浙江大学大学物理第9章答案

合集下载

《大学物理》第二版-课后习题标准答案-第九章

《大学物理》第二版-课后习题标准答案-第九章

《大学物理》第二版-课后习题答案-第九章————————————————————————————————作者:————————————————————————————————日期:习题精解9-1.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图9-1所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。

设弹簧的劲度系数为k 1和k 2. 解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 12()F k k x =-+ 根据牛顿第二定律有2122()d xF k k x ma m dt=-+==化简得21220k k d x x dt m++= 令212k k mω+=则2220d x x dt ω+=所以物体做简谐振动,其周期1222mT k k ππω==+9-2 如图9.2所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q 相距l ,且l 不变。

若有一外界扰动使这对电荷偏过一微小角度,扰动消息后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。

试证明这种摆动是近似的简谐振动,并求其振动周期。

设电荷的质量皆为m ,重力忽略不计。

解 取逆时针的力矩方向为正方向,当电偶极子在如图9.2所示位置时,电偶极子所受力矩为sin sin sin 22l lM qE qE qEl θθθ=--=- 电偶极子对中心O 点的转动惯量为2221222l l J m m ml ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭由转动定律知2221sin 2d M qEl J ml dtθθβ=-==•化简得222sin 0d qEdt mlθθ+= 当角度很小时有sin 0θ≈,若令22qEmlω=,则上式变为222sin 0d dtθωθ+= 所以电偶极子的微小摆动是简谐振动。

而且其周期为222mlT qEππω== 9-3 汽车的质量一般支承在固定与轴承的若干根弹簧上,成为一倒置的弹簧振子。

浙大工程流体力学试卷及答案

浙大工程流体力学试卷及答案

2002-2003学年工程流体力学期末试卷一、单选题(每小题2分,共20分)1、一密闭容器内下部为水,上部为空气,液面下4.2米处的测压管高度为2.2m,设当地压强为98KPa,则容器内液面的绝对压强为水柱。

(a) 2m (b)1m (c) 8m (d)-2m2、断面平均流速υ与断面上每一点的实际流速u 的关系是。

(a)υ =u (b)υ >u (c)υ <u (d) υ ≥u或υ ≤u3、均匀流的定义是。

(a) 断面平均流速沿流程不变的流动;(b) 过流断面上各点流速相互平行的流动;(c) 流线皆为平行直线的流动;(d) 各点流速皆相等的流动。

4、与牛顿内摩擦定律有关的因素是。

(a) 压强、速度和粘度;(b) 流体的粘度、切应力与角变形率;(c) 切应力、温度、粘度和速度;(d) 压强、粘度和角变形。

5、流量模数K的量纲是_____。

(a) L3T-2 (b ) L3T-1 (c)L2T-1 (d)L2T-16、设模型比尺为1:100,符合重力相似准则,如果模型流速为0.6m/s,则原型流速。

(a)60m/s (b) 0.006m/s (c) 60000m/s (d) 6m/s7、在孔口的水头值与孔口的面积相同的情况下,通过管嘴的流量孔口的流量。

(a)等于 (b)大于 (c)小于 (d) 不能判定8、圆管流中判别液流流态的下临界雷诺数为。

(a) 2300 (b)3300 (c)13000 (d) 5759、已知流速势函数,求点(1,2)的速度分量为。

(a) 2 (b) 3 (c) -3 (d) 以上都不是10、按与之比可将堰分为三种类型:薄壁堰、实用堰、宽顶堰(a)堰厚堰前水头 (b) 堰厚堰顶水头 (c) 堰高堰前水头 (d) 堰高堰顶水头二、简答题(共24分)1.静水压强的特性(6分)2.渐变流的定义及水力特性(6分)3.边界层的定义及边界层中的压强特性(6分)4.渗流模型简化的原则及条件(6分)三、计算题(共56分)1、(本小题14分)有一圆滚门,长度L=10m,直径D=4m,上游水深H1=4m,下游水深H2=2m,求作用在圆滚门上的水平和铅直分压力。

大学物理第9章习题解答

大学物理第9章习题解答

第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。

考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±= (2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r rm G r q f f G e ππε氧 其净力是引力。

9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。

解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。

点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。

C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。

浙江大学土力学题库及答案

浙江大学土力学题库及答案

第一章绪论1、土力学的英语是:(A)Soil Mechanics (B)Solid Mechanics (C)Soil Foundation2、岩土工程的英语是:(A)Rock and Soil Mechanics(B)Geotechnical Engineering(C)Rock and Soil Engineering3、下列哪位被誉为土力学之父?(A)库仑(Coulomb) (B)朗肯(Rankine) (C)太沙基(Terzaghi)4、土力学学科正式形成是哪一年?(A)1890 (B)1925 (C)19605、土力学主要研究地基那两方面的问题?(A)变形与渗流(B)变形和稳定(C)渗流与稳定6、浙江大学曾国熙教授倡导的岩土工程学科治学方法是?(A)理论研究与工程实践相结合(B)试验研究与理论研究相结合(C)基本理论、试验研究和工程实践相结合第二章土的物理性质与工程分类1、土颗粒的大小及其级配,通常是用颗粒累积级配曲线来表示的。

