立体几何总复习
立体几何复习知识点汇总(全)
立体几何知识点汇总(全)1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段)⑦ba,是夹在两平行平面间的线段,若a,的位置关系为相交或平行或异面.a=,则bb⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。
小学六年级总复习之立体几何
数学问题中的立体几何应用
计算几何图形面积和体积 判断几何图形的形状和大小 解决几何图形的最值问题 确定几何图形的位置关系
科学问题中的立体几何应用
天文学:行星、 恒星和星系的形 状和运动规律可 以用立体几何来
描述。
物理学:电磁场、 引力场等物理现 象可以用立体几
何来描述。
化学:分子结构 可以通过立体几 何来描述,如分 子的键角、键长
立体几何中的基本概念
点、线、面的定义
平面几何的性质
空间几何体的构造
空间几何体的表面积和体积
03
立体图形的性质和 分类
立体图形的性质
定义:立体图 形是三维空间 中占据一定空 间的图形,具 有长度、宽度
和高度。
分类:根据几 何形状,立体 图形可以分为 多面体、旋转 体和组合体等。
性质:立体图 形具有三维性、 封闭性、占有 空间等性质。
特征:立体图 形具有空间感、 立体感和三维
性等特征。
立体图形的分类
柱体:包括圆柱、棱柱等 锥体:包括圆锥、棱锥等 球体:包括实心球、空心球等 其他多面体:包括长方体、正方体、三棱锥等
常见立体图形介绍
立方体:具有六个面,每个面都是正方形 球体:只有一个曲面,没有平面 圆柱体:由两个平行圆形面和一个曲面组成 圆锥体:由一个圆形底面和一个曲面组成
定义:立体几何是研究三维空间中图形和物体性质的一门学科。 基础概念:点、线、面、体等基本元素,以及它们的性质和关系。 目的:培养空间想象能力和逻辑思维能力。 应用:在建筑、工程、科学等领域有广泛应用。
立体几何中的基本元素
点:表示空间中的一个位置 直线:表示空间中一条无限延伸的线 平面:表示空间中一个无限延展的面 空间:表示三维的立体空间
2023届高考数学总复习《立体几何》附答案解析
(2)若点 N 为 BC 的中点,求四面体 A'MNB 的体积.
【解答】证明:(1)连接 BD,设 BD∩EC=F,连接 MF,
由题意可得四边形 BCDE 为正方形,则 F 为 BD 的中点,
∴MF 为△A′BD 的中位线,可得 MF∥A′B,
又 A′B⊄平面 EMC,MF⊂平面 EMC,
∴A'B∥平面 EMC;
2023 年高考:立体几何复习题及答案
1.如图,已知直角梯形 ABCD,BC∥AD,BC=CD=2,AD=4,∠BCD=90°,点 E 为 AD 的中点,现将三角形 ABE 沿 BE 折叠,得到四棱锥 A'﹣BCDE,其中∠A'ED=120°, 点 M 为 A'D 的中点.
(1)求证:A'B∥平面 EMC;
第2页共3页
∵BE⊂平面 BEF,∴平面 BEF⊥平面 AMD, 结合题意分析知,点 F 在线段 AD 上,连接 MF, 过 A 作 AH⊥MF,交 MF 的延长线于点 H,
则结合已知条件得
,解得 AH ,
设 Dt ,
第3页共3页
【解答】解:(1)证明:由题意知 PC2+AC2=PA2,∴PC⊥AC, 同理,PC⊥BC,又 AC∩BC=C,∴PC⊥平面 ABC, ∵D,E 分别是 AC,PA 的中点,∴DE∥PC, ∴DE⊥平面 ABC, 又 DE⊂平面 BDE,∴平面 BDE⊥平面 ABC. (2)在△BDE 中,DE⊥BD,BD=2 ,DE=2,∴BE=4, 如图,过 A 作 AM⊥BE 于 M,连接 MD, 在△ABE 中,AB=BE=4,AE=2 ,解得 AM ,ME=1, ∵DM⊂平面 BDE,∴AC⊥DM, 在 Rt△ADM 中,AM ,AD=2,∴DM , ∴DM2+EM2=DE2,∴MD⊥BE, ∵AM∩MD=M,∴BE⊥平面 AMD,
立体几何复习知识点
立体几何复习知识点在数学的学习中,立体几何是一个重要且富有挑战性的部分。
它要求我们具备空间想象能力、逻辑推理能力以及对各种几何概念和定理的熟练掌握。
接下来,让我们一起系统地复习一下立体几何的相关知识点。
一、空间几何体(一)棱柱棱柱是由两个互相平行且全等的多边形底面,以及侧面都是平行四边形的多面体。
棱柱根据侧棱与底面的关系可分为直棱柱和斜棱柱。
直棱柱的侧棱垂直于底面,斜棱柱的侧棱不垂直于底面。
(二)棱锥棱锥是由一个多边形底面和若干个有公共顶点的三角形侧面所组成的多面体。
如果棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,那么这样的棱锥叫做正棱锥。
(三)棱台棱台是用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
(四)圆柱以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
(五)圆锥以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。
