10[1].分子重排反应
分子重排反应机理
反应机理
O
+OH
R-C-R' H+ R-C-R'
OH
R-C-R'
+
-H+ O R"COO-H
OH R-C-R'
O-OCR" O
R
O
R' C
O O
H
O
C R"
R´重排
O-O键断裂
-R´´COO- , -H+
O R-C-OR'
在结构对称酮的重排中,基团亲核性越大,迁移的倾 向越大,基团迁移的大致顺序为:
分子重排反应机理
分子重排反应是指在试剂、加热或其他因素的 影响下,分子中的某些原子或集团发生转移或 分子碳胳改变生成新的物质的反应。分子重排 是一类很有意义的反应,在理论上和应用上都 很重要。
第一节 重排反应的分类
1、按反应历程分:亲核重排、亲电重排、游离基重 排
2、按分子内和分子间重排分类 3、按元素分类原子或原子团迁移前后直接相连的原
子的种类可分为C→C重排、C →N重排、N →C重排、 O →C重排等 4、按光学活性分类:光活性不变重排、光活性改变 重排 5、按有机化合物的类型:脂肪族化合物重排,芳香族 化合物重排和杂环化合物重排 6、按官能团分类
第二节 亲核重排
一个原子或集团带着一对电子转移到相邻的缺 电子原子上,这一反应叫做亲核重排。
O
CH3COOC2H5
RCR' + CH3COOOH
40oC
O RCOR' + CH3COOH
常用的过酸有:
(1)一般过酸 + 无机强酸(H2SO4) (2)强酸的过酸 :CF3COOOH (3)一般酸 + 一定浓度的过氧化氢(产生的过酸立即反应)
分子重排反应
R N C OH H O
• 6、Wolff重排 • 重氮酮在氧化银或光热作用下,与水、醇、胺反应生成酸、 酯、酰胺的反应称为Wolff重排。 O
H2O O + R C CHN2 hv O R C CH R'OH NH3 R C C OH H2 O R C C OR' H2 O R C C NH2 H2 R C C O H
+
CH3 H3C C C OH2 H2
+
- H2 O
CH3 H3C C CH2
+
CH3
CH3
CH3 Cl H3 C C CH2CH3
Cl rearrgement CH3
+
-
H3C
C
CH2 - H+ H 3C
CH3 C CHCH3
CH3
CH3
• 实验证明Wagner-Meerwein重排的历程是生成碳正离子 的SN1历程。重排的趋势一般取决于碳正离子的相对稳定 性。其迁移基团的活性次序如下:
O Ph H C H2 Cl B Ph CH2 O H2O Ph C O OH
H2O
Ph
C O
OH
• 原子上有吸电子基团时,在强碱的作 用下,季铵盐上的取代基重排到具有吸电子的碳原子上, 形成叔胺的反应称为Stevens重排。
R1 Z C H2 N
+
R1 R2 NaNH2 Z C H N
O O C C KOH O C OC OH OH O C C OK
O- O C C OH
高等有机化学——11、分子重排
2. 负离子重排
3. 卡宾Carbene 、氮宾Nitrene重排 4. 周环重排反应 5. 自由基重排
主讲:郭生金
高等有机化学
缺电子重排:
CH3CH2CH2CH2OH
H CH3CH2CHCH2
CH3CH2CHCH3
H+
H+
CH3CH2CH2CH2OH2
H2O
CH3CH=CHCH3
富电子重排:
Ph CH2 O CH3
CH3 - + Ph CH O Li
PhLi C6H6
+ Ph CH O CH3 Li
H2O
CH3 Ph CH OH
主讲:郭生金
高等有机化学
自由基重排:
Cl Cl C CH=CH2 Cl Br
Cl Cl C CH CH2Br Cl
Cl Cl C CH CH2Br Cl
Br2
Br Cl Cl C CH CH2Br Cl
CH3 CH3 C CHCH3 CH3 OH
CH3 C CHCH3 CH3
ClH+
H+
CH3
CH3 -H2O C CHCH3 CH3 OH2
CH3 CHCH3
CH3
CH3 C CH3
CH3 C CH3
CH3 CHCH3
CH3
Cl CH3 C CHCH3 CH3
CH3C=C(CH3)2 CH3
主讲:郭生金
主讲:郭生金
高等有机化学
常用贝克曼重排来检验肟的构型。
Ph C N OH mp147℃
UV light Ph C N HO mp 117℃ C6H4OCH3
PCl5 Et2O, -10℃
分子重排反应
7.The Lossen Rearrangement
The O-acyl derivatives of hy droxamic acids give isocyanates when treated with bases or sometimes even just on heating in a reaction known as the Rearrangement
Mechanism :
CH3
+ CH3 CH3 H C C CH3 OH OH
CH3
CH3 CH3 C C CH3 H2O OH +OH2
CH3 C C CH3 O CH3
CH3 CH3 C C CH3 OH CH3
+
CH3 CH3 C C CH3 +OH CH3
H+
CH3
(1)The stable cation formed superior + Ph C CH H Ph2C CH2
NH2 HNO2 OH CH2NH2 OH HNO2
CHO
O
(3)Mixtures are ofen produced,and which group
preferrntially migrates may depend on the reaction conditions as well as on the nature of the substrate.