级配曲线越平缓表示:(A)土粒大小较不均匀,级配良好(B)土粒大小均匀,级配良好(C)土粒大小不均匀,级配不良2、土的不均匀系数Cu越大,表示土的级配:(A)土粒大小均匀,级配良好(B)土粒大小不均匀,级配良好(C)土粒大小不均匀,级配不良3、土的三相指标包括:土粒比重、含水量、重度、孔隙比、孔隙率和饱和度,其中哪些为直接试验指标?(A)孔隙比、含水量、土粒比重(B)土粒比重、含水量、重度(C)含水量、重度、孔隙比4、测定土的液限的标准是把具有30度锥角、质量76克的平衡锥自由沉入土体,沉入多少深度时的含水量为液限?(A)18mm (B)2mm (C)10mm5、压实能量越小,则(A)最优含水量越大(B)土越容易压实(C)土的最大干密度越大6、土的液限和塑限的差值(省去%符号)称为(A)液性系数(B)塑性系数(C)液性指数(D)塑性指数7、土的含水量一般用什么测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法8、某土的天然含水量为42%,液限35%,塑性指数17,孔隙比1.58,则该土应定名为:(A)淤泥(B)粉质粘土(C)淤泥质粘土9、土的密度一般用什么方法测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法10、关于土中的结合水,下列说法正确的是:(A)强结合水能传递静水压力(B)弱结合水能传递静水压力(C)强结合水和弱结合水能传递静水压力(D)强结合水和弱结合水都不能传递静水压力11、一般来说,粗大土粒往往是岩石经过什么作用形成?(A)物理和化学风化作用(B)物理风化作用(C)化学风化作用12、粘性土的塑限一般用什么方法测定?(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法13、土的液性指数越大,则:(A)土的渗透性越大(B)土的塑性指数越小(C)土质越软14、土的塑性指数越小,则:(A)土的粘性越差(B)土的渗透性越好(C)土的变形越大15、土粒比重一般用什么方法测定:(A)比重瓶法(B)烘干法(C)环刀法(D)搓条法第三章土的渗透性与渗流1、不透水岩基上有水平分布的三层土,厚度均为1m,渗透系数分别为0.5m/d、 0.001m/d、 0.02m/d,则土层等效水平渗透系数为多少?(A)0.426m/d (B)0.174m/d (C)0.028m/d2、某饱和土的含水量为40%,土粒比重为2.75,则该土发生流土的临界水力坡降为:(A)1.02 (B)0.83(C)1.203、管涌形成的条件中,除具有一定的水力条件外,还与土粒几何条件有关,下列叙述正确的是:(A)不均匀系数大于10的土比不均匀系数小于10的土更容易发生管涌(B)不均匀系数小于10的土比不均匀系数大于10的土更容易发生管涌(C)与不均匀系数没有关系4、在防治渗透变形措施中,哪些措施是在控制水力坡降?(A)溢出部位铺设反滤层(B)上游做垂直防渗帷幕或设水平铺盖(C)下游挖减压沟5、不透水岩基上有水平分布的三层土,厚度均为1m,渗透系数分别为0.4m/d、0.05m/d、 0.003m/d,则土层等效竖向渗透系数为多少?(A)0.367m/d (B)0.063m/d (C)0.008m/d6、变水头试验常用来测定哪种土的渗透系数(A)粘性土(B)砂土(C)任何土7、计算成层地基中等效渗透系数时,水平等效渗透系数的大小取决于渗透系数____的土层,而垂直等效渗透系数的大小取决于渗透系数_____的土层;(A)大小(B)大大(C)小大(D)小小8、下列哪种土样更容易发生流砂:(A)粗砂(B)粉土(C)粉砂9、下列土体中渗透系数最小的是:(A)砂(B)粘土(C)粉土10、常水头试验常用来测定哪种土的渗透系数?(A)粘性土(B)砂土(C)任何土第四章地基中的应力计算1、地下水位下降将引起:(A)自重应力减小(B)地面沉降(C)超静孔压减小2、已知宽为3m,长为6m和另一宽为6m,长为12m的矩形基础,若两基础的基底附加应力相等,则两基础角点下竖向附加应力之间有何关系?(A)小尺寸基础角点下z深度处应力与大尺寸基础角点下2z深度处应力相等(B)大尺寸基础角点下z深度处应力与小尺寸基础角点下2z深度处应力相等(C)两基础角点下下z深度处竖向应力分布相同3、当地下水位从地表处下降至基底平面处,对基底附加应力有何影响?(A)不变(B)减小(C)增加4、条形均布荷载中心线下,附加应力随深度减小,其衰减速度与基础宽度有何关系?(A)基础宽度越大,衰减越慢(B)基础宽度越大,衰减越快(C)与基础宽度无关5、双层地基中上层土与下层土的变形模量之比越小,则下层土中的附加应力:(A)越小(B)不变(C)越大6、某方形基础中心点下1m处竖向附加应力为70kPa,则该基础中心点下2m处的竖向附加应力为:(A)95.2kPa (B)80.4kPa (C)56.3kPa7、在荷载作用范围外,竖向附加应力随深度的变化是:(A)竖向附加应力随深度的增加而减少(B)竖向附加应力随深度的增加,先增大,然后减小(C)竖向附加应力随深度的增加,先减小,然后增大8、对于天然地基,若土体竖向变形模量大于水平向变形模量,则与均质地基相比地基中竖向附加应力:(A)产生应力集中(B)产生应力扩散(C)没有变化9、对于均布条形荷载p作用下的附加应力为0.1p的等值线深度大约为基础宽度的几倍?(A)6;(B)3.5;(C)2;(D)1.510、在均布条形荷载作用下,最大剪应力发生在基础的什么部位?(A)基础中心(B)基础边缘(C)不确定第五章土的压缩性和固结理论1、土体压缩性e—p曲线是在何种条件下试验得到的?(A)无侧限条件(B)部分侧限条件(C)完全侧限2、从现场载荷试验p—s曲线上求得的土的模量为:(A)变形模量(B)弹性模量(C)压缩模量3、在室内压缩试验中,土样的应力状态与实际中哪一种荷载作用下土的应力状态相一致:(A)条形均布荷载(B)矩形均布荷载(C)无限均布荷载4、某地基土,已测得压缩指数为0.5,则回弹指数可能为:(A)1.0 (B)0.01 (C)0.15、某地基土,已测得压缩模量6MPa,则变形模量可能为:(A)7MPa (B)6MPa (C)5MPa6、双面排水,在土层厚度相同、性质相同的两个粘土层顶面,分别瞬时施加无限均布荷载p1=100kPa,p2=200kPa,试问经过相同时间t,两种情况的固结度有何不同?(A)p1=200kPa的固结度大(B)p2=400kPa的固结度大(C)两种情况的固结度相同7、某地基粘土层的厚度均为4m,情况1是双面排水,情况2是单面排水,当地面瞬时施加一无限均布荷载,达到同一固结度时,所对应的时间有何关系?(A)t1=4t2 (B)t1=2t2 (C)t1=t2 (D)t2=4t18、土的渗透性越好,则:(A)变形稳定越快(B)强度越小(C)有效应力增长越慢9、土的压缩性越大,则:(A)固结越快(B)固结越慢(C)与固结无关10、地基中的超静孔隙水压力产生的原因一般为?(A)地下水;(B)土自重与外加荷载;(C)地下水与外加荷载;(D)外加荷载11、某土样经压缩试验测得其在100kPa和200kPa压力作用下压缩24小时后的孔隙比分别为0.89和0.85,则该土样的:(A)压缩指数为0.25 (B)压缩模量为4.625MPa (C)压缩系数为0.4MPa-112、在固结过程中,饱和土体中的有效应力和孔隙水压力按如下规律变化:(A)有效应力减小,孔隙水压力减小(B)有效应力不变,孔隙水压力增大(C)有效应力增大,孔隙水压力减小第六章地基沉降计算1、在疏浚河道形成的新冲填土上建造建筑物,其沉降产生的原因:)(A)原地基的自重应力(B)冲填土自重(C)冲填土自重及建筑物荷载(D)建筑物荷载2、地基沉降计算深度是指:(A)主要压缩层厚度(B)主要持力层厚度(C)20倍地基宽度3、工后沉降一般是指:(A)全部的次固结沉降(B)工程完工后使用期内地基所发生的沉降(C)大部分的次固结沉降4、关于地基沉降,下列说法错误的是:(A)初始沉降的产生也需要一定的时间(B)土体固结沉降也有短时间完成的(C)将地基沉降分为三部分是从时间角度考虑的5、浙江沿海饱和软粘土地基一般情况下次固结沉降约占总沉降的:(A)40% (B)10% (C)15%6、在半无限体表面,瞬时施加一局部荷载,这时按弹性理论计算得到的应力是:(A)有效应力(B)总应力(C)孔隙压力7、初始沉降产生的原因:(A)土体体积不变,形状发生改变(B)土体体积发生变化(C)上述两种情况都有8、在常规的沉降计算方法中,地基中的应力状态是根据什么理论计算得到的?(A)线弹性理论(B)弹塑性理论(C)塑性理论9、考虑应力历史的影响时,沉降计算应采用哪种压缩曲线?(A)e—p曲线(B)e—logp曲线(C)上述两种均可10、规范法计算地基沉降时,采用的是哪种附加应力系数?(A)平均附加应力系数(B)附加应力系数(C)上述两种均可第七章土的抗剪强度1、饱和软粘土在不同竖向荷载p1>p2>p3作用下在直剪仪中进行快剪,所得的强度有何不同?(A)p越大,竖向荷载越大,所以强度越大(B)三者强度相同(C) p越大,孔隙水压力越大,所以强度越低2.十字板试验测得的抗剪强度相当于实验室用什么方法测得的抗剪强度?(A)不固结不排水试验(B)应力路径试验(C)固结排水试验3、直剪试验土样的破坏面在上下剪切盒之间,三轴试验土样的破坏面在什么位置上?(A)与试样顶面夹角为45(B)与试样顶面夹角为45-φ/2(C)与试样顶面夹角为45+φ/24、有一个砂样,在三轴试验时,在围压100kPa应力下,增加轴向应力使砂样破坏,已知砂样的内摩擦角为30度,则破坏时破坏面上的正应力为多少?(A)200kPa (B)180kPa (C)150kPa5、下列那个试验测试的不是土的天然抗剪强度:(A)十字板剪切试验(B)无侧限抗压强度试验(C)直接剪切试验(D)三轴不固结不排水试验6、现场原位测试土的抗剪强度的试验有:(A)十字板剪切试验(B)无侧限抗压试验(C)直接剪切试验(D)三轴压缩试验7、在做三轴试验时,加荷速率越快,则测得的:(A)抗剪强度越大(B)抗剪强度越小(C)对抗剪强度没影响8、对于蠕变,下列说法错误的是:(A)蠕变可能导致土体在没有达到抗剪强度的条件下破坏(B)随着土体蠕变,土体的粘聚力逐渐减小,直到某个限值(C)随着土体蠕变,土体的内摩擦力逐渐减小,直到某个限值9、固结不排水试验剪切阶段的总应力路径轨迹为:(A)曲线(B)直线(C)不确定10、考虑土体的各向异性,下列说法正确的是:(A)正常固结粘土的水平向土样的强度常常小于竖直向土样的强度(B)正常固结粘土的水平向土样的强度常常大于竖直向土样的强度(C)不确定第八章土压力与支档结构1、挡土墙后填土发生朗肯被动破坏,滑动面的方向如何确定?(A)与水平面夹角45+φ/2(B)与水平面夹角45-φ/2(C)与水平面夹角452、库仑土压力理论通常适用于哪种土类?(A)粘性土(B)砂性土(C)各类土3、设被动土压力和主动土压力充分发挥时所需的挡土墙水平位移分别为△1和△2,则:)(A)△1>△2 (B) △1=△2 (C)△1<△24、关于静止土压力、主动土压力、被动土压力下列说法正确的是:(A)静止土压力>主动土压力>被动土压力(B)被动土压力>静止土压力>主动土压力(C)主动土压力>静止土压力>被动土压力5、对于无粘性土,在填土面水平、墙背竖直、墙背光滑的条件下,对朗肯土压力理论和库仑土压力计算的结果比较,则:(A)库仑土压力>朗肯土压力(B)库仑土压力<朗肯土压力(C)库仑土压力=朗肯土压力6、由库仑土压力理论计算出的主动土压力,其作用方向:(A)必垂直墙背(B)不一定垂直墙背(C)一般应为水平的7、刚性挡土墙墙背铅垂光滑,墙后土体之内摩擦角为φ,挡土墙后移使墙后土体产生与水平面夹角为θ的破裂面,土楔的重量为G,则按库仑土压力理论,作用在墙上的被动土压力为:(A)Gtan(θ+φ)(B)G /tan(θ+φ)(C)Gtan(θ-φ)8、在下列公式的建立过程中,未涉及摩尔—库仑强度理论的是:(A)朗肯被动土压力(B)库仑主动土压力(C)静止土压力9、一般情况下,下列哪种土静止土压力系数最大?(A)粘性土(B)砂性土(C)粉土10、在其他条件相同的情况下,当档土结构背离填土方向移动相同的位移时,下列哪种土最可能先达到主动土压力?(A)密砂(B)松砂(C)软粘土第九章地基承载力1、地基的极限承载力是指:(A)地基中形成连续滑动面时的承载力(B)地基中开始出现塑性区时的承载力(C)地基的变形达到上部结构极限状态时的承载力2、地基的极限承载力公式时根据下列何种假设推导得到的?(A)根据建筑物的变形要求推导得到的(B)根据地基中滑动面的形状推导得到的(C)根据塑性区发展的大小得到的3、地基荷载达到某一数值后,基础的一侧到另一侧形成连续滑动面,基础四周地面隆起,基础倾斜,甚至倒塌,这种破坏模式称为:(A)整体剪切破坏(B)刺入破坏(C)局部剪切破坏4、通常,加大浅基础埋深,会使得:(A)承载力降低,沉降减小(B)承载力提高,沉降增大(C)承载力提高,沉降减小(D)承载力降低,沉降增大5、设地基为理想弹塑性体,基础为浅埋条形基础,地基的临塑荷载与下列哪项无关?(A)基础的埋深(B)基础的宽度(C)地基土的内摩擦角(D)地基土的粘聚力6、下列说法正确的是:(A)地基破坏时,土中都将出现延伸至地表的滑面(B)荷载—沉降曲线上由直线转为曲线时所对应的荷载为极限荷载(C)以临塑荷载作为地基的承载力通常是偏于保守的第十章土坡稳定性分析1、堤坝填筑过程中,若施工速度很快,且土体和地基的渗透系数很小,则在分析堤坝竣工时的稳定性时,应采用下述哪种分析方法:(A)总应力分析法(B)有效应力分析法(C)总应力分析法或有效应力分析法皆可2、分析土坡稳定性时,对挖方土坡最小安全系数的说法正确的是:(A)挖方结束时,安全系数最小(B)最小安全系数出现在挖方过程中某个时间(C)稳定安全系数存在一个逐渐下降的过程,直至土坡形成后很长时间才趋于常数3、等厚度无限长砂性土坡下为基岩,坡面与水平面的夹角为25.7度,砂性土的内摩擦角为30度,则土体的安全系数为:(A)1.0(B)1.2(C)1.44、无粘性土坡,内摩擦角为φ,坡角为β,其稳定安全系数为:(A)tanφ/tanβ(B)sinφ/sinβ(C)tanβ/tanφ。

