功能关系能量守恒定律
功能关系能量守恒定律
第4讲功能关系能量守恒定律一、几种常见的功能关系及其表达式力做功能的变化定量关系合力的功动能变化W=E k2-E k1=ΔE k重力的功重力势能变化(1)重力做正功,重力势能减少(2)重力做负功,重力势能增加(3)W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化(1)弹力做正功,弹性势能减少(2)弹力做负功,弹性势能增加(3)W F=-ΔE p=E p1-E p2只有重力、弹簧弹力做功机械能不变化机械能守恒ΔE=0除重力和弹簧弹力之外的其他力做的功机械能变化(1)其他力做多少正功,物体的机械能就增加多少(2)其他力做多少负功,物体的机械能就减少多少(3)W其他=ΔE一对相互作用的滑动摩擦力的总功机械能减少内能增加(1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加(2)摩擦生热Q=F f·x相对自测1升降机底板上放一质量为100kg的物体,物体随升降机由静止开始竖直向上移动5m时速度达到4m/s,则此过程中(g取10 m/s2,不计空气阻力)()A.升降机对物体做功5800JB.合外力对物体做功5800JC.物体的重力势能增加500JD.物体的机械能增加800J答案A二、两种摩擦力做功特点的比较类型比较静摩擦力滑动摩擦力不同点能量的转化方面只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能(1)将部分机械能从一个物体转移到另一个物体(2)一部分机械能转化为内能,此部分能量就是系统机械能的损失量一对摩擦力的总功方面一对静摩擦力所做功的代数和总等于零一对滑动摩擦力做功的代数和总是负值相同点正功、负功、不做功方面两种摩擦力对物体可以做正功,也可以做负功,还可以不做功自测2如图1所示,一个质量为m的铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为()图1A.43mgR B.mgRC.12mgR D.34mgR答案D三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.自测3质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图2所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为()图2A.12mv 02-μmg (s +x ) B.12mv 02-μmgx C.μmgs D.μmg (s +x ) 答案A解析根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由能量守恒定律可得12mv 02=W 弹+W f ,W 弹=12mv 02-μmg (s +x ),故选项A 正确.命题点一功能关系的理解和应用1.只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析. 例1(多选)如图3所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环()图3A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14mv 2C.在C 处,弹簧的弹性势能为14mv 2-mghD.上滑经过B 的速度大于下滑经过B 的速度 答案BD解析由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后反向增大,故A 错误;根据能量守恒定律,从A 到C 有mgh =W f +E p (W f 为克服摩擦力做的功),从C 到A 有12mv 2+E p =mgh +W f ,联立解得:W f =14mv 2,E p =mgh -14mv 2,所以B 正确,C 错误;根据能量守恒定律,从A 到B 的过程有12mv 2B +ΔE p ′+W f ′=mgh ′,从B 到A 的过程有12mv B ′2+ΔE p ′=mgh ′+W f ′,比较两式得v B ′>v B ,所以D 正确.变式1(多选)(2016·全国卷Ⅱ·21)如图4所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中()图4A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N 点时的动能等于其在M 、N 两点的重力势能差 答案BCD解析因M 和N 两点处弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2,知M 处的弹簧处于压缩状态,N 处的弹簧处于伸长状态,则弹簧的弹力对小球先做负功后做正功再做负功,选项A 错误;当弹簧水平时,竖直方向的力只有重力,加速度为g ;当弹簧处于原长位置时,小球只受重力,加速度为g ,则有两个时刻的加速度大小等于g ,选项B 正确;弹簧长度最短时,即弹簧水平,弹力方向与速度方向垂直,弹力对小球做功的功率为零,选项C 正确;由动能定理得,W F +W G =ΔE k ,因M 和N 两点处弹簧对小球的弹力大小相等,弹性势能相等,则由弹力做功特点知W F =0,即W G =ΔE k ,选项D 正确.例2(2017·全国卷Ⅰ·24)一质量为8.00×104kg 的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105m 处以7.5×103m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8m/s 2(结果保留两位有效数字).(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%. 答案(1)4.0×108J2.4×1012J(2)9.7×108J 解析(1)飞船着地前瞬间的机械能为E 0=12mv 02①式中,m 和v 0分别是飞船的质量和着地前瞬间的速度.由①式和题给数据得E 0=4.0×108J②设地面附近的重力加速度大小为g ,飞船进入大气层时的机械能为 E h =12mv h 2+mgh ③式中,v h 是飞船在高度1.60×105m 处的速度.由③式和题给数据得E h ≈2.4×1012J④(2)飞船在高度h ′=600m 处的机械能为 E h ′=12m (2.0100v h )2+mgh ′⑤由功能关系得W =E h ′-E 0⑥式中,W 是飞船从高度600m 处至着地前瞬间的过程中克服阻力所做的功. 由②⑤⑥式和题给数据得W ≈9.7×108J⑦变式2(2017·全国卷Ⅲ·16)如图5所示,一质量为m 、长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为()图5A.19mglB.16mglC.13mglD.12mgl 答案A解析由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l6,则重力势能增加ΔE p=23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C 、D 错误.命题点二摩擦力做功与能量转化1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对路程.从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.例3如图6所示,某工厂用传送带向高处运送货物,将一货物轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是()图6A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C.第一阶段物体和传送带间摩擦生的热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功答案C解析对物体分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A错误;由动能定理知,合外力做的总功等于物体动能的增加量,B错误;物体机械能的增加量等于摩擦力对物体所做的功,D错误;设第一阶段物体的运动时间为t,传送带速度为v,对物体:x1=v2t,对传送带:x1′=v·t,摩擦产生的热Q=F f x相对=F f (x 1′-x 1)=F f ·v 2t ,机械能增加量ΔE =F f ·x 1=F f ·v2t ,所以Q =ΔE ,C 正确.变式3(多选)如图7所示为生活中磨刀的示意图,磨刀石静止不动,刀在手的推动下从右向左匀速运动,发生的位移为x ,设刀与磨刀石之间的摩擦力大小为F f ,则下列叙述中正确的是()图7A.摩擦力对刀做负功,大小为F f xB.摩擦力对刀做正功,大小为F f xC.摩擦力对磨刀石做正功,大小为F f xD.摩擦力对磨刀石不做功 答案AD变式4(多选)(2018·XXXX 模拟)质量为m 的物体在水平面上,只受摩擦力作用,以初动能E 0做匀变速直线运动,经距离d 后,动能减小为E 03,则()A.物体与水平面间的动摩擦因数为2E 03mgdB.物体再前进d3便停止C.物体滑行距离d 所用的时间是滑行后面距离所用时间的3倍D.若要使此物体滑行的总距离为3d ,其初动能应为2E 0 答案AD解析由动能定理知W f =μmgd =E 0-E 03,所以μ=2E 03mgd,A 正确;设物体总共滑行的距离为s ,则有μmgs =E 0,所以s =32d ,物体再前进d2便停止,B 错误;将物体的运动看成反方向的匀加速直线运动,则连续运动三个d2距离所用时间之比为1∶(2-1)∶(3-2),所以物体滑行距离d 所用的时间是滑行后面距离所用时间的(3-1)倍,C 错误;若要使此物体滑行的总距离为3d ,则由动能定理知μmg ·3d =E k ,得E k =2E 0,D 正确. 命题点三能量守恒定律的理解和应用例4如图8所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相切,半圆形导轨的半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B 点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C .不计空气阻力,试求:图8(1)物体在A 点时弹簧的弹性势能;(2)物体从B 点运动至C 点的过程中产生的内能. 答案(1)72mgR (2)mgR解析(1)设物体在B 点的速度为v B ,所受弹力为F N B ,由牛顿第二定律得:F N B -mg =m v 2BR由牛顿第三定律F N B ′=8mg =F N B 由能量守恒定律可知物体在A 点时的弹性势能E p =12mv B 2=72mgR(2)设物体在C 点的速度为v C ,由题意可知mg =m v 2CR物体由B 点运动到C 点的过程中,由能量守恒定律得Q =12mv B 2-(12mv C 2+2mgR )解得Q =mgR .变式5如图9所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L .现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图9(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能.答案(1)v 02-gL (2)12(v 02g -L )(3)34m (v 02-gL )解析(1)物体A 与斜面间的滑动摩擦力F f =2μmg cos θ, 对A 向下运动到C 点的过程,由能量守恒定律有 2mgL sin θ+32mv 02=32mv 2+mgL +Q其中Q =F f L =2μmgL cos θ 解得v =v 02-gL(2)从物体A 接触弹簧将弹簧压缩到最短后又恰好回到C 点的过程,对系统应用动能定理 -F f ·2x =0-12×3mv 2解得x =v 022g -L 2=12(v 02g-L )(3)从弹簧压缩至最短到物体A 恰好弹回到C 点的过程中,由能量守恒定律得E p +mgx =2mgx sin θ+Q ′ Q ′=F f x =2μmgx cos θ解得E p =3m 4(v 02-gL )1.