线性代数与解析几何(冯良贵[等]编著)思维导图

合集下载

线性代数思维导图全6页及其总结

线性代数思维导图全6页及其总结
将其按齐次线性方程组得方法写成向量形式,其 中常数项组成得向量即为X*,c1,c2,c3....等系数
组成得向量组为对应齐次方程组的通解
求非齐次线性方程 组的通解
一组基中向量的个数称为子空间的维数
向量组A与B等价的充要条件是L(A)=L(B), 向量A组可由向量组B线性表示的充要条件
是 L(A)属于L(B) 其中L(A)表示由A生成的子空间
初等变换
第二章
通过行初等变化,可得阶梯形矩阵 通过行初等变换和列初等变换,可得等价标准型
注意:A必须是方阵且只可以进行行初等变换
等价标准型 A是可逆矩阵
A的秩等于n
detA不等于零
对于n阶矩阵A(方阵),下列条件等价
矩阵经初等变换之后秩不变,且称变换之前的矩 阵和变换之后的矩阵等价
A可表示为有限个初等矩阵的积
a的每个特征值对应的线性无关的特征向量的最大个数等于该特征值的重数注意p的逆矩阵在前施密特正交法将给定的一组基转化成正交基将给定的一个向量组变为单位正交的向量组先用施密特正交法将其正交化再将其单位化求齐次方程组的解空间w的正交基并将其扩充参见p95例58若矩阵a与其转置矩阵的乘积为单位矩阵则称a为正交矩阵即a的逆矩阵与其转置矩阵相等a为正交矩阵的充要条件是其列行向量组是rn中的单位正交基若a为正交矩阵则a的逆矩阵也为正交矩阵若ab为同阶正交矩阵则ab也为正交矩阵若a为正交矩阵则deta1实对称矩阵一定能与对角矩阵相似可对角化并且相似变换矩阵可取为正交矩阵实对称矩阵的特征值都是实数实对称矩阵的不同特征值对应的特征向量必定正第四章线性表示向量b可由向量a1a2???am线性表示的充要条件是ranka1a2???amranka1a2???am向量b可由向量a1a2???am惟一线性表示的充要条件是ranka1a2???amranka1a2???am注意将其与非齐次线性方程组联系起来线性相关当向量组构成的齐次线性方程组只有惟一解零解时向量组线性无关当向量组构成的齐次线性方程组有无数非零解时向量组线性相向量组线性相关含有零向量的向量组线性相关仅含一个向量a的向量组线性相关的充要条件是若n维向量组线性无关那么把每个向量任意添加s个分量后所得向量组也线性无关向量组线性相关的充要条件是其中至少有一个向量可由向量组织其他向量线性表示若n维向量组线性相关那么取这些向量的前r个分量rn组成的向量组也是线性相关的注意这条例题的思想相册内有清晰版与齐次线性方程组联系起来有n维向量组a若它的一个部分向量组a1线性无关且a1与a等价称a1是a的最大线性无关a1是a的最大线性无关组的充要条件rankaranka1r任意a1包含r个向量r同时称为向量组a的秩有向量组a和向量组bb可由a线性表示的充要条brankaa与b等价的充要条件是rankbrankaranka若b可由a线性表示则rankb小于等于ranka求齐次线性方程组的一个基础解系齐次方程组的一个基础解系是由一组线性无关的向量组成先用行初等变换简化系数矩阵得到同解方程组再令x1x2x3

考研高等数学知识点整理(附思维导图)

考研高等数学知识点整理(附思维导图)

考研高等数学知识点整理(附思维导图)被考研高数折磨过的小伙伴一定都知道那种痛苦:泰勒展开、麦克劳林展开、夹逼定理、定积分不定积分、微分多元微分......作为成功登陆的一员,我觉得有义务帮对岸的朋友考研一把。

下面这张考研高数知识图我之前用过,希望能给你带来好运。

我不多说了。

一、函数先明确一些基本概念,比如函数的定义,函数的性质,什么是复合函数,反函数,隐函数。

理解概念很重要!理解概念很重要!理解概念很重要!重要的事情说三遍~很多问题我们不会做。

其实不是我们解决问题的能力不好,而是我们连基本概念都没搞清楚,自然无从下手,或者说解决问题的方向是偏了!这是我十几年应试的血泪教训!熟悉基本初等函数,包括幂函数、指数函数、对称函数、三角函数、反三角函数,要把公式和参数适用范围记住;常用的函数有绝对值函数、符号函数、整数函数、狄利克雷函数、极大值函数、可变积分上限函数(我认为是最变态的)和双曲函数。