大学物理9~13课后作业答案(精编文档).doc

大学物理9~13课后作业答案(精编文档).doc

【最新整理,下载后即可编辑】第八章8-7 一个半径为的均匀带电半圆环,电荷线密度为,求环心处点的场强.解: 如8-7图在圆上取题8-7图,它在点产生场强大小为方向沿半径向外则积分∴,方向沿轴正向.8-8 均匀带电的细线弯成正方形,边长为,总电量为.(1)求这正方形轴线上离中心为处的场强;(2)证明:在处,它相当于点电荷产生的场强.解: 如8-8图示,正方形一条边上电荷在点产生物强方向如图,大小为RλOϕRddl=ϕλλddd Rlq==O2π4ddRREεϕλ=ϕϕελϕdsinπ4sinddREEx==ϕϕελϕπdcosπ4)cos(ddREEy-=-=RREx0π2dsinπ4ελϕϕελπ==⎰dcosπ4=-=⎰ϕϕελπREyREExπ2ελ==xl qr E lr>>q E4qP P Ed()4π4coscosd2221lrEP+-=εθθλ∵∴在垂直于平面上的分量∴题8-8图由于对称性,点场强沿方向,大小为∵∴ 方向沿8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理,当时,,时,22cos 221l r l +=θ12cos cos θθ-=24π4d 2222l r l l r E P ++=ελP Ed βcos d d P E E =⊥424π4d 222222l r r l r l r lE +++=⊥ελP OP 2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελl q 4=λ2)4(π422220l r l r qrE P ++=ε510-02π4ε∑=qr E 5=r cm 0=∑q 0=E 8=r cm ∑q 3π4p =3(r )3内r -0d ε∑ ⎰ = ⋅ q S E s∴,方向沿半径向外.cm 时,∴沿半径向外.8-11 半径为和(>)的两无限长同轴圆柱面,单位长度上分别带有电量和-,试求:(1)<;(2) <<;(3) >处各点的场强.解: 高斯定理取同轴圆柱形高斯面,侧面积则对(1)(2)∴沿径向向外(3) ∴题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为和,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为与, 两面间,()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅12=r 3π4∑=ρq -3(外r )内3r ()420331010.4π43π4⨯≈-=r r r E ερ内外1C N -⋅1R 2R 2R 1R λλr 1R 1R r 2R r 2R 0d ε∑⎰=⋅q S E srl S π2=rlE S E Sπ2d =⋅⎰1R r <0,0==∑E q 21R r R <<λl q =∑rE 0π2ελ=2R r >0=∑q 0=E 1σ2σ1σ2σnE)(21210σσε-=面外,面外,:垂直于两平面由面指为面.8-13 半径为的均匀带电球体内的电荷体密度为,若在球内挖去一块半径为<的小球体,如题8-13图所示.试求:两球心与点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题8-13图(a). (1) 球在点产生电场,球在点产生电场∴点电场;(2) 在产生电场球在产生电场∴ 点电场题8-13图(a) 题8-13图(b)(3)设空腔任一点相对的位矢为,相对点位矢为(如题8-13(b)图)则, ,1σnE )(21210σσε+-=2σnE )(21210σσε+=n1σ2σR ρr R O O 'ρρ-ρ+O 010=Eρ-O d π4π3430320OO r E ερ= O d 33030r E ερ= ρ+O 'd π4d 3430301E ερπ='ρ-O '002='EO '003ερ='EOO P O 'r 'O r 03ερrE PO =3ερr E O P '-='∴∴腔内场强是均匀的.题8-16图8-16 如题8-16图所示,在,两点处放有电量分别为+,-的点电荷,间距离为2,现将另一正试验点电荷从点经过半圆弧移到点,求移动过程中电场力作的功. 解: 如题8-16图示∴8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于.试求环中心点处的场强和电势.解: (1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取则产生点如图,由于对称性,点场强沿轴负方向题8-17图[]003'3)(3ερερερd OO r r E E E O P PO P=='-=+='A B q q AB R 0q O C 0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=Rqq U U qA oC O 00π6)(ε=-=λR O AB CD O θd d R l =θλd d R q =O Ed O y θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=)2sin(π-2sin π-(2) 电荷在点产生电势,以同理产生 半圆环产生∴8-22 三个平行金属板,和的面积都是200cm 2,和相距4.0mm ,与相距2.0 mm .,都接地,如题8-22图所示.如果使板带正电3.0×10-7C ,略去边缘效应,问板和板上的感应电荷各是多少?以地的电势为零,则板的电势是多少? 解: 如题8-22图示,令板左侧面电荷面密度为,右侧面电荷面密度为题8-22图(1)∵ ,即∴∴且 +得而R0π2ελ-=AB O 0=∞U ⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελCD 2ln π402ελ=U 0034π4πελελ==R R U 0032142ln π2ελελ+=++=U U U U O A B C A B A C B C A B C A A 1σ2σABAC U U =ABAB AC AC E E d d =2d d 21===AC ABAB AC E E σσ1σ2σS q A=,32S q A =σS q A321=σ7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)8-23 两个半径分别为和(<)的同心薄金属球壳,现给内球壳带电+,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;解: (1)内球带电;球壳内表面带电则为,外表面带电为,且均匀分布,其电势题8-23图(2)外壳接地时,外表面电荷入地,外表面不带电,内表面电荷仍为.所以球壳电势由内球与内表面产生:8-27 在半径为的金属球之外包有一层外半径为的均匀电介质球壳,介质相对介电常数为,金属球带电.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理(1)介质内场强;介质外场强301103.2d d ⨯===AC AC AC A E U εσV 1R 2R 1R 2R q q +q -q +⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε q +q -q +q -0π4π42020=-=R q R q U εε1R 2R r εQ ∑⎰=⋅qS D Sd )(21R r R <<303π4,π4r rQ E r r Q D r εε ==内)(2R r <(2)介质外电势介质内电势(3)金属球的电势8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为,真空部分场强为,自由电荷面密度分别为与由得,而 ,∴303π4,π4r rQ E r Qr D ε ==外)(2R r >rQ E U 0rπ4r d ε=⋅=⎰∞外)(21R r R <<2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεεrd r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdr r Q εεε)11(π4210R R Q r r-+=εεεr ε2E 1E2σ1σ∑⎰=⋅0d q S D11σ=D 22σ=D 101E D ε=202E D r εε=d21UE E ==r D D εσσ==1212rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为,半径分别为和(>),且>>-,两柱面之间充有介电常数的均匀电介质.当两圆柱面分别带等量异号电荷和-时,求:(1)在半径处(<<=,厚度为dr ,长为的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为的同轴圆柱面 则当时, ∴(1)电场能量密度薄壳中(2)电介质中总电场能量(3)电容:∵∴8-34 半径为=2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为=4.0cm 和=5.0cm ,当内球带电荷=3.0×10-8C 时,求:l 1R 2R 2R 1R l 2R 1R εQ Q r 1R r 2R l r )(S rlDS D S π2d )(=⋅⎰)(21R r R <<Q q =∑rlQ D π2=22222π82lr Q D w εε==rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εεCQ W 22=)/ln(π22122R R l W Q C ε==1R 2R 3R Q(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电,外球壳内表面带电,外表面带电题8-34图(1)在和区域在时时∴在区域在区域∴ 总能量(2)导体壳接地时,只有时,∴(3)电容器电容Q Q -Q 1R r <32R r R <<0=E21R r R <<301π4r r Q E ε =3R r >302π4r r Q E ε =21R r R <<⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε3R r >⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε)111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J 21R r R <<30π4r rQ E ε =02=W 4210211001.1)11(π8-⨯=-==R R Q W W εJ )11/(π422102R R Q W C -==ε121049.4-⨯=F习题九9-6 已知磁感应强度Wb ·m -2的均匀磁场,方向沿轴正方向,如题9-6图所示.试求:(1)通过图中面的磁通量;(2)通过图中面的磁通量;(3)通过图中面的磁通量. 解: 如题9-6图所示题9-6图(1)通过面积的磁通是(2)通过面积的磁通量(3)通过面积的磁通量(或曰)题9-7图9-7 如题9-7图所示,、为长直导线,为圆心在点的一段圆弧形导线,其半径为.若通以电流,求点的磁感应强度.解:如题9-7图所示,点磁场由、、三部分电流产生.其中产生产生,方向垂直向里段产生 ,方向向里 ∴,方向向里.0.2=B x abcd befc aefd abcd 1S 24.04.03.00.211=⨯⨯=⋅=S BΦWb befc 2S 022=⋅=S BΦaefd 3S 24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb 24.0-Wb AB CD C BO R I O O AB C BCD AB 01=BCD RIB 1202μ=CD )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ⊥)6231(203210ππμ+-=++=R I B B B B ⊥题9-9图 9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的,两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心的磁感应强度.解: 如题9-9图所示,圆心点磁场由直电流和及两段圆弧上电流与所产生,但和在点产生的磁场为零。