CH3 O O C C CH3 CH3 OH H2O
-
CH3 C C O O
CH3
O O C C CH3 CH3 C C O
OH H2O
-
O C C CH3 CH3 C C O
(3): If NaOH was replaced by NaOMe or tBuONa, α-hydroxycarboxyester will be produced O O
重排反应名词解释
重排反应名词解释
重排反应(Re排列)是化学中的一种现象,指的是在化学反应中,反应物分子通过原子之间的相互作用重新排列,以形成不同的分子结构和化学键。
这种重新排列可以产生不同的化学产物,并且在不同的条件下,重排反应可以具有不同的选择性。
在重排反应中,反应物分子中的原子通过特定的相互作用重新排列。
这些相互作用可以是电子云之间的相互作用,也可以是离子之间的相互作用,或者是分子之间的相互作用。
在重排反应中,不同原子之间的相互作用可以导致分子结构的改变,从而生成不同的化学产物。
重排反应在化学合成、化学分析和天然产物提取等领域中都有广泛的应用。
例如,在有机合成中,重排反应可以用来合成新的有机化合物。
在化学分析中,重排反应可以用来分离和分析不同的有机化合物。
在天然产物提取中,重排反应可以用来提取特定的天然产物,并进行分离和纯化。
除了化学合成和天然产物提取外,重排反应还可以在其他领域中的应用。
例如,在医学领域中,重排反应可以用来合成新的药物分子,从而提高药物的疗效和安全性。
在能源领域中,重排反应可以用来合成新的燃料分子,从而提高燃料的效率和经济性。
重排反应是一个复杂而重要的化学反应过程,不仅具有重要的应用价值,而且对推动化学技术的发展和创新具有重要的作用。
第五章_重排反应
CH3— C — C — CH3
+
—
O — BF3
_
CH3
CH3— C — C — CH3
— —
— —
O
CH3
+
OH OH
OH O
— —
R
— —
— —
— —
— —
— —
R — C — C—R
3
1
H
+
R — C — C— R R
3
1
2
R ~ + —H
3:
R — C — C —R R
3
1
2
脂环族氨基醇和脂环族卤代醇则发生环扩大或环缩小反应:
在上述过程中,叔碳正离子(Ⅰ)重排成质子化酮的动力 是具有未共享电子对的氧对碳正离子(Ⅱ)有更大的稳定作用, 同时碳正子(Ⅱ)亦容易从羟基上脱去质子而生成稳定的最后 产物。
在反应过程中,凡是能生成类似的碳正离子者,都能发生 此类重排。
例如,与Pinacol醇结构相似的α,β-卤代醇、氨基醇和环氧 化物、α -羟基酮等在相应的条件下的类似重排反应(通常称为 半Pinacol重排,这种情况不能象Pinacol醇那样可以选择正离子 中心):
(CH3)2C
CHCH3
— N2
OH NH2 CH3 CH3 C OH CHCH3
重排
OH N2 CH3
—
CH3— C — CHCH3
+
CH3— C — C H(CH3)2
O
—
OH
—H
+
— —
CH3 CH3
CH3 CH3
— —
—
CH3— C —— C — CH3 O
重排反应
重排反应(rearrangement reaction)是分子的碳骨架发生重排生成结构异构体的化学反应,是有机反应中的一大类。
重排反应通常涉及取代基由一个原子转移到同一个分子中的另一个原子上的过程。
以下例子中取代基R由碳原子1移动至碳原子2:分子间重排反应也有可能发生。
