扫描电子显微镜及其在材料科学中的应用

合集下载

扫描电子显微镜在材料表征中的应用

扫描电子显微镜在材料表征中的应用

扫描电子显微镜在材料表征中的应用材料科学是现代科技的重要基石,而材料表征则是研究材料性质和结构的关键手段之一。

在材料表征领域,扫描电子显微镜(Scanning Electron Microscope,简称SEM)凭借其高分辨率、高放大倍数和强大的表征能力,成为了研究人员的得力工具。

本文将探讨SEM在材料表征中的应用。

首先,SEM在材料表征中的一项重要应用是表面形貌的观察。

传统的光学显微镜只能观察到微米级别的细节,而SEM能够将观察范围扩大到纳米级别。

通过SEM,研究人员可以清晰地观察到材料表面的微观形貌,如表面粗糙度、颗粒分布等。

这对于材料的制备和性能评估具有重要意义。

例如,在纳米材料的研究中,SEM可以帮助研究人员观察纳米颗粒的形貌和分布情况,从而了解材料的结构特征和形成机制。

其次,SEM还可以用于材料的成分分析。

通过能谱仪(EDS)的配合,SEM能够实现元素的定性和定量分析。

EDS能够测量材料中不同元素的能谱信号,并通过谱图分析得出元素的含量和分布情况。

这对于研究材料的成分和相互作用具有重要意义。

例如,在合金材料的研究中,SEM-EDS可以帮助研究人员确定不同元素的分布情况,进而了解合金的相互作用和性能。

此外,SEM还可以用于材料的结构分析。

通过电子背散射模式(EBSD)技术,SEM能够实现材料的晶体结构分析。

EBSD技术通过测量电子背散射的衍射图样,得出材料的晶体结构信息,如晶体方向、晶界分布等。

这对于研究材料的晶体学性质和晶界行为具有重要意义。

例如,在金属材料的研究中,SEM-EBSD可以帮助研究人员观察晶界的分布情况,进而了解材料的力学性能和变形行为。

此外,SEM还可以用于材料的电子学性质研究。

通过电子能谱仪(ESCA)的配合,SEM能够实现材料的电子能级分析。

ESCA技术通过测量材料表面电子的能谱信号,得出材料的电子结构信息,如能带结构、电子态密度等。

这对于研究材料的导电性和光电性具有重要意义。

扫描电子显微镜

扫描电子显微镜

扫描电子显微镜扫描电子显微镜是一种强大的工具,它可以帮助科学家观察到物质的更小的细节和结构。

本文将介绍扫描电子显微镜的原理、应用、发展历程以及未来发展趋势。

原理扫描电子显微镜(Scanning Electron Microscopy,SEM)是一种利用扫描电子束与物体相互作用而获得形貌和微区组织信息的显微分析仪器。

扫描电子显微镜的工作原理是,将高能电子轰击样品表面,使其表面电子被激发,发射出大量的二次电子。

这些二次电子被探测器接收并转换成负电荷信号,在特定条件下被扫描成像。

应用扫描电子显微镜广泛应用于多个领域,包括材料科学、生命科学、化学和地质学等。

以下是该技术在这些领域中的应用:•材料科学:用于获取材料的形貌、结构以及表面性质等信息。

•生命科学:用于观察细胞、细胞器、细胞表面的超微结构和蛋白质等生物分子的形态和结构。

•化学:用于观察化学反应过程表面形貌、结构的变化以及材料结构的演化过程等。

•地质学:用于研究各种矿物、岩石和地层等,以了解地质演化过程。

发展历程1950年,发明了透射式电子显微镜,但它只能用于真空环境下的样品。

1956年,Helmut Ruska和Max Knoll发明了扫描电子显微镜。

该技术能够在空气中观察样品,并获得更高的象素分辨率。

1965年, Hitachi公司普及了第一台商用扫描电子显微镜S-800。

自此以后,扫描电子显微镜技术得到了快速的发展。

未来发展趋势随着技术的发展,扫描电子显微镜的应用场景不断扩大。

今后,该技术将越来越多地应用于纳米材料和微细加工领域。

同时,随着计算机技术的发展,扫描电子显微镜将会实现更高的自动化和智能化,成为更加强大的工具。

结论扫描电子显微镜是一款横跨多个领域应用的重要科学工具,其在材料科学、生命科学、化学和地质学等领域均有广泛的应用。

虽然该技术已经发展多年,但随着技术和计算机技术的不断进步,扫描电子显微镜将会越来越强大,为人们探索科学世界提供更加强大的支持。

扫描电子显微镜在纳米材料研究中的应用

扫描电子显微镜在纳米材料研究中的应用

二、纳米材料研究的意义
纳米材料是指在三维空间中至少有一维处于纳米尺度(1-100nm)的材料。 由于纳米材料具有尺寸效应、量子效应和表面效应等特殊性质,使得它们在能源、 生物医学、环境等领域具有广泛的应用前景。研究纳米材料的制备、性质和应用, 对于推动科学技术进步和社会发展具有重要意义。
三、扫描电子显微镜在纳米材料 研究中的应用
参考内容
扫描电子显微镜(SEM)是一种高分辨率、高倍率的电子光学仪器,适用于 观察和研究各种材料表面的微观结构和形貌。在无机材料分析中,SEM发挥着重 要的作用,可以帮助研究者深入了解材料的组成、结构和性质。本次演示将介绍 SEM的基本原理和特点,详细讲解SEM在无机材料分析中的应用,并指出使用SEM 时需要注意的问题。
3、技术参数选择:SEM的成像质量和技术参数选择密切相关。在实验过程中, 应根据样品的特性和研究目的选择合适的加速电压、工作距离、扫描速率等参数。
4、数据处理与分析:SEM通常配备有计算机控制系统和图像处理软件,可以 对采集到的信号进行定量分析和数据处理。应注意选择合适的分析方法,并综合 考虑多种因素对实验结果进行准确的评估。
1、形貌观察:SEM可以提供纳米材料的形貌图像,帮助研究者了解材料的颗 粒大小、形状、表面粗糙度等信息。例如,通过观察催化剂颗粒的形貌,可以优 化催化剂的制备工艺,提高催化性能。
2、成分分析:SEM可以结合能谱仪(EDS)对纳米材料进行成分分析。通过 EDS获取的元素分布图,可以了解不同元素在材料中的分布情况,为研究材料的 合成机理和性能提供依据。
5、失效分析:在机械零件失效分析中,扫描电子显微镜可以帮助研究者观 察到微小的裂纹、磨损痕迹等,从而找出失效的原因,为改进材料的性能和延长 使用寿命提供指导。

