高中物理传送带模型总结
高中物理传送带模型总结
高中物理传送带模型总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN“传送带模型”1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.2.建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2 .(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件最短时间是多少2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。
已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运,传送带下表面离地面的高度h不变。
如果物体开始沿曲面下滑时距传送带表面的高度为H,初速度为零,g取10m/s2.求:(1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。
(2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。
(3) H在什么范围内时,物体离开传送带后的落地点在同一位置。
3.如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是()A.物块在传送带上运动的时间为4sB.传送带对物块做功为6JC.2s末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J4.如图10所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B。
高中物理传送带模型讲解学习
1.水平传送带 (1)物体与传送带运动方向相同 (2)物体与传送带运动方向相反
2.倾斜传送带 (1)物体与传送带运动方向相同 (2)物体与传送带运动方向相反
传送带模型分析方法
1.受力分析 根据v物、v带的大小和方向关系判断物体所受摩 擦力的大小和方向,注意摩擦力的大小和方向 在v物=v带时易发生突变。 2.运动分析 根据 v物、v带 的大小和方向关系及物体所受摩 擦力情况判断物体的运动规律。(匀速,匀加 速,匀减速)
一、受力分析与运动分析: (1)刚开始工件受到传送带水平向右的滑动摩擦力而做匀 加速运动。 (2)当工件速度与传送带速度相同时与传送带一起做匀速 运动,二者之间不再有摩擦力。
• [命题角度二] • (由1)A若端工到件B以端v的0=时3间m?/s的速度滑上传送带,工件 • (2)若工件以v0=7 m/s的速度滑上传送带呢?
的大小关系如何,最终一定一起匀速。 • (2)当v0与v反向时,只要传送带足够长,当v0<v时,
工件返回到滑入端,速度大小仍为v0;当v0>v时, 工件返回到滑入端,速度大小为v。
• 2.如图所示,水平放置的传送带以速度v=2 m/s向 右运行。现将一小物体轻轻地放在传送带A端,小物 体与传送带间的动摩擦因数μ=0.2。若A端与B端相 距4 m,则小物体由A端到B端所经历的时间和物体 到B端时的速度大小分别为( )
• 1. 如图所示为某工厂一输送工件的传送带,当传送
带静止时,一滑块正在沿传送带匀速下滑。某时刻
传送带突然开动,并按如图所示的方向高速运转。
滑块仍从原位置开始下滑,则与传送带静止时相比,
滑块滑到底部所用的时间将( )
• A.不变
B.变长
• C.变短
传送带模型(解析版)-2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法传送带模型目录【解决传送带问题的几个关键点】【模型一】水平传动带模型上物体的常见运动【模型二】倾斜传送带模型上物体的常见运动1.倾斜传送带--上传模型2.倾斜传送带--下载【解决传送带问题的几个关键点】Ⅰ、受力分析(1)“带动法”判断摩擦力方向:同向快带慢、反向互相阻;(2)共速要突变的三种可能性:①滑动摩擦力突变为零;②滑动摩擦力突变为静摩擦力;③方向突变。
Ⅱ、运动分析(1)参考系的选择:物体的速度、位移、加速度均以地面为参考系;痕迹指的是物体相对传送带的位移。
(2)判断共速以后一定与传送带保持相对静止作匀速运动吗?(3)判断传送带长度--临界之前是否滑出?Ⅲ、画图画出受力分析图和运动情景图,特别是画好v-t图像辅助解题,注意摩擦力突变对物体运动的影响,注意参考系的选择。
【模型一】水平传动带模型上物体的常见运动项目情景1:轻放情景2:同向情景3:反向图示滑块可能的运动情况(1)可能滑块一直加速;(2)可能滑块先加速后匀速;(1)v0<v时,可能一直加速,也可能先加速再匀速;(2)v0>v时,可能一直减速,也可能先减速再匀速.(1)传送带较短时,滑块一直减速达到左端.(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v和v0<v两种情况下滑块回到右端时有何不同?1(2023秋·安徽蚌埠·高三统考期末)如图甲为机场和火车站的安全检查仪,其传送装置可简化为如图乙模型,紧绷的传送带以1m/s的恒定速率运行。
旅客把行李无初速度地放在A处,设行李与传送带之间的动摩擦因数为0.1,AB间的距离为2m,g取10m/s。