如图1所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中()图1A.重力做功2mgRB.机械能减少mgRC.合外力做功mgRD.克服摩擦力做功12mgR 答案D2.如图2所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则()图2A.两个阶段拉力做的功相等B.拉力做的总功等于A 的重力势能的增加量C.第一阶段,拉力做的功大于A 的重力势能的增加量D.第二阶段,拉力做的功等于A 的重力势能的增加量答案B3.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图3A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成的系统的机械能损失等于M克服摩擦力做的功答案CD解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,系统的机械能减少,减少的机械能等于M克服摩擦力做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.4.(多选)如图4所示,质量为m的物体以某一速度冲上一个倾角为37°的斜面,其运动的加速度的大小为0.9g,这个物体沿斜面上升的最大高度为H,则在这一过程中()图4A.物体的重力势能增加了0.9mgHB.物体的重力势能增加了mgHC.物体的动能损失了0.5mgHD.物体的机械能损失了0.5mgH答案BD解析在物体上滑到最大高度的过程中,重力对物体做负功,故物体的重力势能增加了mgH,故A错误,B正确;物体所受的合力沿斜面向下,其合力做的功为W=-F·Hsin37°=-ma·Hsin37°=-1.5mgH,故物体的动能损失了1.5mgH,故C错误;设物体受到的摩擦力为F f,由牛顿第二定律得mg sin37°+F f=ma,解得F f=0.3mg.摩擦力对物体做的功为W f=-F f·Hsin37°=-0.5mgH,因此物体的机械能损失了0.5mgH,故D正确.5.(多选)(2018·XXXX质检)如图5所示,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一电动机相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升.摩擦及空气阻力均不计.则()图5A.升降机匀加速上升过程中,升降机底板对人做的功等于人增加的动能B.升降机匀加速上升过程中,升降机底板对人做的功等于人增加的机械能C.升降机匀速上升过程中,升降机底板对人做的功等于人增加的机械能D.升降机上升的全过程中,升降机拉力做的功大于升降机和人增加的机械能答案BC解析根据动能定理可知,合外力对物体做的功等于物体动能的变化量,所以升降机匀加速上升过程中,升降机底板对人做的功和人的重力做功之和等于人增加的动能,故A 错误;除重力外,其他力对人做的功等于人机械能的增加量,B 正确;升降机匀速上升过程中,升降机底板对人做的功等于人克服重力做的功(此过程中动能不变),即增加的机械能,C 正确;升降机上升的全过程中,升降机拉力做的功等于升降机和人增加的机械能,D 错误.6.(多选)如图6所示,一物块通过一橡皮条与粗糙斜面顶端垂直于固定斜面的固定杆相连而静止在斜面上,橡皮条与斜面平行且恰为原长.现给物块一沿斜面向下的初速度v 0,则物块从开始滑动到滑到最低点的过程中(设最大静摩擦力与滑动摩擦力大小相等,橡皮条的形变在弹性限度内),下列说法正确的是()图6A.物块的动能一直增加B.物块运动的加速度一直增大C.物块的机械能一直减少D.物块减少的机械能等于橡皮条增加的弹性势能答案BC解析由题意知物块的重力沿斜面向下的分力为mg sin θ≤F f =μmg cos θ,在物块下滑过程中,橡皮条拉力F 一直增大,根据牛顿第二定律有a =F f +F -mg sin θm,F 增大,a 增大,选项B正确;物块受到的合外力方向沿斜面向上,与位移方向相反,根据动能定理知动能一直减少,选项A错误;滑动摩擦力和拉力F一直做负功,根据功能关系知物块的机械能一直减少,选项C正确;根据能量守恒定律,物块减少的机械能等于橡皮条增加的弹性势能和摩擦产生的热量之和,选项D错误.7.如图7所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直时处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()图7A.圆环机械能守恒B.橡皮绳的弹性势能一直增大C.橡皮绳的弹性势能增加了mghD.橡皮绳再次到达原长时圆环动能最大答案C解析圆环沿杆滑下,滑到杆的底端的过程中有两个力对圆环做功,即环的重力和橡皮绳的拉力,所以圆环的机械能不守恒,如果把圆环和橡皮绳组成的系统作为研究对象,则系统的机械能守恒,故A错误;橡皮绳的弹性势能随橡皮绳的形变量的变化而变化,由题意知橡皮绳先不发生形变后伸长,故橡皮绳的弹性势能先不变再增大,故B错误;下滑过程中,圆环的机械能减少了mgh,根据系统的机械能守恒,橡皮绳的弹性势能增加了mgh,故C正确;在圆环下滑过程中,橡皮绳再次达到原长时,该过程中圆环的动能一直增大,但不是最大,沿杆方向的合力为零的时刻,圆环的速度最大,故D错误.8.如图8所示,一质量为m的小球固定于轻质弹簧的一端,弹簧的另一端固定于O点.将小球拉至A点,弹簧恰好无形变,由静止释放小球,当小球运动到O点正下方与A点的竖直高度差为h的B点时,速度大小为v.已知重力加速度为g,下列说法正确的是()图8A.小球运动到B 点时的动能等于mghB.小球由A 点到B 点重力势能减少12mv 2 C.小球由A 点到B 点克服弹力做功为mghD.小球到达B 点时弹簧的弹性势能为mgh -12mv 2 答案D解析小球由A 点到B 点的过程中,小球和弹簧组成的系统机械能守恒,弹簧伸长,弹簧的弹性势能增大,小球动能的增加量与弹簧弹性势能的增加量之和等于小球重力势能的减小量,即小球动能的增加量小于重力势能的减少量mgh ,A 、B 项错误,D 项正确;弹簧弹性势能的增加量等于小球克服弹力所做的功,C 项错误.9.(2018·XX 德阳调研)足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是()A.W =0,Q =mv 2B.W =0,Q =2mv 2C.W =mv 22,Q =mv 2D.W =mv 2,Q =2mv 2答案B解析对小物块,由动能定理有W =12mv 2-12mv 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v 2μg,这段时间内因摩擦产生的热量Q =μmg ·x 相对=2mv 2,选项B 正确.10.(多选)如图9所示,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是()图9A.物块到达小车最右端时具有的动能为F (L +s )B.物块到达小车最右端时,小车具有的动能为F f sC.物块克服摩擦力所做的功为F f (L +s )D.物块和小车增加的机械能为F f s答案BC解析对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12mv 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12Mv ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L +s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能以及摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F (L +s )-F f L ,故D 错误.11.如图10所示,一物体质量m =2kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3m/s 下滑,A 点距弹簧上端B 的距离AB =4 m.当物体到达B 后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点AD =3 m.挡板及弹簧质量不计,g 取10 m/s 2,sin37°=0.6,求:图10(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm .答案(1)0.52(2)24.4J解析(1)物体从A 点至最后弹到D 点的全过程中,动能减少ΔE k =12mv 02=9J. 重力势能减少ΔE p =mgl AD sin37°=36J.机械能减少ΔE =ΔE k +ΔE p =45J减少的机械能全部用来克服摩擦力做功,即W f =F f l =45J ,而路程l =5.4m ,则F f =W f l≈8.33N. 而F f =μmg cos37°,所以μ=F f mg cos37°≈0.52. (2)由A 到C 的过程:动能减少ΔE k ′=12mv 02=9J. 重力势能减少ΔE p ′=mgl AC sin37°=50.4J.物体克服摩擦力做的功W f ′=F f l AC =μmg cos37°·l AC =35J.由能量守恒定律得:E pm =ΔE k ′+ΔE p ′-W f ′=24.4J.12.如图11为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A 点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T ,轨道半径为r ,椭圆轨道的近地点B 离地心的距离为kr (k <1),引力常量为G ,飞船的质量为m ,求:图11(1)地球的质量及飞船在轨道Ⅰ上的线速度大小;(2)若规定两质点相距无限远时引力势能为零,则质量分别为M 、m 的两个质点相距为r 时的引力势能E p =-GMm r,式中G 为引力常量.求飞船在A 点变轨时发动机对飞船做的功.答案(1)4π2r 3GT 22πr T (2)2(k -1)π2mr 2(k +1)T 2解析(1)飞船在轨道Ⅰ上运动时,由牛顿第二定律有 G Mm r 2=mr (2πT)2 则地球的质量M =4π2r 3GT 2 飞船在轨道Ⅰ上的线速度大小为v =2πr T.(2)设飞船在椭圆轨道上的远地点速度为v 1,在近地点的速度为v 2,由开普勒第二定律有rv 1=krv 2根据能量守恒定律有12mv 12-G Mm r =12mv 22-G Mm kr解得v 1=2GMk (k +1)r =2πr T 2k k +1根据动能定理,飞船在A 点变轨时,发动机对飞船做的功为W =12mv 12-12mv 2=2(k -1)π2mr 2(k +1)T 2.。
能量守恒定律
()
A.重力势能增加了 mgh
B.机械能损失了12mgh
C.动能损失了 mgh
D.克服摩擦力做功14mgh
解析:加速度大小 a=34g=mgsin m30°+Ff,解得摩擦力 Ff=14mg, 物体在斜面上能够上升的最大高度为 h,所以重力势能增加了 mgh,故 A 项正确;机械能损失了 Ffx=14mg·2h=12mgh,故 B 项正确;动能损失量为克服合外力做功的大小 ΔEk=F 合外力·x= 34mg·2h=32mgh,故 C 项错误;克服摩擦力做功12mgh,故 D 项 错误。 答案:AB
二、选择题
1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,
摆动的幅度越来越小。对此现象下列说法正确的是( )
A.摆球机械能守恒
B.总能量守恒,摆球的机械能正在减少,减少的机械能
转化为内能
C.能量正在消失
D.只有动能和重力势能的相互转化
解析:由于空气阻力的作用,摆球的机械能减少,机械能不
守恒,减少的机械能转化为内能,内能增加,能量总和不变,
3.[鲁科版必修 2 P44 T5 改编] 质量为 m 的物体以初速度 v0 沿水平面 向左开始运动,起始点 A 与一轻弹簧 O
端相距 s,如图所示。已知物体与水平面间的动摩擦因数
为 μ,物体与弹簧相碰后,弹簧的最大压缩量为 x。则从