电子显微镜技术的应用与发展

电子显微镜技术的应用与发展

电子显微镜技术的应用与发展电子显微镜(Electron Microscope,简称EM)是一种能够利用电子束辐射的物理特性来获取高分辨率图像的显微镜。

与光学显微镜相比,电子显微镜可以获得更高的分辨率和对物质内部结构的直接观察。

因此,在材料科学、生命科学、化学、物理等领域有广泛应用。

电子显微镜技术在材料科学中的应用材料科学涉及材料的设计、制备、性能以及应用等方面。

电子显微镜技术在材料科学中有广泛应用,它能够提供宏观、微观及原子尺度下的材料结构。

例如,扫描电子显微镜(Scanning Electron Microscope,简称SEM)能够提供样品表面的高分辨率图像,从而观察材料表面的形貌、纹理、颜色、大小、分布和异质性等特征。

同时,SEM还能够进行能谱分析,确定物质的元素分布及含量等信息。

另外,透射电子显微镜(Transmission Electron Microscope,简称TEM)可以观察材料内部的晶体结构、晶界、原子间距、原子间偏移、原子配位、缺陷等细节结构,从而了解物质的性质、性能和制备方法。

为了使SEM和TEM获得更好的分辨率和对各种材料的应用范围更广,许多改进和创新的技术不断涌现。

例如,原子力显微镜(Atomic Force Microscope,简称AFM)是一种通过扫描探针感知样品表面高度变化并反馈输出的纳米测量技术,可以研究材料的纳米结构。

