 的数据送输出端F 。
同样把——ALU -B 控制信号拨成低电平,把数据传送到总线BUS 。
4.数据运算过程
(1)在完成数据输入、输出的基础上进行数据运算操作。
(2)从LS181逻辑功能表上查得“A 加B ,不考虑低端进位”操作的功能控制码为S3—S0=1001、M =0、Ci =1,把这些控制码拨好。
(3)把ALU −B ̅̅̅̅̅̅̅̅̅̅控制信号拨下呈低电平,这时运算结果(正常的运算结果应为“00110010”,即16进制数32H )送到总线,在总线指示灯上可观察到此数据。
(4)把IO −W ̅̅̅̅̅̅̅̅控制信号开关拨动一次,即实现“1—0—1”,产生一个负脉冲,这时总线上的数据就输出缓冲器,显示在LED 指示灯L7—L0上。
(5)Ci是低端位进位输入,Ci=1表示无进位,Ci=0表示有进位。
在进行“A加B”操作时,Ci=1,操作结果是“00110010”,即16进制数32H;Ci =0,操作结果是“00110011”,即即16进制数32H,从而可以验证低端位进位输入的作用。
(6)变换操作功能控制码S3—S0=1001、M=0,进行A-B操作,进行减法操作时,Ci=0表示无进位,用上面的数据做减法运算,结果为16进制数10H(21H减11H减借位=10H)。
(7)变换不同的操作数据,观察不同的运算结果;变换不同的功能控制码S3—S0,M,进行不同的操作过程,观察不同的结果。
四、结果与总结
(1)在实验过程中把实验步骤用时序图的形式表示出来。
(2)变换不同的操作数据和不同的运算模式,把观察到的数据填入算术逻辑运算表2-2中。
问题,把观察到的现象和对课本上原理的理解写入实验报告。