行李从A到B的过程中()A.行李一直受到摩擦力作用,方向先水平向左,再水平向右B.行李到达B处时速率为1m/sC.行李到达B处所需的时间为2.5sD.行李与传送带间的相对位移为2m【答案】BC【详解】AB.由牛顿第二定律得μmg=ma设行李与传送带共速所需的时间为t,则有v=at代入数值得t=1s匀加速运动的位移大小为x=1at2=0.5m<2m2所以行李先做匀加速直线运动,再做匀速直线运动,故A错误,B正确;CD.匀速运动的时间为t'=L-x=1.5sv行李从A到B的时间为=1s+1.5s=2.5st总传送带在t时间的位移为x'=vt=1m行李与传送带间的相对位移为Δx=x'-x=0.5m故C正确,D错误;故选BC。
(完整版)高中物理传送带模型(解析版)
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
(完整版)高中物理传送带模型(解析版)
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
高三物理知识点传送带模型
高三物理知识点传送带模型高三物理知识点:传送带模型传送带模型是物理学中对运动的描述和解释的一种简化模型。
它常被用来说明物体在平稳运动状态下的变化规律和相关的物理概念。
本文将介绍传送带模型的基本原理和应用,以及与高考物理相关的知识点。
一、传送带模型的基本原理传送带模型基于以下假设:1. 假设传送带平稳运行,即传送带的速度保持不变;2. 假设系统在相对运动中处于稳态,即不受到外力的干扰;3. 假设传送带的运动与物体的运动具有良好的耦合性。
在传送带模型中,我们可以将物体视作一个质点,其运动状态由位置、速度和加速度等因素决定。
通过对物体所受的驱动力和阻力进行分析,可以得到物体在传送带上的运动规律。
二、传送带模型的应用1. 平抛运动:传送带模型可以用来解释物体在水平平面上的平抛运动。
在这种情况下,传送带的速度影响了物体的水平速度,而垂直方向的运动受到重力的影响。
根据传送带模型,物体的横向速度与传送带速度相等,而垂直速度受到重力加速度的影响。
这样,我们可以推导出物体在水平平面上的轨迹、飞行时间和最大高度等参数。
2. 斜抛运动:传送带模型也可以应用于物体在斜面上的抛体运动。
在这种情况下,传送带的速度和斜面的倾角会对物体的运动产生影响。
根据传送带模型,物体的速度可以分解为沿斜面和垂直斜面的分量。
这样,我们可以得到物体在斜面上的运动规律,包括滑动距离、飞行时间和最大高度等参数。
三、与高考物理相关的知识点传送带模型是理解和应用以下高考物理知识点的基础:1. 运动规律:通过传送带模型,我们可以更深入地理解运动物体的速度、加速度和运动规律。
包括匀速直线运动、匀加速直线运动等。
2. 平衡力分析:传送带模型可以帮助我们分析物体所受的平衡力和非平衡力。
比如,在平抛运动中,物体的横向速度受到传送带的平衡力,而垂直速度受到重力的非平衡力。
3. 牛顿定律:传送带模型也可以用来解释和应用牛顿定律。
在斜抛运动中,我们可以分析物体受到的斜面作用力和重力作用力,并根据牛顿定律推导运动方程。
高中物理传送带模型总结
高中物理传送带模型总结开始运动的传送带(b) 、 (c)“传送带模型”1.模型特征 一个物体以速度vO(vO >0)在另一个匀 速运动的物体上 力学系统可看做 模型,如图(a)、 示.2•建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力 进行正确的分析判断•判断摩擦力时要注意比较物体的 运动速度与传送带的速度,也就是分析物体在运动位移 x(对地)的过程中速度是否和传送带速度相等.物体的 速度与传送带速度相等的时刻就是物体所受摩擦力发生 突变的时刻• 水平传送带模型:滑块可能的运融储况芾最1fl T) 〔1」匚能一直加世 〔2)可能先加速后匀速 ⑴话r 时.irk-也可紐碱it 再勺豐时*可能一亘如询,也可能牛加谏再勻谏1•传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m并以v o = 2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数卩= 0.2 , g取10 m/s.(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最誉三°短时间是多少?2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。
已知物体与传送带之间的动摩擦因数为a=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m ,在电动机的带动下始终以3 =15/rads的角亠速度沿顺时针匀速转运,传送带下表面离Qzzc 地面的高度h不变。
如果物体开始沿曲面下滑时距传送带表面的高度为H初速度为零,g取10m/s2.求:(1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。
(2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。
2025高考物理总复习动力学中的传送带模型
