数据库系统l试题库及答案 第5章数组和广义表
数据结构(数组和广义表)习题与答案
1、以行序优先顺序存储数组A[5][5];假定A[0][0]的地址为1000, 每个元素占4个字节,下标变量A[4][3]的地址是____。
A.1069B.1092C.1023D.1046正确答案:B2、数组a[1..6][1..5] (无0行0列)以列序优先顺序存储,第一个元素a[1][1]的地址为1000,每个元素占2个存储单元,则a[3][4]的地址是____。
A.1040B.1026C.1046D.1038正确答案:A3、设有一个5行4列的矩阵A,采用行序优先存储方式,A[0][0]为第一个元素,其存储地址为1000,A[2][2]的地址为1040,则A[3][0]的地址为_________。
A.1048B.1024C.1096D.1060正确答案:A4、设有一个10行10列的矩阵A,采用行序优先存储方式,存储全部数据需要400个字节的空间。
如果A[0][0]为第一个元素,其存储地址为1000,则A[3][6]的地址为_________。
A.1036B.1144C.1014D.10565、设有一个10行10列的矩阵A,采用行序优先存储方式。
如果A[0][0]为第一个元素,其存储地址为1000,A[2][3]的存储地址为1069,则存储一个元素需要的单元数是_________。
A.4B.1C.2D.3正确答案:D6、不能够对数据元素进行随机访问的物理结构是_________。
A.三元组顺序表B.对称矩阵的压缩存储C.三对角矩阵的压缩存储D.数组的顺序存储正确答案:A7、对特殊矩阵采用压缩存储的目的主要是_________。
A.表达变得简单B.去掉矩阵中的多余元素C.对矩阵元素的存储变得简单D.减少不必要的存储空间正确答案:D8、对n*n的对称矩阵进行压缩存储,需要保存的数据元素的个数是_________。
A.nB.n(n+1)/2C.n2D.n(n+1)9、设10*10的对称矩阵下三角保存SA[1..55]中,其中A[1][1]保存在SA[1]中,A[5][3] 保存在SA[k]中,这里k等于_________。
第5章 数组和广义表
5.2 数组的顺序表示和实现
类型特点: 1) 只有引用型操作,没有加工型操作; 2) 数组是多维的结构,而存储空间是 一个一维的结构。 有两种顺序映像的方式: 1)以行序为主序(低下标优先); 2)以列序为主序(高下标优先);
以“行序为主序”的存储映像
例如:
a0,0 a0,1 a0,2 a1,0 a1,1 a1,2
解决问题的原则:
1) 尽可能少存或不存零值元素;
2) 尽可能减少没有实际意义的运算; 3) 操作方便; 即: 能尽可能快地找到 与下标值 (i, j) 对应的元素; 能尽可能快地找到 同一行或同一列的非零值元;
有两类稀疏矩阵:
1) 特殊矩阵
非零元在矩阵中的分布有一定规则
例如: 三角矩阵 对角矩阵
2) 随机压缩存储方法:
一、三元组顺序表 二、行逻辑链接的顺序表
三、 十字链表
一、三元组顺序表
#define MAXSIZE 12500 typedef struct { int i, j; //该非零元的行下标和列下标 ElemType e; // 该非零元的值 } Triple; // 三元组类型 typedef struct { Triple data[MAXSIZE + 1]; int mu, nu, tu; } TSMatrix; // 稀疏矩阵类型
三、 十字链表
M .c h e a d
^
M .rh e a d
1 13
1 45
^^
2 2 -1
^^
312
^^
3 0 0 5 0 -1 0 0 2 0 0 0
5.4 广义表的类型定义
ADT Glist { 数据对象:D={ei | i=1,2,..,n; n≥0; ei∈AtomSet 或 ei∈GList, AtomSet为某个数据对象 } 数据关系: LR={<ei-1, ei >| ei-1 ,ei∈D, 2≤i≤n} 基本操作:
(完整word版)数据结构试题集(包含答案完整版)
第一章概论一、选择题1、研究数据结构就是研究(D )。
A. 数据的逻辑结构B。
数据的存储结构C. 数据的逻辑结构和存储结构D。
数据的逻辑结构、存储结构及其基本操作2、算法分析的两个主要方面是( A )。
A。
空间复杂度和时间复杂度 B. 正确性和简单性C。
可读性和文档性D。
数据复杂性和程序复杂性3、具有线性结构的数据结构是( D )。
A。
图B。
树C。
广义表D。
栈4、计算机中的算法指的是解决某一个问题的有限运算序列,它必须具备输入、输出、( B )等5个特性。
A. 可执行性、可移植性和可扩充性B。
可执行性、有穷性和确定性C。
确定性、有穷性和稳定性 D. 易读性、稳定性和确定性5、下面程序段的时间复杂度是( C )。
for(i=0;i<m;i++)for(j=0;j〈n;j++)a[i][j]=i*j;A. O(m2) B。
O(n2) C。
O(m*n) D. O(m+n)6、算法是(D )。
A。
计算机程序 B. 解决问题的计算方法C。
排序算法 D. 解决问题的有限运算序列7、某算法的语句执行频度为(3n+nlog2n+n2+8),其时间复杂度表示( C )。
A。
O(n) B. O(nlog2n) C。
O(n2) D. O (log2n)8、下面程序段的时间复杂度为( C ).i=1;while(i<=n)i=i*3;A. O(n)B。
O(3n) C。
O(log3n) D. O(n3)9、数据结构是一门研究非数值计算的程序设计问题中计算机的数据元素以及它们之间的()和运算等的学科。
A. 结构B。
关系C。
运算D。
算法10、下面程序段的时间复杂度是(A )。
i=s=0;while(s<n){i++;s+=i;}A. O(n) B。
O(n2)C。
O(log2n)D。
O(n3)11、抽象数据类型的三个组成部分分别为(A)。
A. 数据对象、数据关系和基本操作B. 数据元素、逻辑结构和存储结构C. 数据项、数据元素和数据类型D. 数据元素、数据结构和数据类型12、通常从正确性、易读性、健壮性、高效性等4个方面评价算法的质量,以下解释错误的是()。
数据库第五章习题及答案
数据库第五章习题及答案本文档为数据库第五章的习题及答案,帮助读者巩固数据库相关知识。
习题1. 数据库的优点有哪些?数据库具有以下优点: - 数据共享:多个用户可以同时访问和共享数据库中的数据。
- 数据一致性:数据库提供事务管理能力,保证了数据的一致性。
- 数据持久性:数据在数据库中是永久存储的,不会因为系统关机或程序结束而丢失。
- 数据冗余度低:数据库通过规范化设计,减少了数据的冗余性,提高了数据的存储效率。
- 数据独立性:数据库支持数据与应用程序的独立性,提高了系统的灵活性和维护性。
- 数据安全性:数据库提供了用户权限管理和数据备份机制,保证了数据的安全性。
