立体几何垂直证明题常见模型及方法

合集下载

方法技巧专题05立体几何中平行与垂直证明

方法技巧专题05立体几何中平行与垂直证明

方法技巧专题05立体几何中平行与垂直证明平行与垂直证明是立体几何中的重要内容之一,本文将介绍一些方法和技巧用于解决平行与垂直的证明问题。

一、平行性的证明方法:1.公共光线法:如果两条直线分别与第三条直线相交,在相交点处的两个对应的内角相等,则这两条直线是平行的。

例如,如果直线AB和CD都与直线EF相交,在交点F处的∠AFC=∠DFB,则AB,CD。

2.反证法:假设AB和CD不平行,然后通过构造形式,证明得到矛盾。

例如,如果直线AB和CD不平行,则可以证明存在一条直线EF与这两条直线分别相交于F和G,且所形成的内角∠FAG=π/2-∠DAF≠π/2,则与直线EF平行,这是与已知条件矛盾的,所以AB,CD。

3.平行线性质法:利用平行线的性质来证明其他线段平行。

例如,根据平行线的交角性质可证明,如果一条直线与一对平行线之一形成等于直角的角,则与另一条平行线也形成等于直角的角。

二、垂直性的证明方法:1.垂直线性质法:利用垂直线的性质来证明其他线段垂直。

例如,如果直线AB与直线CD相交于点E,且∠AED=∠BEC=π/2,则直线AB垂直于直线CD。

2.垂直线段法:如果两条线段的斜率之积为-1,则这两条线段垂直。

例如,如果直线AB和直线CD的斜率之积为-1,则AB⊥CD。

3.反证法:假设AB和CD不垂直,然后通过构造形式,证明得到矛盾。

例如,如果直线AB和CD不垂直,则可以证明存在一条直线EF与这两条直线相交于点G,且所形成的两个内角∠GAC和∠GDB之和小于π/2,这与直线EF垂直的性质矛盾,所以AB⊥CD。

综上所述,平行与垂直证明可以通过公共光线法、反证法、平行线性质法、垂直线性质法、垂直线段法等方法和技巧来解决。

在实际问题中,可以根据已知条件选择合适的方法和技巧,灵活运用来解决平行与垂直的证明问题。

第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习

第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习

垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。

【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。

专题20立体几何中的平行与垂直问题(解析版)

专题20立体几何中的平行与垂直问题(解析版)

专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。

直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。

立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,BE 'ADFG2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =类型3:面面垂直的证明。

立体几何中的垂直、二面角、点面距三连问问题解法举例

立体几何中的垂直、二面角、点面距三连问问题解法举例

立体几何中的垂直、二面角、点面距三连问问题解法举例在立体几何命题中,第一问证明垂直(线线垂直,线面垂直或者面面垂直)、第二问求二面角大小或某种三角函数值、第三问点面距,这种连续三问的几何题学生求解起来往往感到比较吃力,费时较多,需要加强研究训练,现在举例说明这类问题常见的解法.例1:如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的平面角的正弦值; (Ⅲ)求点C 到平面1A BD 的距离. 解法一(几何法):(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥,1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF , 由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥,AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF又112AG AB ==sin AG AFG AF∴==∠ABC D1A 1C1BO F所以二面角1A A D B --(Ⅲ)1A BD △中,111A BD BD A D A B S ===△1BCD S =△. 在正三棱柱中,1A 到平面11BCC B设点C 到平面1A BD 的距离为d .由11A BCD C A BD V V --=,得11133BCD A BD S S d △△,1A BDd ∴==△∴点C 到平面1A BD解法二(坐标法):(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A,(00A ,1(120)B ,,,1(12AB ∴= ,,(210)BD =-,,,1(12BA =- . 12200AB BD =-++= ,111430AB BA =-+-= , 1AB BD ∴ ⊥,11AB BA⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =- ,,1(020)AA = ,,. AD ⊥n ,1AA⊥n , 100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,. 令1z =得(=,n 为平面1A AD 的一个法向量.由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量.cos <n,111AB AB AB >==n n∴二面角1A A D B --的大小为(Ⅲ)由(Ⅱ),1AB为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD的距离11BC AB d AB =本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2:如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,其中2,AB =PA =(1)求证:11PA B D ⊥;(2)求平面PAD 与平面11BDD B 所成的锐二面角θ的余弦值; (3)求1B 到平面PAD 的距离解法一(坐标法)以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系 (1)设E 是BD 的中点, P —ABCD 是正四棱锥,∴ABCDPE ⊥又2,AB PA ==, ∴2=PE∴)4,1,1(P ∴ 11(2,2,0),(1,1,2)B D AP =-=, ∴ 110B D AP ⋅=, 即11PA B D ⊥.(2)设平面PAD 的法向量是(,,)m xy z =,(0,2,0),(1,1,2)AD AP ==∴ 02,0=+=z x y 取1=z 得(2,0,1)m =-,又平面11BDD B 的法向量是(1,1,0)n =∴cos ,m n m n m n⋅<>==,∴cos θ=.(3)1(2,0,2)B A =-, ∴1B 到平面PAD的距离1B A m d m ⋅==解法二(几何法):(1)设AC 与BD 交点为O ,连PO ;∵P —ABCD 是正四棱锥,∴PO ⊥面ABCD ,∴AO 为PA 在平面ABCD 上的射影, 又ABCD 为正方形, ∴AO ⊥BD ,由三垂线定理知PA ⊥BD ,而BD ∥B 1D 1,∴11PA B D ⊥. (2)由题意知平面PAD 与平面11BDD B 所成的锐二面角为二面角A -PD -B ;∵AO ⊥面PBD ,过O 作OE 垂直PD 于E ,连AE , 则由三垂线定理知∠AEO 为二面角A -PD -B 的平面角;可以计算得,cos 5θ=(3)设B 1C 1与BC 的中点分别为M 、N ;则1B 到平面PAD 的距离为M 到平面PAD 的距离;由V M -PAD =V P -ADM 求得556=d .。