按反应机理,重排反应可分为:基团迁移重排反应和周环反应。
基团迁移重排反应反应物分子中的一个基团在分子范围内从某位臵迁移到另一位臵的反应。
常见的迁移基团是烃基。
迁移基团的原来位臵称为迁移起点,迁移后的位臵称为迁移终点,这类反应又可按价键断裂方式分为异裂和均裂,前者重要得多,其中尤以缺电子重排最为重要。
缺电子重排反应是反应物分子先在迁移终点形成一个缺电子活性中心,从而促使迁移基团带着键裂的电子对发生迁移,并通过进一步变化生成稳定产物。
以频哪酮重排反应为例,反应物分子中的一个羟基与酸作用形成锌盐后失水变为缺电子活性中心正碳离子,促使邻位带羟基碳原子上的一个甲基带着电子对发生1,2-迁移,同时羟基氧原子上未共用电子对转移至碳?氧之间构成双键,最后失去质子而得产物(见上反应式)。
在迁移终点形成一个富电子活性中心后,促使迁移基团不带键裂电子对而转移,叫富电子重排反应,例如法沃斯基重排:a - 卤代酮在强碱作用下重排,生成碳架不同的羟酸酯,反应通过富电子活性中心负碳离子进行:环反应反应物因分子内共价键协同变化而发生重排Favorsky重排反应的反应,有电环化反应和δ迁移反应。
例如环丁烯经加热发生逆向电环化而得1,3-丁二烯,1,3-己二烯经加热发生氢原子1,5-迁移而得2,4-己二烯。
这类重排在合成中应用最多的是属于3,3-迁移的科普重排和克莱森重排。
科普重排是1,5-二烯受热重排为另一个1,5-二烯的反应。
例如内消旋-3,4-二甲基-1,5-己二烯经加热几乎定量地转变为(Z ,E)-2,6-辛二烯:克莱森重排反应是参与反应的体系中有一个氧原子代替了碳原子。
《重排反应》PPT课件
P C H3OC 6H5 Ph
H 2S O 4
P C H3OC 6H5 C C Ph
OH OH
P C H3OC 6H5
P C H3OC 6H5 C C Ph Ph O
72%
+ Ph
P C H3OC 6H5 C C Ph
28%
O整理课件C 6 H 5 O C H 3 P
9
Ph Ph C
CH3 C CH3
第四章 重排反应
定义:受试剂或介质的影响,同一有机分子内的一个基团 或原子从一个原子迁移到另一个原子上,使分子构架发生 改变而形成一个新的分子的反应称为重排反应。
重排反应类型(按终点原子电荷分) 缺电子重排 富电子重排 自由基重排
• 从碳原子到碳原子的重排 • 从碳原子到杂原子的重排 • 从杂原子到碳原子的重排 • -键迁移重排
关注1,2重排 烯丙基结构 构型保留
R
碱B R
机理
YC H
BH
YC
R YC
整理课件
51
一、Stevens重排
季铵盐分子中连于氮原子的碳原子上具有吸电子的 基团取代时,在强碱性条件下,可重排生成叔胺的 反应称为Stevens重排反应。
RC H C O H2O RC H2C O O H
COCl
1. C H 2 N 2 2. P h C O O A g /E tO H /T E A
C H2C O O C 2H5
84~92%
整理课件
28
Arndt-Eistert同系列羧酸的合成反应
Arndt-Eistert合成是将一个酸变成它的高一级同系 物或转变成同系列酸的衍生物,(如酯或酰胺)的反 应。该反应可应用于脂肪族酸和芳香族酸的制备。
分子重排
反应机理: Claisen 重排是个协同反应,中间经过一个环状过渡 态,所以芳环上取代基的电子效应对重排无影响。
