高考三角函数经典解答题及答案
高三数学三角函数试题答案及解析
高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2.“θ≠”是“cos θ≠”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为“cos θ=”是“θ=”的必要不充分条件,所以“θ≠”是“cos θ≠”的必要不充分条件,选B.3.已知函数,则一定在函数图象上的点是()A.B.C.D.【答案】C.【解析】根据的解析式,求出,判断函数的奇偶性,由函数的奇偶性去判断四个选项是否在图象上..为奇函数,在图象上.故选C.【考点】函数的奇偶性.4.函数y=的定义域是.【答案】{x|kπ-<x≤kπ+,k∈Z}【解析】由1-tanx≥0,即tanx≤1,结合正切函数图象可得,kπ-<x≤kπ+,k∈Z,故函数的定义域是{x|kπ-<x≤kπ+,k∈Z}.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.已知的三个内角所对的边分别为,且,则角的大小为 .【答案】【解析】根据正弦定理:,,即:,,【考点】1、正弦定理;2、两角和与差的三角函数公式.7.已知函数上有两个零点,则的值为()A.B.C.D.【答案】D【解析】,由于,故,由于函数在区间上有两个零点,所以,所以,所以,故选D.【考点】1.三角函数的图象;2.三角函数的对称性8.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.9.已知函数时有极大值,且为奇函数,则的一组可能值依次为( )A.B.C.D.【答案】D【解析】,因为当时有极大值,所以=0,解得当k=0时,;因为=为奇函数,所以,当k=0时,,故选D.【考点】1.求函数的导数及其导数的性质;2.三角函数的性质.10.已知函数的最大值为4,最小值为0,最小正周期为,直线是其图像的一条对称轴,则下列各式中符合条件的解析式是()A.B.C.D.【答案】D【解析】由题意可得,则据此可知答案选D.【考点】函数的图像与性质.11.中,角所对的边分别为且.(Ⅰ)求角的大小;(Ⅱ)若向量,向量,,,求的值.【答案】(Ⅰ);(Ⅱ);【解析】(Ⅰ)主要利用三角形中内角和定理、三角恒等变换来求;(Ⅱ)通过余弦定理、解方程组可求;试题解析:(Ⅰ)∵∴,∴,∴或∴(II)∵∴,即①又,∴,即②由①②可得,∴又∴,∴【考点】解三角形中内角和定理以及余弦定理的使用、三角恒等变换等知识点,考查学生的计算能力.12.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.13.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系14.函数的最小正周期为.【答案】【解析】根据题意,由于即为其周期,故答案为【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。
三角函数典型例题(高考题)及详细解答
1.已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1)若0AB AC ⋅=,求c 的值; (2)若c=5,求sin ∠A 的值.2 已知函数()sin()(0,0),f x A x A x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。
(1)求()f x 的解析式;(2)已知,(0,)2παβ∈,且312(),(),513f f αβ==求()f αβ-的值 3.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值;(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 4.设函数()3sin 6f x x πω⎛⎫=+⎪⎝⎭,0ω>,(),x ∈-∞+∞,且以2π为最小正周期. (1)求()0f ;(2)求()f x 的解析式;(3)已知94125f απ⎛⎫+= ⎪⎝⎭,求sin α的值. 5.已知函数1()2sin(),36f x x x π=-∈R .(1)求(0)f 的值;(2)设10,0,,(3)2213f ππαβα⎡⎤∈+=⎢⎥⎣⎦,6(32)5f βπ+=,求sin()αβ+的值. 一.选择填空题1.在ABC 中,若15,,sin 43b B A π=∠==,则a = . 2..在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=(A)-12 (B) 12(C) -1 (D) 1 3.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )94.设函数(A )y=在单调递增,其图像关于直线对称(B )y=在单调递增,其图像关于直线对称(C )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 4π对称(D )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 2π对称5.)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______.6.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 7.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ二:解答题1.已知函数()4cos sin() 1.6f x x x π=+-(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值。
高考大题规范解答系列(二)——三角函数
高考一轮总复习 • 数学
返回导航
2.解题技巧: (1)要善于抓解题关键点,解题步骤中明显呈现得分点,如本题 f(x) = 2sin2x+π6必须求对. (2)要清晰呈现求角 A 的过程以及用正、余弦定理求出外接圆半径 r.
第四章 平面向量、数系的扩充与复数的引入
高考一轮总复习 • 数学
返回导航
〔变式训练 1〕 (2021·浙江,18,14 分)设函数 f(x)=sin x+cos x(x∈R). (1)求函数 y=fx+π22 的最小正周期; (2)求函数 y=f(x)fx-π4在0,π2上的最大值. [解析] 本题主要考查两角和与差的正弦、余弦公式、二倍角公式等 基础知识,同时考查数学运算素养.
第四章
平面向量、数系的扩充与复数的引入
高考大题规范解答系列(二)——三角函数
高考一轮总复习 • 数学
返回导航
考点一
三角函数的综合问题
例1 已知向量 a=( 2sin 2x, 2cos 2x),b=(cos θ,sin θ)|θ|<π2, 若 f(x)=a·b,且函数 f(x)的图象关于直线 x=π6对称.
(1)求函数 f(x)的解析式,并求 f(x)的单调递减区间; (2)在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 f(A)= 2, 且 b=5,c=2 3,求△ABC 外接圆的面积.