2017年__高二年级立体几何垂直证明题常见模型和方法

2017年__高二年级立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。

高中数学必修立体几何专题线面垂直方法总结

高中数学必修立体几何专题线面垂直方法总结



A
B
C
D-
A1
B1C
1
D

1



A
A1=
6,
底 面 A B C D 是 菱 形 , A B= 2, A B C= 60, P为 侧 棱
B B1上 的 动 点 .
1求 证 : D1P AC;
2 设 AC BD= O,
求 当 B1P 等 于 多 少 时 , PB
PO 平 面 D1AC ?
【 解 析 】1 证 明 :
因为E是PC的中点,所以AE⊥PC. 由(1)知,AE⊥CD,且PC∩CD=C, 所以AE⊥平面PCD. 而PD 平面PCD,所以AE⊥PD. 又因为PA⊥底面ABCD,所以PA⊥AB. 由已知得AB⊥AD,且PA∩AD=A,所以AB⊥ 平面PAD. 又PD 平面PAD,所以AB⊥PD. 因为AB∩AE=A,所以PD⊥平面ABE.
【证明】(1)连结AC,取其 中点O,连结NO、MO,并 延长MO交CD于R. 因为N为PC的中点, 所以NO为△PAC的中位线,所以NO∥PA. 而PA⊥平面ABCD,所以NO⊥平面ABCD,所 以NO⊥CD. 又四边形ABCD是矩形,M为AB的中点,O为 AC的中点,所以MO⊥CD. 而MO∩NO=O, 所以CD⊥平面MNO,所 以 CD⊥MN.
BB1C1C.







A
B
C
D-
A1 B 1C
1
D

1

BB1 平 面 ABC D, 所 以 BB1 AC .
又 因 为 B A D= A D C = 9 0 , A B
= 2AD= 2C D= 2,

6.立体几何垂直证明题常见模型及方法

6.立体几何垂直证明题常见模型及方法
立体几何垂直证明题常见模型 及方法
类型一:线线垂直证明(共面垂直、异面垂直)
共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)
1 、等腰(等边)三角形中的中线 2、 菱形(正方形)的对角线互相垂直 3、勾股定理中的三角形 4 、 1:1:2 的直角梯形中 5 利用相似或全等证明直角。
类型三、面面垂直的证明。 (本质上是证明线面垂直)
B EABiblioteka C FD类型四、探索性问题
异面垂直 (利用线面垂直来证明,高考中的意图)
类型二:线面垂直证明
方法1 利用线面垂直的判断定理
A
D O B E
C
2 利用面面垂直的性质定理 (方法点拨:此种情形,条件中含有面面垂直。)
例3、在四棱锥P-ABCD,底面ABCD是正方形,侧 面PAB是等腰三角形,且平面PAB⊥面ABCD,求证 BC⊥面PAB