从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由 酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重 排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基 占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope 重排)到对 位,然后经互变异构得到对位烯丙基酚。
亲核重排反应
重排过程,Z带着一对电子从原子C迁移到另一个缺 少一对电子的原子A上。 多数亲核重排是1,2-重排,即 基团的迁移发生于相邻的两个原子间。上式中,A为 C、N、O等原子,而Z为X、O、S、N、C、H等原子。 重排后的分子与反应体系的负性部分结合生成重排取代 产物或失去质子生成重排消除产物。
值得注意的是游离基重排的限度比碳正离子小 的多。在上述实例中只有50%转移。再就是这里没 有甲基转移,一般在常温情况下不发生甲基的游离基 转移.除芳基以外,乙烯基和乙酰氧基、卤素也能转 移。迁移基团的重排动力是形成更稳定的游离基,但 在常温条件下,一般不发生烷基或很少发生氢的迁 移.这是因为芳基的1,2迁移形成一个离域的桥式芳 基游离型中间体或过渡状态,他比烷基迁移通过五价 碳结构在能量上更为有利。尽管甲基迁移可产生更 为稳定的游离基.
烷基芳基酮重排时,一般是芳基进行迁移,如:
Lossen(洛森)重排
异羟肟酸或其酰基衍生物单独加热,或在SOCl2 、 P2O5 等脱水剂存在下加热,发生重排得到异氰酸酯,再经水解生 成伯胺.
反应机理(当R是手性碳原子时,重排后其构型保持不变 ):
反应实例:
Beckmann(贝克曼)重排
有机化学基础知识点整理有机分子的重排反应和空间取向
有机化学基础知识点整理有机分子的重排反应和空间取向有机分子的重排反应和空间取向在有机化学中,有机分子的结构和反应机制是学习的重要内容,其中包括了有机分子的重排反应和空间取向。
在这篇文章中,我们将对有机化学的基础知识点进行整理和探讨。
一、有机分子的重排反应有机分子的重排反应是指原子或官能团在分子内的重新排列,使得分子结构发生变化的反应。
它可以通过热力学控制以及催化剂的作用来实现。
有机分子的重排反应包括:1. 重排异构化反应;2. 化合物的重排;3. 环外迁移反应等。
1. 重排异构化反应重排异构化反应是指在分子结构中,原子或官能团的重新排列,产生异构体的反应。
例如,环庚烷和环庚烯之间的变异反应,通过热力学控制和酸催化剂的作用,可以将环庚烷转化为环庚烯。
2. 化合物的重排化合物的重排是指由于不稳定中间体的生成,导致化合物的结构变化。
此类反应常见于芳香性化合物的重排。
例如,苯与亲电试剂之间的取代反应,可能会在生成芳香性化合物的过程中发生重排反应。
3. 环外迁移反应环外迁移反应是指分子内的一个原子或官能团在分子内的迁移,从而导致分子结构的重排。
例如,烷基醇与硫酸反应生成烷基磺酸酯的过程中,烷基的迁移就是一种环外迁移反应。
二、有机分子的空间取向有机分子的空间取向是指分子在空间中的排布方式,通常由立体化学和空间位阻来确定。
有机分子中的空间位阻可以影响化学反应的速率和产物的选择性。
在有机化学中,空间位阻通常由手性分子引起。
1. 手性分子的空间取向手性分子是指分子中存在非对称碳原子或手性中心,具有左右对称关系,导致分子在空间中呈现不对称结构的分子。