浙江大学大学物理甲下chapter

浙江大学大学物理甲下chapter



m 0,1,2...I max m , n2 r2 n1r1 (2m 1) , m 0,1,2...I min 2
(1) Double-slit interference
no r1 no r2 d sin m
d (sin sin ) m , 30, d 3a, m 3 is missing.
d (sin sin ) m , 30,

2
, m 5.08

2 k=-1, 0, 1, 2, 4, 5, these 6 fringes are observed.
x f

a
,
width of other fringes
(2) Grating diffraction
d sin m
(3) Resolving power Airy spot:
m 0,1,2,... Principle maxima

R min 1.22 ,
(2) Interference from thin film
2d n n sin i , 2 m 1,2,3...... max ima m (2m 1) m 0,1,2...... min ima 2 n ( 2d , If i =0, 2nd n 2 2
(b) condition (3) is satisfied, d/a=3, a=800nm. (c) dsinθ=mλ2, let θ→90°, m=4. All orders are 0, ±1, ± 2. The ± 3 is missing order, the ± 4 is not observed actually.

物理光学实验及仿真智慧树知到exam章节答案题库2024年浙江大学

物理光学实验及仿真智慧树知到exam章节答案题库2024年浙江大学

物理光学实验及仿真智慧树知到考试答案章节题库2024年浙江大学1.实验室若发生火灾,应切断总电源后,返回实验室抢救贵重仪器设备()。

答案:错2.学习“物理光学”通常要关注的几个方面包括()答案:光的干涉和衍射###光波特性,光速(折射率)###光的偏振###光的界面效应:菲涅尔反射系数###光的空间频谱与空间分布3.本MOOC课程的主要内容是物理光学实验和部分实验的虚拟仿真及分析。

()答案:对4.激光安全等级在哪一级或以上,使用时必须佩戴相应防护眼镜()。

答案:3级5.下列哪些项,可能是“进行激光实验中光学元件不可手持而必须固定”的原因()。

答案:防止手持不稳而摔坏元件###防止手部抖动影响后续光路方向###防止激光方向不可控,被反射照到其他同学6.迈克尔逊干涉光路也可用作光谱仪。

()答案:对7.拿起光学元件时,绝不允许触摸工作面/光学表面/镜面,而只能拿住磨砂毛面,最主要原因是()答案:光学表面会被指纹、汗液等污染甚至损坏8.光是一种电磁波。

()答案:对9.任何物质都具有波动性。

()答案:对10.下列哪一项不是激光的主要特性()。

答案:光谱较宽11.在迈克尔逊干涉仪上观察白光干涉图案,程差从0逐渐增大,将出现:()答案:随着程差增大条纹颜色依次为:白色、黄色、红色、紫色、红色……12.在以下的4种仪器中,哪些仪器采用分振幅法干涉?()答案:迈克尔逊干涉仪###泰曼-格林干涉仪###斐索共路干涉仪###平行平板横向剪切干涉仪13.观看F-P干涉仪测量低压钠灯波长差实验视频后可以看出,在这个实验中的F-P干涉属于非定域干涉。

()答案:错14.等倾圆环与牛顿环一样都是呈内疏外密分布,并且都是最中央的圆环级次最高。

()答案:错15.观看视频后可以得出结论,在干涉实验中所使用的干涉仪都采用了分振幅法来对光波进行分离。

()答案:对16.在F-P干涉仪测量低压钠灯波长差的实验中,低压钠灯的灯管与光阑面共轭;若在低压钠灯前面加入毛玻璃,那么光阑需要往哪个方向移动才能与低压钠灯再次共轭?()答案:沿光轴往远离低压钠灯的方向移动17.在用迈克尔逊干涉仪实验中,在测量氦氖激光器波长时,视场内等倾圆环数目越多测得的波长越精确。

浙江大学物理化学实验思考题答案

浙江大学物理化学实验思考题答案

-一、恒温槽的性能测试1.影响恒温槽敏捷度的主要要素有哪些?如和提升恒温槽的敏捷度?答:影响敏捷度的主要要素包含:1) 继电器的敏捷度;2) 加热套功率; 3) 使用介质的比热;4) 控制温度与室温温差;5)搅拌能否均匀等。

要提升敏捷度:1) 继电器动作敏捷;2) 加热套功率在保证足够供给因温差致使的热损失的前提下,功率适合较小;3) 使用比热较大的介质,如水;4)控制温度与室温要有必定温差;5)搅拌均匀等。

2.从能量守恒的角度议论,应当如何选择加热器的功率大小?答:从能量守恒角度考虑,控制加热器功率使得加热器供给的能量恰巧和恒温槽因为与室温之间的温差致使的热损失相当时,恒温槽的温度即恒定不变。

但因有时要素,如室内风速、风向改动等,致使恒温槽热损失其实不可以恒定。

所以应该控制加热器功率靠近并略大于恒温槽热损失速率。

3.你以为能够用那些测温元件丈量恒温槽温度颠簸?答: 1) 经过读取温度值,确立温度颠簸,如采纳高精度水银温度计、铂电阻温度计等;2) 采纳温差丈量仪表丈量温度波动值,如贝克曼温度计等;3) 热敏元件,如铂、半导体等,配以适合的电子仪表,将温度颠簸转变为电信号丈量温度波动,如精细电子温差丈量仪等。

4.假如所需恒定的温度低于室温,如何装备恒温槽?答:恒温槽中加装制冷装置,即可控制恒温槽的温度低于室温。

5.恒温槽能够控制的温度范围?答:一般恒温槽 (只有加热功能 )的控制温度应高于室温、低于介质的沸点,并留有必定的差值;拥有制冷功能的恒温槽控制温度能够低于室温,但不可以低于使用介质的凝结点。

其余有关问题:1.在恒温槽中使用过大的加热电压会使得颠簸曲线:( B)A. 颠簸周期短,温度颠簸大;B. 颠簸周期长,温度颠簸大;C. 颠簸周期短,温度颠簸小;D. 颠簸周期长,温度颠簸小。

2.恒温槽中的水银接点温度计(导电表 )的作用是: ( B)A. 既作测温使用,又作控温使用;B. 只好用作控温;C. 只好用于测温;D. 控制加热器的功率。

浙大远程《物理化学》课程作业(选做)及答案

浙大远程《物理化学》课程作业(选做)及答案

浙⼤远程《物理化学》课程作业(选做)及答案浙江⼤学远程教育学院《物理化学》课程作业(选做)第⼀章热⼒学第⼀定律⼀、判断题1. 状态函数改变后,状态⼀定改变。

(√)2. 不做⾮体积功是指系统的始态和终态的体积相同。

(×)3. O 2(g )的标准摩尔燃烧焓等于零。

(√)4. H 2O (l )的标准摩尔燃烧焓等于零。

(√)5. H 2和O 2在绝热钢瓶中发⽣反应的△U 等于零。

(√)⼆、单选题1. 是状态函数。

A A .G B .△U C .W D .Q2. 具有⼴度性质。

BA .TB 、UC .PD .ρ(密度)3. 具有强度性质。

BA .SB .VC .GD .η(粘度) 4. 101.325kPa 和273.15K 的⽔等温等压变为冰,该过程的。

DA .Q>0B .△U =0C .△H>0D .△H<05. 理想⽓体向真空膨胀,其体积从V 1增⼤到V 2,则系统做功为。

AA .W=0B .W>0C .W<0D .12lnV V nRT W =三、填空题1. 最稳定单质的标准摩尔⽣成焓 = 零(填“⼩于”、“⼤于”或“等于” )。

2. 完全燃烧产物的标准摩尔燃烧焓 = 零(填“⼩于”、“⼤于”或“等于” )。

3. 在充满氧⽓的定容绝热反应器中,⽯墨剧烈燃烧。

若以反应器以及其中所有物质为系统,则该过程的△H > 零(填“⼩于”、“⼤于”或“等于” )。

4.规定在标准压⼒p(100kpa)和指定温度T时,1摩尔的物质完全燃烧的等压热效应称为该物质的标准摩尔燃烧焓。

5.C(⽯墨)的标准摩尔燃烧焓< CO(g)的标准摩尔⽣成焓(填“⼩于”、“⼤于”或“等于” )。

6.H2(g)的标准摩尔燃烧焓< H2O(g)的标准摩尔⽣成焓(填“⼩于”、“⼤于”或“等于” )。

四、简答题1.什么是状态函数?答:由系统状态确定的系统的各种热⼒学性质,称为系统的状态函数。

浙江大学城市学院大学物理B(上)练习册-9及复习5

浙江大学城市学院大学物理B(上)练习册-9及复习5

浙江大学城市学院大学物理B(上)练习册-9及复习5习题九 稳恒磁场1、求下列各图中P 点的磁感应强度B的大小和方向,导线中的电流为I 。

(a) P 在半径为a 的圆的圆心,且在直线的延长线上;(b) P 在半圆中心;(c) P 在正方形的中心。

⊗=⋅= 824)(00aIa I B a μππμ24424)(0000aIa I a I a I Bb πμμπμππμ+=+⋅=()a Ia IB c πμπμ000022)135cos 45cos )2/(44)(=-=答案:(a)aI B 80μ=,方向:垂直纸面向里;(b)aI aI B πμ+μ=2400,方向:垂直纸面向外;(c)aIB πμ=022,方向:垂直纸面向外- 3 -2、高压输电线在地面上空m 25处,通过电流为A 3108.1⨯。