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。

北师大版必修第二册第六章立体几何初步专题课:平面与平面垂直的证明技法课件

北师大版必修第二册第六章立体几何初步专题课:平面与平面垂直的证明技法课件
直:即在一个面内找一条线与另一个面垂直
证明:取BC的中点D,连接AD,SD。由题意知
, 为等边三角形,所以 = ,易证 ⊥

因为 ∆是等腰直角三角形,所以 =SD,可得
2
2
2
2
2
2
+ = + = = 。
在 ∆中,由勾股定理的逆定理知 ⊥SD.由 ∩
B.垂直于同一条直线的两条直线互相平行
C.两个平面与第三个平面垂直,则这两个平面互相平行
D.两个平行平面中的一个平面与第三个平面垂直,则另一
个平面也与第三个平面垂直
分析:本题主要考查空间直线与直线,直线与平
面,平面与平面的位置关系。
解:对于A,平行于同一个平面的两条直线可能
的位置关系有相交、异面、平行,因此不一定是
互相平行。
对于B,垂直于同一条直线的两条直线的位置关
系有平行、相交、异面,因此不一定是互相平行。
对于C,如图3所示,平面ABC与平面ABE都垂直
平面BCE,但平面ABC与平面ABE相交 。D是正
确的。
说明
这种方法用的比较少,在理论中行得通,
在实践中,针对性的题比较少。
四、向量法
已知两个平面α,β,两个平面的法向量分别为
垂线在平面BDM内.
(1)如图所示,取EC的中点F,连接DF.
∵EC⊥平面ABC,
∴EC⊥BC,
又由已知,易得DF∥BC,
∴DF⊥EC.
在Rt△EFD和Rt△DBA中,EF=EC=BD,
且由已知,易得FD=BC=AB,
∴Rt△DFE≌Rt△ABD,故ED=DA.
(2)取CA的中点N,连接MN,BN,
则MN∥EC,又BD∥CE,且MN=EC,又BD=CE

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法

• (1)证明 如图,设AC与BD交于点G,则G为AC 的中点.连接EG,GH,由于H为BC的中点, • 故GH=(1/2)AB. • 又EF=(1/2)AB ,∴EF=GH. • 又EF∥AB GH∥AB ∴EF ∥ GH • ∴四边形EFHG为平行四边形. • ∴EG∥FH. • 而EG⊂平面EDB,FH⊄平面EDB, • ∴FH∥平面EDB.
3、如果一条直线和一个平面内的两条相交直线垂直,那么
这条直线垂直于这个平面。(线面垂直的判定定理) 4、如果两个平面互相垂直,那么在一个平面内垂直于它们 交线的直线垂直于另一个平面。(面面垂直的性质定理) 5、两条平行直线中的一条垂直于平面,则另一条也垂直于
1、定义法:直线与平面内任意直线都垂直。 2、点在面内的射影。
四、线线垂直的证明方法:
1、勾股定理。 2、等腰三角形,三线合一
3、菱形对角线,等几何图形
4、直径所对的圆周角是直角。 5、点在线上的射影。
6、如果一条直线和一个平面垂直,那么这条直线就和这个
平面内任意的直线都垂直。
7、如果两条平行线中的一条垂直于一条直线,则另一条也
垂直于这条直线。
五、线面垂直的证明方法:
3.利用线面平行的性质定理: 如果一条直线平行于一个平面,经过这条直线的
平面和这个平面相交,则这条直线和交线平行 4.利用面面平行的性质定理: 如果两个平行平面同时和第三个平面相 交,那么它们的交线平行, 5.利用线面垂直的性质定理: 垂直于同一个平面的两条直线平行
二、线面平行的证明方法:
1、定义法:直线与平面没有公共点。 2、如果平面外一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行。(线面平行的判定定理) 3、两个平面平行,其中一个平面内的任何一条直线必平行