解得a2=4 m/s2
设从与传送带共速到减速为0的过程中P的位移为x2,则有
-2a2x2=0-v2
解得
2
x2=
2 2
=
22
2×4
m=0.5 m
所以物块P在传送带上向前冲的最远距离为
x1+x2=5.5 m。
(3)设共速前第一个减速过程P的位移为x3,用时为t3,皮带位移为x皮3;共速后
至减速为零为第二个减速过程,P的位移为x4,用时为t4,皮带位移为x皮4。则
小为
1
Δx2=2 2 2 +x1=17.5
m,则煤块在传送带上留下的痕迹长为 17.5 m,C 错
误;煤块与传送带间产生的热量为 Q=μmgcos θ·Δ1 + Δ2 =90 J,D 正确。
指点迷津
物体与传送带的划痕长度Δx等于物体与传送带的相对位移的大小,若有两
次相对运动且两次相对运动方向相同,则Δx=Δx1+Δx2(图甲);若两次相对运
sin + cos
a1=
=10
m/s ,经过时间 t1 速度减小到零,则
2
送带速度为零,则煤块向上滑动的位移
加速度为
Δ
a= =5
Δ
0 2
x1= =5
2 1
0
t1= =1
1
s,0~1 s 传
m,1 s 后传送带开始加速,其
m/s2,由于 μmgcos θ<mgsin θ,则煤块向下加速,其加速度为
传送带模型中的动力学图像
考向一 根据传送情境确定动力学图像
典题5 (多选)(2023广东佛山模拟)如图所示,飞机场运输行李的传送带保持
恒定的速率运行,将行李箱无初速度地放在传送带底端,传送带将它送入飞
高一物理传送带模型知识点
高一物理传送带模型知识点物理学中的传送带模型是我们学习力学领域的重要内容之一。
在高中物理课程中,我们常常接触到这个模型,通过对传送带的研究和分析,我们可以深入了解物体的运动规律和相关的物理概念。
本文将介绍高一物理课程中,关于传送带模型的一些重要知识点。
一、传送带基本概念传送带是一种运输物体的装置,由驱动装置、承载物体的输送带、输送物体的载体等部分组成。
在物理学中,我们通常使用传送带模型来研究物体在传送带上的运动情况。
二、传送带上物体的运动1. 物体在静止的传送带上的运动当静止的物体放置在传送带上时,在没有外力的情况下,物体会跟随传送带一起匀速运动。
这是因为传送带给物体施加了一个与传送带运动方向相同的恒力,使得物体保持相对静止。
2. 物体在运动的传送带上的运动物体在运动的传送带上,其运动情况会受到传送带速度和物体自身速度的影响。
当传送带速度与物体自身速度方向相同时,物体的速度相对较大;当传送带速度与物体自身速度方向相反时,物体的速度相对较小;当传送带速度与物体自身速度大小相等时,物体的速度保持不变。
3. 物体在斜面传送带上的运动当传送带呈斜面倾斜时,物体会受到来自斜面的支撑力和重力的作用。
根据斜面的角度和传送带速度,我们可以计算物体的加速度、速度和位移等相关物理量。
三、传送带的应用1. 传送带在生产线上的应用传送带在工业生产中有广泛的应用,可以用于将物体从一个生产环节输送到另一个生产环节,提高生产效率,减少人力投入。
2. 传送带在交通工具中的应用一些交通工具上也使用了传送带技术,如行李传送带、自动扶梯等。
这些设备通过传送带的运转,方便乘客和物品在交通工具上的运输。
3. 传送带在物流行业中的应用物流行业中的仓储、分拣、运输等环节,也广泛应用了传送带技术。
通过传送带的运输,可以提高物流效率,降低物流成本。
通过以上对传送带模型的介绍,我们深入了解了物体在传送带上的运动规律和一些相关的应用。
传送带模型不仅在物理学中有重要的研究价值,而且在实际生活和工程应用中也起到了不可忽视的作用。
高中物理传送带模型(最新)
高中物理传送带模型1.设问的角度(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.功能关系分析(1)传送带克服摩擦力做的功:W=F f x传;(2)系统产生的内能:Q=F f x相对.(3)功能关系分析:W=ΔE k+ΔE p+Q.一、水平传送带:情景图示滑块可能的运动情况情景1⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景2 ⑴可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景3 ⑴可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速例1(多选)如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.以下说法正确的是()A.建筑工人比建筑材料早到右端0.5 sB.建筑材料在运输带上一直做匀加速直线运动C.因运输建筑材料电动机多消耗的能量为1 JD.运输带对建筑材料做的功为1 J答案AD解析 建筑工人匀速运动到右端,所需时间t 1=Lv 0=2 s ,假设建筑材料先加速再匀速运动,加速时的加速度大小为a =μg =1 m/s 2,加速的时间为t 2=v 0a =1 s ,加速运动的位移为x 1=v 02t 2=0.5 m<L ,假设成立,因此建筑材料先加速运动再匀速运动,匀速运动的时间为t 3=L -x 1v 0=1.5 s ,因此建筑工人比建筑材料早到达右端的时间为Δt =t 3+t 2-t 1=0.5 s ,A 正确,B 错误;建筑材料与运输带在加速阶段摩擦生热,该过程中运输带的位移为x 2=v 0t 2=1 m ,则因摩擦而生成的热量为Q =μmg (x 2-x 1)=1 J ,由动能定理可知,运输带对建筑材料做的功为W =12m v 02=1 J ,则因运输建筑材料电动机多消耗的能量为2 J ,C 错误,D 正确.