第四章 平面向量、数系的扩充与复数的引入
高考一轮总复习 • 数学
返回导航
[分析] (1)看到求f(x)的解析式,想到对a·b进行化简;看到求f(x)的 单调减区间,想到y=sin x的单调减区间;
(2)看到求△ABC外接圆的面积,想到求半径r和正弦定理. [标准答案]——规范答题 步步得分 (1)f(x)=a·b= 2sin 2xcos θ+ 2cos 2xsin θ
(完整版)高考三角函数经典解答题及答案
1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=14sin22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号)故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3,其中A 、B 、C 是ABC ∆的内角。
(1)求角B 的大小;(2)求 C A sin sin +的取值范围。
三角函数部分高考题(带答案)
22.设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. 〔Ⅰ〕求tan cot A B 的值; 〔Ⅱ〕求tan()A B -的最大值.解析:〔Ⅰ〕在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,那么tan cot 4A B =; 〔Ⅱ〕由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.23.在ABC △中,5cos 13B =-,4cos 5C =.〔Ⅰ〕求sin A 的值;〔Ⅱ〕设ABC △的面积332ABC S =△,求BC 的长.解:〔Ⅰ〕由5cos 13B =-,得12sin 13B =,由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··········· 5分 〔Ⅱ〕由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由〔Ⅰ〕知33sin 65A =,故65AB AC ⨯=, ···························· 8分又sin 20sin 13AB B AC AB C ⨯==, 故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ························ 10分24.函数2π()sinsin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭〔0ω>〕的最小正周期为π.〔Ⅰ〕求ω的值;〔Ⅱ〕求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:〔Ⅰ〕1cos 2()22x f x x ωω-=+112cos 222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. 〔Ⅱ〕由〔Ⅰ〕得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 25.求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。
高考三角函数经典解答题及答案
1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值.解:(1) 由余弦定理:conB=14sin 22A B++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a 2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号) 故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,因此.31cos =B(II )解:由2cos ,2==⋅B a BC BA 可得,所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3, 其中A 、B 、C 是ABC ∆的内角。
(1)求角B 的大小;(2)求 C A sin sin +的取值范围。
解:(1) m =()B B cos 1,sin -,且与向量n = (2,0)所成角为3π, 又 π<<B 0(2)由(1)知,32π=B ,∴A+C= 3π ∴C A sin sin +=)3sin(sin A A -+π=A A cos 23sin 21+=)3sin(A +π30π<<A ,∴)3sin(A +π⎥⎦⎤ ⎝⎛∈1,23,∴ C A sin sin +⎥⎦⎤⎝⎛∈1,23 4已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足 (I )求A 的大小;(II )求)sin(6π+B 的值.解:(1)由m//n 得0cos 1sin 22=--A A ……2分 即01cos cos 22=-+A A 1cos 21cos -==∴A A 或1cos ,-=∆A ABC A 的内角是 舍去 3π=∴A(2)a c b 3=+由正弦定理,23sin 3sin sin ==+A C Bπ32=+C B23)32sin(sin =-+∴B B π5在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,C =2A ,43cos =A , (1)求BC cos ,cos 的值;(2)若227=⋅,求边AC 的长。
三角函数经典练习题(含详细答案)
三角函数典型例题(含详解答案)一、选择题1.函数)y x ωϕ=+其中(0,0π)ωϕ><<,的图象的一部分如图所示,则( )A. π3π,84ωϕ== B. ππ,84ωϕ== C. ππ,42ωϕ== D. π3π,44ωϕ==2.+( ) A.1sin 2 B.1cos 2C.112sin cos 22- D.112cos sin 22-3.若sin 2α=,sin()βα-=,且π,π4α⎡⎤∈⎢⎥⎣⎦,3ππ,2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π44.已知1tan 2α=-求2212sin cos sin cos αααα+-的值是( ) A.13 B.3 C.13- D.-35.已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( )A.向右平移π6个长度单位B.向右平移π12个长度单位C .向左平移π6个长度单位 D.向左平移π12个长度单位 二、填空题6.计算:1tan151tan15+-= ___________. 三、解答题7.已知π0,cos sin 2ααα<<-=,求1tan cos2cos21ααα--+的值. 8.已知函数21()1sin 2sin sin tan 44f x x x x x ππ⎛⎫⎛⎫⎛⎫=+-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (1)若tan 2α=,求()f α;(2)若,122x ππ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域.9.已知函数2π()sin()sin 2f x x x x =-. (I )求()f x 的最小正周期和最大值;(II )讨论()f x 在π2π[,]63上的单调性. 10.已知ABC △内角,,A B C 的对边分别为,,,a b c 向量(cos ,2),(2,1)m A a b n c =-=,且m n ⊥.(1).求角C ;(2).若2c =,ABC △ 求ABC △的周长.参考答案一、选择题1.答案:B解析:如图根据函数的图象可得:函数的周期为()62416-⨯=,又∵0ω>, ∴2ππ8T ω==,当2x =时取最大值,即π28ϕ⎛⎫⨯+= ⎪⎝⎭可得:ππ22π,Z 82k k ϕ⨯+=+∈, ∴π2π,Z 4k k ϕ=+∈, ∵0<πϕ<, ∴π4ϕ=, 故选:B .先利用图象中求得函数的周期,求得ω,最后根据2x =时取最大值,求得ϕ,即可得解.本题主要考查了由()sin()f x A x ωϕ=+的部分图象确定其解析式,考查了学生基础知识的运用和图象观察能力,属于基本知识的考查.2.答案:B解析:原式1111cos sin sin cos 2222=-+=. 3.答案:A解析:因为π,π4α⎡⎤∈⎢⎥⎣⎦,所以π2,2π2α⎡⎤∈⎢⎥⎣⎦.又sin 2α=,故π2,π2α⎡⎤∈⎢⎥⎣⎦,所以ππ,42α⎡⎤∈⎢⎥⎣⎦,所以cos 2α=.又3ππ,2β⎡⎤∈⎢⎥⎣⎦,所以π5π,24βα⎡⎤-∈⎢⎥⎣⎦,且5π,2π4αβ⎡⎤+∈⎢⎥⎣⎦,于是cos()βα-=所以cos()cos[2()]αβαβα+=+-cos2cos()sin 2sin()αβααβα=---⎛== ⎝⎭,故7π4αβ+=. 