开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的
功为
()
A.12mv02-μmg(s+x)
[题点全练] 1.[功与机械能变化的关系]
一个系统的机械能增大,究其原因,下列推测正确的是( )
A.可能是重力对系统做了功
B.一定是合外力对系统做了功
C.一定是系统克服合外力做了功
物理一轮复习 专题21 功能关系 能量守恒定律(讲)(含解析)
专题21 功能关系能量守恒定律1.掌握功和能的对应关系,特别是合力功、重力功、弹力功分别对应的能量转化关系。
2。
理解能量守恒定律,并能分析解决有关问题.一、功能关系功能量的变化合外力做正功动能增加重力做正功重力势能减少弹簧弹力做正功弹性势能减少电场力做正功电势能减少其他力(除重力、弹力外)做正功机械能增加二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.考点一功能关系的应用1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化用重力做功与重力势能变化的关系分析.3.只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析.4.只涉及电势能的变化用电场力做功与电势能变化的关系分析.★重点归纳★1、功能关系问题的解答技巧对各种功能关系熟记于心,力学范围内,应牢固掌握以下三条功能关系:(1)重力的功等于重力势能的变化,弹力的功等于弹性势能的变化;(2)合外力的功等于动能的变化;(3)除重力、弹力外,其他力的功等于机械能的变化.运用功能关系解题时,应弄清楚重力做什么功,合外力做什么功,除重力、弹力外的力做什么功,从而判断重力势能或弹性势能、动能、机械能的变化.★典型案例★如图,在距水平地面高h1=1.2m的光滑水平台面上,一个质量m=1kg的小物块压缩弹簧后被锁定。
现解除锁定,小物块与弹簧分离后以一定的水平速度v1向右从A点滑离平台,并恰好从B点沿切线方向进入光滑竖直的圆弧轨道BC 。
已知B 点距水平地面的高h 2=0.6m,圆弧轨道BC 的圆心O 与水平台面等高,C 点的切线水平,并与长L=2.8m 的水平粗糙直轨道CD 平滑连接,小物块恰能到达D 处.重力加速度g=10m/s 2,空气阻力忽略不计。
求:(1)小物块由A 到B 的运动时间t ; (2)解除锁定前弹簧所储存的弹性势能E p ; (3)小物块与轨道CD 间的动摩擦因数μ. 【答案】(1)35s (2)2 J (3)0。
功能关系 能量守恒定律
[解析]
(1)从 A 到 B 的过程中,人与雪橇损失的机械能为
1 1 2 ΔE=mgh+ mvA - mvB2 2 2 1 1 2 =(70×10×20+ ×70×2.0 - ×70×12.02)J 2 2 =9100 J
(2)人与雪橇在 BC 段做匀减速运动的加速度为 vC-vB 0-12 a= t = m/s2=-2 m/s2 10-4 根据牛顿第二定律得: F 阻=ma=70×(-2) N=-140 N 负号表示阻力方向与运动方向相反.
解析:腿从静止到接近身体的速度,腿部肌肉做的功等于腿的动能的变化, 1 即 W1= mv2. 2 腿又回到静止的过程中,肌肉又做了同样的功,所以,每迈一步的过程中, 肌肉对每条腿共做功为 W=2W1=mv2=10×32 J=90 J. 因为人的速度 v=3 m/s,其步子的长度为 2 m,所以此人每秒钟迈出 1.5 步.从而,人体肌肉对两条腿输出的功率为 2W×1.5 2×90×1.5 P= = W=270 W. t 1 由于肌肉的能量利用效率约为 0.25,故此人在奔跑过程中的能量消耗率为 P 270 P′= = W=1080 W. η 0.25
一、功能关系 1.功和能的关系 做功的过程就是 能量转化 的过程,功是能量转化的 量度 .
2.功与能量变化的关系
功 合外力做正功 重力做正功 弹簧弹力做正功 能量的变化
动能 增加 重力势能 减少 弹性势能 减少
电势能减少
分子势能减少 机械能增加
电场力做正功
分子力做正守恒定律解决有关问题,要分析所有参与变 化的能量. (2)高考考查该类问题,常综合平抛运动、圆周运动以及 电磁学知识考查判断、推理及综合分析能力.
如图5-4-5所示,某人乘雪橇沿雪坡经A点滑
第17讲 功能关系 能量守恒定律
1.静摩擦力做功时,只有机械能的相互转移,不会转化为内能.
2.滑动摩擦力做功的特点相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:
(1)机械能全部转化为内能;
(2)有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.
例2 [2022·北京东城二模] 如图所示,传送带与水平面夹角 ,底端到顶端的距离 ,运行速度大小 .
C
[解析] 由动能定理可知,传送带对小物块做的功为 ,可知速度变为原来的两倍,则传送带对小物块做的功变为原来的四倍,故A错误;小物块与传送带速度相等,所用的时间为 ,由于加速度相同,速度变为原来的2倍,则时间变为原来的2倍,传送带发生的位移为 ,则位移变为原来的四倍,则小物块对传送带做的功变为原来的4倍,故B错误;小物块达到与传送带速度相等过程中的平均速度为 ,由于速度变为原来的2倍,且摩擦力相同,根据 ,可知传送带对小物块做功的平均功率变为原来的2倍,故C正确;小物块达到与传送带速度相等过程中的相对位移为 ,由于速度变为原来的2倍,时间也变为原来的2倍,则相对位移变为原来的4倍,由 可知,因摩擦而产生的热量变为原来的4倍,故D错误.
C
[解析] 物块刚放上传送带时,所受摩擦力沿传送带向上,根据牛顿第二定律得 ,解得 ,物块速度与传送带速度相等的时间 ,之后,由于 ,摩擦力突变为静摩擦力,大小为 ,物块与传送带保持相对静止向上滑动,物块加速阶段的位移 ,物块与传送带保持相对静止运动的时间 ,物块从斜面底端到达顶端的时间 ,物块相对传送带的位移大小为 ,故A,B错误;物块被运送到顶端的过程中,摩擦力对物块做功为 ,故C正确;物块被运送到顶端的过程中,电动机对传送带做功转化为焦耳热和物块增加的机械能,其大小为 ,故D错误.
功能关系能量守恒定律
功能关系能量守恒定律能量守恒定律是物理学中的一个重要定律,也被称为能量守恒原理。
它指出,在一个封闭系统中,能量的总量是不变的。
换句话说,能量既不能被创造,也不能被毁灭,只能从一种形式转化为另一种形式。
能量是指物体或系统进行工作所需要的能力。
它可以包括多种形式,如机械能、热能、电能、光能等。
这些形式的能量可以相互转化,但总的能量量不变。
根据能量守恒定律,系统的能量变化等于能量输入减去能量输出。
这可以用以下公式表示:ΔE = Qin - Qout其中,ΔE表示系统能量变化,Qin表示输入到系统中的能量,Qout表示从系统中输出的能量。
当ΔE为正时,系统的能量增加;当ΔE为负时,系统的能量减少。
能量守恒定律可以通过一些实例来解释。
例如,考虑一个物体从一个高处下落到地面的过程。
在开始时,物体具有重力势能,当下落到地面时,重力势能转化为动能。
根据能量守恒定律,重力势能的减少等于动能的增加,因此能量的总量保持不变。
另一个例子是燃烧过程。
在燃烧中,化学能转化为热能和光能。
这是因为化学反应产生的能量会以热能和光能的形式释放出来。
然而,根据能量守恒定律,化学能的减少必须等于热能和光能的增加,以保持能量的总量不变。
能量守恒定律在许多领域有着广泛的应用。
在机械工程中,工程师需要确保系统中的能量输入与输出保持平衡,以保证系统的正常运行。
在热力学中,能量守恒定律被用来分析热传导、传热、发电等过程。
在化学和生物学研究中,能量守恒定律用于解释化学反应和生物代谢过程中的能量转化。
能量守恒定律的重要性在于它可以解释自然界中许多观察到的现象。
它提供了我们理解和分析物体和系统能量转化的基础。
同时,能量守恒定律也有助于节约能源,促进可持续发展。
通过控制能量的流动和转化过程,我们可以最大限度地利用能源并减少浪费,达到能源的可持续利用。
总之,能量守恒定律是自然界中一个普遍存在的定律。
它指出在一个封闭系统中,能量的总量是不变的。
能量可以从一种形式转化为另一种形式,但总的能量量保持不变。
功能关系能量守恒定律
功能关系能量守恒定律什么是功能关系能量守恒定律?它是指在一个封闭系统内,能量从一个形式转化为另一个形式,但总能量保持不变。
这个定律是基于对自然界各个系统的观察和实验总结得出的。
无论是机械系统中的动能和势能转化,还是热系统中的热能转化,能量守恒定律都适用。
例如,当一个物体从高处滑下时,其势能转化为动能,但整个系统的总能量保持不变。
能量守恒定律是自然界中各种现象和过程的基础。
在物理学中,它被广泛应用于解释和描述各种物理现象。
例如,在机械学中,能量守恒定律可以用来解释物体的运动和力学性质。
在热学中,能量守恒定律可以用来解释热传导、热辐射等热现象。
在电磁学中,能量守恒定律可以用来解释电磁场的产生和传播。
在化学中,能量守恒定律可以用来解释化学反应过程中的能量变化。
无论是哪个学科领域,能量守恒定律都是解释和理解自然界中各种现象的重要工具。
功能关系是指事物之间的相互作用和相互影响的关系。
能量守恒定律与功能关系的关联在于它们都涉及到事物之间的转化和守恒。
功能关系可以看作是能量守恒定律在不同领域的具体应用。
无论是机械系统、热系统、电磁系统还是化学系统,它们都是由不同的功能关系构成的。
这些功能关系之间的能量转化和守恒遵循着能量守恒定律。
以机械系统为例,当物体在重力作用下从高处滑下时,其势能转化为动能。
这个过程可以用功能关系进行描述,即重力势能和动能之间的转化关系。
根据能量守恒定律,这个过程中总能量保持不变。
类似地,在热系统中,热能可以转化为机械能或其他形式的能量。
这些能量之间的转化关系可以通过功能关系进行描述,而守恒的总能量则遵循能量守恒定律。
能量守恒定律是自然界中能量转化和守恒的基本规律。
它适用于各个学科领域,包括机械学、热学、电磁学和化学等。
功能关系则是能量守恒定律在不同领域的具体应用,描述了不同形式能量之间的转化关系。
通过研究和理解能量守恒定律和功能关系,我们可以更好地理解自然界中的各种现象和过程。
同时,这也为人类创造和利用能源提供了重要的理论基础。
功能关系能量守恒定律
第4课时功能关系能量守恒定律学习目标:1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.【课前知识梳理】一、几种常见的功能关系功能量的变化合外力做正功动能增加重力做正功重力势能减少弹簧弹力做正功弹性势能减少电场力做正功电势能减少其他力(除重力、弹力外)做正功机械能增加二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.【预习自测】1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是A.力F做的功和阻力做的功之和等于物体动能的增量B.重力所做的功等于物体重力势能的增量C.力F做的功和阻力做的功之和等于物体机械能的增量D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量2、如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中A.X-37B中燃料的化学能转化为X-37B的机械能B.X-37B的机械能要减少C.自然界中的总能量要变大D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变3、如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停下的位置到B的距离为A.0.5 m B.0.25 m C.0.1 m D.0【课堂合作探究】考点一功能关系的应用【例1】如右上图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中A.物块A的重力势能增加量一定等于mghB.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和【突破训练1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于A.物块动能的增加量B.