例2 如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可视为质点)轻轻放在传送带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 答案 (1)32(2)230 J 解析 (1)由题图可知,传送带长x =hsin θ=3 m 工件速度达到v 0前,做匀加速运动,有x 1=v 02t 1工件速度达到v 0后,做匀速运动, 有x -x 1=v 0(t -t 1)联立解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m 所以加速度大小a =v 0t 1=2.5 m/s 2由牛顿第二定律有μmg cos θ-mg sin θ=ma 解得μ=32. (2)由能量守恒定律知,电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量. 在时间t 1内,传送带运动的位移 x 传=v 0t 1=1.6 m在时间t 1内,工件相对传送带的位移 x 相=x 传-x 1=0.8 m在时间t 1内,摩擦产生的热量 Q =μmg cos θ·x 相=60 J最终工件获得的动能E k =12m v 02=20 J工件增加的势能E p =mgh =150 J 电动机多消耗的电能 E =Q +E k +E p =230 J.例3如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.答案:⑴工件先以2/5.2s m 的加速度匀加速运动0.8m ,之后匀速;⑵时间s t t t 4.221=+=例4如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用 答案:B例5如图所示,水平地面上有一长L =2 m 、质量M =1 kg 的长板,其右端上方有一固定挡板.质量m =2 kg 的小滑块从长板的左端以v 0=6 m/s 的初速度向右运动,同时长板在水平拉力F 作用下以v =2 m/s 的速度向右匀速运动,滑块与挡板相碰后速度为0,长板继续匀速运动,直到长板与滑块分离.已知长板与地面间的动摩擦因数μ1=0.4,滑块与长板间的动摩擦因数μ2=0.5,重力加速度g 取10 m/s 2.求:(1)滑块从长板的左端运动至挡板处的过程,长板的位移x ; (2)滑块碰到挡板前,水平拉力大小F ;(3)滑块从长板的左端运动至与长板分离的过程,系统因摩擦产生的热量Q . 答案 (1)0.8 m (2)2 N (3)48 J 解析 (1)滑块在板上做匀减速运动, a =μ2mg m =μ2g解得:a =5 m/s 2根据运动学公式得:L =v 0t -12at 2解得t =0.4 s (t =2.0 s 舍去)碰到挡板前滑块速度v 1=v 0-at =4 m/s>2 m/s ,说明滑块一直匀减速 板移动的位移x =v t =0.8 m (2)对板受力分析如图所示,有:F +F f2=F f1其中F f1=μ1(M +m )g =12 N ,F f2=μ2mg =10 N 解得:F =2 N(3)法一:滑块与挡板碰撞前,滑块与长板因摩擦产生的热量: Q 1=F f2·(L -x ) =μ2mg (L -x )=12 J滑块与挡板碰撞后,滑块与长板因摩擦产生的热量:Q 2=μ2mg (L -x )=12 J 整个过程中,长板与地面因摩擦产生的热量: Q 3=μ1(M +m )g ·L =24 J 所以,系统因摩擦产生的热量: Q =Q 1+Q 2+Q 3=48 J法二:滑块与挡板碰撞前,木板受到的拉力为F 1=2 N (第二问可知) F 1做功为W 1=F 1x =2×0.8=1.6 J 滑块与挡板碰撞后,木板受到的拉力为:F2=F f1+F f2=μ1(M+m)g+μ2mg=22 NF2做功为W2=F2(L-x)=22×1.2 J=26.4 J 碰到挡板前滑块速度v1=v0-at=4 m/s滑块动能变化:ΔE k=20 J所以系统因摩擦产生的热量:Q=W1+W2+ΔE k=48 J.。
高中物理传送带模型
端A 处无初速地释放一个质量为kg m 5.0=的物体,已知物体与传送带间的动摩擦因数5.0=μ,取2/10s m g =。
求(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间;(2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间;4、如图甲所示的水平传送带AB 逆时针匀速转动,一物体沿曲面从一定高度处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上传送带时为计时起点) .已知传送带的速度保持不变,取重力加速度2/10s m g . 关于物块与传送带间的动摩擦因数μ及物块在传送带上运动第一次回到传送带左端的时间t ,下列计算结果正确的是( )A. μ=0.4 B . μ=0.2 C . t =4.5s D . t =3s5、如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A.t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用6、如图,一水平放置的足够长浅色传送带以速度v 0匀速转动,现在其上无初速放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