4.答案:C解析:5.答案:A解析:二、填空题6.解析:三、解答题7.答案:1tan cos2cos21ααα--+ 2cos sin cos (sin 22sin )ααααα-=+ cos sin sin 2(cos sin )ααααα-=+由cos sin αα-=两边平方得4sin 25α=, 29(cos sin )1sin 25ααα+=+= 而π02α<<,cos sin αα∴+=,故原式512== 解析:8.答案:(1)由题意,知2()sin sin cos cos 2f x x x x x =++ 1cos2111sin 2cos2(sin 2cos2)2222x x x x x -=++=++. 有tan 2α=,得2222sin cos 2tan 4sin 2sin cos tan 15ααααααα===++, 222222cos sin 1tan 3cos2sin cos tan 15ααααααα--===-++, 所以14313()25525f α⎛⎫=-+= ⎪⎝⎭. (2)由(1),得111()(sin 2cos 2)22242f x x x x π⎛⎫=++=++ ⎪⎝⎭.由,122x ππ⎡⎤∈⎢⎥⎣⎦,得552,4124x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x ⎡⎤π⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦.从而()f x 的值域为⎡⎢⎣⎦. 解析:9.答案:(Ⅰ)函数2π()sin()sin 2f x x x x =-cos sin cos2)x x x =+1sin 22x x =πsin(2)2x =-故函数的周期为2ππ2=,最大值为1- (Ⅱ)当π2π[,]63x ∈时,π2[0,π]3x -∈, 故当ππ0232x ≤-≤时,即π5π[,]612x ∈时,()f x 为增函数; 当ππ2π23x ≤-≤时,即5π2π[,]123x ∈时,()f x 为减函数. 解析:10.答案:(1).由m n ⊥得2cos 2c A b a =-, 由正弦定理2sin 2sin cos 2sin sin CcsoA A C C A =+-,2sin cos sin A C A ∴= 在ABC △中,0πA <<,sin 0A ≠,1cos 2C ∴=,0πC <<,π3C ∴=. (2).4ab = 由余弦定理,22π42cos 3a b ab ab +-==,2()43a b ab ∴+-=,从而4a b += 2a b ==,周长为6解析:。
(浙江)高考三角函数解答题专项训练含答案
三角函数【1】1、 已知函数x x x f cos sin )(-=,R x ∈.(1)求函数)(x f 的最小正周期;(2)若函数)(x f 在0x x =处取得最大值,求)3()2()(000x f x f x f ++ 的值.解:(1))4sin(2cos sin )(π-=-=x x x x f ,()f x ∴的最小正周期为2π(2)依题意,4320ππ+=k x (Z k ∈),由周期性,)3()2()(000x f x f x f ++12)49cos 49(sin )23cos 23(sin )43cos 43(sin-=-+-+-=ππππππ 2、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ;(2)若A =75°,b =2,求a ,c .解:(1) 由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B .故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin30°cos45°+cos30°sin45°=2+64. 故a =b ×sinA sinB =2+62=1+3,c =b ×sinC sinB =2×sin60°sin45°= 6.3、设ABC ∆的内角,,A B C 所对的边长分别为,,,a b c且()2cos cos b A C =(1) 求角A 的大小。
(2) 若角6B π=,BC 边上的中线AM ,求ABC ∆的面积。
解:1)6π=A (7)2)3=S (7)4、如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=,3cos 5ADC ∠=.(Ⅰ)求sin ABD ∠的值; (Ⅱ)求ABD ∆的面积.解:(I )由3cos 5ADC ∠=,得24sin 1cos 5ADC ADC ∠=-∠=……………2分又5sin 13BAD ∠=,则212cos 1sin 13BAD BAD ∠=-∠=…………4分故()sin sin ABD ADC BAD ∠=∠-∠sin cos cos sin ADC BAD ADC BAD =∠∠-∠∠412353351351365=⨯-⨯=……………………7分(Ⅱ)在△ABD 中,由正弦定理知,sin sin BD ADBAD ABD =∠∠,则533sin 132533sin 65AD BADBD ABD⨯⨯∠===∠……………………………………11分故ABD ∆的面积为1sin 3302S AD BD ADB =⋅∠=……………………14分5、设函数0)R,(x )4 x sin((x) f >∈+=ωπω的部分图象如右图所示。
高三数学三角函数试题答案及解析
高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.已知向量,设函数.(1)求函数在上的单调递增区间;(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.【答案】(1)函数在上的单调递增区间为,;(2)边的长为.【解析】(1)根据平面向量的数量积,应用和差倍半的三角函数公式,将化简为.通过研究的单调减区间得到函数在上的单调递增区间为,.(2)根据两角和的正弦公式,求得,利用三角形的面积,解得,结合,由余弦定理得从而得解.试题解析:(1)由题意得3分令,解得:,,,或所以函数在上的单调递增区间为, 6分(2)由得:化简得:又因为,解得: 9分由题意知:,解得,又,所以故所求边的长为. 12分【考点】平面向量的数量积,和差倍半的三角函数,三角函数的图像和性质,正弦定理、余弦定理的应用.6.函数的最小正周期为,若其图象向右平移个单位后关于y轴对称,则()A.B.C.D.【答案】B【解析】由题意可知:,得,函数关于对称,所以,,又因为,解得,故选B.【考点】的图像和性质7.已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是()A.B.C.D.【答案】D【解析】函数的最小正周期为,所以从而.将各选项代入验证可知选【考点】1、三角函数的周期;2、函数图象的变换8.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性9.在中,(1)求角B的大小;(2)求的取值范围.【答案】(1) ;(2) .【解析】(1)由正弦定理实现边角互化,再利用两角和与差的正余弦公式化简为,再求角的值;(2)二倍角公式降幂扩角,两角差余弦公式展开,同时注意隐含条件,即可化为一角一函数,再结合求其值域.求解时一定借助函数图象找其最低点与最高点的纵坐标.试题解析:(1)由已知得:,即∴∴ 5分(2)由(1)得:,故+又∴所以的取值范围是. 12分【考点】1.正余弦定理;2.三角函数值域;3.二倍角公式与两角和与差的正余弦公式.10.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.11.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。
(完整版)高考三角函数经典解答题及答案
(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
三角函数高考试题精选(含详细答案)
三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若ta nθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x ﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。
高考三角函数经典解答题及答案
