高考数学二轮复习 第一部分 专题篇 专题四 立体几何 第一讲 空间几何体课时作业 理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届高考数学二轮复习第一部分专题篇专题四立体几何第
一讲空间几何体课时作业理
1.如图为一个几何体的侧视图和俯视图,则它的正视图为( )
解析:根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的
上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正
方形、顶点在底面上的射影是底面一边的中点),因此结合选项知,它的正视
图为B.
答案:B
2.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )
A.2πB.π
C.2 D.1
解析:所得圆柱体的底面半径为1,母线长为1,所以其侧面积S=2π×1×1=2π,故选A.
答案:A
3.一个侧面积为4π的圆柱,其正视图、俯视图是如图所示的两个边长相等的正方形,则与这个圆柱具有相同的正视图、俯视图的三棱柱的相应的侧视图可以为( )
解析:三棱柱一定有两个侧面垂直,故只能是选项C中的图形.
答案:C
4.(2016·郑州质量预测)已知长方体的底面是边长为1的正方形,高为2,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该长方体的正视图的面积等于( ) A.1 B.2
C.2 D.22
解析:由题意知,所求正视图是底边长为2,腰长为2的正方形,其面积与侧视图面积相等为2. 答案:C
5.(2016·河北五校联考)某四面体的三视图如图,则其四个面中最大的面积是( )
A .2
B .22 C. 3
D .23
解析:在正方体ABCD -A 1B 1C 1D 1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D 1BCB 1,如图所示,其四个面的面积分别为2,22,22,23,故选D. 答案:D
6.(2016·郑州模拟)如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为( ) A.2
3 B.43 C.8
3
D .2
解析:由三视图可知,此四面体如图所示,其高为2,底面三角形的一边长为1,对应的高为2,所以其体积V =13×12×2×1×2=2
3,故选A.
答案:A
7.(2016·武汉调研)某几何体的三视图如图所示,则该几何体的表面积为( )
A .18+2π
B .20+π
C .20+π
2
D .16+π
解析:由三视图可知,这个几何体是一个边长为2的正方体割去了相对边对应的两个半径为1、高为1的14圆柱体,其表面积相当于正方体五个面的面积与两个1
4圆柱的侧面积的和,即
该几何体的表面积S =4×5+2×2π×1×1×1
4=20+π,故选B.
答案:B
8.(2016·江西宜春中学模拟)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )
A .2 B.92 C.32
D .3
解析:由三视图判断该几何体为四棱锥,且底面为梯形,高为x ,∴该几何体的体积V =13×
1
2×(1+2)×2×x =3,解得x =3. 答案:D
9.(2016·合肥模拟)在一圆柱中挖去一圆锥所得的机械部件的三视图如图所示,则此机械部件的表面积为( ) A .(7+2)π B .(8+2)π C.22π7
D .(1+2)π+6
解析:由题意得,挖去的圆锥的底面半径r =1,母线l =2,∴该机械部件的表面积S =π×12
+2π×1×3+π×1×2=(7+2)π,故选A. 答案:A
10.(2016·贵阳模拟)甲、乙两个几何体的正视图和侧视图相同,俯视图不同,如图所示,记甲的体积为V 甲,乙的体积为V 乙,则
A .V 甲 B .V 甲=V 乙 C .V 甲>V 乙 D .V 甲、V 乙大小不能确定 解析:由三视图知,甲几何体是一个以俯视图为底面的四棱锥,乙几何体是在甲几何体的基础上去掉一个角,即去掉一个三个面是直角三角形的三棱锥后得到的一个三棱锥,所以V 甲>V 乙 ,故选C. 答案:C 11.(2016·湖南东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( ) A .4 3 B .83 C .47 D .8 解析:设该三棱锥为P ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =1 2×4×4= 8,S △PBC =1 2×4× 42 2 -22 =47,故所有面中最大的面积为S △PBC =47,故选C. 答案:C 12.(2016·重庆模拟)已知三棱锥P ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,PC 为球O 的直径,该三棱锥的体积为2 6 ,则球O 的表面积为( ) A .4π B .8π C .12π D .16π 解析:依题意,设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是PC 的中点得,点P 到平面ABC 的距离等于2d ,所以V P ABC =2V O ABC =2×13S △ABC ×d =23×34×12 ×d =26 ,解 得d = 23,又R 2=d 2+⎝ ⎛⎭ ⎪⎫332=1,所以球O 的表面积等于4πR 2 =4π,选A.