(以g 表示重力加速度)7、(2004高考,20分)一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。
桌布的一边与桌的AB 边重合,如图。
已知盘与桌布间的动摩擦因数为1μ,盘与桌面间的动摩擦因数为2μ。
(完整版)高中物理传送带模型总结
“传送带模型”1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.2.建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5m,并以v0=2m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10m/s2.(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。
已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运,传送带下表面离地面的高度h不变。
如果物体开始沿曲面下滑时距传送带表面的高度为H,初速度为零,g取10m/s2.求:(1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。
(2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。
(3)H在什么范围内时,物体离开传送带后的落地点在同一位置。
3.如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是()A.物块在传送带上运动的时间为4sB.传送带对物块做功为6JC.2s末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J4.如图10所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B。
物理传送带模型总结
物理传送带模型总结
物理传送带模型是一个常见的力学模型,用来模拟把物体从一个点传送到另一个点的过程。
这种模型可以帮助科学家们更好地理解物体在不同情况下是如何运动的。
物理传送带模型基于牛顿定律,根据定律推导,当两个物体在外力作用下相互作用时,它们间的力将直接影响到它们的运动情况。
物理传送带模型中,这种作用力被称为传输力传送带的力,将物体从一个点传送到另一个点。
由于物体的质量不同,传输力大小也不同,但它们都会有一定的规律。
此外,物理传送带模型也可以用来解释物体如何遵循凭力矢量理论,即物体处于一个外力场中时,其运动方向由受力的大小和方向决定。
换言之,可以把物体看成一个由传输力的受力的向量来表示的实体,从而更好地描述他们的运动情况。
物理传送带模型同时也被用于描述多种类型的系统,包括硅电晶体的电子流动系统、磁力结构在磁场中的磁性传播现象以及热传导过程中的温度分布现象。
此外,也可以用来描述由钢丝与簧之间的特性来模拟材料性质,以及非弹性物质在外力作用下的变形过程等。
总而言之,物理传送带模型是一种重要的力学模型,可以用来描述物体在不同情况下的运动情况以及其他各种复杂的动力学现象。
它的传播力可以根据物体的质量来调整,从而更准确地模拟出实际现象。
它是一种重要的力学模型,也可以用于研究各种动力学问题,为科学家提供了一种更为准确而精确的研究方法。
(完整word版)高中物理传送带模型总结
“传递带模型”1.模型特点一个物体以速度 v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传递带”模型,如图 (a)、 (b)、 (c)所示.2.建模指导水平传递带问题:求解的重点在于对物体所受的摩擦力进行正确的剖析判断.判断摩擦力时要注意比较物体的运动速度与传递带的速度,也就是剖析物体在运动位移x(对地 )的过程中速度能否和传递带速度相等.物体的速度与传递带速度相等的时辰就是物体所受摩擦力发生突变的时辰.水平传递带模型:1.传递带是一种常用的运输工具,被宽泛应用于矿山、码头、货场、车站、机场等.如下图为火车站使用的传递带表示图.绷紧的传递带水平部分长度L= 5 m,并以 v0=2 m/s 的速度匀速向右运动.现将一个可视为质点的旅游包无初速度地轻放在传递带的左端,已知旅游包与传递带之间的动摩擦因数μ=, g 取 10 m/s 2.(1)求旅游包经过多长时间抵达传递带的右端;(2)若要旅游包从左端运动到右端所用时间最短,则传递带速度的大小应知足什么条件?最短时间是多少?2.如下图,一质量为的小物体从足够高的圆滑曲面上自由滑下,而后滑上一水平传递带。
