随机预测控制经典参考文献2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1971
[5] Kushner,H.J. Introduction to stochastic control. Holt, Rinehartand Winston, 1971.
1983
[24] T. Morozan, “Stabilization of some stochastic discrete-time control-systems,”Stochast. Anal. Applicat. , vol. 1, no. 1, pp. 89–116, 1983.
1986
[12] Robert FS.1986.Stochastic optimal control:theory and application[M].Wiley.
[] Kumar,P.R.,&Varaiya,P. Stochastic systems : estimation, identification, and adaptive control. Prentice Hall.1986
1987
[16] D.W. Clarke, C. Mothadi, and P.S. Tuffs. Generalized predictive control. Auto-matica , 23:137–160, 1987.
1997
[10] J. Birge and F. Louveaux, Introduction to Stochastic Programming[M]. Springer, New York, 1997.
[9] McLachlan GJ, Thriyambakam Krishnan. The EM algorithm and extensions[M]. Wiley.1997.
[6]Meadows ES.Dynamic Programming and Model Predictive Control[C].Proceedings of the American Control Conference,1635-1639.1997.
[2] Lee J,Yu Z. Worst-case formulation of model predictive control for systems with bounded parameters[J].Automatica 33,763–781. 1997.
1998
[6] Schwarm A,Nikolaou M.1998.Chance constrained model predictive control[J].AIChE Journal,45,1743–1752.
[21] J.H. Lee and B.L. Cooley. Optimal feedback control strategies for state-space systems with stochastic parameters. IEEE Trans. Autom. Control, 43(10):1469–1475, 1998.
[14] P.O.M. Scokaert and D.Q. Mayne. Min-max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control , 43:1136–1142, 1998.
[25] Koroleva N. Robust stability of uncertain stochastic differential delay equations [J]. Systems & Control Letters,1998,35(9):325-336.
[] Kamen, E. W., & Su, J. K. Introduction to optimal estimation. London, UK:Springer.1999. 1999
[4] Bemporad A, Morari M. Robust model predictive control: A survey[J]. Robustness in Identification and Control, 1999, 245: 207-226.
[5] Blanchini F. Set invariance in control[J]. Automaica, 1999,35(11): 1747-1767.
2000
[3] Mayne D Q, Rawlings J B, Rao C V. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000,36(6): 789-814.
2001
[10] 杜晓宁,席裕庚,李少远.约束预测控制的一种快速算法[J].上海交通大学学报,2001,35(11):1624-1627.
Du X N, Xi Y G, Li S Y. Fast algorithm of constrained model predictive control[J]. Journal of Shanghai Jiaotong University, 2001, 35(11): 1624-1627.
[11] Chisci L, Rossiter J A, Zappa G. Systems with persistent disturbance: Predictive control with restricted constraints[J]. Automatica, 2001, 37(7): 1019-1028.
[23] Gershon R,Shaked U. H ∞control and filtering of discrete-time stochastic systems with multiplicative noise[J].Automatica,2001,37(3):409-417.
[] I. Batina, A. A. Stoorvogel, and S. Weiland. Stochastic disturbance rejection in model predictive control by randomized algorithms. In proceedings of American Control Conference, pages 732–737, 2001.
[1] I. Batina, A. A. Stoorvogel, and S. Weiland. Feed-back model predictive control by randomized algorithms. In proceedings of European Control Conference, pages 3185–3189, 2001.
[2] I. Batina, A. A. Stoorvogel, and S. Weiland. Model predictive control by randomized algorithms for systems with constrained inputs and stochastic disturbances. IEEE Transactions on Automatic Control, December 2001.
[11] D. H. van Hessem, C. W. Scherer, and O. H. Bosgra, “LMI-based closed-loop economic optimization of stochastic process operation under state and input constraints,”in Proc. 40th IEEE Conf. Decision Control, Orlando, FL, 2001, pp. 4228–4233.
2002
[17] P. Li, M. Wendt, and G. Wozny. A probabilistically constrained model predictive controller. Automatica, 38(7):1171–1176, 2002.
[3] Kouvaritakis B,Cannon M,Tsachouridis V. Recent developments in stochastic MPC and sustainable development[J].Annual Reviews in Control,2002,volume 28,23–35. 2002.
[4] I. Batina, A. A. Stoorvogel, and S. Weiland. Optimal control of linear, stochastic systems with state and input constraints. In proceedings of European Control Conference, pages 1564–1569, 2002.
[7] vanHessem,D.H.,&Bosgra,O.H. A conic reformulation of model predictive control including boundedand stochastic disturbances understate and input constraints. In Proc.41st IEEE conf.