手性分子的空间取向可以影响化学反应的产物选择性。
例如,在费洛环合成中,手性反应物的配置决定了产物的空间取向。
2. 空间位阻的影响空间位阻是指分子结构中的部分原子或官能团对其他原子或官能团的运动限制。
空间位阻的存在可以阻碍分子的重排反应或者催化反应。
例如,双取代苯基衍生物的取代反应中,季碳中的空间位阻可以影响置换基团的位置。
分子重排
(一)碳正离子的重排
1、Wagner-Meerwein重排 内容: 瓦-米重排最早是在双环萜类的反应中发现 的。如-蒎烯与HCl作用发生重排生成氯化莰 又可脱HCl重排得到莰烯。
H+ ClCl
Cl -C l -
-H
现在一般是指:一个H负离子或烃基(烷基 或芳基)负离子从相邻的碳原子经1,2-迁 移重排到碳正离子的反应。 瓦-米重排包括: 醇及其酯的消去与取代 过程中 卤代烃的消去与取代 所发生的 烯烃的亲电加成 重排
H 2N H 2N Me Me H 2N Me
NH2 NH2
NH2
(二)立体化学的研究 • 如果反应物具有旋光性,可以从重排后是否保 持其旋光性来判断有关历程。如后面讨论的贝 克曼重排,反应物有旋光性,重排后形成99.6% 光学纯的酰胺,即旋光性在重排后保留下来, 说明构型保持不变,所以手性碳原子上的构型 没有变,证明重排过程中迁移基团并没有脱离 原来分子而裂解下来,因为如果裂解下来,则 应得到外消旋化的产物,所以贝克曼重排是分 子内重排。
亲核的1,2重排的动力一般来自三个方面: • (1)重排成更稳定的正离子,如仲碳正离 子或伯碳正离子重排至叔碳正离子。 • (2)通过重排转变成稳定的中性化合物, 如片呐醇重排至片呐酮就是这种情况。 (3)重排后减少空间张力,如下面伯碳 正子重排至叔碳正离子,空间张力随之减 小
• 。
CH3 H3C C CH2 CH3
CH 2NH 2 HNO 2 -N2
O
重排 水解
[O]
也可用硝基甲烷通过缩合得到伯胺.
3、片呐醇(Pinacol)重排
• 内容: 当用无机反应及其酰氯等处理邻位二醇时发 生的重排反应叫做邻二叔醇重排,也常常称为 片呐醇重排或呐咵重排,重排的产物得到片呐 酮(或称呐咵酮)
第十二章 分子重排反应
12.1.3 二苯基乙二酮重排(Bezil重排)α-二酮经强碱处理会发生重排,生成α-羟基
乙酸盐。二苯基乙二酮重排,亦称Benzil重排。
本重排是制备二芳基乙醇酸的常用方法,产率一般较 高。α-芳二酮主要是由α-羟基酮氧化而得,而α-羟基酮 是由芳醛通过二苯乙醇缩合(Benzoin缩合)来制备。
12.1.4 Demyanov重排 脂肪族或脂环族伯胺与亚硝酸作用发生的脱氮重 排,称为Demyanov重排。
脂环族化合物的伯胺与HNO2作用重氮化后能引起 环的扩大或缩小。
脂环化合物环上碳原子带正电荷时,通过亲核 1,2-重排环会收缩;相反,如果碳正离子位于环的 α位,通过亲核1,2-重排,环会扩大。降低张力是 重排的动力之一,因此小环的扩环反应产率通常都 较高,而五元环却难以通过亲核1,2-重排收缩成四 元环,这是由于环张力增加的缘故。而在三元环和 四元环之间的转化中,环张力不是主要因素。
12.1 亲核重排 亲核重排系分子在亲电试剂影响下,发生 基团 Z 带着一对电子从一个原子迁移到另一个 原子上去的反应,其中以 1,2- 迁移的重排较为 重要。
A=C、N、O Z=X、O、S、N、C、H