旋转轴为圆锥的轴,垂直于轴的边旋转而成的圆面叫做圆锥的底面,斜边旋转而成的曲面叫做圆锥的侧面,无论旋转到什么位置,斜边都叫做圆锥侧面的母线。
(六)圆台用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台。
(七)球以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。
半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
二、空间几何体的表面积和体积(一)棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。
(二)圆柱、圆锥、圆台的侧面积和表面积圆柱的侧面积公式为\(S_{侧}=2\pi rh\),表面积公式为\(S = 2\pi r(r + h)\);圆锥的侧面积公式为\(S_{侧}=\pi rl\),表面积公式为\(S =\pi r(r + l)\);圆台的侧面积公式为\(S_{侧}=\pi (r + R)l\),表面积公式为\(S =\pi (r^2 +R^2 + rl + Rl)\)。
数学立体几何知识点归纳(优秀10篇)
数学立体几何知识点归纳(优秀10篇)立体几何是高中数学知识点中重要内容之一,也是每年高考中都会占有一定的分值,不管是在选择题、填空题还是应用大题,都是必出的题型,而且出题难度系数较大。
山草香分享了10篇数学立体几何知识点归纳,希望对于您更好的写作立体几何知识点有一定的参考作用。
立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
2023年高考数学总复习《立体几何》附答案解析
所以 z1=0,
,故可取
, ,,
于是 < , >
,
设所成锐二面角为θ,所以 sinθ
,
所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD
,
在 Rt△FCD 中,tan∠FDC 맨
,
故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,
高考立体几何专题复习公开课获奖课件
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
立体几何总复习ppt完美课件 人教课标版
8.四棱锥P-ABCD的底面是边长为4的正方形, PD⊥面ABCD,PD=6,M,N是PB,AB的中 点,求二面角M-DN-C的平面角的正切值?
P M
C
立体几何总复习ppt完美课件 人教课标版
D
B
O
H
N
A
立体几何总复习ppt完美课件 人教课标版
B
立体几何总复习ppt完美课件 人教课标版
y
立体几何总复习ppt完美课件 人教课标版
4.空间四边形P-
ABC中,M,N分 别是PB,AC的中点,
P
PA=BC=4,MN=3,
求PA与BC所成的角?
ቤተ መጻሕፍቲ ባይዱ
M
C N A
E B
立体几何总复习ppt完美课件 人教课标版
立体几何总复习ppt完美课件 人教课标版
5 . 在 三 棱 柱 A B C A 'B 'C '中 , 底 面 是 正 三 角 形 , A A ' 底 面 A B C , A 'C A B ',求 证 : B C ' A B '
(3)平面B1EF与平面A1B1C1D1所成 z
角的大小。
D
C
E
A
B
F
D1
C1 y
立体几何总复习ppt完美课件 人教课标版
A1
B1
x
立体几何总复习ppt完美课件 人教课标版
6.三棱锥P-ABC中,PA ⊥平面ABC, PA=3,AC=4,PB=PC=BC (1)求二面角P-BC-A的大小 (2)求二面角A-PC-B的大小
AA1 6, M 为 B 1 C 1 上 的 一 点 , 且 B 1 M 2 ,点N在线段A1D上,
高考数学(文)《立体几何》专题复习
(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
2023届高考数学总复习:立体几何复习题附答案
a,
在 Rt△FCM 中,tan∠FCM .
,
∴sin∠FCM ,
故直线 CF 与平面 ACDE 所成角的正弦值为 . 2.如图,在三棱柱 ABC﹣A1B1C1 中,BC⊥平面 AA1C1C,D 是 AA1 的中点,△ACD 是边长
为 1 的等边三角形. (1)证明:CD⊥B1D; (2)若 BC ,求二面角 B﹣C1D﹣B1 的大小.
,令
由(1)知,平面 B1C1D 的一个法向量为
,得
,, ,
, ,,
故 th< , >
,
所以二面角 B﹣C1D﹣B1 的大小为 30°.
第3页共3页
在直角梯形 AEFB 中,有 AF EF,BF
쳌
∴AF2+BF2=AB2,即 AF⊥BF.
∵BC∩BF=B,BC、BF⊂平面 BCF,
∴AF⊥平面 BCF.
EF,AB=2EF,
(2)解:∵AE⊥平面 ABC,AE⊂平面 ACDE,∴平面 ACDE⊥平面 ABC,
又平面 ABC∥平面 DEF,∴平面 ACDE⊥平面 DEF.