此外,各种先进的探测技术也不断提高电子显微镜技术在材料科学中的应用价值。

电子显微镜技术在生命科学中的应用生命科学是通过揭示生命科学的基本原理来推动人类生物医学、农业技术、环境保护和再生医学等领域的发展。

电子显微镜技术在生命科学中也有着广泛的应用。

例如,电子显微镜可以通过观察细胞、细胞器和分子之间的相互作用及特点,更加深入地了解它们在生命过程中的作用。

此外,电子显微镜还能够观察细胞的超微结构,如细胞核、线粒体、内质网和高尔基体等,研究细胞器的形态和功能,从而研究细胞发生病变的机制并开发新的治疗手段。

材料分析中的扫描电子显微镜技术

材料分析中的扫描电子显微镜技术

材料分析中的扫描电子显微镜技术材料科学作为一门重要的研究领域,广泛应用于各个行业。

其基本原理是通过对材料的物理性质和结构进行研究,以提高材料的性能和功能。

在材料分析中,扫描电子显微镜(SEM)技术是一种非常重要的工具,能够提供高分辨率和大深度的观察和分析。

扫描电子显微镜是一种应用电子束技术的显微镜,其工作原理是通过聚焦的电子束扫描待观察的材料表面,然后通过探测器捕捉并记录反射的电子束信号。

与传统光学显微镜相比,SEM具有更高的分辨率和更大的深度。

它可以观察到材料的表面形貌、形状和大小,并提供其它有关材料结构和成分的信息。

SEM技术在材料科学中的应用非常广泛。

首先,它可以用来观察和分析材料的表面形貌和结构。

通过SEM观察材料的表面形貌,我们可以了解材料的纹理、孔隙结构和表面粗糙度等特征。

这对于研究材料的界面性质、材料的耐磨性和材料与环境的相互作用具有重要意义。

此外,SEM还可以提供材料的成分分析。

通过利用扫描电子显微镜上的能谱仪,我们可以获取X射线能谱信息,进而分析材料的元素组成和含量。

这对于材料的合成、纯度和混杂物含量的研究非常重要。

同时,SEM技术还可以通过电子束与材料的相互作用,提供对材料电荷分布、晶体结构和缺陷等性质的观察和分析。

扫描电子显微镜技术的应用不仅局限于材料科学领域。

在生物学、医学和环境科学等其他领域,SEM也发挥着重要作用。

在生物学中,SEM可以用来观察和分析生物细胞、组织和微生物的形态特征。

在医学中,SEM可以用于研究病毒、细菌和肿瘤细胞的形态、结构和成分。

在环境科学中,SEM可以用来观察和分析大气颗粒、水质颗粒和土壤颗粒等微观颗粒的形貌和成分,从而帮助我们研究环境中的污染物和微观生物。

尽管SEM技术在材料科学和其他领域中得到广泛应用,但它并非没有一些限制。

首先,SEM技术对样品的制备要求较高,样品需要进行表面处理和真空吸附,以确保电子束的穿透性和样品的稳定性。

此外,SEM分析所需的仪器和设备也相对昂贵,对于一些小型研究实验室来说可能存在一定的经济压力。

扫描电子显微镜技术在材料研究中的应用

扫描电子显微镜技术在材料研究中的应用

扫描电子显微镜技术在材料研究中的应用随着科学技术的进步,越来越多的新材料被开发出来,同时也带来了更多的研究挑战。

传统的材料研究方法往往难以满足如此复杂的研究需求。

幸运的是,扫描电子显微镜技术的发展,使得研究人员能够更好地理解这些材料。

本文将介绍扫描电子显微镜技术在材料研究中的应用。

扫描电子显微镜技术是一种能够进行高分辨率成像的显微镜。

它的原理是通过扫描电子束在样品表面来获得高分辨率的图像。

扫描电子显微镜可以成像几乎所有的材料,包括金属、聚合物、半导体以及生物材料。

下面将介绍扫描电子显微镜技术在材料研究中的应用。

一、纳米材料成像扫描电子显微镜技术能够进行非常高分辨率的成像,因此在纳米材料的研究中得到了广泛应用。

纳米材料的尺寸非常小,一般在1到100纳米之间。

传统的显微镜无法获得如此高分辨率的图像。

使用扫描电子显微镜技术,可以观察纳米材料的表面形貌、材料的组成、原子结构以及电子结构。

这些信息有助于更好地理解微观结构和材料性质之间的关系。

二、能谱分析扫描电子显微镜技术不仅可以提供高分辨率的图像,还可以进行能谱分析。

该技术可以测量样品中元素的相对含量,并且检测到低浓度的元素。

这对于研究材料性质非常重要,因为元素的含量和组成对材料的性质有重要影响。

通过能谱分析,研究人员可以分析不同元素在材料中的分布情况,从而更好地了解材料构成和性质之间的关系。

三、材料结构分析扫描电子显微镜技术还可以用于分析材料的结构。

该技术可以观察材料的微观形貌,如颗粒大小和形状、孔隙分布以及晶体结构。

这些结构信息对于研究材料的物理和化学性质非常重要。

例如,孔隙和晶体缺陷可以影响材料的力学性质、光学性质以及化学反应性。

通过扫描电子显微镜技术,研究人员可以更好地理解这些微观结构,并且在材料设计和改进方面提供重要信息。

四、材料表面分析扫描电子显微镜技术还可以用于材料表面分析。

该技术可以观察材料表面的形貌、纹理和各种缺陷,如裂纹、疤痕和氧化物。

利用扫描电子显微镜获取材料表面形貌信息

利用扫描电子显微镜获取材料表面形貌信息

利用扫描电子显微镜获取材料表面形貌信息扫描电子显微镜(Scanning Electron Microscope,SEM)是一种用于观察和分析材料表面形貌的高分辨率显微镜。

利用其高能电子束和探测器,SEM可以提供高放大倍率和出色的表面清晰度,为研究人员提供详细的材料表面形貌信息。

本文将介绍扫描电子显微镜的原理,操作方法以及其在材料科学中的应用。

首先,让我们来了解一下扫描电子显微镜的工作原理。

SEM采用的是电子束扫描观察的原理。

它通过在材料上扫描射出高能电子束,当电子束与样品表面相互作用时,会发生多种与电子互作用的物理现象,如散射、逸出电子和背散射等。

SEM探测器将这些信号转换成图像,并以高分辨率的方式显示在显示器上。

此外,SEM还可以利用特殊的探头扫描电子显微镜,通过测量振荡电势,进一步获得材料的表面化学成分分布。

接下来,我们将介绍如何操作扫描电子显微镜来获取材料表面形貌信息。

首先,样品需要被制备成适合SEM观察的形式。

通常情况下,需要将样品表面进行金属或碳层涂覆,以增加导电性,然后将样品固定在SEM样品支架上。

样品准备的质量直接影响着SEM观察结果的准确性和可靠性,因此样品制备过程一定要严格控制。

接下来,将样品装载到SEM的样品舱中,关闭操作室门,开始抽真空。

当真空达到要求后,可以开始调整SEM的参数,如电子束加速电压、工作距离和探测器的选择等。

一旦调整完毕,可以将电子束聚焦在样品表面并开始扫描。

同时,可以调整探测器的位置和参数,以获得不同深度的信息。

最后,观察和记录SEM图像,并进一步分析和处理图像数据,以获得材料表面的形貌和结构信息。

扫描电子显微镜在材料科学中有着广泛的应用。

首先,SEM可以用于研究微观结构和形貌。

通过观察样品的表面形貌,可以获得材料的纹理、粗糙度、颗粒大小等信息,帮助研究人员了解材料的制备过程和性能。

其次,SEM还可以帮助分析材料的化学成分分布。

通过能谱仪等设备,可以测量样品表面的元素分布情况,从而研究材料的成分和相对丰度。

扫描电镜在材料中的应用

扫描电镜在材料中的应用

扫描电镜在材料中的应用扫描电镜(Scanning Electron Microscope,简称SEM)是一种广泛应用于材料科学领域的高分辨率显微镜。

它利用电子束与样品相互作用产生的信号来获取样品的形貌和成分信息,具有优越的分辨率和放大倍数,因此在材料研究中有着重要的应用。

在材料科学中,扫描电镜能够提供高分辨率的表面形貌观察。

与光学显微镜相比,扫描电镜具有更高的放大倍数和更好的分辨率,能够观察到更细微的表面细节。

对于材料的表面形貌分析,扫描电镜能够帮助科研人员更全面地了解材料的结构特征、表面纹理和形貌变化等。

例如,在金属材料研究中,通过扫描电镜观察到的晶粒大小、晶界分布和表面缺陷等信息,可以为材料的性能提供重要的参考。

扫描电镜在材料中的应用还包括成分分析。

通过能谱仪等附加设备的配合,扫描电镜可以获取样品的元素成分信息。

利用能谱仪的能量分析功能,可以准确地确定材料中各种元素的含量和分布情况。

这对于材料的组分分析、杂质检测和成分控制等方面都非常重要。

例如,在半导体材料研究中,扫描电镜能够提供有关材料中杂质元素的存在情况和分布特征,并为材料的纯度和质量评估提供可靠的依据。

扫描电镜还可以应用于材料的微观结构研究。

通过扫描电镜观察材料的断口面,可以获取材料的断裂形态和断口特征。

这对于研究材料的断裂机制、强度和韧性等性能具有重要意义。

例如,在材料的力学性能研究中,扫描电镜可以观察到材料的断裂面形貌,进而分析材料的断裂方式和断裂机制,为材料的强度和韧性提供深入理解。

扫描电镜还可以应用于材料的表面形貌工程。

通过在材料表面进行局部处理,如蚀刻、涂覆等,可以改变材料的表面形貌和结构,从而调控材料的性能。

通过扫描电镜观察处理后的材料表面,可以评估处理效果,并优化处理参数。

例如,在涂层材料研究中,扫描电镜可以观察到涂层的厚度、均匀性和结构特征,为涂层材料的性能优化提供依据。

扫描电镜在材料科学中有着广泛的应用。

它可以提供高分辨率的表面形貌观察、成分分析、微观结构研究和表面形貌工程等方面的信息,为材料的研究和应用提供了重要的支持。

扫描电镜在材料科学中的应用

扫描电镜在材料科学中的应用

扫描电镜在材料科学中的应用材料科学是研究物质组成、结构、性能和制备的学科,是现代化工、轻工、航天、军工等领域重要的基础科学。

扫描电镜是材料科学领域常用的一种研究手段,具有高分辨率、表面形貌优异、化学成分分析等特点。

本文将结合扫描电镜的原理、分类、特点以及应用,阐述其在材料科学中的意义和价值。

一、扫描电镜的原理扫描电镜(Scanning Electron Microscope,SEM)是一种通过电磁透镜或电子光学技术将高能的电子聚焦到样品表面上,通过电子束和样品的相互作用产生信号,进而得到样品表面形貌和成分信息的一种显微镜。