31在△ ABC 中,角A 、B C 所对的边分别是 a, b, c,且a 2 + c 2 — b 2 =1ac. 2(1)求 sin 2——— + cos2 B 的值; 2 (2)若b=2,求△ ABC 面积的最大值.1解:(1)由余弦TE 理:conB=-41 +cos2B=- -4一, 1 1 (2)由 cosB = —,得 sin B48 ,S △AB =:acsinB & "15 (a=c 时取等号) 3 23故S AABC 的最大值为 ------32在^ABC 中,角 A, B, C 的对边分别为 a, b, c,且 bcosC = 3acosB -ccosB.(I)求cosB 的值;(II )若BA BC = 2 ,且b = 2/2 ,求a 和c b 的值.解:(I)由正弦定理得 a =2Rsin A,b =2Rsin B,c = 2RsinC , 贝U2Rsin BcosC = 6Rsin AcosB 一 2Rsin C cosB, 故sin B cosC = 3sin AcosB - sinC cosB, 可得 sin BcosC sinCcosB =3sin AcosB, 即sin(B C) =3sin AcosB,可得 sin A = 3sin AcosB.又 sin A = 0,…1因止匕cos B = —. 3(II )解:由 BA BC =2,可得acosB = 2,1 M 一又 cosB = 一,故 ac = 6,3由b 2=a 2c 2-2accosB, 可得 a 2c 2=12, 所以(a -c)2=0,即a =c,所以a= c= . 63已知向重m = (sin B, 1 - cosB ),向重n = ( 2, 0),且m 与n 所成角为—,sin2AB 21/口a 2 + c 2 =2ac+4 > 2ac,得4 已知向量 m=(1,2sinA), n =(sin A,1+cosA),满足 m//n,b+c = V3a. (I小;(II )求 sin( B +f)的值.解:(1)由 m//n 得 2 sin 2A -1 一 cos A = 0 ……2 分 即 2c os2A+8SA —1 =0, cos A 或 cos A = —12: A 是AABC 的内角,cosA=—1舍去. A 「3(2) : b +c =M 3a由正弦定理,sin B - sin C = 3sin A =32其中A 日C 是AABC 的内角。
(完整版)高考大题-三角函数题型汇总精华(含答案解释)
【模拟演练】1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.2、[2014·北京卷16] 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明 sin cos 20αβ+=; (2)若求β的值.BDCαβ A图5、(07福建)在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △最大边的边长为17,求最小边的边长.6、(07浙江)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.7、(07山东)如图,甲船以每小时302海里的速度向正北 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的 北偏西120︒方向的2B 处,此时两船相距102海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC ∆中,c b a ,,C B A 所对的边分别为,,角,已知B cC b a sin cos +=(1)求B ;(2)若b=2, 求ABC S ∆的最大值。
三角函数解答题精选16道_带答案
期为
从而可得
;(2)根据同角的三角函数关系和三角恒等变换,
结合二倍角的余弦公式、二倍角的正弦公式可求出 .
详解:(1)∵函数 的图象的最高点的坐标为 ,
,
依题意,得 的周期为
(2)由(2)得
∵
,且
,
...
.
点睛:三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上 来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关 系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出 某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相 同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值, 再求角的范围,确定角.
复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调 区间.
2.(1) ;(2)当 时,
;当 时,
【解析】分析:1)化简
,
所以 的最小正周期是 ;(2)结合
求出
,进而利用正弦函数的单调
性可求出函数 在区间 上的最值及相应的 值.
详解:(1)
,
所以 的最小正周期是 .
(2)因为
...
.
(2)求 f(x)在区间
上的最大值和最小值.
12.已知函数 f x 2 3sin xcosx 2cos2x a 1.
(Ⅰ)求 f x 的最小正周期;
(Ⅱ)若
f
x 在区间
6
, 3
上的最大值与最小值的和为
2,求 a
的值.
13.设函数
f
x
tan
三角函数高考试题精选(含详细答案解析)
三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ= .20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin 2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx 的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC 的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos (﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin (3x﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关 B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ= .【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 .【解答】解:f(x)=sin 2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t 2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为 4 .【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7 .【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx 的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC 的最小值是8 .【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x ﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。
三角函数解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
(2)求 的最小值.
【答案】(1) ;
(2) .
解析:(1)因为 ,即 ,
而 ,所以 ;
(2)由(1)知, ,所以 ,
而 , 所以 ,即有 .
所以
.
当且仅当 时取等号,所以 的最小值为 .
【题目栏目】三角函数\三角函数的综合问题
【题目来源】2022新高考全国I卷·第18题
4.(2021年新高考全国Ⅱ卷·第18题)在 中,角 、 、 所对的边长分别为 、 、 , , ..
问题:是否存在 ,它的内角 的对边分别为 ,且 , ,________?
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】解法一:
由 可得: ,
不妨设 ,
则: ,即 .
选择条件①的解析:
据此可得: , ,此时 .
选择条件②的解析:
据此可得: ,
则: ,此时: ,则: .
选择条件③的解析:
可得 , ,
【答案】(1)
(2)
解析:(1)由题意得 ,则 ,
即 ,由余弦定理得 ,整理得 ,则 ,又 ,
则 , ,则 ;
(2)由正弦定理得: ,则 ,则 , .
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2022新高考全国II卷·第18题
3.(2022新高考全国I卷·第18题)记 的内角A,B,C的对边分别为a,b,c,已知 .
则 ,
所以 ,
故 ,
所以 ,
所以 的周长为 .
【题目栏目】三角函数\三角函数的综合问题
【题目来源】2022年全国乙卷理科·第17题
2.(2022新高考全国II卷·第18题)记 的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为 ,已知 .