【解答】解:(1)证明:因为△ACD 是边长为 1 的等边三角形,所以∠ADC=60°,∠ DA1C1=120° 因为 D 是 AA1 的中点,所以 AD=A1D=A1C1=1,即△A1C1D 是等腰三角形, 则∠A1DC1=30°,故∠CDC1=90°,即 CD⊥C1D, 因为 BC⊥平面 AA1C1C,BC∥B1C1,所以 B1C1⊥平面 AA1C1C, 因为 CD⊂平面 AA1C1C,所以 B1C1⊥CD, 因为 B1C1∩C1D=C1,B1C1⊂平面 B1C1D,C1D⊂平面 B1C1D,所以 CD⊥平面 B1C1D, 因为 B1D⊂平面 B1C1D,所以 CD⊥B1D;
2023年高考数学总复习:立体几何及答案解析
又∵已知 E 为 PB 的中点,∴OE∥PD.
∵PD⊄平面 AEC,OE⊂平面 AEC,
∴PD∥平面 AEC.
解:(2)∵
⺁,
⺁ ,∴
⺁ ⺁.
又∵PD⊥底面 ABCD,∴ 三棱锥 െ
∵E 是 PB 的中点,∴ 三棱锥 െ
⺁ 三棱锥 െ
⺁ ⺁⺁ ⺁ ⺁
⺁.
⺁ 三棱锥 െ
⺁ ⺁.
2.如图,在四棱锥 P﹣ABCD 中,PA⊥平面 ABC,AD∥BC,∠ABC=90°,AD=2, ⺁ , BC=6. (1)求证:平面 PBD⊥平面 PAC; (2)PA 长为何值时,直线 PC 与平面 PBD 所成角最大?并求此时该角的正弦值.
第1页共3页
【解答】(1)证明:∵PA⊥平面 ABCD,BD⊂平面 ABCD,∴BD⊥PA,
又 ㋨๗
, ㋨๗
,
∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即 BD⊥AC(E 为 AC 与 BD 交点).
又 PA∩AC,∴BD⊥平面 PAC
又因为 BD⊂平面 PBD,所以平面 PBD⊥平面 PAC.
则๗ ๗
,即 െ ⺁ ㌳ ⺁ െ⺁ ㌳
,取 x=1,
⺁ 得平面 PBD 的一个法向量为๗ (1, , ),
所以 cos< ,๗>
๗
,
๗
쳌㌳ ⺁
㌳
⺁ ⺁
㌳ ⺁㌳ ⺁
因为 ㌳ ⺁ ㌳ ⺁
㌳⺁ ⺁ ⺁
,当且仅当 t=2 时等号成立,
所以 cos< ,๗>
,记直线 PC 与平面 PBD 所成角为θ,
则 sinθ=|cos< ,๗>|,故 t๗ ,
即 ⺁ 时,直线 PC 与平面 PBD 所成角最大,此时该角的正弦值为 .
立体几何知识点归纳(复习资料)
立体几何知识点归纳(复习资料)高考总复习主干知识三:立体几何主干知识三:立体几何知识点归纳一.直线和平面的三种位置关系:1. 线面平行l方法一:用线线平行实现。
l//m??m????l//? l????方法二:用面面平行实现。
α符号表示:αlAβl2. 线面相交?//????l//? l???方法三:用平面法向量实现。
符号表示:若n为平面?的一个法向量,n?l且lαnl3. 线在面内ααl??,则l//?。
符号表示:3. 面面平行:方法一:用线线平行实现。
二.平行关系: 1. 线线平行:方法一:用线面平行实现。
l?l//l’??l????l//m ????m?? l//???m//m’????//?l,m??且相交?αl’,m’??且相交?? 方法二:用线面平行实现。
βl’m’ml?ml//?方法二:用面面平行实现。
lβγαm?//???????l??l//m ????m??? ?m//???/ /??l,m??且相交?? 方法三:用向量方法:两个平面的法向量共线三.垂直关系: 1. 线面垂直:方法一:用线线垂直实现。
βml α方法三:用线面垂直实现。
若l??,m??,则l//m。
方法四:用向量方法:若向量l和向量m共线且l、m不重合,则l//m。
2. 线面平行: 1 / 8 l?AC?l?AB??lAC?AB?A??l?? ?CAC,AB? ???αAB方法二:用面面垂直实现。
????βl????m???l?? l?m,l???m?α方法三:用向量方法:直线与平面的法向量共线 2. 面面垂直:方法一:用线面垂直实现。
l???βll???????? α方法二:计算所成二面角为直角。
方法三:用向量方法:两平面的法向量垂直 3. 线线垂直:方法一:用线面垂直实现。
ll???m?????l?m mα 方法二:三垂线定理及其逆定理。
PO???Pl?OA???l?PA l????αAlO方法三:用向量方法:若向量l和向量m 的数量积为0,则l?m。
高考数学立体几何专题复习题及答案
⾼考数学⽴体⼏何专题复习题及答案 数学是⾼考考试中的主科之⼀,我们要对⾼考数学⽴体⼏何进⾏强化复习,⽴体⼏何是⾼考数学考试中丢分的重灾区。