二、极限同样的,先厘清极限的定义了解数列极限的基本性质:极限的唯一性,收敛数列的有界性和保号性,收敛数列与子数列间的关系了解函数极限(区别于数列极限)的基本性质:极限的唯一性,局部有界性和局部保号性(这是和数列极限很大的不同)无穷小量和无穷大量极限的四则运算极限存在的判别方法:单调有界定律和夹迫定律(也有叫夹逼定理的,说的都是一个意思),这两个定律很常见,注意熟练使用三、函数的连续性四、导数与微分基本初等函数的导数公式都得背下来五、中值定理这部分很难(可能只是对我来说,我是个坏学生),也是常规考试的重点。

六、函数单调性与凹凸性这部分也是重点。

七、渐近线与曲率八、不定积分和微分一样,基本积分公式也得去记九、定积分重点理解定积分的定义和性质(再次强调)然后去记重要的定理、公式和关系十、无穷级数功能扩展很烦人,但是很重要。

大家可能都看过这些表情包。

十一、常微分方程与差分方程要记公式十二、空间解析几何与向量代数理解向量运算,后面的平面方程也就很容易理解了十三、多元函数微分学条件极值经常考十四、重积分这部分主要注意一点:从里层到外层展开的过程要细心,不然展开到最后发现错了又得重新开始十五、曲线积分与曲面积分我当年没考这个,没什么发言权。

国防科技大学《线性代数》精品课程建设总结报告

国防科技大学《线性代数》精品课程建设总结报告

国防科技大学《线性代数》精品课程建设总结报告我校《线性代数》课程始于“哈军工”时期,当时的线性代数课程内容包含在《高等数学》课程中进行讲授,由孙本旺、卢庆骏等知名教授组成的教授会负责该课程的建设。

这门课程对学生影响最为广泛,被誉为“霸王课”。

我校《线性代数》课程2010年评为湖南省精品课程以来,课程组秉承“哈军工”优良传统,同时顺应教育教学改革的发展趋势,按照瞄准“一个目标”,寻求“两个突破”,争创“三个一流”开展课程建设,取得了比较突出的建设成效。

一、建立适合拔尖创新人才培养的分层次教学模式我校《线性代数》精品课程建设以教育部新制定的“工科类本科数学基础课程教学基本要求”为基本指导原则,以我校人才培养的总目标为指导,根据新形势下我校线性代数教学对象的具体特点,对线性代数的课程体系进行了改革,建立了适合拔尖创新人才培养的、更有效的因材施教教学模式。

(1)钱学森创新拓展班线性代数,46学时。

在全校技术类学员范围内进行全面选拔,注重数学和英语基础,打破专业界限,组成钱学森创新拓展班,实施小班教学,由本课程的资深教授担任主讲任务,在使用自编教材《线性代数》的同时,参考国内外的著名教材,实施与国际知名大学接轨的线性代数教学理念和教学模式,在整个线性代数知识体系的基础上,加深或加强数学理论知识学习、应用能力以及数学方法、数学素质的培养。

(2)线性代数普通班,46学时。

除钱学森创新拓展班外,全校技术类学员和合训类学员按原院系和原专业分班,称为线性代数普通班。

二、突出代数素质培养和实践应用能力提升,深化教育教学研究与改革线性代数教学团队以课程体系优化和教学内容改革为切入点,以教学方法多样化和教学手段现代化为突破口,积极开展教学改革课题研究,探索教育教学规律,不断深化教学改革。

以“素质教育和创新教育”为核心,以培养适应部队信息化建设的懂技术、会指挥的新型复合型军事人才为目标,积极探索和深化线性代数课程的教学改革,并以教学改革为牵引,积极进行教学研究工作。