立体几何证垂直的方法

立体几何证垂直的方法

立体几何证垂直的方法
证明两条线段垂直的方法通常有以下几种:
1. 垂直线段的定义:根据垂直线段的定义,如果两条线段的斜率乘积为-1,则它们是垂直的。

可以通过计算两条线段的斜率并判断它们的乘积是否为-1。

2. 垂直平分线:如果一条线段上的点到另一条线段的距离都相等且垂直于另一条线段,则它们是垂直的。

可以通过计算两条线段上的某个点到另一条线段的距离,并判断这些距离是否相等。

3. 垂直平行线:如果两条平行线段与第三条互相垂直,则它们本身也是垂直的。

可以通过找到与两条平行线段都垂直的第三条线段,并判断它们之间的关系。

4. 正交投影:如果两条线段在平面上的正交投影相交,则它们是垂直的。

可以将两条线段的正交投影投影到平面上,并判断它们是否相交。

以上是一些常见的证明两条线段垂直的方法,具体证明方法还要根据具体的题目和条件来进行选择和应用。

高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲

高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲

线面垂直的证明中的找线技巧◆通过计算,运用勾股定理寻求线线垂直1 如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC交BD 于点O ,求证:1A O ⊥平面MBD .证明:连结MO ,1A M,∵D B⊥1A A ,D B⊥AC ,1A AAC A =,∴DB ⊥平面11A ACC ,而1AO ⊂平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2234MO a =.在Rt △11A C M 中,22194A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩D B=O ,∴ 1A O ⊥平面MBD . 评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.◆利用面面垂直寻求线面垂直2 如图2,P 是△A BC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:B C⊥平面PAC .证明:在平面PAC 内作A D⊥PC 交PC 于D.因为平面PAC ⊥平面PB C,且两平面交于P C,AD ⊂平面PAC ,且A D⊥PC , 由面面垂直的性质,得AD ⊥平面PB C. 又∵BC ⊂平面P BC ,∴AD ⊥BC .∵PA ⊥平面AB C,BC ⊂平面ABC ,∴PA ⊥BC .∵AD ∩PA =A ,∴BC ⊥平面PAC .(另外还可证BC 分别与相交直线AD ,A C垂直,从而得到BC ⊥平面PAC ).评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.3 如图1所示,ABCD 为正方形,SA ⊥平面AB CD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD , ∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ⊂平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥.评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.4 如图2,在三棱锥A -BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E 为垂足,作AH ⊥B E于H .求证:AH ⊥平面B CD.证明:取A B的中点F,连结CF ,DF . ∵ACBC =,∴CF AB ⊥.∵AD BD =,∴DF AB ⊥.又CF DF F =,∴AB ⊥平面CDF . ∵CD ⊂平面CD F,∴CD AB ⊥. 又CD BE ⊥,BE AB B =, ∴CD ⊥平面A BE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =,∴ AH ⊥平面BCD .评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.5 如图3,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E 为垂足,F 是P B上任意一点, 求证:平面AEF ⊥平面PBC .证明:∵AB 是圆O 的直径,∴AC BC ⊥.∵PA ⊥平面AB C,BC⊂平面A BC ,∴PA BC ⊥.∴BC ⊥平面APC . ∵BC ⊂平面P BC ,∴平面AP C⊥平面PBC .∵AE ⊥PC ,平面APC ∩平面P BC =P C, ∴AE ⊥平面PBC .∵AE ⊂平面AE F,∴平面AE F⊥平面PB C. 评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直的关系.6. 空间四边形ABCD 中,若AB ⊥CD ,BC ⊥AD,求证:AC ⊥BDAD B O C证明:过A 作AO ⊥平面BCD 于O 。

立体几何线面垂直的证明

立体几何线面垂直的证明

立体几何证明【知识梳理】1.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)2..直线与平面垂直判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。

(线面垂直⇒线线垂直)性质2:如果两条直线同垂直于一个平面,那么这两条直线平行.三。

平面与平面空间两个平面的位置关系:相交、平行.1.平面与平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)2. 两个平面垂直判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直⇒线面垂直)知识点一 【例题精讲】1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。