2. 数据库的三级模式结构是什么?数据库的三级模式结构包括: - 外模式(视图层):外模式是用户所看到的数据库的子集,用于描述用户对数据库的逻辑视图。
每个用户可以有不同的外模式来满足自己的需求。
- 概念模式(逻辑层):概念模式是全局数据库的逻辑结构和组织方式,描述了数据的总体逻辑视图。
概念模式独立于具体的应用程序,是数据库管理员的角度来看待数据库的。
- 内模式(物理层):内模式是数据库的存储结构和物理组织方式,描述了数据在存储介质上的实际存储方式。
3. 数据库的完整性约束有哪些?数据库的完整性约束包括: - 实体完整性约束:确保表的主键不为空,每个实体都能够唯一标识。
- 参照完整性约束:确保外键的引用关系是有效的,即外键值必须等于被引用表中的主键值或者为空。
- 用户定义完整性约束:用户可以自定义额外的完整性约束,如检查约束、唯一约束、默认约束等。
4. 数据库的关系模型有哪些特点?数据库的关系模型具有以下特点: - 数据用二维表的形式进行组织,表由行和列组成,每一行表示一个实体,每一列表示一个属性。
- 表与表之间通过主键和外键建立关联关系,形成关系。
- 关系模型提供了一种数据独立性的设计方法,使得应用程序与数据的逻辑结构相分离,提高了系统的灵活性和可维护性。
第四、五章串、数组和广义表练习题答案
第四、五章串、数组和广义表练习题答案一.填空题1. 不包含任何字符(长度为0)的串称为空串;由一个或多个空格(仅由空格符)组成的串称为空白串。
2. 设S=“A;/document/Mary.doc”,则strlen(s)= 20 , “/”的字符定位的位置为3。
3. 子串的定位运算称为串的模式匹配;被匹配的主串称为目标串,子串称为模式。
4. 设目标T=”abccdcdccbaa”,模式P=“cdcc”,则第 6 次匹配成功。
5. 若n为主串长,m为子串长,则串的古典(朴素)匹配算法最坏的情况下需要比较字符的总次数为(n-m+1)*m。
6. 假设有二维数组A6×8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A的起始存储位置(基地址)为1000,则数组A的体积(存储量)为288 B ;末尾元素A57的第一个字节地址为1282 ;若按行存储时,元素A14的第一个字节地址为(8+4)×6+1000=1072 ;若按列存储时,元素A47的第一个字节地址为(6×7+4)×6+1000)=1276 。
(注:数组是从0行0列还是从1行1列计算起呢?由末单元为A57可知,是从0行0列开始!)7. 〖00年计算机系考研题〗设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为8950 。
答:不考虑0行0列,利用列优先公式:LOC(a ij)=LOC(a c1,c2)+[(j-c2)*(d1-c1+1)+i-c1)]*L 得:LOC(a32,58)=2048+[(58-1)*(60-1+1)+32-1]]*2=89508. 三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的行下标、列下标和元素值。
9.求下列广义表操作的结果:(1)GetHead【((a,b),(c,d))】=== (a, b) ; //头元素不必加括号(2)GetHead【GetTail【((a,b),(c,d))】】=== (c,d) ;(3)GetHead【GetTail【GetHead【((a,b),(c,d))】】】=== b ;(4)GetTail【GetHead【GetTail【((a,b),(c,d))】】】=== (d);10.C语言规定,字符串常量按_字符数组_____处理,它的值在程序的执行过程中是不能改变的。
第五章 数组和广义表
第五章数组和广义表一.选择题1.在二维数组A 中引用A[i,j]的时间_________。
A.与i、j的大小有关B.与i、j的大小无关C.与i的大小有关,与j的大小无关D.与i的大小无关,与j的大小有关2.在稀疏矩阵的带行指针向量的链接存储中,每一行单链表中的结点都具有相同的________。
A.行号 B.列号 C.元素值 D.地址3.二维数组A 按行顺序存储,其中每个元素占1个存储单元。
若 A[1][1]的存储地址为420, A[3][3]的存储地址为446,则A[5][5]的存储地址为_______。
A.470 B.471 C.472 D. 4734.在稀疏矩阵的十字链接存储中,每个列单链表中的结点都具有相同的_____。
A.行号 B.列号 C.元素值 D.地址5.下面的说法中,不正确的是________。
A.对称矩阵中只须存放包括主对角线元素在内的下(或上)三角部分的元素即可B.对角矩阵中只须存放的非零元素即可C.稀疏矩阵中值为零的元素较多,因此可以采用三元组表方法存储D.稀疏矩阵中大量值为零的元素分布有规律,因此可以采用三元组表方法存储6.对一些特殊矩阵采用压缩存储的目的主要是为了________。
A.表达变得简单 B.对矩阵元素的存取变得简单C.去掉矩阵中的多余元素 D.减少不必要的存储空间的开销7.若将n 阶对称矩阵 A 按照行序为主序方式将包括主对角线元素在内的下三角形的所有元素依次存放在一个一维数组 B 中,则该对称矩阵在 B 中占用了________个数组元素。
A.n2 B.n*(n-1) C.n*(n+1)/2 D.n*(n-1)8. 稀疏矩阵的三元组顺序表表示的一个三元组中不包括________。
A. 行号B.列号C.元素值D.元素总数9.稀疏矩阵一般的压缩存储方法有两种,即________。
A.二维数组和三维数组 B.三元组和散列C. 三元组和十字链表 D.散列和十字链表10.有一个 10 阶对称矩阵 A,采用压缩存储方式(以行序为主存储,且A[0 Ⅱ0]=1),则A[8][5]的地址是________。
数据结构:第5章 数组与广义表1-数组
中的元素均为常数。下三角矩阵正好相反,它的主对
数据结构讲义
第5章 数组与广义表
—数组
数组和广义表
数组和广义表可看成是一种特殊的 线性表,其特殊在于,表中的数据 元素本身也是一种线性表。
几乎所有的程序设计语言都有数组 类型。本节重点讲解稀疏矩阵的实 现。
5.1 数组的定义
由于数组中各元素具有统一的类型,并且 数组元素的下标一般具有固定的上界和下 界,因此,数组的处理比其它复杂的结构 更为简单。
nm
aa1221
aa2222
…………....
aam2n2 ………………..
aamm11 aamm22 ………….... aammnn LLoocc(a( iaj)ij=)L=Loco(ca(a111)1+)[+([j(-i1-)1m)n++((i-j1-1)])*]*l l
aa1mn 1 aa2mn2 …………....
其存储形式如图所示:
15137 50800 18926 30251
a00 a10 a 11 a20 a21 a23 ………………..