下⾯是店铺为⼤家整理的⾼考数学⽴体⼏何专题复习题,希望对⼤家有所帮助! ⾼考数学⽴体⼏何专题复习题 专题四 ⽴体⼏何 第1讲 三视图及空间⼏何体的计算问题 (建议⽤时:60分钟) ⼀、选择题 1.(2014•湖北卷)在如图所⽰的空间直⾓坐标系O-xyz中,⼀个四⾯体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四⾯体的正视图和俯视图分别为 ( ).A.①和②B.③和①C.④和③D.④和② 解析 由三视图可知,该⼏何体的正视图是⼀个直⾓三⾓形,三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2)且内有⼀个虚线(⼀个顶点与另⼀直⾓边中点的连线),故正视图是④;俯视图即在底⾯的射影是⼀个斜三⾓形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②. 答案 D 2.(2013•东北三校第三次模拟)如图,多⾯体ABCD E FG的底⾯ABCD为正⽅形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是 ( ). 解析 注意BE,BG在平⾯CDGF上的投影为实线,且由已知长度关系确定投影位置,排除A,C选项,观察B,D选项,侧视图是指光线,从⼏何体的左⾯向右⾯正投影,则BG,BF的投影为虚线,故选D. 答案 D 3.(2014•安徽卷)⼀个多⾯体的三视图如图所⽰,则该多⾯体的表⾯积为 ( ).A.21+3B.18+3C.21D.18 解析 由三视图知,⼏何体的直观图如图所⽰.因此该⼏何体的表⾯积为6×2×2-6×12×1×1+2×34×(2)2=21+3. 答案 A 4.(2013;⼴东卷)某四棱台的三视图如图所⽰,则该四棱台的体积是 ( ).A.4B.143C.163D.6 解析 由四棱台的三视图可知该四棱台的上底⾯是边长为1的正⽅形,下底⾯是边长为2的正⽅形,⾼为2.由棱台的体积公式可知该四棱台的体积V=13(12+1×22+22)×2=143,故选B. 答案 B 5.如图,在矩形ABCD中,AB=2,BC=3,沿BD将矩形ABCD折叠,连接AC,所得三棱锥A B CD正视图和俯视图如图,则三棱锥A B CD侧视图的⾯积为 ( ).A.613B.1813C.213D.313 解析 由正视图及俯视图可得,在三棱锥A B CD中,平⾯ABD⊥平⾯BCD,该⼏何体的侧视图是腰长为2×322+32=613的等腰直⾓三⾓形,其⾯积为12×6132=1813. 答案 B 6.在具有如图所⽰的正视图和俯视图的⼏何体中,体积最⼤的⼏何体的表⾯积为 ( ).A.13B.7+32C.72πD.14 解析 由正视图和俯视图可知,该⼏何体可能是四棱柱或者是⽔平放置的三棱柱或⽔平放置的圆柱.由图象可知四棱柱的体积最⼤.四棱柱的⾼为1,底⾯边长分别为1,3,所以表⾯积为2(1×3+1×1+3×1)=14. 答案 D 7.(2013•湖南卷)已知正⽅体的棱长为1,其俯视图是⼀个⾯积为1的正⽅形,侧视图是⼀个⾯积为2的矩形,则该正⽅体的正视图的⾯积等于 ( ).A.32B.1C.2+12D.2 解析 易知正⽅体是⽔平放置的,⼜侧视图是⾯积为2的矩形.所以正⽅体的对⾓⾯平⾏于投影⾯,此时正视图和侧视图相同,⾯积为2. 答案 D ⼆、填空题 8.某⼏何体的三视图如图所⽰,则该⼏何体的体积为____________. 解析 由三视图可知该⼏何体由长⽅体和圆柱的⼀半组成.其中长⽅体的长、宽、⾼分别为4,2,2,圆柱的底⾯半径为2,⾼为4.所以V=2×2×4+12×22×π×4=16+8π. 答案 16+8π 9.(2013•江苏卷)如图,在三棱柱A1B1C1A BC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F A DE的体积为V1,三棱柱A1B1C1A BC的体积为V2,则V1∶V2=________. 解析 设三棱柱A1B1C1-ABC的⾼为h,底⾯三⾓形ABC的⾯积为S,则V1=13×14S•12h=124Sh=124V2,即V1∶V2=1∶24. 答案 1∶24 10.如图,正⽅体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________. 解析 利⽤三棱锥的体积公式直接求解. VD1-EDF=VF-DD1F=13S△D1DE•AB=13×12×1×1×1=16. 答案 16 11.(2014重庆卷改编)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为________. 解析 由俯视图可以判断该⼏何体的底⾯为直⾓三⾓形,由正视图和侧视图可以判断该⼏何体是由直三棱柱(侧棱与底⾯垂直的棱柱)截取得到的.