回顾电子学发展的历史,SEM是由美国物理学家尤金·韦格纳于1931年创制的。

随着电子学技术和计算机技术的不断进步,SEM已经成为研究材料科学、生物学、纳米技术等领域实验室必备的工具。

二、扫描电镜的分类按照样品准备状态,扫描电镜可以分为常规扫描电镜和低温扫描电镜;按照电子源的类型,扫描电镜可以分为热阴极扫描电镜和场致发射扫描电镜;按照所用探针类型,扫描电镜可以分为电子束探针扫描电镜和离子束探针扫描电镜等多种类型。

不同类型的扫描电镜,各有其应用领域和研究重点。

三、扫描电镜的特点相比其他显微镜,SEM具有如下几点特点:1.高分辨率。

SEM透镜系统比传统光学显微镜的透镜系统负担更多的对样品形貌和成分信息的分辨力,可以实现nm量级的表面形貌显示。

2.大视场。

SEM的视场比传统显微镜大得多,在对大尺寸样品准备时更加有优势。

3.成分分析能力。

SEM可以与EDS(Energy Dispersive Spectroscopy)联用,实现对材料的成分分析。

4.3D高清显示。

SEM可以使用倾斜探针的方法来获得大角度信息,进而完成一些三维图像的重建。

四、1.材料学研究。

SEM的应用领域广泛,其中最重要的应用是通过SEM观察材料的微观结构,进而研究其性能、机制分析和加工工艺优化等方面。

例如,使用SEM可以对材料的疲劳、裂纹扩展、质量控制、晶体结构研究进行深入研究。

扫描电镜技术在材料科学中的应用

扫描电镜技术在材料科学中的应用

扫描电镜技术在材料科学中的应用材料科学是一门应用学科,它研究各种物质的性质、结构、制备和应用等方面的科学问题。

在材料科学中,有很多研究方法和分析技术,其中扫描电镜技术是一种非常重要的方法。

本文将从扫描电镜技术的概念、优点以及在材料科学中的应用,探讨该技术在材料科学领域中的价值和发展前景。

一、扫描电镜技术的概念扫描电镜技术(Scanning Electron Microscope,SEM)是一种常用的材料表征、分析、观察的技术。

该技术利用高能电子束照射样品,观察样品在电场作用下发生的不同电子过程,通过收集样品表面反射、吸收、透射等电子的各种信号,进而获得样品表面形态、表面元素分布、晶体结构等信息。

扫描电镜技术主要分为三个步骤,包括样品制备、电子显微镜成像和信号检测等。

首先,样品需要进行处理和制备,以便于观察和分析,比如需要进行切片、抛光等处理。

然后,采用电子显微镜照射样品,通过收集样品表面反射、背散射等电子信号,来获得样品的形貌和结构等信息。

最后,通过图像的处理和分析,以及各种数据的比对和分析,来进一步分析样品的性质和结构等。

二、扫描电镜技术的优点扫描电镜技术的优点主要包括以下几个方面:1.分辨率高:扫描电镜技术的分辨率非常高,能够观察到极小的表面形貌和微观结构,甚至能够研究到纳米级别的材料结构。

2.实时性好:扫描电镜技术能够实时进行样品观察和分析,并且可以通过调整各种参数来达到最佳的显影效果和分析结果,具有成像速度快、操作简便等特点。

3.多功能性强:扫描电镜技术可以观察样品的形貌、成分分布、晶体结构等多方面信息,而且可以进行高分辨率的成像、分析、比对等操作,多功能性非常强。

4.适用范围广:扫描电镜技术适用于多种材料和样品,比如金属材料、半导体材料、生物医学材料等,在材料科学、生物医学等多领域有着广泛应用。

三、扫描电镜技术在材料科学领域中的应用非常广泛,主要应用于材料结构、形貌、成分、性能、缺陷等方面的研究。

扫描电镜在材料科学中的应用

扫描电镜在材料科学中的应用

扫描电镜在材料科学中的应用材料科学作为一门重要的基础学科,在工业、制造、医学等领域都有重要的应用,而扫描电镜则是材料科学领域中的一种关键仪器。

其应用范围广泛,包括材料形貌分析、显微组织观察、纳米科学等。

下面将从应用领域、分析原理和技术发展角度探讨扫描电镜在材料科学中的应用。

应用领域扫描电镜的应用非常广泛,例如在金属材料、高分子材料、陶瓷材料、半导体材料、生物材料等领域,都有广泛的应用。

在金属材料领域,扫描电镜可用于表面形态特征的研究和材料的腐蚀破坏分析。

在高分子材料领域,扫描电镜可用于研究聚合物的性质、晶体结构,以及材料的来源和成分。

在陶瓷材料领域,扫描电镜可以用于表面质量控制、断口形貌分析、气孔形成和等离子体喷涂。

在半导体材料领域,扫描电镜可用于制备工艺研究和材料表面特征分析。

在生物材料领域,扫描电镜主要用于细胞和器官结构的观察、组织学分析以及病原体形态学研究等。

分析原理扫描电镜利用电子束扫描样品表面,并采集所反射、所散射和所发射的电子信号来获得材料表面的形貌图像,并可以进行成分分析。

扫描电镜的原理可以分为两种模式:二次电子显像和反射电子显像。

其中,二次电子显像是在材料表面上,由于电子束的能量和角度,会产生二次电子信号,然后通过搜集这些二次电子信号的图像来反映样品表面的微观形貌信息。

反射电子显像是在场发射电子显像下,利用电子束入射或反射在样品界面处的反射电子,获得高表面灵敏度的信号。

技术发展扫描电镜技术在过去几十年里得到了快速的发展。

在器件制造、材料科学、生物医学等多个领域都有广泛的应用。

虽然传统的扫描电镜技术对成像的要求很高,像分辨率固定、深度范围小、必须提前确定成像模式等问题相当严重。

但随着新技术的不断出现,这些限制也在不断减少。

现如今出现了更多的高分辨率扫描电镜技术,如扫描透射电子显微镜、高角度向侧扫描电子显微镜、扫描局部震荡透射电镜和精密离子束切割等技术,使得扫描电镜具有了更广泛和更精确的应用空间。