(1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V.2.如图所示, 四棱锥P -ABCD 底面是直角梯形,,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V .3、如图所示,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,证明:(1)AE⊥CD(2)PD⊥平面ABE.4、.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;练习1、如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.(Ⅰ)证明:AD⊥PB;(Ⅱ)求三棱锥C﹣PAB的高.2.如图1­4所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.求证:EF⊥平面BCG;3.如图1­1所示,三棱柱ABC­A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;4、如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.5、三棱锥P﹣ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,(1)求证:面PBC⊥面ABC6.已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求证:PA∥平面EDB;(2)求证:平面EDB⊥平面PBC;7、如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;2.求证BE 垂直平面PAC8、将如图一的矩形ABMD沿CD翻折后构成一四棱锥M﹣ABCD(如图二),若在四棱锥M﹣ABCD中有MA=.(1)求证:AC⊥MD;(2)求四棱锥M﹣ABCD的体积.作业1、如图1,菱形ABCD的边长为12,∠BAD=60°,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M,N分别是棱BC,AD 的中点,且DM=6.(Ⅰ)求证:OD⊥平面ABC;2、如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;3、如图所示,四棱锥P﹣ABCD的侧面PAD是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M为PC的中点,PC=.(Ⅰ)求证:PC⊥AD;AD,E,4、如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.5、如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=1,SD=.(1)证明:CD⊥SD;6.如图,四棱锥S ﹣ABCD 中,△ABD 是正三角形,CB=CD ,SC ⊥BD .(Ⅰ)求证:SB=SD ;(Ⅱ)若∠BCD=120°,M 为棱SA 的中点,求证:DM ∥平面SBC .7、如图,在矩形ABCD 中,点E 为边AD 上的点,点F 为边CD 的中点,234A E D B A A ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .(1)求证:平面PBE ⊥平面PEF ;8、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点.(1) 证明:AD ⊥平面DEF;AB CDEBCDEFP9、在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF10.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点. (Ⅱ)求证://PB 平面AEC ;11.棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,过C、M、D1作正方体的截面,则截面的面积是。

证明两线互相垂直的常用方法

证明两线互相垂直的常用方法

证明两线互相垂直的常用方法我们学习了平面与直线垂直的定义、判定定理和性质定理,大家可以体会线线垂直在证明线面垂直时的重要性,将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法.在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”,同学们下面欣赏常见的线面垂直证明方法.一、利用定义垂直的定义:如果两条直线相交成直角,那么这两条直线互相垂直。

从定义可以看出,只要说明两条直线相交的角是直角,就可以说明两条直线互相垂直。

例1:如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.求证:PC是⊙O的切线;分析:因为点C在圆上,只要说明OC⊥CP即可。

解:∵OA=OC,∴∠A=∠ACO∵∠COB=2∠ A ,∠COB=2∠PCB∴∠A=∠ACO=∠PCB∵AB是⊙O的直径∴∠ACO+∠OCB=90°∴∠PCB+∠OCB=90°,即OC⊥CP∵OC是⊙O的半径∴PC是⊙O的切线例2:(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连结BE,AD,AD的延长线交BE于点F.求证:AF⊥BE.分析:线段之间的垂直,只要说明∠BFD=90°,直接计算不出来,通过三角形全等,间接证明角度为90°。

证明:在△ACD和△BCE中,AC=BC,∠DCA=∠ECB=90°,DC=EC,∴ △ACD≌△BCE(SAS)∴ ∠DAC=∠EBC.∵ ∠ADC=∠BDF,∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.∴ ∠BFD=90°∴ AF⊥BE.(2)把两个含有30°角的直角三角板如图2放置,点D在BC上,连结BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由.分析:题目同(1)类似,类比(1)思路,这里△ACD和△BCE,显然不全等,考虑相似即可。