在长⽅体中分析还原,如图(1)所⽰,故该⼏何体的直观图如图(2)所⽰.在图(1)中,直⾓梯形ABPA1的⾯积为12×(2+5)×4=14,计算可得A1P=5.直⾓梯形BCC1P的⾯积为12×(2+5)×5=352.因 答案 60 12.已知三棱锥S ABC的所有顶点都在球O的球⾯上,△ABC是边长为1的正三⾓形,SC为球O的直径,且SC=2,则此三棱锥的体积为________. 解析 在Rt△ASC中,AC=1,∠SAC=90°,SC=2,所以SA=4-1=3.同理,SB=3.过A点作SC的垂线交SC于D点,连接DB,因为△SAC≌△SBC,故BD⊥SC,AD=BD,故SC⊥平⾯ABD,且△ABD为等腰三⾓形.因为∠ASC=30°,故AD=12SA=32,则△ABD的⾯积为12×1×AD2-122=24,则三棱锥S-ABC的体积为13×24×2=26. 答案 26 三、解答题 13.已知某⼏何体的俯视图是如图所⽰的矩形,正视图是⼀个底边长为8、⾼为4的等腰三⾓形,侧视图是⼀个底边长为6、⾼为4的等腰三⾓形. (1)求该⼏何体的体积V; (2)求该⼏何体的侧⾯积S. 解 由已知可得,该⼏何体是⼀个底⾯为矩形,⾼为4,顶点在底⾯的射影是矩形中⼼的四棱锥E‐ABCD,AB=8,BC=6. (1)V=13×8×6×4=64. (2)四棱锥E A BCD的两个侧⾯EAD,EBC是全等的等腰三⾓形,且BC边上的⾼h1=42+822=42; 另两个侧⾯EAB,ECD也是全等的等腰三⾓形,AB边上的⾼h2=42+622=5. 因此S=2×12×6×42+12×8×5=40+242. 14.如图,四边形ABCD是边长为2的正⽅形,直线l与平⾯ABCD平⾏,E和F是l上的两个不同点,且EA=ED,FB=FC.E′和F′是平⾯ABCD内的两点,EE′和FF′都与平⾯ABCD垂直. (1)证明:直线E′F′垂直且平分线段AD; (2)若∠EAD=∠EAB=60 °,EF=2.求多⾯体ABCDEF的体积. (1)证明 ∵EA=ED且EE′⊥平⾯ABCD, ∴E′D=E′A,∴点E′在线段AD的垂直平分线上. 同理,点F′在线段BC的垂直平分线上. ⼜四边形ABCD是正⽅形, ∴线段BC的垂直平分线也就是线段AD的垂直平分线,即点E′、F′都在线段AD的垂直平分线上. ∴直线E′F′垂直且平分线段AD. (2)解 如图,连接EB、EC,由题意知多⾯体ABCDEF可分割成正四棱锥E A BCD和正四⾯体E B CF 两部分.设AD的中点为M,在Rt△MEE′中,由于ME′=1,ME=3,∴EE′=2. ∴VE A BCD=13•S正⽅形ABCD•EE′=13×22×2=423. ⼜VE B CF=VC B EF=VC B EA=VE A BC=13S△ABC•EE′=13×12×22×2=223, ∴多⾯体ABCDEF的体积为VE A BCD+VE B CF=22. 15.(2013•⼴东卷)如图1,在边长为1的等边三⾓形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G.将△ABF沿AF折起,得到如图2所⽰的三棱锥A-BCF,其中BC=22. (1)证明:DE∥平⾯BCF; (2)证明:CF⊥平⾯ABF; (3)当AD=23时,求三棱锥F-DEG的体积VF D EG. (1)证明 在等边三⾓形ABC中,AB=AC. ∵AD=AE, ∴ADDB=AEEC,∴DE∥BC, 同理可证GE∥平⾯BCF. ∵DG∩GE=G,∴平⾯GDE∥平⾯BCF, ∴DE∥平⾯BCF. (2)证明 在等边三⾓形ABC中,F是BC的中点,∴AF⊥FC, ∴BF=FC=12BC=12. 在图2中,∵BC=22, ∴BC2=BF2+FC2,∴∠BFC=90°, ∴FC⊥BF. ∵BF∩AF=F,∴CF⊥平⾯ABF. (3)解 ∵AD=23, ∴BD=13,AD∶DB=2∶1, 在图2中,AF⊥FC,AF⊥BF, ∴AF⊥平⾯BCF, 由(1)知平⾯GDE∥平⾯BCF, ∴AF⊥平⾯GDE. 在等边三⾓形ABC中,AF=32AB=32, ∴FG=13AF=36,DG=23BF=23×12=13=GE, ∴S△DGE=12DG•EG=118, ∴VF-DEG=13S△DGE•FG=3324. ⾼考数学答题技巧 1.调整好状态,控制好⾃我。
2024年高考数学总复习:立体几何附答案
1.如图,矩形 ABCD 中,AB=6, 平面 A'CD⊥平面 BCD. (1)求证:直线 A'D⊥平面 A'BC;
,沿对角线 BD 将△ABD 向上折起至 A',使得
(2)求直线 CD 与平面 A'BD 所成角的正弦值.