在这类重排反应中, Z在迁移过程中带着孤对 电子,故 A一定是一个缺电子的被进攻中心,所以 该重排称为缺电子重排。重排反应一般需要三步完 成,这三步的常见形式是:
基团Z带着一对电子从一个碳原子迁移到另一 个碳原子上去的反应称为C→C迁移重排。
12.1.1 Wagner-Meerwein重排 烷基、芳基或氢从一个碳原子向另一个碳原子迁移的反应称 为Wagner-Meerwein重排。实践表明Wagner-Meerwein重排大多 是按SN1机理进行的,其重排趋势取决于碳正离子的稳定性。 1)甲基迁移
化学反应机理中的分子内重排反应
化学反应机理中的分子内重排反应化学反应机理是描述化学反应过程中分子之间相互作用和形成新化学物质的步骤的理论模型。
其中,分子内重排反应是一种重要的反应类型,其发生在反应物的分子内部,通过原子或基团的重新排列来生成新的化学物质。
本文将探讨分子内重排反应的概念、机理和在化学领域中的应用。
一、概念和机理分子内重排反应是指原子或基团在分子内部以不同的方式重新排列,形成新的化学键和结构。
这种反应通常发生在一个分子中,无需外部参与物质。
分子内重排反应具有高分子内选择性,可以生成不同构象、同分异构体和立体异构体等多种化合物。
分子内重排反应的机理包括以下几个步骤:1. 断裂步骤:在反应物的分子内部发生键断裂,通常是由弱键(如σ键)发生断裂。
2. 重组步骤:断裂的原子或基团重新组合形成新的键,并且生成新的分子结构。
3. 生成产物:重组后的产物可以是同分异构体、立体异构体或具有新化学键的化合物。
二、分子内重排反应的应用分子内重排反应在有机化学、生物化学和材料科学等领域都有广泛的应用。
以下是其中几个常见的应用领域:1. 有机合成:分子内重排反应是有机合成中的重要工具,可以合成具有特定结构和功能的化合物。
例如,希夫碱碱催化的分子内重排反应可用于合成环状和多环化合物,如萜类化合物和天然产物。
2. 药物研究:分子内重排反应在药物研究中具有重要的地位。
通过设计和合成具有特定化学结构的分子,可以改变分子的活性、选择性和药代动力学性质。
分子内重排反应为药物分子的修饰和优化提供了一种有效的途径。
3. 生物催化反应:分子内重排反应在生物化学反应中也起着重要的作用。
许多酶催化的生物反应涉及分子内重排反应步骤,例如脱氢酶和异构酶的催化反应。
这些反应对于维持生命活动和调控代谢过程至关重要。
4. 材料科学:分子内重排反应在材料科学中被广泛应用于合成具有特定结构和性能的高分子材料。
通过分子内重排反应可以构建具有特殊形貌和功能的材料,如液晶材料、光学材料和功能高分子。
第十章 分子重排反应
反应特点:与羟基处于反位的烃基迁移至N 上。
立体化学:迁移基含手性碳时,产物构型保持。
四、由碳原子迁移至氧原子的重排 Baeryer – Villiger (拜依尔-维利格) 重排(氧化) 酮 + 过氧酸 → 酯 常用过氧酸: CF3CO3H , C6H5 CO 3H , C6H5 CH2 CO3H
脂肪族重氮盐分解放氮发生重排生成醇,该 重排叫Demjanov(捷米杨诺夫重排),也可看作 瓦-梅重排的一种。
不同基团的迁移倾向:
CH3O > R3C > R2CH > >CH3 > Cl >H
O C H 3 O C H 3 C H 3 C H 3 C l
> CH2
CH
迁移倾向:500
15.7
1.95
1
0.7
0.3
●芳基中:对位及间位有供电基,迁移倾向增大; 邻位有供电基,迁移倾向降低; 凡有吸电基,则迁移倾向减小