立体几何平行垂直的证明

立体几何平行垂直的证明

空间平行、垂直的判定与证明题型一 线面平行的证明12.上面的第一步“找”是证题的关键,其常用方法有: ①利用三角形、梯形中位线的性质;②利用平行四边形的性质;③利用平行线分线段成比例定理. ④构造面面平行1、如图,PAD ∆是边长为3的等边三角形,四边形ABCD 为正方形,平面PAD ⊥平面ABCD .点E 、F 分别为CD 、PD 上的点,且12PF CE FD ED ==,点G 为AB 上的一点,且12AG GB =.求证: //PG 平面AEF ;2、如图所示,P 是ABCD Y 所在平面外一点,E 、F 分别在PA 、BD 上,且PE ∶EA =BF ∶FD . 求证:EF ∥平面PBC .12第一步:在一个平面内找出两条相交直线;第二步:证明这两条相交直线分别平行于另一个平面的一组交线;第三步:利用平面与平面平行的判定定理得出结论.1、如图所示的多面体中,下底面ABCD Y 与上底面111A B C 平行,且111////AA BB CC ,1122,,3AB AC AA A AC AC BC π==∠=⊥,平面11ACC A ⊥平面ABC ,点M 为11B C 的中点.过点1B 作一个平面α与平面AMC 平行,并说明理由;2、已知四棱锥中,平面,底面是边长为的正方形,与交于点,为的中点,,为中点,为上一点,且. 证明:平面;利用线面平行的性质定理证明线线平行一条直线与一个平面 ,则过这条直线的任一平面与此平面的 与该直线平行.//,,//a a b a b αβαβ⊂=⇒I1、如图,在正方体1111ABCD A B C D -中,EF ⊥1A D ,EF ⊥AC ,求证:⑴1BD ⊥平面11A C D ;⑵1//EF BD .2、如图,在多面体111A B D DCBA ,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F. 证明:1//EF CB.3、已知四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH .求证:AP ∥GH.FEA B C DA 1B 1C 1D 112.利用判定定理证明直线与平面垂直的一般步骤:分析几何图形,寻找隐含的和题目中推导出的线线垂直关系,进而证明线面垂直.常见的垂直关系: ①直线与平面垂直则直线与平面内任意一条直线都垂直;②三角形全等、等腰三角形底边的角平分线、中线、高三线合一;③菱形、正方形的对角线垂直平分;④三角形中勾股定理的逆定理等都是找线线垂直的方法.1、如图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =2EC , (Ⅰ)求证:BE ∥平面PDA ;②若N 为线段PB 的中点,求证:EN ⊥平面PDB.2、如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=.(Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,1AC =求三棱柱111ABC A B C -的体积. 11.平面与平面垂直的判定定理21、如图,已知AB ⊥平面ACD ,∥DE AB ,△ACD 是正三角形,2AD DE AB ==,且F 是CD 的中点.(1)求证:∥AF 平面BCE ; (2)求证:平面BCE ⊥平面CDE .2、如图,四边形是矩形,沿对角线将折起,使得点 在平面上的射影恰好落在边上.求证:平面平面 ;1、如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′; (2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.2、如图,四面体ABCD 中,ABC D 是正三角形,AD CD =(Ⅰ)证明:AC BD ^;(Ⅱ)已知ACD D 是直角三角形, AB BD =,若E 为棱BD 上与D 不重合的点,且AE EC ^,求四面体ABCE 与四面体ACDE 的体积比.3、如图1,已知矩形ABCD 中,点E 是边BC 上的点,DE 与AC 相交于点H ,且1CE =,AB =3BC =,现将ACD ∆沿AC 折起,如图2,点D 的位置记为D ',此时ED '=.(Ⅰ)求证:D H AE '⊥.1.如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,∥BC AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.证明:∥CE 平面PAB .2.如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.证明:直线CE ∥平面P AB .3.如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . 证明:平面ACD ⊥平面ABC .4.由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:1A O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.5.如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E–BCD的体积.6.在如图1-4所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1.(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.。

2023届高三数学一轮复习专题 立体几何垂直系统 讲义 (解析版)

2023届高三数学一轮复习专题  立体几何垂直系统  讲义 (解析版)

高三数学第一轮复习专题 垂直系统专题第一部分 直线与平面垂直的判定及性质一。

线面垂直的定义:l l αα若直线与平面内的任意一条直线都垂直,则称直线与平面垂直.记作:l α⊥。

l 直线叫做α平面的垂线,α平面叫做l 直线的垂面。

(★★★)线面垂直的定义可以作为线面垂直的性质定理使用: 若l 直线与α平面垂直,则l 直线与α平面内任意一条直线都垂直。

,l a l a αα⊥⊂⇒⊥ ⇒线面垂直线线垂直二。

线面垂直的判定定理:1。

判定定理1:若一条直线和一个平面内的两条相交直线都垂直,则该直线与这个平面垂直。

(★★★)⇒线线垂直线面垂直,,,,a b a b P l a l b l ααα⊂⊂⋂=⊥⊥⇒⊥两个核心条件:,l a l b ⊥⊥2。

判定定理2:若两平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面。

(★★)a ∥b ,a α⊥b α⇒⊥三。

线面垂直的性质定理:1。

性质定理1:垂直于同一平面的两直线平行。

a α⊥,b α⊥a ⇒∥bα2。

性质定理2:垂直于同一直线的两平面平行。

l α⊥,l β⊥⇒α∥β题型一:线线垂直与线面垂直的互相证明 ★★★★★判定定义线线垂直线面垂直这两个定理(定义)构成了一个很重要的小循环:⇒⇒⇒⇒⋅⋅⋅⋅⋅⋅线线垂直线面垂直线线垂直线面垂直例1。