【解答】(1)证明:因为 ABCD 为矩形,所以 A'D⊥A'B,BC⊥CD,
又平面 A'CD⊥平面 BCD,平面 A'CD∩平面 BCD=CD,
所以 BC⊥平面 A'CD,且 A'D⊂平面 A'CD,
则 A'D⊥BC,又 BC∩A'B',
故 A'D⊥平面 A'BC;
(2)解:法一:几何法
过 C 作 CF⊥A'B 交 A'B 于 F,连接 DF,
由(1)知 A'D⊥平面 A'BC,且 CF⊂平面 A'BC,
在 Rt△A'CD 中,|A'E|×|CD|=|A'D|×|A'C|,
即ⵈ
ⵈ ⵈ
,
以点 C 为原点,建立如图所示的空间直角坐标系.
则 C(0,0,0), 宋体, ,体 ,D(6,0,0),ⵈ 宋t,体, ,
所以 宋 ,体,体 , 宋 ,
,体 ,ⵈ 宋 ,体,
,
令h 宋h, , 为平面 A'BD 的一个法向量,则 h ⵈ h
体,
h h
体
取 x=1 得
,
即h 宋 , , ,
记 CD 与平面 A'BD 所成的角为θ,则 th
݊ < ,h>
专题五 立体几何专题复习
专题五、立体几何1、线面平行的证法:面∥线面线面线线∥线⇒⎪⎭⎪⎬⎫⊄⊂①关键是在平面内找(用直尺平移到平面内)一条直线与已知直线平行②在证线线平行时,常用到三角形中位线定理或平行四边形对边平行2、线面垂直的证法:αα面线面线线线线线线线⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⊥l b a b a b l al ,关键是在平面内找两条相交直线与已知直线垂直 3、面面垂直的证法βαβα面面面线面线⊥⇒⎭⎬⎫⊂⊥l l4、面面垂直的作用(证明线面垂直)αββαβα面线线线面线线面面面面⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⊥l m l l m注:在条件中寻找线线垂直时,常用结论有①勾股定理逆定理 ②等腰三角形三线合一 ③直径所对圆周角是直角一、考点分析:(理科)考点一:三视图与表面积、体积的结合三视图的识别,多以考查组合体为主,大部分是已知部分(或全部)三视图,进而考查立体图形直观图的还原及计算问题。
几何体的表面积和体积的综合,往往以球为载体,结合棱柱、棱锥。
近三年高考题2011年(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。
2012年(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6 (B )9 (C )12 (D )18(11)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为 (A )26 (B )36 (C )23 (D )222013年(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为考点二:空间线面关系的判断该部分的基础是平面的性质、空间直线与直线的位置关系,重点是空间线面平行和垂直关系的判定和性质,面面平行和垂直关系的判定和性质.在复习中要牢牢掌握四个公理和八个定理及其应用,重点掌握好平行关系和垂直关系的证明方法. 考点三:求空间角考查空间角的计算为主,解决这类问题往往有两种方法:传统几何法和向量法,这两种方法各有所长,传统几何法的主要思想是把立体问题转化为平面问题,难点在逻辑推理、空间想象能力;向量法在建立空间坐标系后把问题转化成坐标运算,其难点在代数运算。
立体几何专题讲解(三轮复习)
r r uu uuu 2 n2 BE = 0, 2 y2 = 0, ∴ 则 uu uuu r r 1 n2 BA = 0. 2 x2 + tz2 = 0. r 1 , y = 0, uu 令 x2 = 2, 则z2 = ∴ n2 = (2, 0, 1 ). t 2 t
| 2 | , 解得 t = 3 . 2 1 + 1 4 + ( 1 )2 2 t 4 2 uu uu r r uu r uu 3 = 10 . 2 6 ), n = ∴n1 = (0,2, 1 2 2 10 3 3 4 20 3
B1
F A
D E C
A1 E1
D E
C B
D E C
A
B
F
A
B
第 一 问 第 二 问
证线面平行
证线线垂直
证线面平行
求二面角的余弦值
求二面角的余弦值
uuur uuu r 2 只需 AG CE = (2a, 2a, b) ( a, 0, 4a ) = 2a + 4ab = 0 ,
∴b = 1 a .
2
即 CG = 1 CC1 时,AG ⊥ 面 CEF. ……8 分
8
主页
立体几何专题复习
uuur 1 a ) 时, AG 是平面 CEF 的一个法向量, (Ⅲ)由(Ⅱ)知,当 G (2a, 2a, 2 uuur 由题意可得, AD 是平面 CEC1 的一个法向量,
D B
A E
F
主页
立体几何专题复习
(Ⅱ)取 AE 的中点 H ,连接 DH ,
Q EF ⊥ ED, EF ⊥ EA, ∴ EF ⊥ 平面 DAE .
又 DH 平面 DAE ∴ EF ⊥ DH .