70613
an-1 0 a n-1 1 a n-1 2 …a n-1 n-1
图 5.1 对称矩阵
在这个下三角矩阵中,第i行恰有i+1个元素,元素总
数为:
n(n+1)/2
5.2 数组的顺序表示和实现
由于计算机的内存结构是一维的,因此用 一维内存来表示多维数组,就必须按某种 次序将数组元素排成一列序列,然后将这 个线性序列存放在存储器中。
又由于对数组一般不做插入和删除操作, 也就是说,数组一旦建立,结构中的元素 个数和元素间的关系就不再发生变化。因 此,一般都是采用顺序存储的方法来表示 数组。
数据结构(c语言版)题集答案——第五章_数组和广义表
第五章数组和广义表5.18void RSh(int A[n],int k)//把数组A的元素循环右移k位,只用一个辅助存储空间{for(i=1;i<=k;i++)if(n%i==0&&k%i==0) p=i;//求n和k的最大公约数pfor(i=0;i{j=i;l=(i+n-k)%n;temp=A[i];while(l!=i){A[j]=A[l];j=l;l=(j+n-k)%n;}// 循环右移一步A[j]=temp;}//for}//RSh分析:要把A的元素循环右移k位,则A[0]移至A[k],A[k]移至A[2k]......直到最终回到A[0].然而这并没有全部解决问题,因为有可能有的元素在此过程中始终没有被访问过,而是被跳了过去.分析可知,当n和k的最大公约数为p时,只要分别以A[0],A[1],...A[p-1]为起点执行上述算法,就可以保证每一个元素都被且仅被右移一次,从而满足题目要求.也就是说,A的所有元素分别处在p个"循环链"上面.举例如下:n=15,k=6,则p=3.第一条链:A[0]->A[6],A[6]->A[12],A[12]->A[3],A[3]->A[9],A[9]->A[0].第二条链:A[1]->A[7],A[7]->A[13],A[13]->A[4],A[4]->A[10],A[10]->A[1].第三条链:A[2]->A[8],A[8]->A[14],A[14]->A[5],A[5]->A[11],A[11]->A[2].恰好使所有元素都右移一次.虽然未经数学证明,但作者相信上述规律应该是正确的.5.19void Get_Saddle(int A[m][n])//求矩阵A中的马鞍点{for(i=0;i{for(min=A[i][0],j=0;jif(A[i][j]for(j=0;jif(A[i][j]==min) //判断这个(些)最小值是否鞍点{for(flag=1,k=0;kif(minif(flag)printf("Found a saddle element!\nA[%d][%d]=%d",i,j,A[i][j]);}}//for}//Get_Saddle5.20int exps[MAXSIZE]; //exps数组用于存储某一项的各变元的指数int maxm,n; //maxm指示变元总数,n指示一个变元的最高指数void Print_Poly_Descend(int *a,int m)//按降幂顺序输出m元多项式的项,各项的系数已经按照题目要求存储于m维数组中,数组的头指针为a{maxm=m;for(i=m*n;i>=0;i--) //按降幂次序,可能出现的最高项次数为mnGet_All(a,m,i,0); //确定并输出所有次数为i的项}//Print_Poly_Descendvoid Get_All(int *a,int m,int i,int seq)//递归求出所有和为i的m个自然数{if(seq==maxm) Print_Nomial(a,exps); //已经求完时,输出该项else{min=i-(m-1)*n; //当前数不能小于minif(min<0) min=0;max=nfor(j=min;j<=max;j++){exps[seq]=j; //依次取符合条件的数Get_All(a,m-1,i-j,seq+1); //取下一个数}}//elseexps[seq]=0; //返回}//Get_Allvoid Print_Nomial(int *a,int exps[ ])//输出一个项,项的各变元的指数已经存储在数组exps中{pos=0;for(i=0;i{pos*=n;pos+=exps[i];}coef=*(a+pos); //取得该系数coefif(!coef) return; //该项为0时无需输出else if(coef>0) printf("+"); //系数为正时打印加号else if(coef<0) printf("-"); //系数为负时打印减号if(abs(coef)!=1) printf("%d",abs(coef)); //当系数的绝对值不为1时打印系数for(i=0;iif(exps[i]) //打印各变元及其系数{printf("x");printf("%d",i);printf("E");if(exps[i]>1) printf("%d",exp[i]); //系数为1时无需打印}}//Print_Nomial分析:本算法的关键在于如何按照降幂顺序输出各项.这里采用了一个递归函数来找到所有满足和为i的m个自然数作为各变元的指数.只要先取第一个数为j,然后再找到所有满足和为i-j的m-1个自然数就行了.要注意j的取值范围必须使剩余m-1个自然数能够找到,所以不能小于i-(m-1)*maxn,也不能大于i.只要找到了一组符合条件的数,就可以在存储多项式系数的数组中确定对应的项的系数的位置,并且在系数不为0时输出对应的项.5.21void TSMatrix_Add(TSMatrix A,TSMatrix B,TSMatrix &C)//三元组表示的稀疏矩阵加法{C.mu=A.mu;C.nu=A.nu;C.tu=0;pa=1;pb=1;pc=1;for(x=1;x<=A.mu;x++) //对矩阵的每一行进行加法{while(A.data[pa].iwhile(B.data[pb].iwhile(A.data[pa].i==x&&B.data[pb].i==x)//行列值都相等的元素{if(A.data[pa].j==B.data[pb].j){ce=A.data[pa].e+B.data[pb].e;if(ce) //和不为0{C.data[pc].i=x;C.data[pc].j=A.data[pa].j;C.data[pc].e=ce;pa++;pb++;pc++;}}//ifelse if(A.data[pa].j>B.data[pb].j){C.data[pc].i=x;C.data[pc].j=B.data[pb].j;C.data[pc].e=B.data[pb].e;pb++;pc++;}else{C.data[pc].i=x;C.data[pc].j=A.data[pa].j;C.data[pc].e=A.data[pa].epa++;pc++;}}//whilewhile(A.data[pa]==x) //插入A中剩余的元素(第x行){C.data[pc].i=x;C.data[pc].j=A.data[pa].j;C.data[pc].e=A.data[pa].epa++;pc++;}while(B.data[pb]==x) //插入B中剩余的元素(第x行){C.data[pc].i=x;C.data[pc].j=B.data[pb].j;C.data[pc].e=B.data[pb].e;pb++;pc++;}}//forC.tu=pc;}//TSMatrix_Add5.22void TSMatrix_Addto(TSMatrix &A,TSMatrix B)//将三元组矩阵B加到A上{for(i=1;i<=A.tu;i++)A.data[MAXSIZE-A.tu+i]=A.data[i];/把A的所有元素都移到尾部以腾出位置pa=MAXSIZE-A.tu+1;pb=1;pc=1;for(x=1;x<=A.mu;x++) //对矩阵的每一行进行加法{while(A.data[pa].iwhile(B.data[pb].iwhile(A.data[pa].i==x&&B.data[pb].i==x)//行列值都相等的元素{if(A.data[pa].j==B.data[pb].j){ne=A.data[pa].e+B.data[pb].e;if(ne) //和不为0{A.data[pc].i=x;A.data[pc].j=A.data[pa].j;A.data[pc].e=ne;pa++;pb++;pc++;}}//ifelse