(1) 求在地面上由这电流所产生的磁感应强度多大? (2) 在上述地区,地磁场为T .51006-⨯,问输电线产生的磁场与地磁场相比如何?aI B πμ20=答案:(1)T .B 510441-⨯=,(2)%B B24=地3、如图所示,一闭合回路由半径为a 和b 的两个同心半圆连成,载有电流I ,试求圆心P 点处磁感应强度B的大小和方向。

bI a I b I a I B 44440000μμππμππμ+=+=答案:()abb a I B 40+μ=,方向:垂直纸面向里- 4 -4、如图所示,在由圆弧形导线ACB 和直导线BA 组成的回路中通电流A .I 05=,m .R 120=,090=ϕ,计算O 点的磁感应强度。

()ππμπμ234135cos 45cos 45cos 4000R I R IB +-= 答案:T.RIRI B O 5001082283-⨯=πμ+μ=,方向:垂直纸面向里5、一宽度为a 的无限长金属薄板,通有电流I 。

试求在薄板平面上,距板的一边为a 的P 点处的磁感应强度。

2ln 22/002aIdr r a I B aaπμπμ==⎰答案:220ln aIB πμ=,方向:垂直纸面向里- 5 -6、半径为R 的薄圆盘均匀带电,电荷面密度为σ+,当圆盘以角速度ω绕通过盘心O 并垂直于盘面的轴沿逆时针方向转动时,求圆盘中心点O 处的磁感强度。

马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..

马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..