高考数学总复习《立体几何》部分试题及答案
高考数学总复习试卷立体几何综合训练第 I 卷(选择题共60分)一、选择题(本大题共 12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.以下命题正确的选项是()A .直线 a, b 与直线 l 所成角相等,则a//bB.直线 a,b 与平面α成相等角,则a//bC.平面α,β与平面γ所成角均为直二面角,则α// βD.直线 a, b 在平面α外,且a⊥α, a⊥b,则 b//α2.空间四边形ABCD , M , N 分别是 AB 、 CD 的中点,且AC=4 , BD=6 ,则()A . 1<MN<5B . 2<MN<10C. 1≤ MN ≤ 5 D . 2<MN<53.已知 AO 为平面α的一条斜线,O 为斜足, OB 为 OA 在α内的射影,直线OC 在平面α内,且∠AOB=∠ BOC=45 °,则∠ AOC 等于()A . 30°B. 45°C.60°D.不确立4.甲烷分子构造是:中心一个碳原子,外头四个氢原子组成四周体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cosθ值为()A .1B.111 33C.D.225.对已知直线 a,有直线 b 同时知足下边三个条件:①与 a 异面;②与 a 成定角;③与 a 距离为定值 d,则这样的直线 b 有()A.1 条B.2 条C.4条D.无数条6.α,β是不重合两平面,l, m 是两条不重合直线,α//β的一个充足不用要条件是()A .l, m,且 l// β, m// βB .l,m,且 l//mC. l ⊥α, m⊥β,且 l//m D .l// α, m//β,且 l//m7.如图正方体ABCD A B C D中, E, F 分别为 AB ,CC的中点,则异面直线A C 与EF所成角的余111111弦值为()A .3B.2C.1D .133368.关于任一个长方体,都必定存在一点:①这点到长方体的各极点距离相等;②这点到长方体的各条棱距离相等;③这点到长方体的各面距离相等,以上三个结论中正确的选项是()A .①②B.①C.②D.①③9.在斜棱柱的侧面中,矩形最多有几个?A.2B.3C.4D.610.正六棱柱的底面边长为2,最长的一条对角线长为 2 5 ,则它的侧面积为()A.24B.12C.242D.12211.异面直线a,b 成 80°角, P 为 a,b 外的一个定点,若过P 有且仅有 2 条直线与a, b 所成的角相等且等于α,则角α属于会合()A . { α|0° <α <40° }B. { α |40° <α <50 ° }C. { α |40° <α <90° } D . { α |50°<α <90 ° }12.从水平搁置的球体容器的顶部的一个孔向球内以同样的速度灌水,容器中水面的高度与灌水时间t 之间的关系用图象表示应为()第 II 卷(非选择题共90分)二、填空题(本大题共 4 个小题,每题 4 分,共 16 分,把答案填在题中横线上)13.正四棱锥S-ABCD 侧棱长与底面边长相等, E 为 SC 中点,BE 与 SA 所成角的余弦值为_____________ 。
高中数学 立体几何专题复习
图2侧视图俯视图正视图4x33x4DCBA侧视图正视图立体几何专题(一)一、三视图考点透视:①能想象空间几何体的三视图,并判断(选择题) ②通过三视图计算空间几何体的体积或表面积③解答题中也可能以三视图为载体考查证明题和计算题④旋转体(圆柱、圆锥、圆台或其组合体)的三视图有两个视图一样。
⑤基本几何体的画法,如:三棱柱(侧视图)、挡住的注意画虚线。
1. 一空间几何体的三视图如图2所示, 该几何体的 体积为85123π+,则正视图中x 的值为 A. 5 B . 4 C. 3 D . 22. 一个正方体截去两个角后所得几何体的正视图(又称主视图)、 侧视图(又称左视图)如右图所示,则其俯视图为c3.如图4,已知一个锥体的正视图(也称主视图),左视图(也称侧视图)和俯视图均为直角三角形, 且面积分别为3,4,6,则该锥体的体积是 4 .4. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为A .63B .93C .123D .1835、已知某几何体的直观图(图1)与它的三视图(图2), 其中俯视图为正三角形,其它两个视图是矩形.已知D 是正视图 左视图俯视图图4_3 _3 这个几何体的棱11C A 上的中点。
(Ⅰ)求出该几何体的体积;(Ⅱ)求证:直线11//BC AB D 平面; (Ⅲ)求证:直线11B D AA D ⊥平面.二、直观图掌握直观图的斜二测画法:①平行于两坐标轴的平行关系保持不变;②平行于y 轴的长度为原来的一半,x 轴不变;③新坐标轴夹角为45°。
6、如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=2,C 1D 1=3,A 1D 1=1,则梯形ABCD 的面积是( ) A .10 B .5 C .5 2D .102三、表面积和体积不要求记忆,但要会使用公式。
高考立体几何知识点详细复习总结
立体几何知识点一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。
⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
⑿垂直于同一平面的两直线平行。
(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。
(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。
⒀垂直于同一条直线的两个平面平行。
(6)面面垂直的判断: ⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。
二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系: 相交 ; 平行 ; 异面 ;直线与平面的位置关系: 在平面内 ; 平行 ; 相交(垂直是它的特殊情况) ; 平面与平面的位置关系: 相交 ;; 平行 ;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。
高三立体几何专题复习
高考立体几何专题复习一.考试要求:〔1〕掌握平面的根本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
〔2〕了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念〔对于异面直线的距离,只要求会计算已给出公垂线时的距离〕。