if(A.data[pa].j>B.data[pb].j){A.data[pc].i=x;A.data[pc].j=B.data[pb].j;A.data[pc].e=B.data[pb].e;pb++;pc++;}else{A.data[pc].i=x;A.data[pc].j=A.data[pa].j;A.data[pc].e=A.data[pa].epa++;pc++;}}//whilewhile(A.data[pa]==x) //插入A中剩余的元素(第x行){A.data[pc].i=x;A.data[pc].j=A.data[pa].j;A.data[pc].e=A.data[pa].epa++;pc++;}while(B.data[pb]==x) //插入B中剩余的元素(第x行){A.data[pc].i=x;A.data[pc].j=B.data[pb].j;A.data[pc].e=B.data[pb].e;pb++;pc++;}}//forA.tu=pc;for(i=A.tu;i}//TSMatrix_Addto5.23typedef struct{int j;int e;} DSElem;typedef struct{DSElem data[MAXSIZE];int cpot[MAXROW];//这个向量存储每一行在二元组中的起始位置int mu,nu,tu;} DSMatrix; //二元组矩阵类型Status DSMatrix_Locate(DSMatrix A,int i,int j,int &e)//求二元组矩阵的元素A[i][j]的值e {for(s=A.cpot[i];sif(s{e=A.data[s];return OK;}return ERROR;}//DSMatrix_Locate5.24typedef struct{int seq; //该元素在以行为主序排列时的序号int e;} SElem;typedef struct{SElem data[MAXSIZE];int mu,nu,tu;} SMatrix; //单下标二元组矩阵类型Status SMatrix_Locate(SMatrix A,int i,int j,int &e)//求单下标二元组矩阵的元素A[i][j]的值e {s=i*A.nu+j+1;p=1;while(A.data[p].seqif(A.data[p].seq==s) //找到了元素A[i][j]{e=A.data[p].e;return OK;}return ERROR;}//SMatrix_Locate5.25typedef enum{0,1} bool;typedef struct{int mu,nu;int elem[MAXSIZE];bool map[mu][nu];} BMMatrix; //用位图表示的矩阵类型void BMMatrix_Add(BMMatrix A,BMMatrix B,BMMatrix &C)//位图矩阵的加法{C.mu=A.mu;C.nu=A.nu;pa=1;pb=1;pc=1;for(i=0;ifor(j=0;j{if(A.map[i][j]&&B.map[i][j]&&(A.elem[pa]+B.elem[pb]))//结果不为0{C.elem[pc]=A.elem[pa]+B.elem[pb];C.map[i][j]=1;pa++;pb++;pc++;}else if(A.map[i][j]&&!B.map[i][j]){C.elem[pc]=A.elem[pa];C.map[i][j]=1;pa++;pc++;}else if(!A.map[i][j]&&B.map[i][j]){C.elem[pc]=B.elem[pb];C.map[i][j]=1;pb++;pc++;}}}//BMMatrix_Add5.26void Print_OLMatrix(OLMatrix A)//以三元组格式输出十字链表表示的矩阵{for(i=0;i{if(A.rhead[i])for(p=A.rhead[i];p;p=p->right) //逐次遍历每一个行链表printf("%d %d %d\n",i,p->j,p->e;}}//Print_OLMatrix5.27void OLMatrix_Add(OLMatrix &A,OLMatrix B)//把十字链表表示的矩阵B加到A上{for(j=1;j<=A.nu;j++) cp[j]=A.chead[j]; //向量cp存储每一列当前最后一个元素的指针for(i=1;i<=A.mu;i++){pa=A.rhead[i];pb=B.rhead[i];pre=NULL;while(pb){if(pa==NULL||pa->j>pb->j) //新插入一个结点{p=(OLNode*)malloc(sizeof(OLNode));if(!pre) A.rhead[i]=p;else pre->right=p;p->right=pa;pre=p;p->i=i;p->j=pb->j;p->e=pb->e; //插入行链表中if(!A.chead[p->j]){A.chead[p->j]=p;p->down=NULL;}else{while(cp[p->j]->down) cp[p->j]=cp[p->j]->down;p->down=cp[p->j]->down;cp[p->j]->down=p;}cp[p->j]=p; //插入列链表中}//ifelse if(pa->jj){pre=pa;pa=pa->right;} //pa右移一步else if(pa->e+pb->e){pa->e+=pb->e;pre=pa;pa=pa->right;pb=pb->right;} //直接相加else{if(!pre) A.rhead[i]=pa->right;else pre->right=pa->right;p=pa;pa=pa->right; //从行链表中删除if(A.chead[p->j]==p)A.chead[p->j]=cp[p->j]=p->down;else cp[p->j]->down=p->down; //从列链表中删除free (p);}//else}//while}//for}//OLMatrix_Add分析:本题的具体思想在课本中有详细的解释说明.5.28void MPList_PianDao(MPList &L)//对广义表存储结构的多元多项式求第一变元的偏导{for(p=L->hp->tp;p&&p->exp;pre=p,p=p->tp){if(p->tag) Mul(p->hp,p->exp);else p->coef*=p->exp; //把指数乘在本结点或其下属结点上p->exp--;}pre->tp=NULL;if(p) free (p); //删除可能存在的常数项}//MPList_PianDaovoid Mul(MPList &L,int x)//递归算法,对多元多项式L乘以x{for(p=L;p;p=p->tp){if(!p->tag) p->coef*=x;else Mul(p->hp,x);}}//Mul5.29void MPList_Add(MPList A,MPList B,MPList &C)//广义表存储结构的多项式相加的递归算法{C=(MPLNode*)malloc(sizeof(MPLNode)); if(!A->tag&&!B->tag) //原子项,可直接相加{C->coef=A->coef+B->coef;if(!C->coef){free(C);C=NULL;}}//ifelse if(A->tag&&B->tag) //两个多项式相加{p=A;q=B;pre=NULL;while(p&&q){if(p->exp==q->exp){C=(MPLNode*)malloc(sizeof(MPLNode)); C->exp=p->exp;MPList_Add(A->hp,B->hp,C->hp);pre->tp=C;pre=C;p=p->tp;q=q->tp;}else if(p->exp>q->exp){C=(MPLNode*)malloc(sizeof(MPLNode)); C->exp=p->exp;C->hp=A->hp;pre->tp=C;pre=C;p=p->tp;}else{C=(MPLNode*)malloc(sizeof(MPLNode)); C->exp=q->exp;C->hp=B->hp;pre->tp=C;pre=C;q=q->tp;}}//whilewhile(p){C=(MPLNode*)malloc(sizeof(MPLNode)); C->exp=p->exp;C->hp=p->hp;pre->tp=C;pre=C;p=p->tp;}while(q){C=(MPLNode*)malloc(sizeof(MPLNode));C->exp=q->exp;C->hp=q->hp;pre->tp=C;pre=C;q=q->tp;} //将其同次项分别相加得到新的多项式,原理见第二章多项式相加一题}//else