扫描电子显微镜的原理和应用

扫描电子显微镜的原理和应用

扫描电子显微镜的原理和应用扫描电子显微镜是一种利用电子束扫描样品表面并对扫描到的电子信号进行成像的高分辨率显微镜。

与光学显微镜不同,扫描电子显微镜利用电子束通过透镜和场控制技术非常高效地聚焦并成像,以获得超高分辨率的成像效果,以及大量的表面和物质信息。

扫描电子显微镜的原理扫描电子显微镜的核心是电子光源,它利用热发射、光电发射或场致发射等方式产生的电子束,经过一系列的焦距透镜、偏转线圈、探针控制和信号采集系统组成。

扫描电子显微镜的成像原理和传统光学显微镜略有不同。

它不是通过透镜去聚焦光线来成像,而是通过利用电子作用在样品表面的电磁场和电子-物质相互作用来实现的。

扫描电子显微镜利用电子束在样品表面扫描出一个小点,由电子-物质相互作用产生的电子信号被收集并转化成电子图像数据,然后利用计算机对数据进行图像处理,形成高分辨率的显微成像,以及其它相关物化信息。

扫描电子显微镜的应用扫描电子显微镜因其超高分辨率和强大的化学和物理分析功能而广泛应用于许多领域。

在材料科学领域,扫描电子显微镜广泛用于各种材料的表面和微结构分析,包括晶体结构、颗粒形貌、纳米结构、原子局部构型等。

其中,扫描透射电子显微镜(STEM)可以提供比常规扫描电子显微镜更高的结构分辨率,可用于对材料和生物样品的超高分辨率成像和分析。

在生物科学领域,扫描电子显微镜广泛应用于生物样品的形态与结构分析,如细胞器、膜结构、细胞外矩阵等。

同时,扫描电子显微镜也被用于对代谢过程和细胞凋亡等重要生物过程的研究。

在微电子制造和半导体工业中,扫描电子显微镜用于分析芯片表面的纳米结构和性能,以及其他半导体材料和器件的研究和开发。

在环境科学领域,扫描电子显微镜可用于分析环境污染物的化学成分和形态,如粉尘、气溶胶、烟尘等,有助于研究它们的来源、形成机制和生物毒性。

结论扫描电子显微镜是一种高分辨率的显微镜技术,具有广泛的应用前景和重要的科学意义。

不仅能够提高我们对材料、生物样品、半导体和环境的理解,而且也在未来的许多领域中发挥着重要的作用。

扫描电子显微镜的原理及应用

扫描电子显微镜的原理及应用

扫描电子显微镜的原理及应用扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种使用电子束而不是光束的显微镜,它通过对被测样品表面进行扫描和检测,以获取高分辨率的图像。