P 为ABC 所在平面外一点,PA ABC ⊥平面,090ABC ∠=,AE PB E ⊥于,AF PC F ⊥于。

求证:PC AEF ⊥平面。

(★★)规律:常用线面垂直来证明两直线“异面垂直”。

已知的是相交垂直,要证的是异面垂直。

分析:从后往前分析。

要证()PC AF PC AEF PC AE AE PBC ⎧⊥⎪⊥⇐⎨⊥⇐⊥⎪⎩已知平面平面 α()090AE PB BC AB ABC AE BC BC PAB BC PA PA ABC ⎧⊥⎪⎪⇐⎨⎧⊥⇐∠=⎪⊥⇐⊥⇐⎨⎪⊥⇐⊥⎩⎩已知平面平面 但写证明过程时要从前往后写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何垂直证明题常见模型及方法Revised as of 23 November 2020立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A .求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 o 证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O BDE ⊥平面BE'ADFGPBADE变式1:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =6BC =()1求证:BD ⊥平面PAC○2 利用面面垂直的性质定理 DACOBE例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。

方法点拨:此种情形,条件中含有面面垂直。

变式1, 在四棱锥P ABCD -,底面ABCD 是正方形,侧面PAB 是等腰三角形,且PAB ABCD ⊥面底面,求证:BC PAB ⊥面 变式2:类型3:面面垂直的证明。