目 录第一部分 名校考研真题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第二部分 课后习题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第三部分 章节题库第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第四部分 模拟试题马文蔚等《物理学》配套模拟试题及详解第一部分 名校考研真题第9章 振 动一、选择题一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时开始计时,则其振动方程为( ).[电子科技大学2007研]A.B .C .D.E.二、填空题一物体作简谐振动,其振动方程为(国际单位制).则此简谐振动的周期为______;当t =0.6s 时,物体的速度为______.[南京航空航天大学2008研]三、计算题1.考虑n =2摩尔的理想气体氦气,置于一垂直放置的圆柱体所缸中,如图9-1所示.水平放置的活塞可以在气缸中无摩擦上下运动.活塞质量为,气缸截面积为.活塞被一无质量的弹簧与气缸上端连接,活塞向下运动时将氦气向下压缩,活塞上方为真空.系统开始阶段活塞与氦气处于平衡状态时,弹簧处于未形变状态,氦气压强为B【答案】1.2s ;-20.9cm/s【答案】、温度为、体积为.假定弹簧弹性常数,气体常数,对于单原子氦气,热容比.活塞在平衡位置作小幅谐振动,计算其谐振频率f.[南京大学2006研]图9-1解:对弹簧,由牛顿第二定律可得: ①由于振动很快,系统来不及与外界发生热量交换,视为绝热过程,因此有:由于活塞在平衡位置作小幅谐振动,因此V0与V之间的变化很小,利用泰勒展开得: ②将②式代入①式有: ③初始时活塞处于平衡状态,有: ④将④代入③有: 整理得: 解得振动频率为: 2.质量分别为和的两个物体A、B,固定在倔强系数为的弹簧两端,竖直地放在水平桌面上,如图9-2所示.用一力垂直地压在A上,并使其静止不动.然后突然撤去,问欲使B离开桌面至少应多大?[中科院–中科大2007研]图9-2解:欲使B刚好弹起,则A到达最高点时弹簧的伸长量至少应为.假设力F作用下弹簧的压缩量为(初始位置),弹簧无变形时A的坐标为0(平衡位置).运动方程为: 当时,,则方程的解为:利用对称性,在最高点有.整理可得:又,于是:3.如图9-3所示,已知轻弹簧的劲度系数为k,定滑轮可看作质量为M,半径为R的均质圆盘,物体的质量为m,试求:(1)系统的振动周期;(2)当将m托至弹簧原长并释放时,求m的运动方程(以向下为正方向).[南京理工大学2005研]图9-3 图9-4解:(1)受力分析如图9-4所示,设平衡位置为原点,向下为正,则将物体拉至处时:对m:对: (为角加速度)解得:即: 则系统振动圆频率: 振动周期: (2)设振动方程,其中,.初始条件,当时: 解得: 求得m的运动方程为: 第10章 波 动一、选择题一平面简谐波沿x 轴正方向传播,振幅为A ,频率为.设时刻的波形曲线如图10-1所示,则x=0处质点的振动方程为( ).[电子科技大学2006研]图10-1A.B .C .D.二、填空题1.一质点沿x 轴作简谐振动,它的振幅为A ,周期为T .时,质点位于x 轴负向离平衡最大位移的一半处且向负方向运动,则质点的振动方程为x =______.在一周期内质点从初始位置运动到正方向离平衡位置为最大位移的一半处的时间为______.[南京航空航天大学2007研]2.一平面简谐机械波在弹性媒质中传播,一媒质质元在通过平衡位置时,其振动动能与弹性势能______(填相同或不同).[湖南大学2007研]B 【答案】【答案】相同【答案】3.以波速u 向x 正方向传播的平面简谐波,振幅为A ,圆频率为,设位于坐标处的质点,t =0时,位移,且向y 负方向运动,则该质点的振动方程为______,该平面简谐波的波动方程(波函数)为______.[南京理工大学2005研]三、计算题1.火车以匀速行驶而过,铁路边探测器所测得的火车汽笛最高和最低频率分别为和,设声速为,求火车的行驶速度.[南京大学2006研]解:由多普勒效应可得: ① ②①、②两式相除,得:解得火车车速为:2.一列平面简谐纵波在均匀各向同性弹性介质中传播,求单位体积介质所具有的能量?(自设相关物理量).[北京师范大学2008研]解:波动方程:振动速度: 设介质的密度为,用dV 表示体元体积,则该体积元动能:体积应变: 则势能: 因为,所以: 则有: 所以,单位体积介质所具有的能量为:【答案】3.已知一平面简谐波的表达式为y=0.25cos(125t-0.37x)(SI).(1)分别求x1=10m,x2=25m两点处质点的振动方程.(2)求x1、x2两点间的振动相位差.(3)求x1点在t=4s时的振动位移.[浙江大学2008研]解:(1),(2)由,可得: 所以: (3)时的振动位移为:4.甲火车以43.2千米/小时的速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为v1=512赫兹;当这一火车过后,听其鸣笛声的频率为v2=428赫兹.求乙火车上的人听到乙火车鸣笛的频率v0和乙火车对于地面的速度u.设空气中声波的速度为340米/秒.[中科院—中科大2009研]解:由题可得: 其中,v=340m/s,v0=43.2km/h=12m/s.解得:v0=468Hz,u=18.4m/s=66.3km/h5.如图10-2所示,一平面简谐波沿x轴正方向传播,已知振幅为A,频率为,波速为u.(1)若t=0时,原点O处质元正好由平衡位置向位移正方向运动,写出此波的波函数.(2)若该波在离原点处被竖直的墙面反射,欲使坐标原点处为波节,求满足的条件(设反射时无能量损失).[厦门大学2006研]图10-2解:(1)t=0时,y0=0,u0>0,所以初始相位,故波动方程为:(2)欲使波在x0处反射后到达y0处与原行波叠加产生波节,则原点O处两振动必须反相.即:所以有: ,k=0,1,2,…6.已知一平面余弦波振幅A=0.03m,波速u=1ms-1,波长,若以坐标原点O处质点恰好在平衡位置且向负方向运动时作为计时起点,求:(1)O点振动方程.(2)波动方程.(3)与原点相距处,t=1秒时,质点的位移、速度;(4)和两点间的相位差.[南京航空航天大学2006研]解:(1)设O点振动方程为:.其中,,由题意知:.于是: (2)波动方程为:.得:(3)与原点相距处,波动方程:得质点速度: 当t=1秒时: (4)相位差: 7.设入射波的表达式为,在处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的表达式.(2)合成的驻波的表达式.(3)波腹和波节的位置.[湖南大学2007研]解:(1)反射波的表达式为: (2)驻波的表达式为:(3)由,可得波腹位置为:由,可得波节位置为:,8.图10-3所示为一沿x轴正方向传播的平面余弦行波在t=2s时刻的波形曲线,波速u=0.5m/s,求:(1)原点o的振动方程;(2)波动方程.[电子科技大学2007研]图10-3解:(1)由已知得:.可得振动方程:(2)波动方程为: 9.一横波沿绳子传播,其波的表达式为.(1)求此波的振幅、波速、频率和波长.(2)求绳子上各质点的最大振动速度和最大振动加速度.(3)求处和处二质点振动的相位差.[宁波大学2009研]解:(1)将波的表达式与标准形式比较,得:,(2) (3),二振动反相.第11章 光 学一、选择题1.在迈克耳孙干涉仪的一条光路中,放入一折射率为n 厚度为d 的透明介质片后,两光路光程差的改变量为( ).[暨南大学2010研]A.B.C.D.【解析】迈克尔孙干涉仪的原理为光的干涉,两束光进过G1平面镜被分为两束光,这两束光发生干涉.当在其中一条光路中放入折射率为n 的厚透明介质时,被放入介质的那条光路光程将发生变化,由于需要两次穿过新加入的透明介质,故光程差的改变量为:.2.自然光从空气入射到某介质表面上,当折射角为30°时,反射光是完全偏振光,则此介质的折射率为( ).[暨南大学2010研]A.B.C.D.3.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹( ).[暨南大学2010研]C【答案】B【答案】当折射光线与反射光线垂直时反射完全偏振光,由折射公式得.【解析】A .中心暗斑变成亮斑B .间距不变C .变疏D .变密【解析】设牛顿环中某处的空气薄层厚度为e ,互相干涉的两束反射光的光程差为,若n 增大,则每个位置处的光程差增大,形成更大级数的干涉条纹,所以条纹变密.4.根据惠更斯——菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( ).[暨南大学2010研]A .振动的相干叠加B .振动振幅之和C .光强之和D .振动振幅平方之和5.在单缝夫琅和费衍射实验中,波长为l 的单色光垂直入射在宽度为a=4l 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( ).[暨南大学2010研]A .2个B .6个C .4个D .8个D【答案】A【答案】由惠更斯—菲涅耳原理,统一波阵面各点发出的子波,经传播而在空间某点相遇,发生的是相干叠加.【解析】C【答案】可近似将单缝所在平面看作波阵面,则每一半波带都沿单缝方向,设总半波带【解析】得N=4.6.一束白光垂直入射在光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是( ).[暨南大学2010研]A .紫光B .黄光C .红光D .绿光【解析】根据光栅公式,同一级条纹满足,可见光中红光波长最长,故偏离中央明纹最远.7.光强为I 0的自然光依次垂直通过两个偏振片,且此两偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则透射偏振光的强度I 是( ).[暨南大学2010研]A.B.C.D.由此可得,8.一光波分别通过两种不同介质的光程相同,则( ).[暨南大学2011研]数为N ,则C【答案】A【答案】自然光经过任一偏振片后光强减半,再经过另一个偏振片,根据马吕斯定律【解析】A .光波通过这两种介质的时间不相同B .光波通过这两种介质的时间相同C .光波通过这两种介质后的位相不相同D .光波通过这两种介质后的位相相同9.在迈克耳孙干涉仪的一臂中放入一折射率为厚度为的透明介质片,同时在另一臂中放入一折射率为厚度为的透明介质片,设没有放两透明介质片时两臂的光程差为 则放入两透明介质片后两臂的光程差为( ).[暨南大学2011研]A.;B .C.D.10.关于光学仪器的分辨本领,下述表述错误的是( ).[暨南大学2011研]A .分辨本领受到衍射极限的限制B .分辨本领和光学仪器的通光口径有关C .分辨本领和照明光的波长有关D .分辨本领和照明光的强度有关B【答案】光程差公式为 L =nd ,在不同介质中光速不同,v =c/n,故传播时间为 t =d/v =L/c ,对不同的介质相同.出射光的位相与入射光有关,故不能确定.【解析】B【答案】放入介质片后,相应光路中的光两次经过此介质,光程变化为2nd ,所以放入两个介质片后,两臂的光程差变化为2(n2-n1)d【解析】D【答案】光学仪器的分辨率,与由衍射导致的像点的展宽有关,而衍射条纹与通光孔径【解析】11.自然光从空气入射到某透明介质表面上,则( ).[暨南大学2011研]A .反射光一定是完全偏振光B .反射光一定是部分偏振光C .折射光一定是部分偏振光D .折射光一定是完全偏振光12.眼镜片上的增透膜是根据光的以下什么现象做成的( ).[暨南大学2011研]A .光的干涉B .光的衍射C .光的布儒斯特定律D .光的马吕斯定律13.光强度( ).[暨南大学2011研]A .和光波的振幅成正比B .和光波的振幅的平方成正比C .和光波的位相成正比D .和光波的位相的平方成正比和波长有关,与光强无关.C【答案】根据菲涅耳反射折射公式,自然光入射产生的反射和折射光都将变成部分偏振光.但当入射角为布鲁斯特角时,反射光为完全偏振光.【解析】A【答案】增透膜的原理是通过在镜片表面镀膜,使得某波长的光在膜前后表面反射光之间光程差是半波长的奇数倍,从而使反射光相干抵消,增加透射.【解析】B【答案】光强度是单位面积单位时间内辐射光的平均能量,此平均能量与电场分量或磁场分量的振幅的平方成正比,而由于是时间平均效果,与位相无关.【解析】14.一束白光垂直入射在单缝上,在第一级夫琅和费衍射明纹中,靠近中央明纹的颜色是( ).[暨南大学2011研]A .紫光B .黄光C .红光D .绿光【解析】单缝衍射明纹满足,故条纹到中央明纹的距离与波长正相关,所以紫光一级明纹最靠近中间.15.光强为I0的自然光依次垂直通过三个偏振片,且第一和第三偏振片的偏振化方向夹角a=90°,第二和第三偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则从第三偏振片透射出的光强I 是( ).[暨南大学2011研]A.B.C.D.二、填空题1.一个平凸透镜的顶点和一平板玻璃接触,用单设光垂直照射,观察反射光形成的牛顿环,测得中央暗斑外第k 个暗环半径为r 1.现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k 个暗环的半径变为变为r 2,由此可知该液体的折射率为______.[南京航空航天大学2008研]A【答案】C【答案】自然光经过第一个偏振片,光强减半.第一偏振片的偏振方向与第二个,第二个与第三个,夹角都是45°,根据马吕斯定律,【解析】2.自然光入射到空气和某玻璃的分界面上,当入射角为60°时,反射光为完全偏振光,则该玻璃的折射率为______;一束强度为的自然光垂直入射于两种平行放置且透光轴方向夹角为60°的偏振片上,则透射光强度为______.[南京理工大学2005研]三、计算题1.一平凸透镜置于一平板玻璃上,波长为6700Å的红光垂直从上方入射,由透镜凸表面和平板玻璃表面反射的光形成牛顿环干涉条纹.透镜和平玻璃的接触点处为暗纹,测得第12条暗纹的半径为11mm ,求透镜的曲率半径R .[暨南大学2010研]解:牛顿环上r半径处空气层的厚度为第12条暗纹处与第一条暗纹处光程差相差11个波长,可得透镜的曲率半径为 2.(5分)将麦克耳孙干涉仪的一臂稍微调长(移动镜面),观察到有150条暗纹移过视场.若所用光的波长为480nm ,求镜面移动的距离.[暨南大学2010研]解:在迈克尔孙干涉仪中,沿两条光路的光发生干涉,它们之间光程差每变化一个波长,则有一条暗纹移过视场.设镜面移动距离为d,则得.3.在杨氏双缝实验中,两缝相距2mm ,用l =750nm 和l¢=900nm 的混合光照明,若屏幕到缝的距离为2m ,问两种波长的光的干涉明纹重合的位置到中央明纹中线的最小距离为多少?[暨南大学2010研]解:双缝干涉第k级干涉明纹满足,【答案】【答案】要想使不同波长的两束光条纹重合,需要某级条纹距离相同,即可得,k最小值为6,故4.如何利用偏振片和波晶片(1/4波片、半波片等)将一束自然光转化为圆偏振光?又如何利用波晶片将一线偏振光的偏振方向旋转90度?[暨南大学2010研]解:(1)首先将自然光通过偏振片,变成线偏光.然后使线偏光通过1/4波片,保证线偏振方向与波片光轴方向呈45°角,从而出射的o光和e光方向相同,振幅相等,相位差,从而变成圆偏振光.(2)首先将线偏光通过一个1/4波片,变成圆偏光,再经过一个与原偏振方向垂直的偏振片,变成新方向的线偏光.5.白光垂直照射到一厚度为370nm的肥皂膜(膜的两侧都为空气)上,设肥皂的折射率为1.32,试问该膜的正面呈现什么颜色?[暨南大学2011研]解:肥皂膜前后表面反射光的光程差为青色光的波长范围是476-495 nm,所以L正好是青色光波长的二倍;红色光的波长范围是 620-750 nm,所以L正好是红色光波长的3/2倍.所以前后表面反射的红光相干相消,青光相干相长,所以呈青色.6.用波长500nm的单色光垂直照射到宽0.5mm的单缝上,在缝后置一焦距为0.5m的凸透镜,用一屏来观察夫琅和费衍射条纹,求在屏上中央明纹的宽度和第一级明纹的宽度?并定性解释级次越高,明纹的强度越低的原因.[暨南大学2011研]解:(1)单缝夫琅禾费衍射产生暗纹条件为中央和第一级明纹处衍射角很小,可以近似.所以各暗纹距离中央的位置为所以中央明纹和第一级明纹的宽度分别为(2)明纹级次越高,说明单缝两个位置单色光距明纹处的光程差越大,相位差越大.根据光振幅矢量性,相同幅值的相干光相位差越大,合成振幅越小,从而光强越低.7.请解释为什么劈尖干涉条纹是等间距的直条纹而牛顿环是非等间距的圆条纹?如果看到牛顿环的中央是暗纹,解释之?[暨南大学2011研]解:(1)根据干涉原理,不论是劈尖干涉条纹还是牛顿环条纹,相邻条纹处干涉光光程差的差为.因为劈尖上到顶点的距离和厚度成正比,而厚度和光程差成正比,所以会形成等间距的直条纹;而牛顿环空气层厚度与光程差成正比,但由于棱镜下表面是球形,使得厚度与到中心的水平距离不成正比,所以形成非等间距的圆条纹.(2)中央处空气层厚度为0,棱镜底面与平面玻璃表面发射光的光程差为0.但光由光疏介质(空气)进入光密介质(平面玻璃)进行反射时会产生半波损失,使得两束相干光完全相消,出现中央暗纹.8.杨氏双缝实验中,在两缝S1和S2前分别放置两偏振片P1和P2,在两缝S1和S2后放置一偏振片P3,如图11-1所示,照明光为一自然光.问 (1) 当P1和P2偏振化方向相同,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?(2)当P1和P2偏振化方向垂直,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?[暨南大学2011研]图11-1解:(1)会出现干涉条纹.因为经过两个偏振片的光具有相同的偏振方向,都沿P3的方向偏振,所以同频率的光会产生相干叠加,出现干涉条纹.(2)会出现干涉条纹.因为虽然经过第一个偏振片的两束光具有垂直的偏振方向,但由于两束光的偏振方向都与P3偏振化方向呈45°角,根据马吕斯定律,经过P3后的两束光偏振方向相同,且振幅相等.所以依然会产生干涉条纹.9.(1)迈克尔逊干涉仪的M2镜前,当插入一薄玻璃片时,可以观察到有150条干涉条纹向一方移过.若玻璃片的折射率为n=1.632,所用单色光的波长为500nm,试求玻璃片的厚度.(2)用钠光灯(,)照明迈克尔逊干涉仪,首先调整干涉仪得到最清晰的干涉条纹,然后移动M1,干涉图样逐渐变得模糊,到第一次干涉现象消失时,M1由原来位置移动了多少距离?[南京大学2006研]解:(1)插入玻璃片后,光程差改变量为,则:解得玻璃片厚度: (2)干涉条纹消失,即、两个波长照射下的亮纹和暗纹重合,即:解得: 10.试按下列要求设计光栅:当白光垂直照射时,在30°衍射方向上观察到波长为600nm 的第二级主极大,且能分辨Δλ=0.05nm的两条谱线,同时该处不出现其他谱线的主极大.[浙江大学2008研]解:由光栅方程: .则:当时,可得: 当,.因为时,主极大,即缺级,因此有:所以有: 11.如图11-2所示,有一缝宽分别为a和2a、两缝中心相距为d的双缝衍射屏,今在缝宽为2a的左半缝前覆盖一个宽度为a的相移片.导出正入射时其夫琅禾费衍射强度分布公式.[山东大学1997研]图11-2解:x方向振幅: y方向振幅: 光强: 12.如图11-3所示,在偏振化方向夹角为60°的两偏振片和之间插入一个四分之一波片C,其光轴与两偏振片偏振化方向的夹角均为30°.一强度为的自然光先后通过偏振片、四分之一波片C和偏振片,求出射的光强度.[厦门大学2006研]图11-3解:经过P1后: ,经过四分之一波片后: ,得出射光振幅: 出射光光强: 第12章 气体动理论一、选择题若为气体分子速率分布函数,则的物理意义是( ).[电子科技大学2005研]A .速率区间内的分子数B .分子的平均速率C .速率区间内的分子数占总分子数的百分比D .速率分布在附近的单位速率区间中的分子数二、填空题1.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而最概然速率之比为,则单位体积内的内能之比为______.[南京航空航天大学2007研]2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为______.[北京工业大学2004研]3.由绝热材料包围的窗口被隔板隔为两半,左边是理想气体,右边真空,如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度______(填升高、降低或不变),气体的熵______(填增加、减小或不变).[湖南大学2007研]4.27℃的1mol 氧气分子的最概然速率为______,其物理意义为______,分子的平均平动动能为______,1mol 理想氧气的内能为______.[南京理工大学2005研]三、计算题B【答案】1∶4∶9【答案】【答案】不变;增加【答案】【答案】1.设气体分子的速率分布满足麦克斯韦分布律.(1)求气体分子速率与最可几速率相差不超过0.5%的分子占全部分子的百分之几?(2)设氦气的温度为300K,求速率在3000~3010m/s之间的分子数与速率在1500~1510m/s之间的分子数之比.(3)某种气体的温度为100K和400K时的最可几速率分别为和.在100K时与相差不超过1m/s的分子数为总数的a%,求400K时与相差不超过1m/s的分子数占总数的百分比.[南京大学2006研]解:(1)设气体分子速率与最可几速率相差不超过0.5%的分子数为,全部分子数为,则:(2)设速率在3000~3010m/s之间的分子数为,速率在1500~1510m/s之间的分子数为,则:(3)2.1摩尔双原子理想气体的某一过程的摩尔热容量,其中为定容摩尔热容量,R 为气体的普适恒量.(1)导出此过程的过程方程;(2)设初态为(,),求沿此过程膨胀到时气体的内能变化,对外做功及吸热(或放热).[北京师范大学2006研]解:(1)理想气体的状态方程为,其微分形式为:由热力学第一定律,则:由上述两式消去,得: 则由的积分可得:上式即为双原子分子理想气体的过程方程.(2)初态,其中;末态.由过程方程,可知:所以,末态为.①气体内能的变化:②对外做功: ③吸收的热量:负号表示与题设相反,即此过程向外放热 .3.0.2g氢气盛于3.0 L的容器中,测得压强为8.31×104Pa,则分子的最概然速率、平均速率和方均根速率各为多大?[浙江大学2008研]解:气体状态方程: 最概然速率:平均速率:方均根速率: 4.设有N个气体分子组成的系统,每个分子质量为m,分子的速率分布函数为求:(1)常数a.(2)分子的平均速率.(3)若分子只有平动,且忽略分子间的相互作用力,求系统的内能E.[厦门大学2006研]解:(1)由归一化条件可得:解得: (2)N个分子的平均速度:=(3)由,得:5.许多星球的温度达到108K,在这温度下原子已经不存在了,而氢核(质子)是存在的,若把氢核视为理想气体,求:(1)氢核的方均根速率是多少?(2)氢核的平均平均平动动能是多少电子伏特?[宁波大学2009研](普适气体常量,玻尔兹曼常量)解:(1)由于,而氢核,所以有:(2)第13章 热力学基础一、选择题在一定量的理想气体向真空作绝热自由膨胀,体积由增至,在此过程中气体的( ).[电子科技大学2007研]A.内能不变,熵增加B.内能不变,熵减少C.内能不变,熵不变D.内能增加,熵增加二、填空题热力学第二定律表明在自然界中与热现象有关的实际宏观过程都是不可逆的.开尔文表述指出了______的过程是不可逆的,而克劳修斯表述指出了______的过程是不可逆的.[北京工业大学2004研]三、计算题1.假设地球大气为干燥空气,导热性能不好.气流上升缓慢,可以视为准静态过程.试导出大气的垂直温度梯度dT/dz,并估算其量值的大小.[南京大学2005研]解:对于绝热过程有: 对上式两边同时求导,得:于是有: 对于大气层,气压强变化满足,再结合理想气体状态方程,得:A【答案】功变热;热传导【答案】。