苄基正离子比叔碳正离子稳定,不发生重排
环张力大小也是发生重排的推动力(如: 三、四元环重排为五元环、六元环)
2、频哪醇(Pinacol)重排 三或四取代的(1,2-二醇),频哪醇 邻二叔醇(Pinacol) →
①形成缺电子体系(C +, C : , - N: ….) ②迁移基团带一对电子与缺电中心结合 ③迁移始点与亲核试剂结合 有时只是两步或三步同时进行。
一、碳正离子重排 1、碳正离子的形成 ①碳碳双键的加成:
R2C=C R2 + H+ →R2 CH – C+R2
②SN 1 , E 1 :
R3C- L →R3 C + + LROH + H+ →RO+ H2→ R+ + H2O
高等有机化学第十章 分子重排反应
CH3 CH3 20%H2SO4 OH OH
CH3 CH3 OH
CH3 O CH3
二、瓦格涅尔—米尔外因重排反应
(CH3)3CCHCH3 OH
无水草酸
100—110 ℃
(CH3)3CCH=CH2 3%
+ (CH3)2CHC=CH2
CH3 31%
+ (CH3)2C=C(CH3)2
61%
反应机理是: 醇首先在酸作用下脱去羟基形成碳正离子
R2 R1 O R3
R2
O R1 O R3
ONa
H3C
CH3
+ CH2=CHCHBr
OCH2CH=CH2
H3C
CH3
OH
H3C
CH3
CH2CH=CH2
二、柯柏重排反应
1,5-己二烯化合物加热时,重排为一种新的1,5-己二烯化合物
2
X3
1
2
X3
1
4
6
5
4
6
5
柯柏反应反应均发生在1、5—二烯键系统,反应中首先生成六员环:
H2N(CH2)5COOH
第二节 亲电重排反应
一、斯蒂文重排反应 季胺盐在强碱作用下重排成叔胺的反应
R N—CH2—R'
CH3 CH3
B
R
[
N—CH—R' ]
CH3
CH3
CH3
N—CH—R' ] CH3
R
R=苄基、烯丙基、烃基等;R‘=RCO、ROCO、C6H5等吸电子基团
O (CH3)2NCHCC6H5
第七章 分子重排反应
重排反应:化学键的断裂和形成发生在同一个有机分子中, 引起组成分子的原子配置方式发生改变,从而成为组成相同、 结构不同的新分子的反应。
第七章-重排反应PPT课件
1、史帝文斯重排(Stevens)
——季铵盐在碱作用下,烃基从氮迁移到邻近 的负碳离子上得到胺。
例如:
CH3 NCH+ C2PHh2CBHr- CH2 CH3
C4H9OK
CH2Ph
+-
CH3 N CH CH CH2
CH3
CH2ph
CH3 N CH CH CH2
CH3
.
形成叔胺 型化合物
22
C H 2R CH3 N+ R'
X
两处的碳负离子谁易形成?
容易
但后者除了进行分子内取代外,另有变化
.
30
✓分子内取代:
O
-OR
R
CH3
O
-
O
R
R
CH3
这个结构 不予成立
以原先与卤素 相连处断开
问题二 如果该结构式成立的话,就有二个分离 可能,但事实上只有一种。
O C OR R CH CH CH3
ROH
.
O C OR R CH CH2 CH3
1
重排反应的分类:
➢(1)以重排范围分类
分子内重排:(以此为主) 分子间重排:(是以后发展的方向)
➢(2)以重排发生的距离分类
1,2-重排:邻位重排(*) 1,3-重排:间位重排 各种位置之间的重排
重排反应的特点:
➢(1)剧烈性:与上述所说的不稳定性有关, 瞬间性
.