物块重力势能的减少量C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D.物块动能的增加量与物块克服摩擦力做的功之和考点二摩擦力做功的特点及应用1.静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对位移.深化拓展从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.【例2】如图4所示,质量为m的长木块A静止于光滑水平面上,在其水平的上表面左端放一质量为m的滑块B,已知木块长为L,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F拉滑块B.(1)当长木块A的位移为多少时,B从A的右端滑出?(2)求上述过程中滑块与木块之间产生的内能.【突破训练2】如图所示,足够长的传送带以恒定速率顺时针运行.将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法中正确的是A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C.第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量等于全过程物体与传送带间的摩擦生热考点三能量守恒定律及应用列能量守恒定律方程的两条基本思路:(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等.【例3】如图6所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是 A .电动机多做的功为12m v 2B .物体在传送带上的划痕长v 2μgC .传送带克服摩擦力做的功为12m v 2D .电动机增加的功率为μmg v应用能量守恒定律解题的步骤(1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化; (2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式;(3)列出能量守恒关系式:ΔE 减 =ΔE 增.【突破训练3】如图7所示,传送带保持1 m/s 的速度顺时针转动.现将一质量m =0.5 kg 的小物体轻轻地放在传送带的a 点上,物体与传送带间的动摩擦因数μ=0.1,a 、b 间的距离L =2.5 m ,g =10 m/s 2.设物体从a 点运动到b 点所经历的时间为t ,该过程中物体和传送带间因摩擦而产生的热量为Q ,下列关于t 和Q 的值正确的是A .t = 5 s ,Q =1.25 JB .t = 3 s ,Q =0.5 JC .t =3 s ,Q =0.25 JD .t =2.5 s ,Q =0.25 J传送带模型中的动力学和能量转化问题1.模型概述传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个:(1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.传送带模型问题中的功能关系分析(1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f x相对.传送带模型问题的分析流程【例4】如图所示,是利用电力传送带装运麻袋包的示意图.传送带长l=20 m,倾角θ=37°,麻袋包与传送带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径R相等,传送带不打滑,主动轮顶端与货车车箱底板间的高度差为h=1.8 m,传送带匀速运动的速度为v=2 m/s.现在传送带底端(传送带与从动轮相切位置)由静止释放一只麻袋包(可视为质点),其质量为100 kg,麻袋包最终与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动.如果麻袋包到达主动轮的最高点时,恰好水平抛出并落在货车车箱底板中心,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)主动轮轴与货车车箱底板中心的水平距离x及主动轮的半径R;(2)麻袋包在传送带上运动的时间t;(3)该装运系统每传送一只麻袋包需额外消耗的电能.【课后巩固练习】1.(2013·山东·16)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功2、(2012·福建理综·17)如图所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落,B沿斜面下滑,则从剪断轻绳到物块着地,两物块A.速率的变化量不同B.机械能的变化量不同C.重力势能的变化量相同D.重力做功的平均功率相同3.如图所示,一个小球(视为质点)从H=12 m高处,由静止开始沿光滑弯曲轨道AB,进入半径R=4 m的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C时,刚好对轨道压力为零;然后沿CB圆弧滑下,进入光滑弧形轨道BD,到达高度为h的D点时速度为零,则h的值可能为A.10 m B.9.5 m C.8.5 m D.8 m4、假设某次罚点球直接射门时,球恰好从横梁下边缘踢进,此时的速度为v .横梁下边缘离地面的高度为h ,足球质量为m ,运动员对足球做的功为W 1,足球运动过程中克服空气阻力做的功为W 2,选地面为零势能面,下列说法正确的是A .运动员对足球做的功为W 1=mgh +12m v 2B .足球机械能的变化量为W 1-W 2C .足球克服空气阻力做的功为W 2=mgh +12m v 2-W 1D .运动员刚踢完球的瞬间,足球的动能为mgh +12m v 25.工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图所示,质量为m 的滑块,放在光滑的水平平台上,平台右端B 与水平传送带相接,传送带的运行速度为v 0,长为L ;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时(仍处于弹簧弹性限度内)由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C 时,恰好与传送带速度相同,滑块与传送带间的动摩擦因数为μ.求:(1)释放滑块时,弹簧具有的弹性势能;(2)滑块在传送带上滑行的整个过程中产生的热量.(限时:30分钟)1.轻质弹簧吊着小球静止在如图1所示的A 位置,现用水平外力F 将小球缓慢拉到B 位置,此时弹簧与竖直方向的夹角为θ,在这一过程中,对于小球和弹簧组成的系统,下列说法正确的是 A .系统的弹性势能增加 B .系统的弹性势能减少 C .系统的机械能不变D .系统的机械能增加2.如图所示,汽车在拱形桥上由A 匀速率运动到B ,以下说法正确的是A .牵引力与克服摩擦力做的功相等B .合外力对汽车不做功C .牵引力和重力做的总功大于克服摩擦力做的功D .汽车在上拱形桥的过程中克服重力做的功转化为汽车的重力势能3.如图所示,长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是 A .物体B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量4.一颗子弹以某一水平速度击中了静止在光滑水平面上的木块,并刚好从中穿出.对于这一过程,下列说法正确的是A .子弹减少的机械能等于木块增加的机械能B .子弹和木块组成的系统机械能的损失量等于系统产生的热量C .子弹减少的机械能等于木块增加的动能与木块增加的内能之和D .子弹减少的动能等于木块增加的动能与子弹和木块增加的内能之5.如图所示,电梯的质量为M ,其天花板上通过一轻质弹簧悬挂一质量为m 的物体.电梯在钢索的拉力作用下由静止开始竖直向上加速运动,不计空气阻力的影响,当上升高度为H 时,电梯的速度达到v ,则在这段运动过程中,以下说法正确的是 A .轻质弹簧对物体的拉力所做的功等于12m v 2B .钢索的拉力所做的功等于12m v 2+MgHC .轻质弹簧对物体的拉力所做的功大于12m v 2D .钢索的拉力所做的功等于12(m +M )v 2+(m +M )gH6.如图所示,小球从A 点以初速度v 0沿粗糙斜面向上运动,到达最高点B 后返回A ,C 为AB 的中点.下列说法中正确的是A.小球从A出发到返回A的过程中,位移为零,外力做功为零B.小球从A到C与从C到B的过程,减少的动能相等C.小球从A到C与从C到B的过程,速度的变化相等D.小球从A到C与从C到B的过程,损失的机械能相等7.如图所示,质量为M、长度为l的小车静止在光滑水平面上,质量为m的小物块放在小车的最左端.现用一水平恒力F作用在小物块上,使它从静止开始运动,物块和小车之间摩擦力的大小为F f,当小车运动的位移为x时,物块刚好滑到小车的最右端.若小物块可视为质点,则A.物块受到的摩擦力对物块做的功与小车受到的摩擦力对小车做功的代数和为零B.整个过程物块和小车间摩擦产生的热量为F f lC.小车的末动能为F f xD.整个过程物块和小车增加的机械能为F(x+l)8.如图所示,质量为m的可看成质点的物块置于粗糙水平面上的M点,水平面的右端与固定的斜面平滑连接,物块与水平面及斜面之间的动摩擦因数处处相同.物块与弹簧未连接,开始时物块挤压弹簧使弹簧处于压缩状态.现从M点由静止释放物块,物块运动到N点时恰好静止.弹簧原长小于MM′.若物块从M点运动到N点的过程中,物块与接触面之间由于摩擦所产生的热量为Q,物块、弹簧与地球组成系统的机械能为E,物块通过的路程为s.不计转折处的能量损失,下列图象所描述的关系中可能正确的是9.如图所示,光滑半圆弧轨道半径为R,OA为水平半径,BC为竖直直径.一质量为m的小物块自A处以某一竖直向下的初速度滑下,进入与C点相切的粗糙水平滑道CM上.在水平滑道上有一轻弹簧,其一端固定在竖直墙上,另一端恰位于滑道的末端C点(此时弹簧处于自然状态).若物块运动过程中弹簧最大弹性势能为E p,且物块被弹簧反弹后恰能通过B点.已知物块与水平滑道间的动摩擦因数为μ,重力加速度为g ,求:(1)物块离开弹簧刚进入半圆轨道时对轨道的压力F N 的大小; (2)弹簧的最大压缩量d ;(3)物块从A 处开始下滑时的初速度v 0.10.如图所示,在粗糙水平台阶上静止放置一质量m =0.5 kg 的小物块,它与水平台阶表面间的动摩擦因数μ=0.5,且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了一个14圆弧挡板,圆弧半径R =1 m ,今以O 点为原点建立平面直角坐标系.现用F =5 N 的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(1)若小物块恰能击中挡板上的P 点(OP 与水平方向夹角为37°,已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2),求其离开O 点时的速度大小;(2)为使小物块击中挡板,求拉力F 作用的最短时间;(3)改变拉力F 的作用时间,使小物块击中挡板的不同位置.求击中挡板时小物块动能的最小值.功能关系 能量守恒定律例1.质量为m 的物体,在距地面h 高处以g /3的加速度由静止竖直下落到地面,下列说法中正确的是 ( B C D )A. 物体的重力势能减少 1/3 mghB. 物体的机械能减少 2/3 mghC. 物体的动能增加 1/3 mghD. 重力做功 mgh例2.如图,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C在水平线上,其距离d =0.5 m .盆边缘的高度为h =0.3 m .在A 处放一个质量为m 的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停下的位置到B 的距离为( D )A .0.5 mB .0.25 mC .0.1 mD .0m例3.(2014上海)质量为M 的物块静止在光滑水平桌面上,质量为m 的子弹以水平速度v 0射入物块后,以水平速度2v 0/3射出。
功能关系能量守恒定律
部分机械能从一个物体转移到另一个物体;二是部分机械 能转化为内能.