ifelse if(A->tag&&!B->tag) //多项式和常数项相加{x=B->coef;for(p=A;p->tp->tp;p=p->tp);if(p->tp->exp==0) p->tp->coef+=x; //当多项式中含有常数项时,加上常数项if(!p->tp->coef){free(p->tp);p->tp=NULL;}else{q=(MPLNode*)malloc(sizeof(MPLNode));q->coef=x;q->exp=0;q->tag=0;q->tp=NULL;p->tp=q;} //否则新建常数项,下同}//else ifelse{x=A->coef;for(p=B;p->tp->tp;p=p->tp);if(p->tp->exp==0) p->tp->coef+=x;if(!p->tp->coef){free(p->tp);p->tp=NULL;}else{q=(MPLNode*)malloc(sizeof(MPLNode));q->coef=x;q->exp=0;q->tag=0;q->tp=NULL;p->tp=q;}}//else}//MPList_Add5.30int GList_Getdeph(GList L)//求广义表深度的递归算法{if(!L->tag) return 0; //原子深度为0else if(!L) return 1; //空表深度为1m=GList_Getdeph(L->ptr.hp)+1;n=GList_Getdeph(L->ptr.tp);return m>n?m:n;}//GList_Getdeph5.31void GList_Copy(GList A,GList &B)//复制广义表的递归算法{if(!A->tag) //当结点为原子时,直接复制{B->tag=0;B->atom=A->atom;}else //当结点为子表时{B->tag=1;if(A->ptr.hp){B->ptr.hp=malloc(sizeof(GLNode));GList_Copy(A->ptr.hp,B->ptr.hp);} //复制表头if(A->ptr.tp){B->ptr.tp=malloc(sizeof(GLNode));GList_Copy(A->ptr.tp,B->ptr.tp);} //复制表尾}//else}//GList_Copy5.32int GList_Equal(GList A,GList B)//判断广义表A和B是否相等,是则返回1,否则返回0 { //广义表相等可分三种情况:if(!A&&!B) return 1; //空表是相等的if(!A->tag&&!B->tag&&A->atom==B->atom) return 1;//原子的值相等if(A->tag&&B->tag)if(GList_Equal(A->ptr.hp,B->ptr.hp)&&GList_Equal(A->ptr.tp,B->ptr.tp))return 1; //表头表尾都相等return 0;}//GList_Equal5.33void GList_PrintElem(GList A,int layer)//递归输出广义表的原子及其所在层次,layer表示当前层次{if(!A) return;if(!A->tag) printf("%d %d\n",A->atom,layer);else{GList_PrintElem(A->ptr.hp,layer+1);GList_PrintElem(A->ptr.tp,layer); //注意尾表与原表是同一层次}}//GList_PrintElem5.34void GList_Reverse(GList A)//递归逆转广义表A{GLNode *ptr[MAX_SIZE];if(A->tag&&A->ptr.tp) //当A不为原子且表尾非空时才需逆转{for(i=0,p=A;p;p=p->ptr.tp,i++){if(p->ptr.hp) GList_Reverse(p->ptr.hp); //逆转各子表ptr[i]=p->ptr.hp;}for(p=A;p;p=p->ptr.tp) //重新按逆序排列各子表的顺序p->ptr.hp=ptr[--i];}}//GList_Reverse5.35Status Create_GList(GList &L)//根据输入创建广义表L,并返回指针{scanf("%c",&ch);if(ch==' '){L=NULL;scanf("%c",&ch);if(ch!=')') return ERROR;return OK;}L=(GList)malloc(sizeof(GLNode));L->tag=1;if(isalphabet(ch)) //输入是字母{p=(GList)malloc(sizeof(GLNode)); //建原子型表头p->tag=0;p->atom=ch;L->ptr.hp=p;}else if(ch=='(') Create_GList(L->ptr.hp); //建子表型表头else return ERROR;scanf ("%c",&ch);if(ch==')') L->ptr.tp=NULL;else if(ch==',') Create_GList(L->ptr.tp); //建表尾else return ERROR;return OK;}//Create_GList分析:本题思路见书后解答.5.36void GList_PrintList(GList A)//按标准形式输出广义表{if(!A) printf("()"); //空表else if(!A->tag) printf("%d",A->atom);//原子else{printf("(");for(p=A;p;p=p->ptr.tp){GList_PrintList(p->ptr.hp);if(p->ptr.tp) printf(","); //只有当表尾非空时才需要打印逗号}printf(")");}//else}//GList_PrintList5.37void GList_DelElem(GList &A,int x)//从广义表A中删除所有值为x的原子{if(A&&A->ptr.hp){if(A->ptr.hp->tag) GList_DelElem(A->ptr.hp,x);else if(!A->ptr.hp->tag&&A->ptr.hp->atom==x){q=A;A=A->ptr.tp; //删去元素值为x的表头free(q);GList_DelElem(A,x);}}if(A&&A->ptr.tp) GList_DelElem(A->ptr.tp,x);}//GList_DelElem5.39void GList_PrintElem_LOrder(GList A)//按层序输出广义表A中的所有元素{InitQueue(Q);for(p=L;p;p=p->ptr.tp) EnQueue(Q,p);while(!QueueEmpty(Q)){DeQueue(Q,r);if(!r->tag) printf("%d",r->atom);elsefor(r=r->ptr.hp;r;r=r->ptr.tp) EnQueue(Q,r);}//while}//GList_PrintElem_LOrder分析:层序遍历的问题,一般都是借助队列来完成的,每次从队头取出一个元素的同时把它下一层的孩子插入队尾.这是层序遍历的基本思想.。
第5章数组和广义表答案
第5章数组和广义表答案第 5 章数组和广义表一、选择1.设有一个10阶的对称矩阵A,采用压缩存储方式,以行序为主存储,a11为第一元素,其存储地址为1,每个元素占一个地址空间,则a85的地址为( B )。
A. 13B. 33C. 18D. 402. 设有数组A[i,j],数组的每个元素长度为3字节,i的值为1 到8 ,j的值为1 到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为(B )。
A. BA+141B. BA+180C. BA+222D. BA+2253. 假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=( B )。
A. 808B. 818C. 1010D. 10204. 二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范围从0到9。
从供选择的答案中选出应填入下列关于数组存储叙述中()内的正确答案。