已知物体与传递带之间的动摩擦因数为μ,传递带水平部分的长度 L=5m ,两头的传动轮半径为 R=0.2m ,在电动机的带动下一直以ω =15/rads 的角速度沿顺时针匀速转运,传递带下表面离地面的高度 h 不变。
假如物体开始沿曲面下滑时距传递带表面的高度为 H,初速度为零, g 取 10m/s2.求:(1)当时,物体经过传递带过程中,电动机多耗费的电能。
(2)当时,物体经过传递带后,在传递带上留下的划痕的长度。
(3)H 在什么范围内时,物体走开传递带后的落地址在同一地点。
3.如下图,质量为 m=1kg 的物块,以速度v0 =4m/s 滑上正沿逆时针方向转动的水平传递带,此时记为时辰t=0 ,传递带上 A、 B 两点间的距离L=6m,已知传递带的速度 v=2m/s ,物块与传递带间的动摩擦因数μ,重力加快度 g 取 10m/s 2.关于物块在传递带上的整个运动过程,以下表述正确的选项是()A.物块在传递带上运动的时间为4sB.传递带对物块做功为6JC. 2s 末传递带对物体做功的功率为0D.整个运动过程中因为摩擦产生的热量为18J4.如图 10 所示,水平传递带A、B 两头相距 s=,物体与传递带间的动摩擦因数μ=,物体滑上传递带 A 端的刹时速度v A=4m/s ,抵达 B 端的刹时速度设为 v B。
传送带模型--2024年高三物理二轮常见模型(解析版)
2024年高三物理二轮常见模型专题传送带模型特训目标特训内容目标1水平传送带模型(1T-5T)目标2倾斜传送带模型(6T-10T)目标3电磁场中的传送带模型(11T-15T)【特训典例】一、水平传送带模型1如图所示,足够长的水平传送带以v0=2m/s的速度沿逆时针方向匀速转动,在传送带的左端连接有一光滑的弧形轨道,轨道的下端水平且与传送带在同一水平面上,滑块与传送带间的动摩擦因数为μ=0.4。
现将一质量为m=1kg的滑块(可视为质点)从弧形轨道上高为h=0.8m的地方由静止释放,重力加速度大小取g=10m/s2,则()A.滑块刚滑上传送带左端时的速度大小为4m/sB.滑块在传送带上向右滑行的最远距离为2.5mC.滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为2.5sD.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功为12J【答案】AD【详解】A.滑块刚滑上传送带左端时的速度大小为v=2gh=2×10×0.8m/s=4m/s选项A正确;B.滑块在传送带上向右滑行做减速运动的加速度大小为a=μg=4m/s2向右运动的最远距离为x m=v22a=422×4m=2m选项B错误;C.滑块从开始滑上传送带到速度减为零的时间t1=va =1s位移x1=v2t1=2m然后反向,则从速度为零到与传送带共速的时间t2=v0a=0.5s位移x2=v02t2=0.5m然后匀速运动回到传送带的最左端的时间t3=x1-x2v0=0.75s滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为t=t1+t2+t3=2.25s选项C错误;D.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功等于传送带克服摩擦力做功W=μmg(v0t1+v0t2)=12J选项D正确。
故选AD。
2如图甲所示,一足够长的水平传送带以某一恒定速度顺时针转动,一根轻弹簧一端与竖直墙面连接,另一端与工件不拴接。
高中物理传送带模型总结
“传送带模型”1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.2.建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2.(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?2.如图所示,一质量为的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。
已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度,两端的传动轮半径为,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运,传送带下表面离地面的高度h不变。
如果物体开始沿曲面下滑时距传送带表面的高度为H,初速度为零,g取10m/s2.求:(1)当时,物体通过传送带过程中,电动机多消耗的电能。
(2)当时,物体通过传送带后,在传送带上留下的划痕的长度。
(3) H在什么范围内时,物体离开传送带后的落地点在同一位置。
3.如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是()A.物块在传送带上运动的时间为4sB.传送带对物块做功为6JC.2s末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J4.如图10所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B。
专题 传送带模型的结论总结
关于传送带传送物体的结论总结1. 基本道具:传送带(分水平和倾斜两种情形)、物件(分有无初速度两种情形)2. 问题基本特点:判断能否送达、离开速度大小、历时、留下痕迹长度等等。