高考数学解答题(新高考)三角函数的图象与性质(零点或根的问题)(典型例题+题型归类练)(解析版)
专题03 三角函数的图象与性质(零点或根的问题)(典型例题+题型归类练)一、必备秘籍()()sin f x A x k ωϕ=+=实根问题,换元法令t x ωϕ=+将函数()f x 化简为sin y A t =,在利用正弦函数sin t 的图象来解决交点(根,零点)的问题.二、典型例题例题1.(2022·河南驻马店·高一期中(文))已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图像如图所示. (1)求函数()f x 的解析式; (2)设02x π<<,且方程()f x m =有两个不同的实数根,求实数m 的取值范围.第(2)问思路点拨:本小题要求时,方程有两个根,求的取值范围,可采用换元法解答过程:由(1)知,令,由,则,作出函数的图象,根据图象讨论的的个数.图象可知:与的图象在内有两个不同的交点时,,故实数的取值范围为.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)()1,2(1)显然2A =,又1121212T ππππω⎛⎫=--== ⎪⎝⎭,所以2ω=, 所以()()2sin 2f x x ϕ=+,又函数过点,012π⎛⎫- ⎪⎝⎭,所以2sin 06πϕ⎛⎫-+= ⎪⎝⎭,所以()Z 6k k πϕπ-+=∈,又2πϕ<,所以6π=ϕ, 所以所求的函数的解析式为()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)02x π<<,且方程()f x m =有两个不同的实数根,即()y f x =与y m =的图像在02x π<<内有两个不同的交点,令26t x π=+,则7,66t ππ⎛⎫∈ ⎪⎝⎭,作出函数2sin y t =的图像如下:由图像可知:2sin y t =与y m =的图像在7,66t ππ⎛⎫∈ ⎪⎝⎭内有两个不同的交点时,12m <<,故实数m 的取值范围为()1,2.例题2.(2022·山东德州·高一期中)已知()3sin ,sin cos a x x x ωωω=+,()1cos ,cos sin 2b x x x ωωω⎛⎫=- ⎪⎝⎭()01ω<≤,函数()1f x a b =⋅+,直线6x π=是函数()f x 图像的一条对称轴.(1)求函数()f x 的解析式;(2)当[]0,x π∈时,讨论方程()0f x m -=的根的情况.【答案】(1)()sin 216f x x π⎛⎫=++ ⎪⎝⎭(2)答案见解析(1)已知()3sin ,sin cos a x x x ωωω=+,()()1cos ,cos sin 012b x x x ωωωω⎛⎫=-<≤ ⎪⎝⎭,第(2)问思路点拨:本小题要求时,讨论方程的根的情况,可采用换元法解答过程:由(1)知,令,由,则,则讨论方程的根的情况,转化为的根的情况.作出的图象.1.当或,即或时,有0个根; 2.当或,即或时,有1个根;3.当或,即或时,有2个根;4.当,即时,有3个根由图象可知则()12cos 21sin 2126f x x x x πωωω⎛⎫++=++ ⎪⎝⎭, 由于直线6x π=是函数()f x 图像的一条对称轴.所以26f π⎛⎫= ⎪⎝⎭或0,所以2662k πππωπ⋅⋅+=+,()k ∈Z ,所以31k ω=+. 由于01ω<≤,所以,当0k =时,1ω=,所以()sin 216f x x π⎛⎫=++ ⎪⎝⎭(2)由题意得sin 216x m π⎛⎫+=- ⎪⎝⎭,因为[]0,x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦, 令26u x π=+,13,66u ππ⎡⎤∈⎢⎥⎣⎦, 则sin 1u m =-,如图.1.当11m ->或11m -<-,即0m <或2m >时,()f x 有0个根; 2.当11m -=或11m -=-,即0m =或2m =时,()f x 有1个根; 3.当1112m <-<或1112m -<-<,即322m <<或302m <<时,()f x 有2个根;4.当112m -=,即32m =时,()f x 有3个根 综上,当0m <或2m >时,()f x 有0个根; 当0m =或2m =时,()f x 有1个根; 当322m <<或302m <<时,()f x 有2个根;32m =时,()f x 有3个根.例题3.(2022·山东·日照青山学校高一期中)已知函数()2sin f x x =,将()f x的图象向右平移3π个单位长度,再把所有点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象. (1)求函数()g x 的解析式及单调递增区间; (2)方程()25g x =在17,612ππ⎛⎫ ⎪⎝⎭上的根从小到大依次为123,,x x x ,求1232x x x ++的值.第(2)问思路点拨:方程在上的根从小到大依次为,求的值.可采用换元法解答过程:由(1)知,令,由,则其中,;即,, ,,.根据图象作答转化为:方程在有个解,作出图象和问题转化作图象,找交点【答案】(1)()2sin 23g x x π⎛⎫=- ⎪⎝⎭,单调递增区间为()5,1212k k k ππππ-++⎡⎤∈⎢⎥⎣⎦Z (2)123823x x x π++= (1)2sin 33f x x ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,()2sin 23g x x π⎛⎫∴=- ⎪⎝⎭;令()222232k x k k πππππ-+≤-≤+∈Z ,解得:()51212k x k k ππππ-+≤≤+∈Z , ()f x ∴的单调递增区间为()5,1212k k k ππππ-++⎡⎤∈⎢⎥⎣⎦Z(2)令()22sin 235g x x π⎛⎫=-= ⎪⎝⎭,即1sin 235x π⎛⎫-= ⎪⎝⎭;17,612x ππ⎛⎫∈ ⎪⎝⎭,520,32x ππ⎡⎤∴-∈⎢⎥⎣⎦,设23x πθ=-,其中50,2πθ⎡⎤∈⎢⎥⎣⎦,即1sin 5θ=, 结合正弦函数5sin 02y x x π⎛⎫=≤≤⎪⎝⎭的图象可知:方程1sin 5θ=在50,2πθ⎡⎤∈⎢⎥⎣⎦有3个解123,,θθθ,其中12θθπ+=,233θθπ+=; 即122233x x πππ-+-=,2322333x x πππ-+-=,1256x x π∴+=,23116x x π+=,123823x x x π∴++=. 三、题型归类练1.(2022·河南驻马店·高一期中(理))已知点()()11,A x f x ,()()22,B x f x 是函数()()2sin 0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,P ,()()124f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的解析式;(2)()y f x m =-在0,3x π⎛⎫∈ ⎪⎝⎭内有两个不同的零点,求实数m 的取值范围.【答案】(1)()2sin 33f x x π⎛⎫=- ⎪⎝⎭;2m <.(1)角ϕ的终边经过点(1,P ,∴tan ϕ=∵02πϕ-<<,∴3πϕ=-,由()()124f x f x -=时,12x x -的最小值为3π, 得23T π=,即223ππω=,∴3ω=,∴()2sin 33f x x π⎛⎫=- ⎪⎝⎭;(2)∵()y f x m =-在0,3x π⎛⎫∈ ⎪⎝⎭内有两个不同的零点,即()y f x =与y m =的图象在0,3x π⎛⎫∈ ⎪⎝⎭内有两个不同的交点,令33t x π=-,由0,3x π⎛⎫∈ ⎪⎝⎭,则2,33t ππ⎛⎫∈- ⎪⎝⎭, 即2sin y t =与y m =在2,33t ππ⎛⎫∈- ⎪⎝⎭上有两个交点,2m <.2.