(1)存放A至少需要( E )个字节;(2)A的第8列和第5行共占( A )个字节;(3)若A按行存放,元素A[8,5]的起始地址与A按列存放时的元素( B )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270 E. 540(2)A. 108 B. 114 C. 54 D. 60 E. 150 (3)A. A[8,5] B. A[4,9]C. A[5,8]D. A[0,9]5. 若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[1..(n(n+1))/2]中,则在B中确定aij(i<="" b="" p="">A. i*(i-1)/2+jB. j*(j-1)/2+iC. i*(i+1)/2+jD. j*(j+1)/2+i6. A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是( B )。
《数据结构》习题集:第5章_数组与广义表
第5章数组与广义表一、选择题1.在以下讲述中,正确的是(B )。
A、线性表的线性存储结构优于链表存储结构B、二维数组是其数据元素为线性表的线性表C、栈的操作方式是先进先出D、队列的操作方式是先进后出2.若采用三元组压缩技术存储稀疏矩阵,只要把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算,这种观点(A )。
A、正确B、错误3.二维数组SA 中,每个元素的长度为3 个字节,行下标I 从0 到7,列下标J 从0 到9,从首地址SA 开始连续存放在存储器内,该数组按列存放时,元素A[4][7]的起始地址为(B)。
A、SA+141B、SA+180C、SA+222D、SA+2254.数组SA 中,每个元素的长度为3 个字节,行下标I 从0 到7,列下标J 从0 到9,从首地址SA 开始连续存放在存储器内,存放该数组至少需要的字节数是( C )。
A、80B、100C、240D、2705.常对数组进行的两种基本操作是(B )。
A、建立与删除B、索引和修改C、查找和修改D、查找和索引6.将一个A[15][15]的下三角矩阵(第一个元素为A[0][0]),按行优先存入一维数组B[120]中,A 中元素A[6][5]在B 数组中的位置K 为( B )。
A、19B、26C、21D、157.若广义表A 满足Head(A)=Tail(A),则A 为(B )。
A、()B、(())C、((),())D、((),(),())8.广义表((a),a)的表头是( C ),表尾是(C )。
A、aB、bC、(a)D、((a))9.广义表((a,b),c,d)的表头是( C ),表尾是(D )。
A、aB、bC、(a,b)D、(c,d)10.广义表((a))的表头是( B ),表尾是(C )。
A、aB、(a)C、()D、((a))11.广义表(a,b,c,d)的表头是(A ),表尾是(D )。
A、aB、(a)C、(a,b)D、(b,c,d)12.广义表((a,b,c,d))的表头是(C ),表尾是(B )。
第5章数组和广义表
第五章习题参考答案一、简答题1.【参考答案】:数组是一组具有相同数据类型的数据集合。
数据元素按次序存储于一段地址连续的内存空间中。
可以通过下标找到存放该元素的存储地址,访问该数据元素的值。
数组中的每一个元素和下标惟一对应。
访问数组中任意指定的数据元素形式是,数组名[下标]。
举例略。
2.【参考答案】:数组是一组具有相同数据类型的数据集合。
数据元素按次序存储于一段地址连续的内存空间中。
即数组是数据元素的线性组合,类似于顺序存储结构的线性表。
3.【参考答案】:在n阶方阵A中,若元素满足下述性质:aij=aji (0≤i,j≤n-1)则称A为n阶对称矩阵。
三角矩阵是指n阶矩阵中上三角(不包括对角线)或下三角(不包括对角线)中的元素均为常数c或为0的n阶方阵。
以主对角线划分,三角矩阵有上三角和下三角两种。
在n阶矩阵A中,所有的非零元素都集中在以对角线为中心的带状区域中,则称A为n阶对角矩阵。
实质上,除了主对角线和主对角线相邻两侧的若干条对角线上的元素之外,其余元素均为零或为常数c。
稀疏矩阵压缩存储方法有两类:顺序存储结构和链式存储结构。
共同点:为了节省存储单元,可只存储非零元素,压缩零元素的存储空间;非零元素的分布一般是没有规律的;在存储非零元素的同时,还必须存储非零元素所在的行号、列号,才能惟一确定非零元素是矩阵中的哪一个元素。
稀疏矩阵中的所有非零元素构成了三元组线性表。
4.【参考答案】:一个阶数较大的m×n矩阵中,设有s个非零元素,如果s<<m×n时,则称该矩阵为稀疏矩阵。
准确的讲,在矩阵A中,有s个非零元素。
令e=s/(m×n),称e 为矩阵的稀疏因子。
通常认为e≤0.05时,称矩阵A为稀疏矩阵。
特点:非零元素分布没有规律,而且很少,远小于矩阵中的元素总个数。
采用压缩存储,节省存储空间,只存储非零元素,并且每个非零元素都需要一个三元组(i,j,aij)惟一表示。
数据结构第五章数组和广义表
第五章数组和广义表:习题习题一、选择题1.假设以行序为主序存储二维数组A[1..100,1..100],设每个数据元素占两个存储单元,基地址为10,则LOC(A[5,5])=( )。
A. 808B. 818C. 1010D. 10202.同一数组中的元素( )。
A. 长度可以不同 B.不限 C.类型相同 D. 长度不限3.二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。
从供选择的答案中选出应填入下列关于数组存储叙述中( )内的正确答案。
(1)存放A至少需要( )个字节。
(2)A的第8列和第5行共占( )个字节。
(3)若A按行存放,元素A[8]【5]的起始地址与A按列存放时的元素( )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270(2) A. 108 B. 114 C. 54 D. 60(3)[8][5] B. A[3][10] [5][8] [O][9]4.数组与一般线性表的区别主要是( )。
A.存储方面B.元素类型方面C.逻辑结构方面D.不能进行插入和删除运算5.设二维数组A[1..m,1..n]按行存储在数组B[1..m×n]中,则二维数组元素A[i,j]在一维数组B中的下标为( )。
A. (i-l)×n+jB. (i-l)×n+j-lC.i×(j-l) D. j×m+i-l6.所谓稀疏矩阵指的是( )。
A.零元素个数较多的矩阵B.零元素个数占矩阵元素中总个数一半的矩阵C.零元素个数远远多于非零元素个数且分布没有规律的矩阵D.包含有零元素的矩阵7.对稀疏矩阵进行压缩存储的目的是( )。
A.便于进行矩阵运算B.便于输入和输出C.节省存储空间D. 降低运算的时间复杂度8.稀疏矩阵一般的压缩存储方法有两种,即( )。
A.二维数组和三维数组B.三元组和散列C.三元组和十字链表D.散列和十字链表9.有一个100×90的稀疏矩阵,非0元素有10个,设每个整型数占两字节,则用三元组表示该矩阵时,所需的字节数是( )。
数据结构课后习题答案第五章数组与广义表
第五章数组与广义表一、假设有二维数组A6*8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A的起始存储位置(基地址)为1000。
计算:1、数组A的体积(即存储量);2、数组A的最后一个元素a57的第一个字节的地址;3、按行存储时,元素a14的第一个字节的地址;4、按列存储时,元素a47的第一个字节的地址;答案:1、(6*8)*6=2882、loc(a57)=1000+(5*8+7)*6=1282或=1000+(288-6)=12823、loc(a14)=1000+(1*8+4)*6=10724、loc(a47)=1000+(7*6+4)*6=1276二、假设按低下标(行优先)优先存储整数数组A9*3*5*8时第一个元素的字节地址是100,每个整数占四个字节。
问下列元素的存储地址是什么?(1)a0000(2)a1111(3)a3125 (4)a8247答案:(1)100(2)loc(a1111)=100+(1*3*5*8+1*5*8+1*8+1)*4=776(3) loc(a3125)=100+(3*3*5*8+1*5*8+2*8+5)*4=1784(4) loc(a8247)=100+(8*3*5*8+2*5*8+4*8+7)*4=4416五、设有一个上三角矩阵(aij)n*n,将其上三角元素逐行存于数组B[m]中,(m 充分大),使得B[k]=aij且k=f1(i)+f2(j)+c。