【特别提醒】 一对相互作用的滑动摩擦力做功所产 生 的 热 量 Q = Ff·s 相 对 , 其 中 s 相 对 是 物 体 间 相 对 路 径 长 度.如果两物体同向运动,s相对为两物体对地位移大小之 差;如果两物体反向运动,s相对为两物体对地位移大小之
不同的 力做功
对应不同形 式能的变化
定量的关系
电场力做正功,电势能减
电场力的功
电势能变化
少;电场力做负功,电势 能增加 W电=-ΔEp 分子力做正功, 分子势能减少;
分子力的功
分子势能变化
分子力做负功,
分子势能增加 W分子=-ΔEp
不同的 力做功
对应不同形 式能的变化
定量的关系
作用于系统的一对滑动
出阻力.
【答案】 【反思】
(1)9100J
(2)140N
从能量的角度来看,功是量度能量转化
的物理量,功的正、负表示了能量的传输方向:外力对物 体做正功,则外界向物体传输能量;外力对物体做负功,
物体将一部分能量向外界传输.
如本例中求人与雪橇从 A到 B的过程中损失的机械能 为多少,由能量关系可知,就是求这一过程中克服阻力做
(2) 高考考查这类问题,常综合平抛、圆周运动、动
量守恒及电学、热学等知识考查考生的判断、推理及综合 分析问题的能力.
【例 3】
如下图所示,某人乘雪橇沿雪坡经 A 点滑
至 B点,接着沿水平路面滑至 C点停止.人与雪橇的总质 量为 70kg.表中记录了沿坡滑下过程中的有关数据,请根 据图表中的数据解决下列问题:(g=10m/s2)
位置 速度(m/s) 时刻(s)
A 2.0 0
功能关系及能量守恒(课件)高一物理(人教版2019必修第二册)
常见命题点
命题点一:功能关系的理解
1.只涉及动能的变化用动能定理分析. 2.只涉及重力势能的变化,用重力做功与重力势能变化 的关系分析. 3.只涉及机械能的变化,用除重力和弹簧的弹力之外的 其他力做功与机械能变化的关系分析.
常见题型
命题点二:功能关系的综合应用
例.如图,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一电动机 相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升。摩擦
(2)小球落地点C与B的水平距离s为多少?
(3) 若H一定,R多大时小球落地点C与B水平距离s最远?该水
平距离的最大值是多少?
常见题型
命题点三:摩擦力做功与能量转化
2.滑动摩擦力做功的特点 (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效 果: ①机械能全部转化为内能; ②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.
常见题型
除了重力和弹力之外,系统中其他内 外力做功的代数和。
这个功能关系具有普遍意义
三、功能关系
E机 mgx cos 想一想:机械能减小了,是消失了吗?
能量守恒:
E机 Q
Q mgx cos
摩擦生热等于克服摩擦力做功?
三、功能关系
M
mv
地面光滑
动能定理:
x1 x2
mgx2 Ek1 mgx1 Ek2
时会触发闭合装置将圆轨道封闭。(取g=10 m/s2,sin 53°=0.8,cos
53°=0.6)求:
(1)小物块与水平面间的动摩擦因数μ1; (2)弹簧具有的最大弹性势能Ep; (3)要使小物块进入竖直圆轨道后不脱
功能关系和能量守恒定律
(版权所有,翻印必究)教师版名思学案行业典范学案科目物理年级日期时段教师课题功能关系和能量守恒定律本次课知识点罗列1.功能关系的定义2.几种常见力的功与能量转化的关系3. 能量守恒定律的内容4. 能量守恒定律的两天基本思路重点难点功能关系功能关系的熟练运用一.基础点睛(一)功能关系1、功是转化的量度,即“做多少功,就有多少能量转化”,但功不是能。
2、能量转化过程中,总能量总是。
即(1)某种形式的能量减少,一定有其他形式的能增加,且减少量等于增加量;(2)某个物体能量的减少,一定存在其他物体的能量增加,且减少量等于增加量。
3、功与动能、势能、机械能的关系可归纳如下:(1)合外力的功与物体的变化相联系,即W合=ΔE k(2)重力的功与物体的变化相联系,即W G=-ΔE p(3)重力、弹簧力以外的其他力做功与物体系统的变化相联系,即W其他=ΔE机。
其他力做正功,系统的机械能增加,反之,则系统的机械能减少,若其他力做功为零,则系统的机械能守恒。
这种关系通常称为“功能原理”。
(4)相互摩擦的系统内,一对静摩擦力所做的功总和等于零;一对滑动摩擦力所做的功的总和总是负值,其绝对值等于滑动摩擦力与相对路程的乘积,且恰等于系统损失的机械能。
(二)能量守恒定律与能源1、能量守恒定律1.内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另外一个物体,而在转化和转移的过程中,能量的总和保持不变.2.建立过程.2能源和能量耗散1.内容:能量转化具有方向性.2.节约能源的重要意义(版权所有,翻印必究)教 师 版名思学案 行业典范二、夯实小练1、 某人将一个物体由地面举起一定高度且使物体获得一定速度的过程中,若不计空气阻力,则( )A 、 举力所做的功等于物体机械能的增加B 、 物体克服重力所做的功等于其动能的增加C 、 举力和重力所做的功的代数和等于动能的增加D 、 物体所受合外力所做的功等于物体机械能的增加2、 一木块静止在光滑的水平面上,被水平方向飞来的子弹击中,子弹进入木块的深度为2cm ,木块相对于桌面移动了1cm 。
2023届高考物理一轮复习课件:功能关系、能量守恒定律
小;
(3) B: -W-fSB=0-Ek
C:-fxC=0-Ek
SB>xC-xBC
SB为路程
得:W<fxBC
(4)若F=5f,请在所给坐标系中,画出C向右运动过程中加速度a随位移
x变化的图像,并在坐标轴上标出开始运动和停止运动时的a、x值(用f、k、
E多=Q+ ( − ) E多=0.8 J
=0.8 J
例2.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高
度差为h 1 =0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的
上端C点与B点的高度差为h 2 =0.1125 m(传送带传动轮的大小可忽略
不计)。一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,
Ek=
。
k
[针对训练]
1.如图,一长为 L 的轻杆一端固定在光滑铰链上,另一端固定一质量为 m 的
小球。一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆
与水平方向夹角为 60°时,拉力的功率为(
C
A.mgLω
3
B. mgLω
2
1
C. mgLω
2
3
D. mgLω
6
)
PF=P克 =mgvy
v
0
f
1.水平皮带
f
v0
+
x物 =
x皮
x皮= =2x物 ∆x= x皮-x物 =x物
=
f∆x=Q
fx物= −
思考:因传送物体多做的功?