线性代数+高数基础知识框架

线性代数+高数基础知识框架

文案大全线性代数-知识框架()000,nT A r A n A A Ax x Ax A Ax A A A E ββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 注:全体n 维实向量构成的集合n R 叫做n 维向量空间.()0A r A n A A A Ax A λ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量注:()()0a b r aE bA n aE bA aE bA x λ+<⎧⎪+=⇔+=⎨⎪⎩0有非零解=-文案大全⎫⎪≅⎪−−−→⎬⎪⎪⎭:;具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n¡的标准基,n¡中的自然基,单位坐标向量152p 教材;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑LL L LL M M M L1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.文案大全推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-K NN 1⑤范德蒙德行列式:()1222212111112n i j nn i j n n n nx x x x x x x x x x x ≥≥≥---=-∏L L L M M M L111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L 称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m n A ⨯()1121112222*12nT nijn n nnA A AA A AA AA A A⎛⎫⎪⎪==⎪⎪⎝⎭LLM M ML,ijA为A中各个元素的代数余子式.√逆矩阵的求法:①1AAA*-=注:1a b d bc d c aad bc--⎛⎫⎛⎫=⎪ ⎪--⎝⎭⎝⎭1②1()()A E E A-−−−−→M M初等行变换③1231111213aaaaaa-⎛⎫⎛⎫⎪⎪=⎪⎪⎪⎪ ⎪⎝⎭⎝⎭3211111213aaaaaa-⎛⎫⎛⎫⎪⎪=⎪⎪⎪⎪ ⎪⎝⎭⎝⎭√方阵的幂的性质:m n m nA A A+=()()m n mnA A=√设,,m n n sA B⨯⨯A的列向量为12,,,nααα⋅⋅⋅,B的列向量为12,,,sβββ⋅⋅⋅,则m sAB C⨯=⇔()()1112121222121212,,,,,,ssn sn n nsb b bb b bc c cb b bααα⎛⎫⎪⎪⋅⋅⋅=⎪⎪⎝⎭LLLM M ML⇔i iA cβ=,(,,)i s=L1,2⇔iβ为iAx c=的解⇔()()()121212,,,,,,,,,s s sA A A A c c cββββββ⋅⋅⋅=⋅⋅⋅=L⇔12,,,sc c cL可由12,,,nααα⋅⋅⋅线性表示. 同理:C的行向量能由B的行向量线性表示,T A为系数矩阵.文案大全√ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A O C B B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭11112222A B AB A B ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→MM 初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得√ 0Ax =与0Bx =同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组0Ax =与0Bx =同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔PQ B =(右乘可逆矩阵Q ). √ 判断12,,,s ηηηL 是0Ax =的基础解系的条件: ① 12,,,s ηηηL 线性无关; ② 12,,,s ηηηL 都是0Ax =的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交.② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()r A A O =⇔=0.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑪ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等行变换得到的矩阵,等于用相应的初等矩阵左乘A ; 对A 施行一次初等列变换得到的矩阵,等于用相应的初等矩阵右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n αααL 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααLA 经过有限次初等变换化为B . 记作:A B =%12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅%⑬ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10 ⑰ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑱ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.√ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 0≤()m n r A ⨯≤min(,)m n ②()()()TTr A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70⑤ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭⑥()r AB ≤{}min (),()r A r B⑦ ,,()()()m n n s A B r AB r A r B ⨯⨯=⇒+若且0≤n ⑧()()A r AB r B ⇒=若可逆()()B r AB r A ⇒=若可逆⑨若0()()()m n Ax r A n r AB r B ⨯⇔=⎧=⇒⎨=⎩ 只有零解且A 在矩阵乘法中有左消去律0AB B AB AC B C=O ⇒=⎧⎨=⇒=⎩;若()()()n s r B n r AB r B ⨯=⇒= 且B 在矩阵乘法中有右消去律.√ 初等矩阵的性质:1212,,,0,,,()()A n n Ax n Ax A Ax r A r A Ax n βαααβαααβββ⇔=<⇔⇒⇔=−−−−−→=⇔=⇔=⇔==L L M 当为方阵时有无穷多解 表示法不唯一线性相关有非零解0 可由线性表示有解有唯一组解 1212,,,0()(),,,()(A n n Ax A r A r A Ax r A r αααββαααβ⎧⎪⎪⎪⎪⎨⎪⎪⇔⎪⇒⇔=−−−−−→≠⇒⎪⎩⇔≠⇔=⇔<L ML 当为方阵时表示法唯一 线性无关只有零解0克莱姆法则 不可由线性表示无解)()1()A r A r A ββ⎧⎪⎨⎪⇔+=⎩M M注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=L1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M M M M L 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭L M 11212(,,,)n n x x x αααβ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解是的两个解是其导出组的解211212112212112212),0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解 √ 设A 为m n ⨯矩阵,若()r A m =,⇒()()r A r A β=M⇒Ax β=一定有解, 当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A βM和的上限.n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+1212(,)(,)(,)ααβαβαβ+=+(,)(,)(,)c c c αβαβαβ==E A λ-.