试推导出函数f1,f2和常数C(要求f1和f2中不含常数项)。
答:K=n+(n-1)+(n-2)+…..+(n-(i-1)+1)+j-i=(i-1)(n+(n-i+2))/2+j-i所以f1(i)=(n+1/2)i-1/2i2f2(j)=jc=-(n+1)九、已知A为稀疏矩阵,试从空间和时间角度比较采用两种不同的存储结构(二维数组和三元组表)完成∑aii运算的优缺点。
(对角线求和)解:1、二维数组For(i=1;i<=n;i++)S=s+a[i][i];时间复杂度:O(n)2、for(i=1;i<=m.tu;i++)If(a.data[k].i==a.data[k].j) s=s+a.data[k].value;时间复杂度:O(n2)二十一、当稀疏矩阵A和B均以三元组表作为存储结构时,试写出矩阵相加的算法,其结果存放在三元组表C中。
数据库系统l试题库及答案 第5章数组和广义表
第5章 数组和广义表5.1数组一、填空题1. 假设有二维数组A 6×8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A 的起始存储位置(基地址)为1000,则数组A 的体积(存储量)为 ;末尾元素A 57的第一个字节地址为 。
2. 三元组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 、 和 。
3. 设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为 。
4. 设n 行n 列的下三角矩阵A 已压缩到一维数组B[1..n*(n+1)/2]中,若按行为主序存储,则A[i,j]对应的B 中存储位置为 。
5. 设有一个10阶对称矩阵A 采用压缩存储方式(以行为主序存储:a 11=1),则a 85 的地址为 。
6. 设下三角矩阵A 如果按行序为主序将下三角元素A i j (i ≤j)存储在一个一维数组B[1..n(n+1)/2]中,对任一个三角矩阵元素A ij ,它在数组B 中的下标为 。
二、选择题1. ( )假设有60行70列的二维数组a[1…60, 1…70]以列序为主序顺序存储,其基地址为10000,每个元素占2个存储单元,那么第32行第58列的元素a[32,58]的存储地址为 。
A .16902B .16904C .14454D .答案A, B, C 均不对 2. ( )对特殊矩阵采用压缩存储的目的主要是为了 。
A .表达变得简单B .对矩阵元素的存取变得简单C .去掉矩阵中多余元素D .减少不必要的存储空间3. ( )对于n 阶对称矩阵,如果以行序或列序放入内存中,则需要 个存储单元。
A .n(n+1)/2B .n(n-1)/2C . n 2D .n 2/24. 有一个100*90的稀疏矩阵,非0元素有10个,设每个整型数占2字节,则用三元组表示该矩阵时,所需的字节数是 。
数据结构试题库集及答案
数据结构试题库及答案第一章概论一、选择题1、研究数据结构就是研究( D )。
A. 数据的逻辑结构B. 数据的存储结构C. 数据的逻辑结构和存储结构D. 数据的逻辑结构、存储结构及其基本操作2、算法分析的两个主要方面是( A )。
A. 空间复杂度和时间复杂度B. 正确性和简单性C. 可读性和文档性D. 数据复杂性和程序复杂性3、具有线性结构的数据结构是( D )。
A. 图B. 树C. 广义表D. 栈4、计算机中的算法指的是解决某一个问题的有限运算序列,它必须具备输入、输出、( B )等5个特性。
A. 可执行性、可移植性和可扩充性B. 可执行性、有穷性和确定性C. 确定性、有穷性和稳定性D. 易读性、稳定性和确定性5、下面程序段的时间复杂度是( C )。
for(i=0;i<m;i++)for(j=0;j<n;j++)a[i][j]=i*j;A. O(m2)B. O(n2)C. O(m*n)D. O(m+n)6、算法是( D )。
A. 计算机程序B. 解决问题的计算方法C. 排序算法D. 解决问题的有限运算序列7、某算法的语句执行频度为(3n+nlog2n+n2+8),其时间复杂度表示( C )。
A. O(n)B. O(nlog2n)C. O(n2)D. O(log2n)8、下面程序段的时间复杂度为( C )。
i=1;while(i<=n)i=i*3;A. O(n)B. O(3n)C. O(log3n)D. O(n3)9、数据结构是一门研究非数值计算的程序设计问题中计算机的数据元素以及它们之间的()和运算等的学科。
A. 结构B. 关系C. 运算D. 算法10、下面程序段的时间复杂度是()。
i=s=0;while(s<n){i++;s+=i;}A. O(n)B. O(n2)C. O(log2n)D. O(n3)11、抽象数据类型的三个组成部分分别为()。
A. 数据对象、数据关系和基本操作B. 数据元素、逻辑结构和存储结构C. 数据项、数据元素和数据类型D. 数据元素、数据结构和数据类型12、通常从正确性、易读性、健壮性、高效性等4个方面评价算法的质量,以下解释错误的是()。
数组和广义表思考题及答案
一、选择题1. 将一个A[1..100,1..100]的三对角矩阵,按行优先存入一维数组B[1‥298]中,A中元素A6665(即该元素下标i=66,j=65),在B数组中的位置K为(B )。
供选择的答案:三条对角线有元素值,其他没有A. 198B. 195C. 1972. 二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。
从供选择的答案中选出应填入下列关于数组存储叙述中()内的正确答案。
(1)存放A至少需要( E )个字节;(2)A的第8列和第5行共占( A )个字节;(3)若A按行存放,元素A[8,5]的起始地址与A按列存放时的元素(B )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270 E. 540(2)A. 108 B. 114 C. 54 D. 60 E. 150(3)A. A[8,5] B. A[3,10] C. A[5,8] D. A[0,9]3. 设A是n*n的对称矩阵,将A的对角线及对角线上方的元素以列为主的次序存放在一维数组B[1..n(n+1)/2]中,对上述任一元素aij(1≤i,j≤n,且i≤j)在B中的位置为( B )。
A. i(i-l)/2+jB. j(j-l)/2+iC. j(j-l)/2+i-1D. i(i-l)/2+j-14. A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是(B )。
A. i(i-1)/2+jB. j(j-1)/2+iC. i(j-i)/2+1D. j(i-1)/2+15. 设二维数组A[1.. m,1..n](即m行n列)按行存储在数组B[1.. m*n]中,则二维数组元素A[i,j]在一维数组B中的下标为( A )。
A.(i-1)*n+jB.(i-1)*n+j-1C. i*(j-1)D. j*m+i-16. 有一个100*90的稀疏矩阵,非0元素有10个,设每个整型数占2字节,则用三元组表示该矩阵时,所需的字节数是(B )。
第五章数组和广义表习题_数据结构
习题五数组和广义表一、单项选择题1.常对数组进行的两种基本操作是()A.建立与删除B. 索引与修改C. 查找与修改D. 查找与索引2.对于C语言的二维数组DataType A[m][n],每个数据元素占K个存储单元,二维数组中任意元素a[i,j] 的存储位置可由( )式确定.A.Loc[i,j]=A[m,n]+[(n+1)*i+j]*kB.Loc[i,j]=loc[0,0]+[(m+n)*i+j]*kC.Loc[i,j]=loc[0,0]+[(n+1)*i+j]*kD.Loc[i,j]=[(n+1)*i+j]*k3.稀疏矩阵的压缩存储方法是只存储 ( )A.非零元素B. 三元祖(i,j, aij)C. aijD. i,j4. 数组A[0..5,0..6]的每个元素占五个字节,将其按列优先次序存储在起始地址为1000的内存单元中,则元素A[5,5]的地址是( )。
A. 1175B. 1180C. 1205D. 12105. A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是()。
A. i(i-1)/2+jB. j(j-1)/2+iC. i(j-i)/2+1D. j(i-1)/2+16. 用数组r存储静态链表,结点的next域指向后继,工作指针j指向链中结点,使j 沿链移动的操作为( )。
A. j=r[j].nextB. j=j+1C. j=j->nextD. j=r[j]-> next7. 对稀疏矩阵进行压缩存储目的是()。