功能关系、能量守恒定律
功能关系、能量守恒定律一、功能关系1、 功是能量转化的量度,即做了多少功就有多少能量发生了转化2、 做功的过程一定伴随着能量转化,而且能量转化必须通过做功来实现。
二、能量守恒定律1、内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化成另一种形式,或者从一个物体转移到别的物体,在转化和转移的过程中,总的能量保持不变。
2、两种理解⑴某种形式的能量减少,一定存在其他形式的能量增加,而且减少量和增加量一定相等。
⑵某个物体的能量减少,一定存在其他物体的能量增加,而且减少量和增加量一定相等。
三、几种常见的功能关系1、动能定理:合外力对物体所做的总功等于物体动能的增量2、重力做功与重力势能改变量之间的关系物体从高处到低处,重力做正功,重力势能减少,重力势能的减少量等于重力做的功; 物体从低处到高处,重力做负功,重力势能增加,重力势能的增加量等于克服重力做的功。
3、弹力做功与弹性势能改变量之间的关系弹簧弹力做正功,弹性势能减少,弹性势能的减少量等于弹簧弹力做的功; 弹簧弹力做负功,弹性势能增加,弹性势能的增加量等于克服弹簧弹力做的功 4、重力或弹簧弹力做功与机械能改变量的关系重力或弹簧弹力做功不改变机械能。
除重力和弹簧的弹力外,其他力做正功,系统机械能增加,且机械能的增加量等于除重力和弹簧弹力以外的其他力做的功;除重力和弹簧的弹力外,其他力做负功,系统机械能减少,且机械能的减少量等于除重力和弹簧弹力以外的其他力做的负功多少。
5、电场力做功与电势能改变量之间的关系电场力做正功,电势能减少,电势能的减少量等于电场力做的功; 电场力做负功,电势能增加,电势能的增加量等于克服电场力做的功。
6、摩擦生热:Q一对滑动摩擦力做功产生的热量等于滑动摩擦力乘以物体的相对位移,即是: x f Q ∆⋅= 注意:⑴相对位移x ∆的算法:当两个物体运动方向相同时,则相对位移为这两个物体位移之差;当两个物体运动方向相反时,则相对位移为这两个物体位移之和。
高中物理功能关系-能量守恒定律
功能关系1.功和能(1)做功的过程就是能量转化的过程,能量的转化必须通过做功来实现。
(2)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。
2.功能关系(1)重力做功等于重力势能的改变,即W G=E p1-E p2=-ΔE p(2)弹簧弹力做功等于弹性势能的改变,即W F=E p1-E p2=-ΔE p(3)除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变,即W其他力=E2-E1=ΔE。
(功能原理)(1)动能的改变量、机械能的改变量分别与对应的功相等。
(2)重力势能、弹性势能、电势能的改变量与对应的力做的功数值相等,但符号相反。
(3)摩擦力做功的特点及其与能量的关系:类别比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数总和等于零一对滑动摩擦力所做功的代数和不为零,总功W=-F f·l相对,即摩擦时产生的热量相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功1.自然现象中蕴藏着许多物理知识,如图5-4-1所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能()图5-4-1A.增大B.变小C.不变D.不能确定解析:选A人推袋壁使它变形,对它做了功,由功能关系可得,水的重力势能增加,A正确。
能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
2.表达式ΔE减=ΔE增。
1.应用能量守恒定律的基本思路(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。
2.应用能量守恒定律解题的步骤(1)分清有多少形式的能(动能、势能、内能等)发生变化。
功能关系和能量守恒定律
功能关系和能量守恒定律班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1.功能关系__能量守恒定律1.功和能(1)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。
(2)做功的过程一定伴随有能量的转化,而且能量的转化必须通过做功来实现。
2.力学中常用的四种功能对应关系(1)合外力做功等于物体动能的变化:即W合=E k2-E k1=ΔE k。
(动能定理)即W G=E p1-E p2=-ΔE p。
即W弹=E p1-E p2=-ΔE p。
等于物体机械能的变化,即W其他=E2-E1=ΔE。
(功能原理) 2.应用功能关系解题的基本思路(1)受力分析:按照“一重二弹三摩擦”的顺序分析受力;(2)做功分析:判断力是否做功,做正功还是负功;(3)能量分析:“(N+1)原则”,N个力做功对应(N+1)种能量转化,明确哪种形式的能量增加,哪种形式的能量减少;(4)功能关系:求某种能量的变化找出与之对应的力做功;求力做的功找出与之对应的能量变化。
(5)能量守恒:列出减少的能量ΔE减和增加的能量ΔE增的表达式,列出能量守恒关系式:ΔE减=ΔE增.3.功能关系的选用原则(1)在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析.(2)只涉及重力势能的变化用重力做功与重力势能变化的关系分析.(3)只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析.4.功能关系中的图像问题例题1. (多选)(2013·大纲卷)如图9,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g 。
若物块上升的最大高度为H ,则此过程中,物块的( )A .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了12mgH2. 质量为M 的物体其初动能为100 J,从倾角为θ的足够长的斜面上的A 点向上匀减速滑行,到达斜面上的B 点时物体动能减少了80 J,机械能减少了32 J,若μ<tanθ,则当物体回到A 点时具有的动能为( ) A.60 J B.20 J C.50 J D.40 J3. (2009上海)小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的两倍,在下落至离地高度h 处,小球的势能是动能的两倍,则h 等于( ) A .H /9B .2H /9C .3H /9D .4H /94. (2005辽宁)一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于( )A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和5.(2014•潍坊一模)如图所示,轻质弹簧下端固定在倾角为θ的粗糙斜面底端的挡板C 上,另一端自然伸长到A 点.质量为m 的物块从斜面上B 点由静止开始滑下,与弹簧发生相互作用,最终停在斜面上某点.下列说法正确的是( )A .物块第一次滑到A 点时速度最大B .物块停止时一定在A 点C .在物块滑到最低点的过程中,物块减少的重力势能全部转化成弹簧的弹性势能D .在物块的整个运动过程中,克服弹簧弹力做的功等于重力和摩擦力做功之和6.(多选)(2014·北京西城区期末)如图4甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0 m 。
功能关系 能量守恒定律
6.4 功能关系能量守恒定律概念梳理:一、功能关系1.能的概念:一个物体能对外做功,这个物体就具有能量.2.功能关系(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量转化,而且能量的转化必通过做功来实现.3.功与对应能量的变化关系思考:功和能有什么区别?答案功是反映物体间在相互作用的过程中能量变化多少的物理量,功是过程量,它与一段位移相联系;能是用来反映物体做功本领的物理量,它反映了物体的一种状态,故能是状态量,它与某个时刻(或某一位置)相对应.二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化和转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.3.对定律的理解(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.这也是我们列能量守恒定律方程式的两条基本思路.考点精析:考点一 功能关系的应用【例1】物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是 ( ) A .匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小 B .匀速上升和加速上升机械能增加,减速上升机械能减小C .由于该拉力与重力大小的关系不明确,所以不能确定机械能的变化情况D .三种情况下,物体的机械能均增加【练习】已知货物的质量为m ,在某段时间内起重机将货物以加速度a 加速升高h 高度,则在这段时间内,下列叙述正确的是(重力加速度为g ) ( )A .货物的动能一定增加 mah -mghB .货物的机械能一定增加mahC .货物的重力势能一定增加mahD .货物的机械能一定增加mah +mgh 【例2】如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h , 则在这个过程中物体:(1)重力势能增加了多少? (2)动能损失了多少? (3)机械能损失了多少?【练习】一物块放在如图所示的斜面上,用力F 沿斜面向下拉物块,物块沿斜面运动了一段距离,若已知在此过程中,拉力F 所做的功为A ,斜面对物块的作用力所做的功为B ,重力做的功为C ,空气阻力做的功为D ,其中A 、B 、C 、D 的绝对值分别为100 J 、30 J 、100 J 、20 J ,则:(1)物块动能的增量为多少? (2)物块机械能的增量为多少? (3)物块重力势能的改变量为多少? (4)物块克服摩擦力做的功是多少?考点二 摩擦力做功的特点及应用【注意】一对相互作用的滑动摩擦力做功所产生的热量Q =f ·s相对,其中s 相对是物体间相对路径长度.如果两物体同向运动,s 相对为两物体对地位移大小之差;如果两物体反向运动,s相对为两物体对地位移大小之和;如果一个物体相对另一物体做往复运动,则s 相对为两物体相对滑行路径的总长度.【例1】如图所示,质量为m 的长木板A 静止于光滑水平面上,在其水平的上表面左端放一质量为m 的滑块B ,可视为质点.已知木板长为L ,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F 拉滑块B .(1)当长木板A 的位移为多少时,B 从A 的右端滑出? (2)求上述过程中滑块与木板之间产生的内能.类别 比较静摩擦力滑动摩擦力不同点能量转化方面在静摩擦力做功的过程中,只有机械能从一个物体转移到另一个物体(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能量1.相互摩擦的物体通过摩擦力做功,将部分机械能从一个物体转移到另一个物体2.部分机械能转化为内能,此部分能量就是系统机械能的损失量 一对摩擦力做的总功方面一对静摩擦力所做功的代数和等于零一对相互作用的滑动摩擦力对物体系统所做的总功总为负值,系统损失的机械能转变成内能相同点 两种摩擦力都可以对物体做正功,做负功,还可以不做功【练习】如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s的速度运动,运动方向如图所示.