(本质上是证明线面垂直)例1 如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形, 2AD DE AB ==,F 为CD 的中点.(1) 求证://AF 平面BCE ; (2) 求证:平面BCE ⊥平面CDE ;例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,ABCDEF60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点. (1)证明CD AE ⊥; (2)证明PD ⊥平面ABE ;变式1已知直四棱柱ABCD —A ′B ′C ′D ′的底面是菱形,︒=∠60ABC ,E 、F 分别是棱CC ′与BB ′上的点,且EC=BC =2FB =2. (1)求证:平面AEF ⊥平面AA ′C ′C ; 举一反三1.设M 表示平面,a 、b 表示直线,给出下列四个命题: ①M b M a b a ⊥⇒⎭⎬⎫⊥// ②b a M b M a //⇒⎭⎬⎫⊥⊥ ③⇒⎭⎬⎫⊥⊥b a M a b ∥M ④⇒⎭⎬⎫⊥b a M a //b ⊥M .其中正确的命题是 ( )A.①②B.①②③C.②③④D.①②④ 2.下列命题中正确的是 ( )ABCDPEA.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF中,必有 ( )⊥平面PEF ⊥平面PEF ⊥平面DEF ⊥平面DEF4.设a、b是异面直线,下列命题正确的是 ( )A.过不在a、b上的一点P一定可以作一条直线和a、b都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行5.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,m α和m⊥γ,那么必有 ( )A.α⊥γ且l⊥mB.α⊥γ且m∥β∥β且l⊥m D.α∥β且α⊥γ是圆的直径,C是圆周上一点,PC垂直于圆所在平面,若BC=1,AC=2,PC=1,则P到AB的距离为 ( )B.2C.552 D.5537.有三个命题:第3题图①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直 其中正确命题的个数为 ( ) .1 C是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是 ( )A.α与β必相交且交线m ∥d 或m 与d 重合B.α与β必相交且交线m ∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是 ( )A.①②③B.①②④C.②③④D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β.其中正确的命题是 ( )A.③与④B.①与③C.②与④D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC ′=4cm ,则△A ′B ′C ′的面积是 .12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件 时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高.(1)求证:VC ⊥AB ;(2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC 所成角的大小.第11题图第12题图第13题图第14题图15.如图所示,PA ⊥矩形ABCD所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面PAD . (2)求证:MN ⊥CD .(3)若∠PDA =45°,求证:MN ⊥平面PCD .16.如图所示,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,∠BAD=60°,AB =4,AD =2,侧棱PB =15,PD =3.(1)求证:BD ⊥平面PAD .(2)若PD 与底面ABCD 成60°的角,试求二面角P —BC —A 的大小.17.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,AA 1=6,M 是CC 1的中点,求证:AB 1⊥A 1M .18.如图所示,正方体ABCD —A ′B ′C ′D ′的棱长为a ,M 是AD 的中点,N 是BD ′上一点,且D ′N ∶NB =1∶2,MC 与BD 交于P .第15题图第16题图(1)求证:NP ⊥平面ABCD .(2)求平面PNC 与平面CC ′D ′D 所成的角. (3)求点C 到平面D ′MB 的距离.第4课 线面垂直习题解答两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.由线面垂直的性质定理可知. 折后DP ⊥PE ,DP ⊥PF ,PE ⊥PF .过a 上任一点作直线b ′∥b ,则a ,b ′确定的平面与直线b 平行.依题意,m ⊥γ且m ⊂α,则必有α⊥γ,又因为l =β∩γ则有l ⊂γ,而m ⊥γ则l ⊥m ,故选A.过P 作PD ⊥AB 于D ,连CD ,则CD ⊥AB ,AB =522=+BC AC ,52=⋅=AB BC AC CD , ∴PD =55354122=+=+CD PC .第18题图由定理及性质知三个命题均正确. 显然α与β不平行.垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.∵α∥β,l ⊥α,∴l ⊥m23设正三角A ′B ′C ′的边长为a . ∴AC 2=a 2+1,BC 2=a 2+1,AB 2=a 2+4, 又AC 2+BC 2=AB 2,∴a 2=2. S △A ′B ′C ′=23432=⋅a cm 2. 12.在直四棱柱A 1B 1C 1D 1—ABCD 中当底面四边形ABCD 满足条件AC ⊥BD (或任何能推导出这个条件的其它条件,例如ABCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活. ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB . 14.(1)证明:∵H 为△VBC 的垂心, ∴VC ⊥BE ,又AH ⊥平面VBC ,∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC . (2)解:由(1)知VC ⊥AB ,VC ⊥BE ,∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC , ∴AB ⊥面DEC .∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,∴∠EDC =30°,∵AB ⊥平面VCD , ∴VC 在底面ABC 上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE , ∴VC ⊥面ABE ,∴VC ⊥DE , ∴∠CED =90°,故∠ECD=60°,∴VC 与面ABC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE ,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形. ∴MN ∥AE .∵AE 平面PAD ,MN 平面PAD ,∴MN ∥平面PAD . (2)∵PA ⊥平面ABCD , ∴PA ⊥AB .又AD ⊥AB ,∴AB ⊥平面PAD . ∴AB ⊥AE ,即AB ⊥MN . 又CD ∥AB ,∴MN ⊥CD .(3)∵PA ⊥平面ABCD ,∴PA ⊥AD . 又∠PDA =45°,E 为PD 的中点. ∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD , ∴MN ⊥平面PCD .16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°, 故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12. 又AB 2=AD 2+BD 2,第15题图解∴△ABD 是直角三角形,∠ADB =90°,即AD ⊥BD .在△PDB 中,PD =3,PB =15,BD =12, ∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D , ∴BD ⊥平面PAD .(2)由BD ⊥平面PAD ,BD 平面ABCD . ∴平面PAD ⊥平面ABCD .作PE ⊥AD 于E , 又PE 平面PAD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD 所成的角. ∴∠PDE =60°,∴PE =PD sin60°=23233=⨯. 作EF ⊥BC 于F ,连PF ,则PF ⊥BF , ∴∠PFE 是二面角P —BC —A 的平面角. 又EF =BD =12,在Rt △PEF 中,tan ∠PFE =433223==EF PE . 故二面角P —BC —A 的大小为arctan 43. 17.连结AC 1,∵11112263A C CC MC AC===. ∴Rt △ACC 1∽Rt △MC 1A 1, ∴∠AC 1C =∠MA 1C 1,∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°. ∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M . 由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立. 18.(1)证明:在正方形ABCD 中, ∵△MPD ∽△CPB ,且MD =21BC , ∴DP ∶PB =MD ∶BC =1∶2. 又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD , ∴NP ⊥平面ABCD . (2)∵NP ∥DD ′∥CC ′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱. 又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM , ∴∠MCD 为该二面角的平面角. 在Rt △MCD 中可知∠MCD =arctan 21,即为所求二面角的大小.(3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高. ∵三棱锥D ′—BCM 体积为h S D D S 213131='⋅,∴.3621a S a S h =⋅=空间中的计算基础技能篇类型一:点到面的距离方法1:直接法—把点在面上的射影查出来,然后在直角三角形中计算例1:在正四面体ABCD中,边长为a,求点A到面BCD的距离。

相关文档
最新文档