(2022·辽宁·大连市第一中学高一期中)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)m ⎡∈⎣,12(1)解:)()2cos cos 1f x xx x ωωω=+-,2cos 2cos 1x x x ωωω=⋅+-,2cos 2x x ωω=+,2sin 26x πω⎛⎫=+ ⎪⎝⎭,设函数()f x 的周期为T ,则,24T AB ⎛⎫= ⎪⎝⎭,,42T BC ⎛⎫=- ⎪⎝⎭,则228888T AB BC π⋅=-=-,所以T π=.故22T ππω==,故1ω=, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)由题意,函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦上有且仅有三个不同的零点,1x ,2x ,3x ,即曲线()y f x =与y m =在130,12π⎡⎤⎢⎥⎣⎦上有且仅有三个不同的交点.设26t x π=+,当130,12x π⎡⎤∈⎢⎥⎣⎦时,7,63t ππ⎡⎤∈⎢⎥⎣⎦.则2sin y t =,7,63t ππ⎡⎤∈⎢⎥⎣⎦,则m ⎡∈⎣,12t t π+=,233t t π+=,所以12324t t t π++=,即12322224666x x x ππππ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即123523x x x π++=, 所以12351cos(2)cos32π++==x x x .3.(2022·四川省内江市第六中学高一期中(文))已知函数()()2sin cos 23f x x x x π=+. (1)求函数f (x )的最小正周期T 及()1003f π的值;(2)若关于x 的方程()12f x a π+=在20,3π⎡⎤⎢⎥⎣⎦上有2个解,求实数a 的取值范围.【答案】(1)最小正周期π,(2)1142a ⎡⎫∈⎪⎢⎣⎭,.(1)解:()2sin cos 3f x x x x π⎛⎫=+ ⎪⎝⎭12sin cos 2x x x x ⎛⎫= ⎪ ⎪⎝⎭2sin cos x x x x =1sin22x x =1sin22x =T π=,100133sin 233323f f f πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+==⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)解:sin 22126f x a x a ππ⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭. 23023662x x ππππ⎡⎤⎡⎤∈⇒+∈⎢⎥⎢⎥⎣⎦⎣⎦,,,设32,[,]662t x t πππ=+∈,所以sin 2t a =有两个解, 结合图像可知1212a ≤< 故1142a ⎡⎫∈⎪⎢⎣⎭,.4.(2022·山东潍坊·高一期中)已知函数()33sin 26sin sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求函数()f x 的最小正周期和单调递增区间;(2)若函数()y f x k =-在区间130,12π⎡⎤⎢⎥⎣⎦上有且仅有两个零点12,x x ,求k 的取值范围,并求12x x +的值.【答案】(1)最小正周期π,单调递增区间为(),63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ;(2)k 的范围为()33,0,32⎛⎫--⋃ ⎪⎝⎭,12x x +为53π或23π.(1)因为()33sin 26sin sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()3cos 223sin cos sin cos 2x x x x x x =++-()22cos 223sin c 3s 2o x x x x =+-cos 223cos 223x x x =- 63sin 2x π⎛⎫=- ⎪⎝⎭,所以()f x 的最小正周期22T ππ==, 令222262k x k πππππ-≤-≤+,k ∈Z ,则()63k x k k ππππ-≤≤+∈Z ,所以()f x 的单调递增区间为(),63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z .(2)由题意,()0f x k -=在130,12π⎡⎤⎢⎥⎣⎦上有且仅有两个解12,x x ,即()y f x =与y k =在130,12π⎡⎤⎢⎥⎣⎦上有且仅有两个交点,由130,12x π⎡⎤∈⎢⎥⎣⎦,则2,266x πππ⎡⎤-∈-⎢⎥⎣⎦,设26t x π=-,则3sin ,,26y t t ππ⎡⎤=∈-⎢⎥⎣⎦, 3sin ,,26y t t ππ⎡⎤=∈-⎢⎥⎣⎦的图象如下,由图知:k 的取值范围为()33,0,32⎛⎫--⋃ ⎪⎝⎭, 设3sin y t =与y k =在,26ππ⎡⎤-⎢⎥⎣⎦上的两个交点的横坐标分别为12,t t , 当33,2k ⎛⎫∈-- ⎪⎝⎭时12,t t 关于32t π=对称,即12,x x 关于56x π=对称,则1253x x π+=; 当()0,3k ∈时12,t t 关于2t π=对称,即12,x x 关于3x π=对称,则1223x x π+=; 综上,12x x +的值是53π或23π. 5.(2022·辽宁·鞍山一中高一期中)已知函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图像向左平移6π个单位,得到函数()g x 的图像,且()g x 为偶函数.(1)求函数()f x 和()g x 的解析式;(2)若对a ∀,[]0,b m ∈.当a b <时,都有()()()()f b f a g a g b ->-成立,求m 的取值范围;(3)若关于x 的方程()()f x g x k +=在130,6π⎡⎤⎢⎥⎣⎦上恰有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,求k 的取值范围和123422x x x x +++的值.【答案】(1)()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()cos2g x x =(2)012m π<≤.(3)32<k ,132π (1)由题意()sin 263g x f x x ππϕ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭, 因为()g x 为偶函数,所以()()g x g x -=,即sin 2sin 233x x ππϕϕ⎛⎫⎛⎫-++=++ ⎪ ⎪⎝⎭⎝⎭,所以32k ππϕπ+=+,k Z ∈, 而2πϕ<,故0k =,6π=ϕ,()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()sin 2cos 22π⎛⎫=+= ⎪⎝⎭g x x x . (2)对a ∀,[]0,b m ∈,a b <,都有()()()()f b f a g a g b ->-,()()()()f b g b f a g a +>+,设()()()h x f x g x =+,则()h x 在[]0,m 单调递增.又()()()3sin 2cos 22cos 22623h x f x g x x x x x x ππ⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪⎝⎭⎝⎭,令23u x π=+,则,233u m ππ⎡⎤∈+⎢⎥⎣⎦,y u =在,233u m ππ⎡⎤∈+⎢⎥⎣⎦递增, 故232m ππ+≤,012m π<≤.