2
➢(2)复杂性:不可测性
许多重排的产物复杂; 许多重排的机理尚不十分明了,尚无定论
CH2N2 重氮甲烷
RO O C CH R
可用于生成 酯、酸、酰胺
+-
ROH, H2O, NH3
重排反应的名词解释
重排反应的名词解释重排反应是一种有机化学反应,指的是分子内的原子重新排列,形成新的化学键并生成不同的化合物。
在重排反应中,化合物的原子组成不变,但它们的排列方式发生了改变。
这种反应是有机合成中常见且重要的转化方式,可以用于合成有机化合物、药物和天然产物等。
1. 反应机制与类型重排反应根据反应机制可分为三类:分子内重排、脱分子重排和轮环化重排。
1.1 分子内重排分子内重排是指一个分子内的原子的重新排列。
这种反应通常涉及通过变换原子间的化学键来使原子重新排列。
分子内重排的一个常见例子是分子内的氢转移反应。
氢转移反应发生时,氢原子从一个原子转移到另一个原子上,从而导致新的键形成。
1.2 脱分子重排脱分子重排是指分子中的一个部分在反应中离开,并重新排列以形成新的分子。
这类重排反应中,通常会形成苯环化合物。
例如,酚可以发生脱分子重排反应,形成苯环。
1.3 轮环化重排轮环化重排是指分子中的一个链状部分与另一个部分反应,形成轮状结构。
这种反应通常涉及弯曲的链段旋转或部分染料结构的重新组装。
轮环化反应在天然产物生物合成中起着重要作用,也在制药领域广泛应用。
2. 应用领域重排反应在有机合成中有广泛应用,可用于构建复杂的有机分子骨架。
它们被广泛用于药物合成、天然产物合成、材料科学和有机化学等领域。
2.1 药物合成重排反应在药物合成中发挥着关键作用。
许多药物的核心结构通过重排反应合成,这些核心结构是药物发挥生物活性的关键。
例如,β-内酰胺抗生素类药物的合成往往涉及重排反应。
2.2 天然产物合成许多天然产物的合成依赖于重排反应。
天然产物是从生物体中提取的有机化合物,具有广泛的生物活性。
重排反应在天然产物合成中常被用于构建复杂的环状结构。
2.3 材料科学重排反应在材料科学中的应用也非常重要。
通过重排反应,可以合成出具有特殊性质的高分子材料。
例如,聚合物的重排反应可以改变其分子结构,从而改变其物理和化学性质。
3. 反应条件和催化剂重排反应的反应条件和催化剂取决于具体的反应类型和底物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 小环扩环
9.1.3 拜克曼(Backmann)重排
酮肟在五氧化磷,浓磷酸,或其他一些酸性催化剂的作用下,发生分子内重排 而得到取代酰胺的反应称为拜克曼重排反应.
迁移基团与羟基 处于反式位置.
拜克曼重排的机理:
9.2 富电子重排
9.2.1 邻二酮重排
具有供电子效应的芳基有利于重排,具有吸电子基时不利于重排.
9.2.2 法沃斯基(Favorskii)重排
α-卤(不包括F)代酮在碱的作用下,重排生成相同碳原子数的羧酸:
消除成环
水解(醇解,胺解)
从哪个方向开环取决于碳负离子的稳定性,一般从有吸电子基团或能够形成 共轭体系的一侧开环. 课堂练习
O
COOH
9.3 芳环上的重排
9.3.1 克莱森(Claisen)重排
酚或烯醇的烯丙醚在加热至190~200℃时发生烯丙基从氧原子迁移至碳原子上:
机理:
不管原来的双键是顺式还是反式,产物总是反式构型.
如果邻位被占据,则重排到对位:
对位,邻位均被占满时不发生此重排.
烯醇的烯丙醚也可发生克莱森重排:
�
第九章 分子重排反应
在有些反应中,原子或基团迁移使碳骨架 的排列发生变化,这种反应称为重排反应. 根据反应机理可分为缺电子重排,富电子 重排和自由基重排.
9.1 缺电子重排
定义:迁移基团带着一对电子转移到缺电子的迁移终点.一般包括三步: 1. 缺电子中心的创建; 2. 迁移基团带着一对电子迁移到缺电子中心,使原来迁移的起点成为缺电子中心. 3. 满足迁移始点外层8电子结构,一般采取与亲核试剂结合或消除的方式.
9.1.1 瓦格奈尔-梅尔外因 (Wagner-Meerwein)重排
迁移基团 迁移始点 始点 CH3 H3C C CH3 H2 AgNO3 C Cl H3C CH3 C CH3 ONO2 H3C C CH3 C CH3 + H3C H2 C CH3 C H CH3 CH2 H3C C CH3 迁移终点 H2 C CH3
迁移基团活性顺序
课堂练习1
9.1.2 频哪醇重排
α双二级醇,α二级醇, 三级醇,α双三级醇均 可发生此反应. 1. 哪一个羟基被质子化2. 优先迁移基团 主要产物
次要产物
3. 反式迁移 迁移基团与离去基团处于反式位置时,迁移速率较快. 快
慢,发生缩环
4. 卤代醇或氨基醇类