SEM具有优秀的分辨率和放大倍数,被广泛应用于材料科学、生命科学、纳米技术、地质学等领域。

SEM的工作原理如下:1. 产生电子束:通过电子枪产生高能电子束,电子枪包括一个热阴极和一根聚焦的阳极。

电子束可以通过区域限制器(aperture)来控制束流的大小。

2.加速电子束:电子束通过电子镜来加速,这是一个由透镜组成的系统。

电子束在电子镜中得到聚焦,束流变窄,成为高能、高分辨率的束流。

3.扫描样品:样品被放置在SEM的样品台上,电子束通过磁场的作用进行X、Y方向扫描。

扫描电子镜的样品台通常也可以进行上下方向的运动,以获得不同深度的图像。

4.接收和检测:当电子束照射在样品表面上时,样品中发生的相互作用将会发射出各种信号,包括二次电子、透射电子、X射线以及退火融合过程产生的光谱信号等。

SEM通过收集并检测这些信号,并将其转化为电信号。

5.构建显像:电信号被转化为亮度信号,并用于构建图像。

SEM可以生成大量的图像类型,包括二次电子图像(SE图像)、透射电子图像(BSE图像)、X射线能谱图(EDS图像)等。

6.分析和测量:SEM可以提供非常详细的样品表面形貌信息,包括形貌、尺寸、形状、纹理等。

还可以使用EDS技术分析样品的化学元素组成。

SEM的应用范围十分广泛:1.材料科学:SEM可以研究材料的微观结构、相变过程、表面形貌以及晶格结构等。

它可以用于分析金属、陶瓷、纤维、塑料等材料的微观结构,从而改进材料的性能和开发新材料。

2.生命科学:SEM非常适合观察生物样品的微观结构,如昆虫、细胞、细菌等。

它可以研究生物样品的组织结构、表面形貌,以及细胞壁、细胞器等微观结构。

3.纳米技术:SEM可以观察和测量纳米级别的颗粒、膜、纳米线、纳米管等纳米材料。

电镜显微技术在材料科学中的应用

电镜显微技术在材料科学中的应用

电镜显微技术在材料科学中的应用近年来,随着科学技术的飞速发展,材料科学也在不断地进步。

而在材料科学领域中,电子显微镜技术的应用,被认为是一种非常重要的手段。

下面,本文将会为您详细地介绍电子显微镜技术在材料科学领域中的应用。

一、电子显微镜技术的概述电子显微镜技术是当今高端材料科学研究人员必备的实验手段之一。

通过此技术,研究人员可以观察物质的形态和性质。

进而确定其组织结构及化学成分。

而与光学显微镜相比,电子显微镜技术可以在更高的分辨率下得到材料样品的细节图像。

这种高精度的分析,可以成为科学家们探究新材料的不二选择。

二、电子显微镜技术在材料科学中的应用1. 金属材料的研究金属材料在人类社会和现代工业生产中都具有巨大的价值和作用。

而电子显微镜技术可用于发现和研究不同金属的材料结构,进而更好地理解和探究这些材料的各种性质。

从而可以为生产制造提供重要的支持。

2. 高分子材料的研究高分子材料是目前人类社会中使用最广泛的一种新型材料。

通过电子显微镜技术,研究人员可观察高分子材料的各种细节和形态。

比如,通过断面观察,可探究高分子材料的微观结构和宏观形态。

进而研究其性质及特性,有助于材料的设计、原型开发和生产。

3. 无机非纳米材料的研究常规的扫描电镜技术,只能对晶体材料的表面结构进行观察。

而电子显微镜技术可以更好地观察材料的内部结构。

所以,在纳米材料还未发展起来的早期,电子显微镜技术在无机非纳米材料研究中的作用非常重要。

4. 纳米材料的研究纳米材料是一类重要的新材料。

纳米级的材料显微学研究技术对于研究纳米材料的结构和形态具有极为重要的作用。

电子显微镜技术可以提供足够的分辨率,对材料的微观结构、纳米粒子尺寸和形态等方面进行全面观察。

由此,科学家们可以提出更加精确的理论模型,促进纳米科学的发展。

三、电子显微镜技术在材料科学中的现状和未来当前,电子显微镜技术正在得到不断地升级和发展。

技术上的改进和尖端化,越来越赋予了电子显微镜技术在材料科学领域中的作用。

扫描电子显微镜SEM应用案例介绍

扫描电子显微镜SEM应用案例介绍

扫描电子显微镜SEM应用案例介绍
首先,SEM在材料科学中的应用非常广泛。

例如,SEM可以用来观察和分析金属和陶瓷材料的晶体结构和相界面,以及纳米材料的形貌和结构特征。

此外,SEM还可以用来研究材料的力学性能,例如观察和分析材料的断裂面、表面缺陷和变形行为。

其次,SEM在生命科学中的应用也非常重要。

例如,SEM可以用来研究生物样品的细胞结构和器官形态,以及观察细胞的生长和形态变化。

SEM还可以用来研究昆虫和植物的微观结构,例如观察昆虫的鳞片和花粉的形态特征。

此外,SEM还可以用来研究生物材料的表面性质,例如观察和分析细菌的附着行为和生物膜的形成过程。

第三,SEM在地质学中也有重要的应用。

例如,SEM可以用来研究岩石和矿物的微观结构和化学成分,以及观察和分析岩石和矿石的形态特征和变化过程。

SEM还可以用来研究地质样品的变质和变形过程,例如观察和分析岩石的变形构造和岩浆的形态特征。

此外,SEM在化学研究中也有广泛的应用。

例如,SEM可以用来研究材料的表面性质和化学反应过程,以及分析材料的元素组成和化学结构。

SEM还可以用来研究纳米材料的合成和表征,例如观察和分析纳米颗粒的形态特征和分布情况。

此外,SEM还可以用来研究催化剂的形貌和结构特征,以及观察和分析化学反应的催化过程。

综上所述,扫描电子显微镜(SEM)在材料科学、生命科学、地质学和化学研究中具有广泛的应用。

通过SEM可以观察和分析物质的微观结构和特性,为科学研究和工程应用提供重要的帮助。

电子显微技术在材料研究中的应用

电子显微技术在材料研究中的应用

电子显微技术在材料研究中的应用材料科学和技术一直是技术进步和创新的重要驱动力。

了解材料的物理和化学特性是开发新材料和对现有材料进行改进的基础。

为此,需要使用高分辨率的显微镜来研究材料的微观结构和特性。

电子显微技术是一种强大的工具,可用于研究材料的微观结构、化学组分和物理性质。

在本文中,将介绍电子显微技术在材料研究中的应用。

扫描电子显微镜(SEM)是材料科学中最常用的电子显微技术之一。

SEM通过扫描样品表面并记录反射电子的信号来生成高分辨率的图像。

SEMs的分辨率可达到纳米级别,使得其成为分析微观结构和形貌的重要工具。

SEM可以用于观察材料的表面特性,例如晶体的形态、长短、大小和密度,或者材料的表面变化、氧化程度和颗粒大小等。

SEM也可以用于纳米材料和生物材料的研究,例如纳米颗粒的形态和大小、细胞的结构和形态等。

SEM还可以与能谱仪(EDS)配合使用,以获得材料的化学组分信息。

EDS通过收集样本上散射出的X射线来确定材料的组分。

这种X射线是由电子束入射样品后,与样品中的原子相互作用时产生的。

由于每种元素都可以产生具有特定能量的X射线,因此EDS能够检测出样品中所有元素的组分。

这种分析技术被广泛应用于化学成分分析、多相成分分析和微区成分分析,因为它可以直接在图像中标记元素的分布和浓度。

透射电子显微镜(TEM)利用电子束穿透材料,将其映射到荧屏上,用于研究材料的微观结构。

TEM可以提供比SEM更高的分辨率,可以更好地了解材料的晶体结构、晶粒大小、缺陷和结构变化等。

TEM对于纳米材料的研究尤其重要。

例如,锂离子电池中的电极材料是纳米结构,因此需要一个高分辨率的工具来研究这种特殊结构。

TEM可捕获到纳米材料的形状、拓扑和晶体结构变化,是了解纳米材料的内在机制的重要工具之一。

透射电子显微镜的一个缺点是它需要非常薄的样品,只有几纳米到几十纳米的厚度。

这比SEM需要的薄度要求更高,因此TEM在样品制备方面有更高的难度和成本。

扫描电镜的原理及应用

扫描电镜的原理及应用

扫描电镜的原理及应用扫描电镜(Scanning Electron Microscope,SEM)是一种利用电子束扫描样品表面并通过检测电子束与样品交互产生的多种信号来获得样品表面形貌和成分信息的显微镜。