大学物理_第九章_课后答案

大学物理_第九章_课后答案

µ0 I , r 为管外一点到螺线管轴 2πr
题 9-4 图 9-5 如果一个电子在通过空间某一区域时不偏转, 能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场? 解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存 在互相垂直的电场和磁场, 电子受的电场力与磁场力抵消所致. 如果它发生偏转也不能肯定 那个区域存在着磁场,因为仅有电场也可以使电子偏转. 9-6 已知磁感应强度 B = 2.0 Wb· m 的均匀磁场, 方向沿 x 轴正方向, 如题 9-6 图所示. 试求:(1)通过图中 abcd 面的磁通量;(2)通过图中 befc 面的磁通量;(3)通过图中 aefd 面 的磁通量. 解: 如题 9-6 图所示
题 9-7 图 9-7 如题9-7图所示, AB 、 CD 为长直导线, BC 为圆心在 O 点的一段圆弧形导线,其半 径为 R .若通以电流 I ,求 O 点的磁感应强度. 解:如题 9-7 图所示, O 点磁场由 AB 、 BC 、 CD 三部分电流产生.其中


AB 产生
� B1 = 0
CD 产生 B2 =
9-13 一根很长的铜导线载有电流10A,设电流均匀分布.在导线内部作一平面 S ,如题9-13 图所示.试计算通过S平面的磁通量(沿导线长度方向取长为1m的一段作计算).铜的磁导率
µ = µ0 .
解:由安培环路定律求距圆导线轴为 r 处的磁感应强度
� B ∫ ⋅ dl = µ 0 ∑ I
l
B 2πr = µ 0
B0 =

µ 0 ev = 13 T 4πa 2
电子磁矩 Pm 在图中也是垂直向里,大小为
Pm =
e 2 eva πa = = 9.2 × 10 − 24 A ⋅ m 2 T 2

大学物理答案第9章

大学物理答案第9章

第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).9-2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).9-3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律 ()r r r re r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1Lr Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21Lr r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rq E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图 分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为 ()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R RR r x q x E积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41x p εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2xεe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得 ()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得 300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图 分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有 ()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ (2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理 ∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++= r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ 9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有 ⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 . 题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-= 由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势 的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等.9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为 R q εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b )所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势 R εQ V 0π4=其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布 ()()()22021********* π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有 20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E当R 1 ≤r ≤R 2 时,有 202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则 rεQ Q V 0213π4+= (2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理 ⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m .圆盘均匀带电,电荷面密度σ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的 ()x x R εσx r rr εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有 V 1695π40==xεq V 1-20m V 5649π4⋅==x εq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m ),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有 120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m ) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k 021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k 0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C· m .这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度m/s 1037.927⨯==m E v k题 9-27。