(3)()()()23h x f x g x x π⎛⎫=+=+ ⎪⎝⎭,令23t x π=+,则14,33t ππ⎡⎤∈⎢⎥⎣⎦, 则sint =恰有4个不等实根1t ,2t ,3t ,4t ,则32<k ,不妨设1234t t t t <<<, 函数()sin t t ϕ=,14,33t ππ⎡⎤∈⎢⎥⎣⎦与函数y =4个交点,如图所示(略),()sin t t ϕ=在,32ππ⎡⎤⎢⎥⎣⎦,35,22ππ⎡⎤⎢⎥⎣⎦,79,22ππ⎡⎤⎢⎥⎣⎦递增,在3,22ππ⎡⎤⎢⎥⎣⎦,57,22ππ⎡⎤⎢⎥⎣⎦,914,22ππ⎡⎤⎢⎥⎣⎦递减,1433ππϕϕ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭591222πππϕϕϕ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,37122ππϕϕ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭, 12322t t π+=,23522t t π+=,34722t t π+=,12342215t t t t π+++=, ()1234222215x x x x ππ++++=,123413222x x x x π+++=. 6.(2022·陕西·西安建筑科技大学附属中学高一阶段练习)已知函数()()cos f x A x ωϕ=+(0A >,0>ω,2πϕ≤)的部分图象大致如图.(1)求()f x 的单调递增区间.(2)将函数()f x 的图象向右平移4π个单位长度得到曲线C ,把C 上各点的横坐标保持不变,纵坐标变为原来的2倍得到函数()g x 的图象.若关于x 的方程()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数解,求实数m 的取值范围.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈(2)[)1,2 (1)根据图象,可得1A =,由124312πππω⋅=-,得2ω=. 所以()()cos 2f x x φ=+,由2012πϕ⨯+=,得6πϕ=-, 所以()cos 26f x x π⎛⎫=- ⎪⎝⎭. 令2226k x k ππππ-≤-≤,Z k ∈,得51212k x k ππππ-+≤≤+,Z k ∈, 所以()f x 的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈. (2)将函数()y f x =的图象向右平移4π个单位长度得到曲线C :cos 2sin 2466y x x πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再把C 上各点的横坐标保持不变,纵坐标变为原来的2倍得到()2sin 26g x x π⎛⎫=- ⎪⎝⎭的图象. 由()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数解,即2sin 26m x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数解, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,设26t x π=-,则5,66t ππ⎡⎤∈-⎢⎥⎣⎦,则需直线y m =与2sin y t =的图象在5,66t ππ⎡⎤∈-⎢⎥⎣⎦两个不同的公共点.画出2sin y t =在5,66t ππ⎡⎤∈-⎢⎥⎣⎦时的简图如下:1,2.所以实数m的取值范围为[)。
高考三角函数(含答案)
三角函数习题一、选择题1、以下四个命题中:(1)第一象限的角一定不是负角;(2)小于90°的角是锐角;(3)锐角是第一象限的角;(4)第二象限期角是钝角,其中正确命题个数是 ( )A 、1 ; B 、2; C 、3 ; D 、4。
2.下列角中终边与-300°的终边相同的角是 ( )A-60°; B 、300°; C 、60°; D 、630°。
3.终边在坐标轴上角的集合可以表示成 ( )。
A 、0{|90}2k k Z αα=⋅∈,; B 、 0{|180}k k Z αα=⋅∈,;C 、 0{|180}k k Z αα=⋅∈0+90,;D 、 {α| α=k ·360°+90°,k ∈Z }。
4.若α是第一象限的角,则2α所在的象限为( )。
A 、第一象限; B 、 第一或第二象限; C 、 第一或三象限; D 、 第一或四象限。
5.下列命题正确的是 ( )。
A 、 用弧度制表示的角都是正角;B 、1弧度角的大小与圆的半径无关;C 、大圆中1弧度角比小圆中1弧度角大;D 、圆心角为1弧度的扇形的弧长相等。
6、终边落在x 轴上的角的集合是( )。
A 、{α|α=2k π,k ∈Z};B 、{α|α=k π,k ∈Z};C 、{α|α=(2k+1)π,k ∈Z};D 、{α|α=2k π,k ∈Z}7、若α的终边在y 轴上,则在α的六种三角函数中,函数值不存在的是( )。
A 、sin α与cos α ;B 、t a n α与cot α;C 、t a n α与sec α;D 、cot α与csc α。
8、若角α的终边经过点P (-3,-2),则( )A 、sin α·t a n α>0 ;B 、cos α·t a n α>0;C 、sin α·cos α>0 ;D 、sin α·cot α>0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值.解:(1) 由余弦定理:conB=14sin 22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a 2+c2=ac+4≥2ac,得ac≤38,S △ABC =acsinB≤315(a=c 时取等号)1212 故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B (II )解:由2cos ,2==⋅B a BC BA 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又所以a =c =63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为,π3其中A 、B 、C 是ABC ∆的内角。
(1)求角B 的大小;(2)求 C A sin sin +的取值范围。
解:(1) m =()B B cos 1,sin -,且与向量n = (2,0)所成角为3π,∴3sin cos 1=-BB∴1cos sin3=+B A ∴21)6sin(=+πB 又 π<<B 0∴6766πππ<+<B ∴656ππ=+B ∴32π=B (2)由(1)知,32π=B ,∴A+C= 3π∴C A sin sin +=)3sin(sin A A -+π=A A cos 23sin 21+=)3sin(A +π30π<<A ,∴3233πππ<+<A ∴)3sin(A +π⎥⎦⎤ ⎝⎛∈1,23,∴ C A sin sin +⎥⎦⎤⎝⎛∈1,234已知向量(1,2sin )m A = ,(sin ,1cos ),//,.n A A m n b c =++=满足 (I )求A 的大小;(II )求sin(6π+B 的值.解:(1)由m//n 得0cos 1sin 22=--A A ……2分即01cos cos 22=-+A A 1cos 21cos -==∴A A 或1cos ,-=∆A ABC A 的内角是 舍去 3π=∴A (2)ac b 3=+由正弦定理,23sin 3sin sin ==+A C B π32=+C B23)32sin(sin =-+∴B B π23)6sin(23sin 23cos 23=+=+∴πB B B 即5在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,C =2A ,43cos =A ,(1)求BC cos ,cos 的值;(2)若227=⋅BC BA ,求边AC 的长。