〔3〕了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。
〔4〕了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。
掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。
〔5〕会用反证法证明简单的问题。
〔6〕了解多面体的概念,了解凸多面体的概念。
〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。
〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。
〔9〕了解正多面体的概念,了解多面体的欧拉公式。
〔10〕了解球的概念,掌握球的性质,掌握球的外表积、体积公式。
二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的根底上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的根底上,掌握它们的求法(其根本方法是分别作出这些角,并将它们置于*个三角形通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步稳固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握根本的立体几何解题方法和常用解题技巧,开掘不同问题之间的在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和"说话要有根据〞的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:〔Ⅰ〕根底知识详析高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考察的知识点在20个以. 选择填空题考核立几中的计算型问题, 而解答题着重考察立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着"多一点思考,少一点计算〞的开展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的容,因此在主体几何的总复习中,首先应从解决"平行与垂直〞的有关问题着手,通过较为根本问题,熟悉公理、定理的容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:〔1〕根据定义——证明两平面没有公共点;〔2〕判定定理——证明一个平面的两条相交直线都平行于另一个平面;〔3〕证明两平面同垂直于一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何总复习
一、空间存在问题
1. 如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直
线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( ) A.⎣⎢⎡⎦⎥⎤33,1 B.⎣⎢⎡⎦⎥⎤
63,1 C.⎣⎢⎡⎦⎥⎤
63
,
223 D.⎣⎢⎡⎦
⎥⎤223,1 2. 如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ
上,E ,F 分别为AB ,BC 的中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为______.
3. 如图,在四棱锥P ABCD -中, 平面PAD ⊥平面ABCD ,E 为AD 上一点,四
边形BCDE 为矩形,60PAD ∠= ,23PB =,22PA ED AE ===. (Ⅰ)若()PF PC λλ=∈R ,且PA ∥平面BEF ,求λ的值; (Ⅱ)求证:CB ⊥平面PEB .
4.如图,四边形ABCD 为梯形,AB ∥CD , PD ⊥平面ABCD ,
=ADC=90BAD ∠∠,22,3DC AB a DA a ===,E 为BC 中点.
(1)求证:平面PBC ⊥平面PDE ;
(2)线段PC 上是否存在一点F ,使PA//平面BDF ?
若存在,请找出具体位置,并进行证明;若不存在,请分析说明理由. 5. 在如图所示的几何体中,四边形ABCD 是菱形,ADNM 是矩形,平面ADNM ⊥平面ABCD ,E AM AD DAB ,1,2,600===∠是AB 的中点. (1)求证:AN ∥平面MEC ;
(2)在线段AM 上是否存在点P ,使二面角D EC P --的大小
为
6
π
?若存在,求出AP 的长;若不存在,请说明理由. 6. 棱锥P ABCD -的三视图如图所示, (I )求证:平面PBD ⊥平面PAC (II )在线段PD 上是否存在一点Q , 使CQ 与平面PBD 所成的角的正弦
P
A
B
C
F
D
E P
E
D
C
B
A
值为
26
9
,若存在,指出点Q 的位 置,若不存在,说明理由. 二、折纸问题
1. 在菱形ABCD 中,60,23A AB =︒=,将ABD ∆沿BD 折起到PBD ∆的位置,若二面角P BD C -- 的大小为120︒,则三棱锥P BCD -的外接球的体积为( ) A .
287π B .287π C .32
3
π D .43π 2. 在梯形ABCD 中,//AD BC ,2BC AD =,2AD AB ==,AB BC ⊥,如图把ABD ∆沿BD 翻
折,使得平面ABD ⊥平面BCD . (Ⅰ)求证:CD ⊥平面ABD ;
(Ⅱ)若点M 为线段BC 中点,求点M 到平面ACD 的距离.
3. 如图,ABC ∆中,O 是BC 的中点,AB AC =,22AO OC ==,将BAO ∆沿AO 折起,使B 点到达B '点.
(1)求证:OC B AO '⊥平面;
(2)当三棱锥AOC B -'的体积最大时,试问在线段A B '上是否存在一点P ,使CP 与平面B OA '所成的角的正弦值为3
6
?若存在,求出点P 的位置;若不存在,请说明理由.
4. 如图1,在直角梯形ABCD 中,90ADC ∠=︒, //CD AB ,1
22
AD CD AB ==
=, 点E 为AC 中点.将ADC ∆沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2.
(1)在CD 上找一点F ,使//AD 平面EFB ;(2)求点C 到平面ABD 的距离.
B
A
C
D
图1
E
A
C
D
图2
E。