一个质量为2 kg的物体(物体可以视为质点),从h=3.2 m高处由静止沿斜面下滑,物体经过A点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10 m/s2,则:(1)物体由静止沿斜面下滑到斜面末端需要多长时间?(2)传送带左右两端AB间的距离l至少为多少?(3)物体在传送带上完成第一次来回滑行过程中产生的摩擦热为多少?考点三能量守恒定律的应用应用能量守恒定律解题的步骤(1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化.(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式.(3)列出能量守恒关系式:ΔE减=ΔE增.【例1】小物块A的质量为m,物块与坡道间的动摩擦因数为μ,水平面光滑;坡道顶端距水平面高度为h,倾角为θ;物块从坡道进入水平滑道时,在底端O点处无机械能损失,重力加速度为g.将轻弹簧的一端连接在水平滑道M处并固定在墙上,另一自由端恰位于坡道的底端O点,如图所示.物块A从坡道顶端由静止滑下,求:(1)物块滑到O点时的速度大小;(2)弹簧为最大压缩量d时的弹性势能;(3)物块A被弹回到坡道时上升的最大高度.【练习】如图所示,水平长传送带始终以速度v =3m/s匀速运动.现将一质量为m=1kg的物块放于左端(无初速度).最终物体与传送带一起以3m/s的速度运动,在物块由速度为零增加至v =3m/s的过程中,求:v(1)由于摩擦而产生的热量.(2)由于放了物块,带动传送带的电动机多消耗多少电能.课后练习一.单项选择题1.光滑水平地面上叠放着两个物体A 和B ,如图所示.水平拉力F 作用在物体B 上,使A 、B 两物体从静止出发一起运动.经过时间t ,撤去拉力F ,再经过时间t ,物体A 、B 的动能分别设为E A 和E B ,在运动过程中A 、B 始终保持相对静止.以下有几个说法:①E A +E B 等于拉力F 做的功 ②E A +E B 小于拉力F 做的功 ③E A 等于撤去拉力F 前摩擦力对物体A 做的功 ④E A 大于撤去拉力F 前摩擦力对物体A 做的功,其中正确的是( ) A .①③ B .①④ C .②③ D .②④2.如图所示,物体A 的质量为m ,置于水平地面上,A 的上端连一轻弹簧,原长为L ,劲度系数为k ,现将弹簧上端B 缓慢地竖直向上提起,使B 点上移距离为L ,此时物体A 也已经离开地面,则下列论述中正确的是( )A .提弹簧的力对系统做功为mgLB .物体A 的重力势能增加mgLC .系统增加的机械能小于mgLD .以上说法都不正确3.如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物块从静止释放到相对静止这一过程,下列说法正确的是( )A .电动机做的功为12m v 2B .摩擦力对物体做的功为m v 2C .传送带克服摩擦力做的功为12m v 2D .电动机增加的功率为μmg v4.飞船返回时高速进入大气层后,受到空气阻力的作用,接近地面时,减速伞打开,在距地面几米处,制动发动机点火制动,飞船迅速减速,安全着陆.下列说法正确的是( ) A .制动发动机点火制动后,飞船的重力势能减少,动能减小 B .制动发动机工作时,由于化学能转化为机械能,飞船的机械能增加 C .重力始终对飞船做正功,使飞船的机械能增加D .重力对飞船做正功,阻力对飞船做负功,飞船的机械能不变5.如图所示,具有一定初速度的物块,沿倾角为30°的粗糙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力F作用,这时物块的加速度大小为4 m/s2,方向沿斜面向下,那么,在物块向上运动过程中,正确的说法是()A.物块的机械能一定增加B.物块的机械能一定减小C.物块的机械能可能不变D.物块的机械能可能增加也可能减小6.如图所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球.支架悬挂在O点,可绕过O点并与支架所在平面垂直的固定轴转动.开始时OB与地面相垂直,放手后开始运动,在不计任何阻力的情况下,下列说法不正确的是()A.A球到达最低点时速度为零B.A球机械能减少量等于B球机械能增加量C.B球向左摆动所能达到的最高位置应高于A球开始运动时的高度D.当支架从左向右摆回时,A球一定能回到起始高度二.双项选择题1.若礼花弹在由炮筒底部击发至炮筒口的过程中,克服重力做功W1,克服炮筒阻力及空气阻力做功W2,高压燃气对礼花弹做功W3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变) ()A.礼花弹的动能变化量为W3+W2+W1 B.礼花弹的动能变化量为W3-W2-W1 C.礼花弹的机械能变化量为W3-W2 D.礼花弹的机械能变化量为W3-W2-W1 2.一物体放在升降机的水平地板上,在升降机加速竖直上升的过程中,地板对物体的支持力所做的功等于()A.物体重力势能的增加量B.物体动能的增加量C.物体动能的增加量和物体重力势能的增加量之和D.物体动能的增加量和克服重力所做的功之和3.轻质弹簧吊着小球静止在如图所示的A位置,现用水平外力F将小球缓慢拉到B位置,此时弹簧与竖直方向的夹角为θ,在这一过程中,对于整个系统,下列说法正确的是( ) A.系统的弹性势能不变B.系统的弹性势能增加C.系统的机械能不变D.系统的机械能增加4.如图所示,A、B、C、D四图中的小球以及小球所在的左侧斜面完全相同,现从同一高度h处由静止释放小球,使之进入右侧不同的竖直轨道:除去底部一小段圆弧,A图中的轨道是一段斜面,高度大于h;B图中的轨道与A图中的轨道相比只是短了一些,且斜面高度小于h;C图中的轨道是一个内径略大于小球直径的管道,其上部为直管,下部为圆弧形,与斜面相连,管的高度大于h;D图中的轨道是个半圆形轨道,其直径等于h.如果不计任何摩擦阻力和拐弯处的能量损失,小球进入右侧轨道后能到达h高度的是()三.计算题1.如图所示,斜面的倾角为θ,质量为m的滑块距挡板P的距离为l0,滑块以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,求滑块经过的总路程.2.如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持以v0=2 m/s的速率运行.现把一质量为m=10 kg的工件(可视为质点)轻轻放在皮带的底端,经时间1.9 s,工件被传送到h=1.5 m的高处,g取10 m/s2. 求:(1)工件与皮带间的动摩擦因数;(2)电动机由于传送工件多消耗的电能.。
5.4 功能关系 能量守恒定律
返回目录
按Esc键退出
基础梳理整合
核心理解深化
方法探究突破
返回目录
按Esc键退出
基础梳理整合 ◎构建能力大厦的奠基石◎
返回目录
按Esc键退出
一、功能关系 1.功 功是 的量度。做功的过程就是 的过程。做了多少
功,就有多少能量发生转化。
2.具体情况
(1)重力做功: (2)弹簧弹力做功: 和其他能相互转化。 和其他能相互转化。 。
v =4 m/s cos 60
vD 2 小球在D点时由牛顿第二定律得FN-mg=m R
代入数据解得FN=60 N 由牛顿第三定律得FN'=FN=60 N 方向竖直向下
(2)设小物块刚滑到木板左端时达到共同速度,大小为v,小物块在木板
μmg 上滑行的过程中,小物块与长木板的加速度大小分别为a1= =μg=3 m μmg m/s2,a2= =1 m/s2 M
功时,位移是对地位移,计算因滑动摩擦产生的内能时,常用功能关系
Q=Ff· s,需注意的是s为物体之间的相对路程;只有存在滑动摩擦力时才 有内能产生。
命题研究三、能量守恒定律的应用 【例3】如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H,上端
套着一个细环。棒和环的质量均为m,相互间最大静摩擦力等于滑动
械能,这部分机械能转化成了系统的内能。即WF =Ff· s=Q。
f
易错辨析
请你判断下列表述正确与否,对不正确的,请予以更正。 1.功就是能,能就是功。
2.物体自由下落过程,获得的动能等于重力的功和减少的重力势能之和。 3.计算物体之间因滑动摩擦而产生的热量时,公式Q=Ffs,其中s为某个
物体对地的位移。 答案:1.错误。功和能是两个不同的概念,功是能量转化的量度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 4 课时功能关系能量守恒定律学习目标:1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.【课前知识梳理】一、几种常见的功能关系功能量的变化合外力做正功动能增加重力做正功重力势能减少弹簧弹力做正功弹性势能减少电场力做正功电势能减少其他力(除重力、弹力外)做正功机械能增加二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.【预习自测】1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是A.力F做的功和阻力做的功之和等于物体动能的增量B.重力所做的功等于物体重力势能的增量C.力F做的功和阻力做的功之和等于物体机械能的增量D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量2、如图 1 所示,美国空军X-37B无人航天飞机于2010 年 4 月首飞,在X-37B 由较低轨道飞到较高轨道的过程中A.X-37B 中燃料的化学能转化为X-37B 的机械能B.X-37B 的机械能要减少C.自然界中的总能量要变大D.如果X-37B 在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变3、如图2 所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B 、C 在水平线上,其距离 d =0.5 m .盆边缘的高度为 h =0.3 m .在 A 处放一个质量为 m 的小物块并 让其由静止下滑.已知盆内侧壁是光滑的,而盆底 BC 面与小物块间的动摩擦因数为 μ=0.1.小物块在 盆内来回滑动,最后停下来,则停下的位置到 B 的距离为课堂合作探究】考点一 功能关系的应用【例 1】 如右上图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的 固定木板B 上,另一端与质量为m 的物块A 相连,弹簧与斜面平行.整个系统由静止开始加速上升 高度 h 的过程中A .物块A 的重力势能增加量一定等于 mghB .物块A 的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和C .物块A 的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和D .物块 A 和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和 B 对弹簧的拉力做功的代数 和【突破训练 1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于A .物块动能的增加量B .物块重力势能的减少量C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和考点二 摩擦力做功的特点及应用A .0.5 mB .0.25 mC .0.1 m1.