解:(1)81116921cos 22cos cos 2=-⨯=-==A A C 47sin ,43cos ;873sin ,81cos ====A A C C 得由得由 ()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B (2)24,227cos ,227=∴=∴=⋅ac B ac BC BA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=6 25169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.6已知A B 、是△ABC 的两个内角,向量, sin22A B A B a +-= ,若||a =. (Ⅰ)试问B A tan tan ⋅是否为定值?若为定值,请求出;否则请说明理由;(Ⅱ)求C tan 的最大值,并判断此时三角形的形状.解:(Ⅰ)由条件223||2a == 221cos()2cos sin 1cos()222A B A B A B A B +---=+=+++∴1cos()cos()2A B A B +=-∴3sin sin cos cos A B A B = ∴1tan tan 3A B ⋅=为定值.(Ⅱ)tan tan tan tan()1tan tan A BC A B A B+=-+=--由(Ⅰ)知1tan tan 3A B ⋅=,∴tan ,tan 0A B >从而3tan (tan tan )2C A B =-+≤322-⋅=∴取等号条件是tan tan A B ==, 即6A B π== 取得最大值,7在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a+b=5,c=7,且.272cos 2sin 42=-+C B A (1) 求角C 的大小; (2)求△ABC 的面积.解:(1) ∵A+B+C=180°由272cos 2cos 4272cos 2sin 422=-=-+C C C B A 得 ∴27)1cos 2(2cos 142=--+⋅C C整理,得01cos 4cos 42=+-C C解 得:21cos =C ……5分 ∵︒<<︒1800C ∴C=60°(2)解:由余弦定理得:c 2=a 2+b 2-2abcosC ,即7=a 2+b 2-ab∴ab b a 3)(72-+=由条件a+b=5得 7=25-3abab=6……10分∴23323621sin 21=⨯⨯==∆C ab S ABC 8已知角C B A ,,为ABC ∆的三个内角,其对边分别为c b a ,,,若)2sin ,2cos(A A -=m ,)2sin ,2(cos A A =n ,32=a ,且21=⋅n m . (1)若ABC ∆的面积3=S ,求c b +的值.(2)求c b +的取值范围.解:(1)2sin ,2cos(A A m -=,)2sin ,2(cos A A n =,且21=⋅n m .212sin 2cos 22=+-∴A A ,即21cos =-A ,又),0(π∈A ,32π=∴A ………..2分又由3sin 21=⋅=∆A bc S ABC ,4=∴bc由余弦定理得:bc c b bc c b a ++=⋅-+=2222232cos2π2)(16c b +=∴,故4=+c b(2)由正弦定理得:432sin32sin sin sin ====πA a C c B b ,又3ππ=-=+A C B ,)3sin(4)3sin(4sin 4sin 4sin 4ππ+=-+=+=+∴B B B C B c b30π<<B ,则3233πππ<+<B .则13sin(23≤+<πB ,即c b +的取值范围是].4,32(…10分9在锐角△ABC 中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,且(tanA -tanB)=1+tanA·tanB .(1)若a 2-ab =c 2-b 2,求A 、B 、C 的大小;(2)已知向量m =(sinA ,cosA),n =(cosB ,sinB),求|3m -2n |的取值范围.10在ABC ∆中,角A B C 、、的对边分别为a b c 、、,(2,)b c a =-m ,(cos ,cos )A C =-n ,且⊥m n 。
⑴求角A 的大小;⑵当22sin sin(2)6y B B π=++取最大值时,求角B 的大小解:⑴由⊥m n ,得0=A m n ,从而(2)cos cos 0b c A a C --=由正弦定理得2sin cos sin cos sin cos 0B AC A A C --=2sin cos sin()0,2sin cos sin 0B A AC B A B -+=-= ,(0,)A B π∈,∴1sin 0,cos 2B A ≠=,∴3A π=(6分)⑵22sin sin(2)(1cos 2)sin 2coscos 2sin666y B B B B B πππ=++=-++112cos 21sin(226B B B π=-=+-由(1)得,270,2,366662B B ππππππ<<-<-<=∴2B -时,即3B π=时,y 取最大值211在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos B C ba c=-+2. (I )求角B 的大小; (II )若b a c =+=134,,求△ABC 的面积.解:(I )解法一:由正弦定理a Ab B cCR sin sin sin ===2得 a R A b R B c R C===222sin sin sin ,, 将上式代入已知cos cos cos cos sin sin sin B C b a c B C BA C=-+=-+22得 即20sin cos sin cos cos sin A B C B C B ++= 即20sin cos sin()A B B C ++=∵A B C B C A A B A ++=+=+=π,∴,∴sin()sin sin cos sin 20 ∵sin cos A B ≠,∴,012=-∵B 为三角形的内角,∴B =23π.解法二:由余弦定理得cos cos B a c b ac C a b c ab =+-=+-22222222,将上式代入cos cos B C b a c a c b ac ab a b c ba c =-++-+-=-+2222222222得× 整理得a c b ac 222+-=-∴cos B a c b ac ac ac =+-=-=-2222212∵B 为三角形内角,∴B =23π (II )将b a c B =+==13423,,π代入余弦定理b a c ac B 2222=+-cos 得 b a c ac ac B 2222=+--()cos ,∴131621123=--=ac ac (),∴ ∴S ac B ABC △==12343sin . 12ABC ∆中,a 、b 、c 是三个内角A 、B 、C 的对边,关于x的不等式2cos 4sin 60x C x C ++<的解集是空集. (1)求角C 的最大值;(2)若72c =,ABC ∆的面积S =,求当角C 取最大值时a b +的值.解析:(1)显然0cos =C 不合题意, 则有cos 00C >⎧⎨∆≤⎩,即2cos 016sin 24cos 0C C C >⎧⎨-≤⎩, 即cos 01cos 2cos 2C C C >⎧⎪⎨≤-≥⎪⎩或, 故1cos 2C ≥,∴角C 的最大值为60︒。