相比传统光学显微镜,扫描电镜具有更高的分辨率和深度,广泛应用于材料科学、生物学、地质学、电子学等多个领域。

1.电子源:扫描电镜使用热阴极或场发射电子枪产生电子源,通过激光或电子束对电子源进行刺激,使其产生电子。

2.真空系统:扫描电镜需要在真空中进行工作,以避免电子与空气分子的相互作用。

真空系统可确保电子束能够稳定地通过管道进入样品表面。

3.电子束的聚焦和定位:经过加速和聚焦装置后,电子束被聚焦到非常小的直径,同时通过扫描线圈控制电子束在样品表面上进行移动和定位。

4.样品表面的信号检测:样品表面与电子束交互后,产生多种信号,包括二次电子、背散射电子、X射线、荧光等。

通过相应的检测元件,如二次电子检测器和能谱仪,来收集这些信号。

5.数据处理和成像:通过对收集到的信号进行放大、滤波、扫描等处理,将数据转化为像素点,通过屏幕或计算机显示成像。

扫描电镜具有很多应用领域,以下是其中的几个主要应用:1.材料科学:扫描电镜可用于研究材料表面形貌、晶体结构以及纳米材料的性质。

通过观察和分析材料表面形貌和成分,可以揭示材料的微观结构、缺陷、晶胞排列等信息。

2.生物学:扫描电镜对于生物学研究也有很大的帮助。

可以观察细胞、组织和器官的微观形态、细胞器的分布和关系。

通过扫描电镜的成像,可以研究细胞的形态和结构与功能的关系,以及疾病的发生机制。

3.地质学:扫描电镜可用于研究岩石和矿石的成分、结构、矿物组成等信息。

可以观察到岩石和矿石的微观结构、矿物晶型、矿物交代等特征,为地质学和矿物学研究提供重要的信息。

4.电子学:在微电子制造中,扫描电镜可用于观察和分析电子元件的形态和结构、探测缺陷和纳米线路的状况。

这对于电子元件的设计和质量控制非常重要。

高分辨率扫描电子显微镜在纳米材料表征中的应用

高分辨率扫描电子显微镜在纳米材料表征中的应用

高分辨率扫描电子显微镜在纳米材料表征中的应用引言:纳米材料具有独特的物理、化学和机械性质,因此在材料科学和工程领域具有广泛的应用前景。

为了深入理解纳米材料的性质和行为,准确表征其形貌和结构非常重要。

高分辨率扫描电子显微镜(HR-SEM)作为一种强大的表征工具,逐渐成为纳米材料研究中不可或缺的设备。

本文将介绍高分辨率扫描电子显微镜的原理、技术和在纳米材料表征中的应用。

一、高分辨率扫描电子显微镜的原理和技术高分辨率扫描电子显微镜是通过电子束扫描样品表面,利用电子和样品之间的相互作用收集信号,再通过图像处理和分析,获得样品表面形貌和结构的一种仪器。

与传统的光学显微镜相比,HR-SEM具有更高的分辨率和更大的深度。

HR-SEM的主要部件包括电子光源、电子透镜、样品台、检测系统和图像处理系统。

电子光源发射出高能电子束,经过电子透镜系统的聚焦和定位,然后通过样品台送到样品表面。

电子束与样品表面发生相互作用,产生多种信号,如二次电子、反射电子和散射电子。

这些信号被检测系统接收并转换为电信号,再经过图像处理,最终形成显微照片或图像。

二、高分辨率扫描电子显微镜在纳米材料表征中的应用1. 表面形貌表征:HR-SEM能够提供纳米尺度下的表面形貌信息。

通过扫描样品表面,可以获得样品的三维形貌、纹理、凹凸和颗粒分布等信息。

这对纳米材料制备过程中的形貌控制、性能改进以及物理机理研究非常重要。

2. 结构分析:HR-SEM通过利用电子束与样品的相互作用,可以探测样品的晶体结构和晶格参数。

通过选取不同的检测信号,如反射电子和散射电子,可以获得纳米材料的晶面信息、晶体拓扑结构等。

3. 化学成分分析:HR-SEM结合能谱仪(EDS)可以进行样品的化学成分分析。

EDS能够检测样品表面散射或发射的X射线,并通过能谱分析得到样品中的元素组成和含量。

这对纳米材料的组成分析、掺杂和杂质检测等具有重要意义。

4. 界面和纳米结构研究:许多纳米材料在应用中依赖于其界面和纳米结构的特殊性质。

扫描电镜原理及应用

扫描电镜原理及应用

扫描电镜原理及应用扫描电子显微镜(Scanning Electron Microscope,SEM)是一种利用电子束来观察样品表面的显微镜。

与传统的透射电子显微镜不同,SEM 主要通过扫描电子束对样品进行微观观察。

扫描电子显微镜的原理基于电子显微学的加速电子束原理。

电子枪通过加速电场和聚焦电场加速高速运动的电子,并将其聚焦在一点上,形成尖锐的电子束。

这个电子束通过扫描线圈,沿着将样品表面分成的多个点进行扫描。

当电子束与样品表面交互作用时,样品表面的原子会吸收电子能量。

这会导致样品中的电子从低能级跃迁到高能级,同时也会发生电子散射。

电子束和样品的交互会产生多种信号,包括二次电子(SE)、反射电子(BE)、种子激发的X射线(EDX)和散射电子(BSE)等。

扫描电子显微镜的应用非常广泛。

以下是一些主要的应用领域:1.材料科学:扫描电子显微镜可以揭示材料的微观结构、形貌和表面缺陷,对材料的表面形貌和表面化学成分进行表征和分析。

2.生物科学:SEM可以观察生物样品的表面结构,例如细胞的微观形态、细胞器的空间分布和微生物的表面特征。

3.纳米科学:采用SEM可以观察纳米颗粒的形态和大小分布,以及纳米材料的结构和形貌。

4.矿物学和地质学:SEM可以对矿物和岩石样品进行表面形态和组成分析,对地质样本的微量元素进行分析。

5.金属学和材料工程:SEM可以对金属材料的晶格结构、相分布、晶粒尺寸和晶界进行表征和分析。

6.考古学和文物保护:SEM可以观察古代文物和考古样品的微观结构和表面细节,帮助研究人员进行文物保护和修复。

7.环境科学和污染控制:SEM可以用于观察和分析大气、水和土壤中的微观颗粒物、微生物和污染物。

总之,扫描电子显微镜通过扫描电子束对样品表面进行观察,广泛应用于材料科学、生物科学、纳米科学等领域。

它可以提供高分辨率的图像和丰富的表征信息,对研究和应用具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描电子显微镜及其在材料科学中的应用班级:无机2014-1 姓名:李冬月学号:1461142107
摘要:介绍了目前常被用于固体结构观测及其表征的主要仪器扫描电子显微镜(SEM)的简单概况和基本原理以及其在材料科学中的应用。

关键词:扫描电子显微镜原理材料科学应用
引言
无论是X射线衍射确定晶体的三维结构还是低能电子衍射确定晶体表面的二维结构,都是以原子的周期性排列为前提的。

但是近年来学术界对于不具有周期性的局域性原子位置的结构表现出越来越浓厚的兴趣,而且这种局域性结构的线度又往往很小,常在微米以下甚至纳米级。

显然,传统的衍射手段对此无能为力,而且光学显微镜由于分辨本领的限制也无法分辨尺度在100纳米数量级的局域性结构细节。

至目前为止已发展出各种基于电子的发射和传播的显微方法。

本文主要介绍了扫描电子显微镜和扫描隧穿显微镜的工作原理以及对固体材料形貌和结构观察方面的应用。

1.SEM简介
扫描电子显微镜(Scanning Electron Microscope,SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。

扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。

目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。

扫描电镜如下图1。

图1扫描电子显微镜
2.原理
扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。

通过对这些信息的接受、放大和显示成像,获得试样表面性貌的观察。

SEM是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术.扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小的电子束.在试样表面进行扫描,激发出各种信息,通过对这些信息的接收、放大和显示成像,以便对试样表面进行分析.入射电子与试样相互作用产生如图1所示的信息种类。

图2 电子束探针照射试样产生的各种信息
这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图.如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储.各信息如下表1。

收集信号类型功能
二次电子形貌观察
背散射电子成分分析
特征X射线成分分析
俄歇电子成分分析
表1 扫描电镜中主要信号及其功能
扫描电镜可做如下观察:
(1)试样表面的凹凸和形状;
(2)试样表面的组成分布;
(3)可测量试样晶体的晶向及晶格常数;
(4)发光性样品的结构缺陷,杂质的检测及生物抗体的研究;
(5)电位分布;
(6)观察半导体器件结构部分的动作状态;
(7)强磁性体的磁区观察等.
传统扫描电镜的主要结构如图3所示
图3 扫描电子显微镜原理和结构示意图
3.扫描电镜在材料研究中的应用
3.1.超微尺寸材料的研究
纳米材料是纳米科学技术最基本的组成部分.现在可以用物理、化学及生物学的方法制备出只有个纳米的/颗粒0.由于纳米材料表面上的原子只受到来自内部一侧的原子的作用,十分活泼,所以使用纳米金属颗粒粉作催化剂,可加快化学反应过程.纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,但又具有脆性和难以加工等缺点,纳米陶瓷在一定的程度上却可增加韧性,改善脆性.复合纳米固体材料亦是一个重要的应用领域.例如含有20%超微钴颗粒的金属陶瓷是火箭喷气口的耐高温材料;金属铝中含进少量的陶瓷超微颗粒,可制成重量轻、强度高、韧性好、耐热性强的新型结构材料[21~29].纳米
材料的一切独特性能主要源于它的超微尺寸,因此必须首先切确地知道其尺寸,否则对纳米材料的研究及应用便失去了基础.目前该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜(STM),原子力显微镜(AFM)等技术,但高分辨率的扫描电镜(SEM)在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势,也被大量采用.
3.2 镀层表面形貌分析和深度检测
金属材料零件在使用过程中不可避免地会遭受环境的侵蚀,容易发生腐蚀现象.为保护母材,成品件,常常需要进行诸如磷化、达克罗等表面防腐处理.有时为利于机械加工,在工序之间也进行镀膜处理.由于镀膜的表面形貌和深度对使用性能具有重要影响,所以常常被作为研究的技术指标.镀膜的深度很薄,由于光学显微镜放大倍数的局限性,使用金相方法检测镀膜的深度和镀层与母材的结合情况比较困难,而扫描电镜却可以很容易完成.使用扫描电镜观察分析镀层表面形貌是方便、易行的最有效的方法,样品无需制备,只需直接放入样品室内即可放大观察。

3.3 微区化学成分分析
在样品的处理过程中,有时需要提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析.为此,相继出现了扫描电子显微镜)电子探针多种分析功能的组合型仪器.扫描电子显微镜如配有X射线能谱(EDS)和X射线波谱成分分析等电子探针附件,可分析样品微区的化学成分等信息.材料内部的夹杂物等,由于它们的体积细小,因此,无法采用常规的化学方法进行定位鉴定.扫描电镜可以提供重要的线索和数据.工程材料失效分析常用的电子探针的基本工作方式为:
(1)对样品表面选定微区作定点的全谱扫描定性;
(2)电子束沿样品表面选定的直线轨迹作所含元素浓度的线扫描分析;
(3)电子束在样品表面作面扫描,以特定元素的X射线讯号调制阴极射线管荧光屏亮度,给出该元素浓度分布的扫描图像.
一般而言,常用的X射线能谱仪能检测到的成分含量下限为0. 1% (质量分数).可以应用在判定合金中析出相或固溶体的组成、测定金属及合金中各种元素的偏析、研究电镀等工艺过程形成的异种金属的结合状态、研究摩擦和磨损过程中的金属转移现象以及失效件表面的析出物或腐蚀产物的鉴别等方面.
3.4 材料的组织形貌观察
材料剖面的特征、零件内部的结构及损伤的形貌,都可以借助扫描电镜来判断和分析.反射式的光学显微镜直接观察大块试样很方便,但其分辨率、放大倍数和景深都比较低.而扫描电子显微镜的样品制备简单,可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析;扫描电子显微图像因真实、清晰,并富有立体感,在金属断口(图4)的观察研究方面获得了广泛地应用.
图4 用SEM观察集成电路芯片的剖面多层结构图
4 结论
扫描电子显微镜在材料的分析和研究方面应用十分广泛,主要应用于材料断口分析、微区成分分析、各种镀膜表面形貌分析、层厚测量和显微组织形貌及纳米材料分析等.随着材料科学和高科技的迅速发展,这样也迫使检测技术水平不断提高.目前,高温样品台、动态拉伸台、能谱仪和扫描电镜的组合,这样扫描电镜在得到较好的试样形貌像的前提下,同时得到成分信息和晶体学的信息,使得扫描电镜必将在材料工艺研究和品种开发等方面发挥更大的作用.
参考文献
【1】陆栋,蒋平.固体物理学.上海:上海科学技术出版社,2010,28-30.
【2】干蜀毅.常规扫描电子显微镜的特点与发展[J].分析仪器, 2000, (1): 34-36.
【3】蒋建国.电子显微技术的现状与发展-STM[J].扬州教育学院学报, 2003, (9): 14-16. 【4】朱琳.扫描电子显微镜的原理和应用.吉林化工学院学报,2007,02-04.
【5】武开业.扫描电子显微镜的原理及特点.机械与电子,2010.。

相关文档
最新文档