3. 基本思路:分析各阶段物体的受力情况,并确定物件的运动性质(由合外力和初速度共同决定,即动力学观点)4. 典型事例: 一、水平传送带例1:如图所示,设两半径均为R 的皮带轮轴心间距离为L ,物块与传送带间的动摩擦因素为μ.物块(可视为质点)质量为m ,从水平以初速度v 0滑上传送带左端。
试讨论物体在传送带上留下的痕迹(假设物块为深色,传送带为浅色) (一) 若传送带静止不动,则可能出现: 1、v 0=gL μ2,恰好到达右端,v t =0,历时t =gv μ0, 留下痕迹△S=L2、v 0﹥gL μ2,从右端滑离,v t =L v g 220μ-,历时t =ggLμμ2v v 200--,留下痕迹△S=L3、v 0<gL μ2,只能滑至离左端S =g v μ220处停下,v t =0,历时t =gv μ0,留下痕迹△S=S =g v μ220(二) 若传送带逆时针以速度匀速运动,可能出现: 1、v 0=gL μ2恰好能(或恰好不能)到达右端,v t =0,历时t =gv μ0,留下痕迹长△S 有两种情形:(1)当v <0)2(v g R L μπ+时,△S=vt+L =g v v μ0⋅+L ;(2)当v ≥0)2(v gR L μπ+时,△S =2(L +πR _){注意:痕迹长至多等于周长,不能重复计算}。
2、v 0﹥gL μ2,从右端滑出,v t =L v g 220μ-,历时t =ggLμμ2v v 200--,留下的痕迹长△S 也有两种情形:(1)当v <t RL π2+时,△S =vt +L ;(2)当 v ≥tRL π2+时,△S =2(L +πR )3、v 0<gL μ2,物块先向右匀减速至离左端S =g v μ220处,速度减为零,历时t 1=gvμ0,之后,(1)如果v 0≤v ,物块将一直向左匀加速运动,最终从左端滑落,v t =v 0,又历时t 2=t 1,留下的痕迹长△S =2vt 1(但至多不超过2L +2πR )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“传送带模型”1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.~2.建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=,g取10 m/s2.(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件最短时间是多少?2.如图所示,一质量为m=的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。
已知物体与传送带之间的动摩擦因数为μ=,传送带水平部分的长度L=5m,两端的传动轮半径为R=,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运,传送带下表面离地面的高度h不变。
如果物体开始沿曲面下滑时距传送带表面的高度为H,初速度为零,g取10m/s2.求:(1)当H=时,物体通过传送带过程中,电动机多消耗的电能。
(2)当H=时,物体通过传送带后,在传送带上留下的划痕的长度。
(3) H在什么范围内时,物体离开传送带后的落地点在同一位置。
`3.如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是()A.物块在传送带上运动的时间为4sB.传送带对物块做功为6JC.2s末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J.4.如图10所示,水平传送带A、B两端相距s=,物体与传送带间的动摩擦因数μ=,物体滑上传送带A 端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B。
下列说法中正确的是() A.若传送带不动,v B=3m/sB.若传送带逆时针匀速转动,v B一定等于3m/sC.若传送带顺时针匀速转动,v B一定等于3m/sD.若传送带顺时针匀速转动,v B有可能等于3m/s倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.倾斜传送带模型:{5. 如图所示,传送带与水平面间的倾角为θ=37°,传送带以10 m/s的速率运行,在传送带上端A处无初速度地放上质量为 kg的物体,它与传送带间的动摩擦因数为,若传送带A到B的长度为16 m,则物体从A运动到B的时间为多少(取g=10 m/s2)6. 如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=,在传送带顶端A处无初速度地释放一个质量为m= kg的物体.已知sin 37°=,cos 37°=,g=10 m/s2求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.;7.如图所示,绷紧的传送带,始终以2 m/s的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°.现把质量为10 kg的工件轻轻地放在传送带底端P处,由传送带传送至顶端Q处.已知P、Q之间的距离为4 m,工件与传送带间的动摩擦因数为μ=32,取g=10 m/s2.(1)通过计算说明工件在传送带上做什么运动;(2)求工件从P点运动到Q点所用的时间.:,,传送带问题1.物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,再把物块放到P 点自由滑下,则:( )A. 物块将仍落在Q 点B. 物块将会落在Q 点的左边#C. 物块将会落在Q 点的右边D. 物块有可能落不到地面上2、 如图示,物体从Q 点开始自由下滑,通过粗糙的静止水平传送带后,落在地面P 点,若传送带按顺时针方向转动。