静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对位移.深化拓展从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.【例2】如图4所示,质量为m的长木块A静止于光滑水平面上,在其水平的上表面左端放一质量为m 的滑块B,已知木块长为L,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F拉滑块B.(1)当长木块A的位移为多少时,B从A的右端滑出?(2)求上述过程中滑块与木块之间产生的内能.【突破训练2】如图所示,足够长的传送带以恒定速率顺时针运行.将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法中正确的是A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C.第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量等于全过程物体与传送带间的摩擦生热考点三能量守恒定律及应用列能量守恒定律方程的两条基本思路:(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等.【例 3 】如图 6 所示,质量为 m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持 以速度 v 匀速运动,物体与传送带间的动摩擦因数为 μ,物体在滑下传送带之前能保持与传送带相对 静止,对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是A .电动机多做的功为1m v 2B .物体在传送带上的划痕长v μgC .传送带克服摩擦力做的功为1m v 2D .电动机增加的功率为 μmg v应用能量守恒定律解题的步骤(1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化;(2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量 ΔE 减和增加的能量 ΔE 增的表达式;(3)列出能量守恒关系式: ΔE 减 =ΔE 增.【突破训练 3】如图 7 所示,传送带保持 1 m/s 的速度顺时针转动.现将一质量 m =0.5 kg 的小物体轻 轻地放在传送带的 a 点上,物体与传送带间的动摩擦因数 μ=0.1,a 、b 间的距离 L =2.5 m ,g =10 m/s 2. 设物体从 a 点运动到 b 点所经历的时间为 t ,该过程中物体和传送带间因摩擦而产生的热量为 Q ,下 列关于 t 和 Q 的值正确的是传送带模型中的动力学和能量转化问题 1.模型概述C .t =3 s ,Q =0.25 JB .t = 3 s ,Q =0.5 JD .t =2.5 s ,Q =0.25 JA .t = 5 s ,Q =1.25 J传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个:(1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.传送带模型问题中的功能关系分析(1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f x相对.传送带模型问题的分析流程【例4】如图所示,是利用电力传送带装运麻袋包的示意图.传送带长l=20 m,倾角θ=37°,麻袋包与传送带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径R相等,传送带不打滑,主动轮顶端与货车车箱底板间的高度差为h=1.8 m,传送带匀速运动的速度为v=2 m/s.现在传送带底端(传送带与从动轮相切位置)由静止释放一只麻袋包(可视为质点),其质量为100 kg,麻袋包最终与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动.如果麻袋包到达主动轮的最高点时,恰好水平抛出并落在货车车箱底板中心,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)主动轮轴与货车车箱底板中心的水平距离x及主动轮的半径R;(2)麻袋包在传送带上运动的时间t;(3)该装运系统每传送一只麻袋包需额外消耗的电能.课后巩固练习】1.(2013·山东·16)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功2、(2012·福建理综·17)如图所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A、B处于同一高度并恰好处于静止状态.剪断轻绳后A下落,B沿斜面下滑,则从剪断轻绳到物块着地,两物块A.速率的变化量不同B.机械能的变化量不同C.重力势能的变化量相同D.重力做功的平均功率相同3.如图所示,一个小球(视为质点)从H=12 m 高处,由静止开始沿光滑弯曲轨道AB,进入半径R=4 m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C时,刚好对轨道压力为零;然后沿CB圆弧滑下,进入光滑弧形轨道BD,到达高度为h的D点时速度为零,则h的值可能为A.10 m B.9.5 m C.8.5 m D.8 m4、假设某次罚点球直接射门时,球恰好从横梁下边缘踢进,此时的速度为v.横梁下边缘离地面的高度为h,足球质量为m,运动员对足球做的功为W1,足球运动过程中克服空气阻力做的功为W2,选地面为零势能面,下列说法正确的是A.运动员对足球做的功为W1=mgh+1m v2B.足球机械能的变化量为W1-W2C.足球克服空气阻力做的功为W2=mgh+1m v2-W1D.运动员刚踢完球的瞬间,足球的动能为mgh+1m v25.工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图所示,质量为m的滑块,放在光滑的水平平台上,平台右端B与水平传送带相接,传送带的运行速度为v0,长为L;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时(仍处于弹簧弹性限度内)由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C时,恰好与传送带速度相同,滑块与传送带间的动摩擦因数为μ.求:(1)释放滑块时,弹簧具有的弹性势能;(2)滑块在传送带上滑行的整个过程中产生的热量.(限时:30 分钟)1.轻质弹簧吊着小球静止在如图1所示的A位置,现用水平外力F将小球缓慢拉到B位置,此时弹簧与竖直方向的夹角为θ,在这一过程中,对于小球和弹簧组成的系统,下列说法正确的是A.系统的弹性势能增加B.系统的弹性势能减少C.系统的机械能不变D.系统的机械能增加2.如图所示,汽车在拱形桥上由A匀速率运动到B,以下说法正确的是A.牵引力与克服摩擦力做的功相等B.合外力对汽车不做功C.牵引力和重力做的总功大于克服摩擦力做的功D.汽车在上拱形桥的过程中克服重力做的功转化为汽车的重力势能3.如图所示,长木板A放在光滑的水平地面上,物体B以水平速度冲上A后,由于摩擦力作用,最后停止在木板A上,则从B冲到木板A上到相对木板A静止的过程中,下述说法中正确的是A.物体B动能的减少量等于系统损失的机械能B.物体B克服摩擦力做的功等于系统内能的增加量C.物体B损失的机械能等于木板A获得的动能与系统损失的机械能之和D.摩擦力对物体B做的功和对木板A做的功的总和等于系统内能的增加量4.一颗子弹以某一水平速度击中了静止在光滑水平面上的木块,并刚好从中穿出.对于这一过程,下列说法正确的是A.子弹减少的机械能等于木块增加的机械能B.子弹和木块组成的系统机械能的损失量等于系统产生的热量C.子弹减少的机械能等于木块增加的动能与木块增加的内能之和D.子弹减少的动能等于木块增加的动能与子弹和木块增加的内能之5.如图所示,电梯的质量为M,其天花板上通过一轻质弹簧悬挂一质量为m的物体.电梯在钢索的拉力作用下由静止开始竖直向上加速运动,不计空气阻力的影响,当上升高度为H时,电梯的速度达到v,则在这段运动过程中,以下说法正确的是A.轻质弹簧对物体的拉力所做的功等于1m v2B.钢索的拉力所做的功等于1m v2+MgHC.轻质弹簧对物体的拉力所做的功大于1m v2D.钢索的拉力所做的功等于1(m+M)v2+(m+M)gH 6.如图所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点.下列说法中正确的是A.小球从A出发到返回A的过程中,位移为零,外力做功为零B.小球从A到C与从C到B的过程,减少的动能相等C.小球从A到C与从C到B的过程,速度的变化相等D.小球从A到C与从C到B的过程,损失的机械能相等7.如图所示,质量为M、长度为l的小车静止在光滑水平面上,质量为m的小物块放在小车的最左端.现用一水平恒力F作用在小物块上,使它从静止开始运动,物块和小车之间摩擦力的大小为F f,当小车运动的位移为x时,物块刚好滑到小车的最右端.若小物块可视为质点,则A.物块受到的摩擦力对物块车做功的代数和为零B.整个过程物块和小车间摩擦产生的热量为F f lC.小车的末动能为F f xD.整个过程物块和小车增加的机械能为F(x+l)8.如图所示,质量为m的可看成质点的物块置于粗糙水平面上的M点,水平面的右端与固定的斜面平滑连接,物块与水平面及斜面之间的动摩擦因数处处相同.物块与弹簧未连接,开始时物块挤压弹簧使弹簧处于压缩状态.现从M点由静止释放物块,物块运动到N点时恰好静止.弹簧原长小于MM′. 若物块从M点运动到N点的过程中,物块与接触面之间由于摩擦所产生的热量为Q,物块、弹簧与地球组成系统的机械能为E,物块通过的路程为s.不计转折处的能量损失,下列图象所描述的关系中可能正确的是9.如图所示,光滑半圆弧轨道半径为R,OA为水平半径,BC为竖直直径.一质量为m的小物块自A处以某一竖直向下的初速度滑下,进入与C点相切的粗糙水平滑道CM上.在水平滑道上有一轻弹簧,其一端固定在竖直墙上,另一端恰位于滑道的末端C点(此时弹簧处于自然状态).若物块运动过程中弹簧最大弹性势能为E p,且物块被弹簧反弹后恰能通过B点.已知物块与水平滑道间的动摩擦1 0因数为 μ,重力加速度为 g ,求:(1) 物块离开弹簧刚进入半圆轨道时对轨道的压力 F N 的大小;(2) 弹簧的最大压缩量 d ;(3) 物块从 A 处开始下滑时的初速度 v 0.10.如图所示,在粗糙水平台阶上静止放置一质量 m =0.5 kg 的小物块,它与水平台阶表面间的动摩 擦因数 μ=0.5,且与台阶边缘 O 点的距离 s =5 m .在台阶右侧固定了一个1圆弧挡板,圆弧半径 R = 1 m ,今以 O 点为原点建立平面直角坐标系.现用 F = 5 N 的水平恒力拉动小物块,一段时间后撤去 拉力,小物块最终水平抛出并击中挡板.(1)若小物块恰能击中挡板上的P 点(OP 与水平方向夹角为37°,已知sin 37°=0.6,cos 37°=0.8,g = 10 m/s 2),求其离开O 点时的速度大小;(2)为使小物块击中挡板,求拉力 F 作用的最短时间;(3) 改变拉力F 的作用时间,使小物块击中挡板的不同位置.求击中挡板时小物块动能的最小值.功能关系 能量守恒定律例 1. 质量为 m 的物体,在距地面 h 高处以 g /3 的加速度由静止竖直下落到地面,下列说法中正确的 是( B C D)A. 物体的重力势能减少1/3 mghB. 物体的机械能减少2/3 mghC. 物体的动能增加1/3 mghD. 重力做功mgh21 11 2点处的加速度为a= R = R =0.08m/s 2。