A.便于进行矩阵运算 B.便于输入和输出C.节省存储空间 D.降低运算的时间复杂度8. 已知广义表LS=((a,b,c),(d,e,f)),运用head和tail函数取出LS中原子e的运算是( )。
A. head(tail(LS))B. tail(head(LS))C. head(tail(head(tail(LS)))D. head(tail(tail(head(LS))))9. 广义表((a,b,c,d))的表头是(),表尾是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 数组和广义表
5.1数组
一、填空题
1. 假设有二维数组A 6×8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A 的起始存储位置
(基地址)为1000,则数组A 的体积(存储量)为 ;末尾元素A 57的第一个字节地址为 。
2. 三元组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素
的 、 和 。
3. 设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则
元素a[32,58]的存储地址为 。
4. 设n 行n 列的下三角矩阵A 已压缩到一维数组B[1..n*(n+1)/2]中,若按行为主序存储,则A[i,j]
对应的B 中存储位置为 。
5. 设有一个10阶对称矩阵A 采用压缩存储方式(以行为主序存储:a 11=1),则a 85 的地址为 。
6. 设下三角矩阵A 如果按行序为主序将下三角元素A i j (i ≤j)存储在一个一维数组B[1..n(n+1)/2]中,
对任一个三角矩阵元素A ij ,它在数组B 中的下标为 。
二、选择题
1. ( )假设有60行70列的二维数组a[1…60, 1…70]以列序为主序顺序存储,其基地址为10000,
每个元素占2个存储单元,那么第32行第58列的元素a[32,58]的存储地址为 。
A .16902
B .16904
C .14454
D .答案A, B, C 均不对 2. ( )对特殊矩阵采用压缩存储的目的主要是为了 。
A .表达变得简单
B .对矩阵元素的存取变得简单
C .去掉矩阵中多余元素
D .减少不必要的存储空间
3. ( )对于n 阶对称矩阵,如果以行序或列序放入内存中,则需要 个存储单元。
A .n(n+1)/2
B .n(n-1)/2
C . n 2
D .n 2
/2
4. 有一个100*90的稀疏矩阵,非0元素有10个,设每个整型数占2字节,则用三元组表示该矩阵时,
所需的字节数是 。
A. 60
B. 66
C. 18000
D. 33 5. 对稀疏矩阵进行压缩存储目的是( )。
A .便于进行矩阵运算
B .便于输入和输出
C .节省存储空间
D .降低运算的时间复杂度
6. ( )设矩阵A 是一个对称矩阵,为了节省存储,将其下三角部分(如下图所示)按行序存放在一
维数组B[1, n(n-1)/2 ]中,对下三角部分中任一元素a i,j (i ≤j), 在一维数组B 中下标k 的值是 。
A .i(i-1)/2+j-1
B .i(i-1)/2+j
C .i(i+1)/2+j-1
D .i(i+1)/2+j
三、判断题:
1.( )一个稀疏矩阵Am*n 采用三元组形式表示,若把三元组中有关行下标与列下标的值互换,并把
⎥⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢⎣⎡=n n n n a a a a a a A ,2,1
,2,21,21,1Λ
Λ
m 和n 的值互换,则就完成了Am*n 的转置运算。
2.( )从逻辑结构上看,n 维数组的每个元素均属于n 个向量。
3.( )稀疏矩阵压缩存储后,必会失去随机存取功能。
4.( )数组是同类型值的集合。
5.( )数组可看成线性结构的一种推广,因此与线性表一样,可以对它进行插入,删除等操作。
四、简答题
1.已知二维数组Am,m 采用按行优先顺序存放,每个元素占K 个存储单元,并且第一个元素的存储地址为Loc(a 11),请写出求Loc(a ij )的计算公式。
如果采用列优先顺序存放呢?
2.用三元组表表示下列稀疏矩阵:
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎣⎡2000000000000005000000000006000000000000030008000000000000000000)1( 3.下列各三元组表分别表示一个稀疏矩阵,试写出它们的稀疏矩阵.
5.2广义表
一、填空题
1. 当广义表中的每个元素都是原子时,广义表便成了_________。
2. 广义表简称表,是由零个或多个 或 组成的有限序列。
3. 求下列广义表操作的结果:
(1) GetHead 【((a,b),(c,d))】=== ; (2) GetHead 【GetTail 【((a,b),(c,d))】】=== ; (3) GetHead 【GetTail 【GetHead 【((a,b),(c,d))】】】=== ; (4) GetTail 【GetHead 【GetTail 【((a,b),(c,d))】】】=== ; 4. 广义表的 定义为广义表中括弧的重数。
5. 设广义表L=((),()), L 的长度是 ;深度是 。
二、选择题
行 列 值
6 4 6
1 2 2
2 1 12
3 1 3
4 4 4
5 3 6
6 1 16
1.( )下面说法不正确的是()。
A. 广义表的表头总是一个广义表
B. 广义表的表尾总是一个广义表
C. 广义表难以用顺序存储结构
D. 广义表可以是一个多层次的结构
2.()已知广义表L=((x,y,z),a,(u,t,w)),从L中取出原子项t的运算是()。
A. head(tail(tail(L)))
B. tail(head(head(tail(L))))
C. head(tail(head(tail(L))))
D. head(tail(head(tail(tail(L)))))
3.()设广义表L=((a,b,c)),则L的长度和深度分别为()。
A. 1和1
B. 1和3
C. 1和2
D. 2和3
三、判断题
1.()广义表的同级元素(直属于同一个表中的各元素)具有线性关系。
2.()广义表中的元素或者是一个不可分割的原子,或者是一个非空的广义表。
3.()一个广义表可以为其它广义表所共享。
4.()若一个广义表的表头为空表,则此广义表亦为空表。
5.()二维以上的数组其实是一种特殊的广义表。
四、简答题
1. 知广义表A=(((a)),(b),c,(a),(((d,e))))
(1)画出其一种存储结构图;
(2)写出表的长度与深度;
(3)用求头部,尾部的方式求出e。
第5章数组和广义表
5.1数组
一、填空题
1.288B 1282 2.行下标列下标元素值 3. 8950 4. i(i-1)/2+j (1<=i,j<=n)
5. 33(k=i(i-1)/2+j) (1<=i,j<=n)
6.i(i-1)/2+j
二、选择题
1.A
2.D
3.A
4.B
5.C
6. B
三、判断题:
1.× 2.√ 3.√ 4.× 5.×
四、简答题
1.解:公式教材已给出,此处虽是方阵,但行列公式仍不相同;
按行存储的元素地址公式是: Loc(a ij)= Loc(a11) +[ (i-1)*m+(j-1) ] * K
按列存储的元素地址公式是: Loc(a ij)= Loc(a11) +[ (j-1)*m+(i-1) ] * K
2.三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的行下标、列下标和元素值。
所以(1)可列表为:
8 8 5
3 2 3
3 6 8
5 4 6
7 8 5
8 1 2
3.
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢
⎢⎢⎢⎣⎡00
16
06004000000
3000120020)1(
5.2广义表
一、填空题
1. 线性表
2. 原子 、 子表
3.(a, b) (c,d) b (d )
4. 深度
5. 2 2
二、选择题
1.A
2.D
3.C
三、判断题
1. √ 2. × 3. √ 4. × 5. √
四、简答题
1. (1)略
(2)表的长度为5,深度为4
(3)head (tail (head (head (head (tail (tail (tail (tail (A )))))))))。