物体仍从Q 点开始自由下滑,则物体通过传送带后:( )A. 一定仍落在P 点B. 可能落在P 点左方C. 一定落在P 点右方)D. 可能落在P 点也可能落在P 点右方3.如图所示,传送带不动时,物体由皮带顶端A 从静止开始下滑到皮带底端B 用的时间为t ,则:( )A. 当皮带向上运动时,物块由A 滑到B 的时间一定大于tB. 当皮带向上运动时,物块由A 滑到B 的时间一定等于tC. 当皮带向下运动时,物块由A 滑到B 的时间可能等于tD. 当皮带向下运动时,物块由A 滑到B 的时间可能小于t#4、水平传送带长,以3m/s 的速度作匀速运动。
质量m=1kg 的物体与传送带间的动摩擦因数为,则该物体从静止放到传送带的一端开始,到达另一端所需时间为多少这一过程中由于摩擦产生的热量为多少这一过程中带动传送带转动的机器做多少功 (g 取10m/s 2)。
A{5、如图示,质量m=1kg 的物体从高为h=的光滑轨道上P 点由静止开始下滑,滑到水平传送带上的A 点,物体和皮带之间的动摩擦因数为μ=,传送带AB 之间的距离为L=5m,传送带一直以v=4m/s 的速度匀速运动, 求:`(1)物体从A 运动到B 的时间是多少(2)物体从A 运动到B 的过程中,摩擦力对物体做了多少功 (3)物体从A 运动到B 的过程中,产生多少热量(4)物体从A 运动到B 的过程中,带动传送带转动的电动机多做了多少功[6.一传送皮带与水平面夹角为30°,以2m/s 的恒定速度顺时针运行。
现将一质量为10kg 的工件轻放于底端,经一段时间送到高2m 的平台上,工件与皮带间的动摩擦因数为μ= 23,取g=10m/s 2 求带动皮带的电动机由于传送工件多消耗的电能`7.一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
8.一平直的传送带以速率v=2m/s匀速运行,传送带把A处的工件运送到B处,A、B相距L=30m。
从A处把工件轻轻放到传送带上,经过时间t=20s能传送到B处。
假定A 处每间隔一定时间放上一个工件,每小时运送共建7200个,每个工件的质量为2kg,(1)传送带上靠近B端的相邻两工件的距离(2)不及轮轴出的摩擦,求带动传送带的电动机的平均功率—9、如图所示,水平传送带AB长L=,质量为M=1kg的木块随传送带一起以v1=2m/s的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数 =.当木块运动至最左端A点时,一颗质量为m=20g的子弹以v0=300m/s水平向右的速度正对射入木块并穿出,穿出速度v=50m/s,以后每隔1s就有一颗子弹射中木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g取10m/s2.求:(1)第一颗子弹射入木块并穿出时,木块速度多大(2)在被第二颗子弹击中前,木块向右运动离A点的最大距离(3)木块在传送带上最多能被多少颗子弹击中[】10、如图甲示,水平传送带的长度L=6m ,传送带皮带轮的半径都为R=,现有一小物体(可视为质点)以恒定的水平速度v 0滑上传送带,设皮带轮顺时针匀速转动,当角速度为ω时,物体离开传送带B 端后在空中运动的水平距离为s,若皮带轮以不同的角速度重复上述动作(保持滑上传送带的初速v 0不变),可得到一些对应的ω和s 值,将这些对应值画在坐标上并连接起来,得到如图乙中实线所示的 s- ω图象,根据图中标出的数据(g 取10m/s 2 ),求:(1)滑上传送带时的初速v 0以及物体和皮带间的动摩擦因数μ(2)B 端距地面的高度h(3)若在B 端加一竖直挡板P ,皮带轮以角速度ω′=16rad/s 顺时针匀速转动,物体与挡板连续两次碰撞的时间间隔t′为多少 (物体滑上A 端时速度仍为v 0,在和挡板碰撞中无机械能损失)11.一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。
现将大量的质量均为m 的小货24乙甲箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h。
稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L。
每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动)。
已知在一段相当长的时间T 内,共运送小货箱的数目为N。
这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。
求电动机的平均输出功率P。