大学物理课后习题答案-9答案

大学物理课后习题答案-9答案

普物答案 第九章9.8:如图所示将半圆分成极窄的小圆环其电量为:222sin dq ds rdl R d σσπσπθθ==•=• 223/204()xdq dE x r πε=+ 其中cos x R θ=,sin r R θ=,dl Rd θ= 代入得:/2000sin cos 24E dE d πσσθθθεε===⎰⎰ 9.9:半无限长导线A ,B 在0点处产生的电场分别是:0044A E i j R R λλπεπε=--,0044B E i j R Rλλπεπε=-+ 而半圆产生的电场为:02AB E i Rλπε= 所以总场为0A B ABE E E E =++= xyθ9.25:(1)0004346c qqqU l l l πεπεπε=-=-••,00U =0000()6c q q A q U U lπε=•-= (2)000()6c q q A q U U lπε∞'=-•-=9.28:利用高斯定理得: 111220122200()()4()4r R q E R r R rq q r R r πεπε⎧⎪<⎪⎪=<<⎨⎪⎪+>⎪⎩0.3230.20.3900a U E dr E dr V ∞=+=⎰⎰,30.5450b U E dr V ∞==⎰9.29:设AB ,DE 段对0点的电势为1U ,2U ,圆弧对0点的电势为3U 21200ln 244RR dx U U x λλπεπε===⎰ 30044BDRd U R λθλπεε==⎰ 所以有1230(2ln 2)4U U U U λππε=++=+9.31:(1):我们在导线上任取微元dx ,电量为:2Q dq dx l= 它产生的电势220124Q dx l dU x y πε=+ 由叠加原理得:220ln 4l ll y l Q U dU l y πε-++==⎰ 2204dU Q E dy y l y πε=-=+ 方向:y 轴正方向 (2):0124Q dl l dU x l πε'='-, 0ln 8q x l U dU dU x l πε+===-⎰ 2204()dU Q E dx x l πε=-=- 方向:x 轴正方向dxxy9.32: 与前面类似的,我们取平行与底面的细圆环,面积为:22sin ds rdl l dl ππθ==00sin 42ds dU dl l σσθπεε•== 积分得: 21R 00)22R U dU dl σσεε===-⎰⎰21(R R9.33:在半径r 处取宽度为dr 的同心圆环,其电量为2rdr σπ•00242rdr dr dU r σπσπεε•== 代入数据得: 309102b a dr U V σε==⨯⎰r ldlr。

浙江大学大学物理答案

浙江大学大学物理答案

浙江大学大学物理答案【篇一:11-12-2大学物理乙期末试题b】《大学物理乙(上)》课程期末考试试卷 (b)开课分院:基础部,考试形式:闭卷,允许带非存储计算器入场考试日期:2012年月日,考试所需时间: 120 分钟考生姓名学号考生所在分院:专业班级: .一、填空题(每空2分,共50分):1、一个0.1kg的质点做简谐振动,运动方程为x(t)?0.2cos3t m,则该质点的最大加速度amax,质点受到的合力随时间变化的方程f(t。

2、一质点作简谐振动,振幅为a,初始时具有振动能量2.4j。

当质点运动到a/2处时,质点的总能量为 j,其中动能为j。

3、在宁静的池水边,你用手指以2hz的频率轻叩池面,在池面上荡起水波,波速为2m/s,则这些波的波长为 m。

4、两列波在空间相遇时能够产生干涉现象的三个条件为:,振动方向相同,初相位差恒定。

5、如图所示,在均匀介质中,相干波源a和b相距3m,它们所发出的简谐波在ab连线上的振幅均为0.4m,波长均为2m,且a为波峰时b恰好为波谷,那么ab连线中点的振幅为 m,在ba延长线上,a点外侧任一点的振幅为m。

6、已知空气中的声速340m/s,一辆汽车以40m/s的速度驶近一静止的观察者,汽车喇叭的固有频率为555hz,则观察者听到喇叭的音调会更________(填“高”或“低”),其频率为____________ hz。

(请保留三位有效数字)......7、已知800k时某气体分子的方均根速率为500m/s,当该气体降温至200k时,其方均根速率为__________m/s。

8、体积为2?10?3m3的理想气体,气体分子总数为5.4?1022个,其温度为362k,则气体的压强为_________________pa。

9、麦克斯韦速率分布曲线下的面积恒等于_________。

10、一定量氢气在500k的温度下,分子的平均平动动能为______________________j,分子的平均转动动能为________________________j。

弹性力学知到章节答案智慧树2023年浙江大学

弹性力学知到章节答案智慧树2023年浙江大学

弹性力学知到章节测试答案智慧树2023年最新浙江大学第一章测试1.从下面哪个假设出发(),可以认为物体内部的应力、应变和位移等都是连续的。

参考答案:连续性假设2.理想弹性假设只考虑应力和应变成线性关系的情形。

()参考答案:对3.物体在外界荷载作用下发生变形,当外界荷载被消除后,该变形可完全恢复的性质称为弹性。

()参考答案:对4.根据连续性假设,弹性力学问题的应力、应变和位移可表示成坐标的连续函数。

()参考答案:对5.在研究下面对象的宏观力学行为时,各向同性假设不成立的是()。

参考答案:纤维增强复合材料;木材6.下面属于研究弹性力学问题基本假设的是()。

参考答案:均匀性假设;连续性假设;完全弹性假设;各向同性假设第二章测试1.已知矢量,张量,按照求和约定,表达式的值是()。

参考答案:22.已知物体内一点的应力张量为,下面叙述正确的是()。

参考答案:三个主应力分别是(3,0,-2),最大切应力 2.53.在给定应力状态下,一点的主应力方向必相互垂直。

()参考答案:错4.物体内一点的主应力仅与该点的应力状态有关,与所选取的参考坐标系无关。

()参考答案:对5.过一点的任意截面上的应力分量相互独立。

()参考答案:错6.如图所示三角形水坝刚性固结在基础上,坝高为h,坝基底宽为l,水位线离坝顶O点距离为h0,水的密度为,若略去坝体自重,下面关于坝体应力边界条件描述正确的是()。

参考答案:OB边上各点的应力分量有:当时,;OA边上各点的应力分量有:;OA边上各点的应力分量有:;OB边上各点的应力分量有:当时,第三章测试1.已知位移场为,,,对应的应变张量为()。

参考答案:2.下面的应变分量中,哪个可能发生()。

参考答案:3.在一定的应变状态下,物体内任一点的三个应变主方向必相互垂直。

()参考答案:错4.如果物体是单连通的,应变分量满足应变协调方程是保证物体连续的充分必要条件。

()参考答案:对5.下面关于三个主应变叙述正确的是()。

大学物理浙江大学答案

大学物理浙江大学答案

大学物理浙江大学答案【篇一:1992-2016年浙江大学820普通物理考研真题及答案解析汇编】我们是布丁考研网浙大考研团队,是在读学长。

我们亲身经历过浙大考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入浙大。

此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。

有任何考浙大相关的疑问,也可以咨询我们,学长会提供免费的解答。

更多信息,请关注布丁考研网。

以下为本科目的资料清单(有实物图及预览,货真价实): 2017年浙江大学《普通物理》全套资料包含:一、浙江大学《普通物理》历年考研真题及答案 2016年浙江大学《普通物理》考研真题(含答案解析)2014年浙江大学《普通物理》考研真题 2012年浙江大学《普通物理》考研真题(含答案解析)2011年浙江大学《普通物理》考研真题(含答案解析) 2010年浙江大学《普通物理》考研真题(含答案解析) 2009年浙江大学《普通物理》考研真题(含答案解析) 2008年浙江大学《普通物理》考研真题(含答案解析) 2007年浙江大学《普通物理》考研真题(含答案解析) 2006年浙江大学《普通物理》考研真题(含答案解析)2005年浙江大学《普通物理》考研真题(含答案解析) 2004年浙江大学《普通物理》考研真题(含答案解析)2003年浙江大学《普通物理》考研真题(含答案解析)2002年浙江大学《普通物理》考研真题(含答案解析)2001年浙江大学《普通物理》考研真题(含答案解析)2000年浙江大学《普通物理》考研真题1999年浙江大学《普通物理》考研真题1998年浙江大学《普通物理》考研真题1997年浙江大学《普通物理》考研真题1996年浙江大学《普通物理》考研真题1995年浙江大学《普通物理》考研真题1994年浙江大学《普通物理》考研真题1993年浙江大学《普通物理》考研真题1992年浙江大学《普通物理》考研真题二、浙江大学《大学物理及实验》期中期末试题汇编三、浙江大学《普通物理》复习笔记1、浙江大学《普通物理》考研笔记此笔记是刚考上的2016届研究生在对浙大的普物课本仔细研读和对课后习题以及真题认真分析解答的基础上整理而成的公式定律总结和部分解题技巧。

大学物理八九章部分习题解答

大学物理八九章部分习题解答

第8章 磁场8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。

分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。

解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。

在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为2022322()R nIdxdB R x μ=+ 由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为212022322()x Lx R nIdxB dB R x μ==+⎰⎰0212212221221[]2()()nIx x R x R x μ=-++ 由图可知12122212221212cos os ()()x x R x R x ββ==++ c ,代入上式并整理可得 021(cos cos )2nIB μββ=-式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。

讨论:(1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有nI B 0μ=上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。

理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。

即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大习题8-10图解(a )小为0nIμ,方向与轴线平行;(2)若点O位于半无限长载流螺线管一端,即12πβ=,2β=或12πβ=,2βπ=时,无论哪一种情况均有nIB21μ=------(8-19)可见半无限长螺线管端面中心轴线上磁感应强度的大小为管内的一半;综上所述,密绕长直螺线管轴线上各处磁感应强度分布见习题8-10图解(b)所示,从图中也可看出,长直螺线管内中部的磁场可以看成是均匀的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档