()E A f λλ-=.√ ()f λ是矩阵A 的特征多项式⇒()f A O =E A λ-=0. Ax x Ax x λ=→ 与线性相关√12n A λλλ=L 1ni A λ=∑tr ,A tr 称为矩阵A √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则λ=0为A 的特征值,且0Ax =的基础解系即为属于λ=0的线性无关的特征向量.√ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L M 、21122()n n A a b a b a b A =+++L ,从而A 的特征值为:11122n n A a b a b a b λ==+++L tr , 23n λλλ====L 0 p 指南358.√ 若A 的全部特征值12,,,n λλλL ,()f A 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλL ;12()()()()n f A f f f λλλ=L② 若A 满足()0f A =,则A 的任何一个特征值必满足()i f λ=0.√ 设1110()m m m m f x a x a x a x a --=++++L ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++L 为A 的一个多项式.√ 1231122,T A m m k kA a b aA bEA A A A A Aλλλλλλλλλλλ-*⎧⎪++⎪⎪⎨=L 是的特征值则:分别有特征值 .⎪⎪⎪⎪⎪⎩√ 1231122,A m m k kA a b aA bEA x A x A A A λλλλλλλλλλ-*⎧⎪++⎪⎪⎪⎨=⎪⎪⎪⎪⎩L 是关于的特征向量则也是关于的特征向量. √ 2,mA A 的特征向量不一定是A 的特征向量.√ A 与T A 有相同的特征值,但特征向量不一定相同.1B P AP -= (P 为可逆矩阵) 记为:A B :1B P AP -= (P 为正交矩阵)A 与对角阵Λ相似. 记为:A Λ: (称Λ是A √ A 可相似对角化⇔()i i n r E A k λ--= i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121212112212(,,,)(,,,)(,,,)(,,,)n n n n n n P PA A A A λλααααααλαλαλααααλΛ⎛⎫ ⎪ ⎪=== ⎪ ⎪⎝⎭L L L L O14424431442443144424443. 注:当i λ=0为A 的特征值时,A 可相似对角化⇔i λ的重数()n r A =-= 0Ax =基础解系的个数. √ 若A 可相似对角化,则其非零特征值的个数(重数重复计算)()r A =.√ 若n 阶矩阵A 有n 个互异的特征值,则A 可相似对角化.√ 若A Λ:⇒k A =1k P P -Λ=,1211()()()()()n A P P P P ϕλϕλϕϕϕλ--⎛⎫ ⎪ ⎪=Λ= ⎪ ⎪⎝⎭O √ 相似矩阵的性质:① A B =tr tr② A B = 从而,A B 同时可逆或不可逆③ ()()r A r B =④T T A B :;11A B --: (若,A B 均可逆);**A B :⑤k k A B : (k 为整数);()()f A f B :,()()f A f B =⑥,AB A BCD C D ⎛⎫⎛⎫⇒ ⎪ ⎪⎝⎭⎝⎭::: ⑦E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.注:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. √ 数量矩阵只与自己相似.√ 对称矩阵的性质: ① 特征值全是实数,特征向量是实向量;② 不同特征值对应的特征向量必定正交;注:对于普通方阵,不同特征值对应的特征向量线性无关;③ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;④ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑤ 一定有n 个线性无关的特征向量,A 可能有重的特征值,该特征值i λ的重数=()i n r E A λ--).T AA E =√ A 为正交矩阵⇔A 的n 个行(列)向量构成n ¡的一组标准正交基.√ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则T A ,1A -也是正交阵;⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.1211(,,,)n n T n ij ij i j f x x x x Ax a x x ====∑∑L ij ji a a =,即A 为对称矩阵,12(,,,)T n x x x x =LT B C AC =. 记作:A B ; (,,A B C 为对称阵为可逆阵)二次型的规范形中正项项数p r p -;2p r -. (r 为二次型的秩)√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√ 两个矩阵合同的充分条件是:A B :√ 两个矩阵合同的必要条件是:()()r A r B =√ 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由{()r A +正惯性指数负惯性指数 唯一确定的.√ 当标准形中的系数i d 为-1或0或1时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 惯性定理:任一实对称矩阵A 与唯一对角阵111100⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭OOO 合同. √ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量;② 对n 个特征向量正交化、单位化;③ 构造C (正交矩阵),作变换x Cy =,则1112221()()T T T T T n n n y d y y d y Cy A Cy y C ACY y C ACY y d y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪=== ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭M O M 新的二次型为21n i i f d y =∑,Λ的主对角上的元素i d 即为A 的特征值.123,,ααα线性无关, 112122111313233121122()()()()()()T T T T T T βααββαβββαβαββαββββββ=⎧⎪⎪⎪⎪=-⎨⎪⎪=--⎪⎪⎩正交化 单位化:111βηβ= 222βηβ= 333βηβ= 技巧:取正交的基础解系,跳过施密特正交化。

线性代数各章知识及脉络图

线性代数各章知识及脉络图

M M
0 0
0
,n 3
Dn

A
B

a1
b1
,n 1
a1 a2 b1 b2 , n 2
-5-
○2 加边法专辑
加边法的应用:通过升阶获得一些特殊的元素值,从而消去某些元素,使得行列式形式更加简单且特殊,
从而实现计算的简化。
此种方法其实是反向利用 Laplace 展开定理,看似复杂化,其实阶数的增加反倒可以将行列式简单化,更 易发现规律。同时应当注意加边的类型及加边后行列式值不能改变。
1 n2
○3 爪型行列式专辑
爪型行列式形如:
方法:将 D 的第 i+1 列乘以 ci i 1, 2,L , n都加到第 1 列,得
ai
有些行列式经过适当的变化可以化为行列式,再采用上述方法计算。
a1 x x L x a2 x L 【例】: Dn x x a3 L M M MO
x x xL
【例】:计算行列式
令 Dn C C AB ,
a2 1 0 L
a2 1 0 L
C


M
MM
a2 1 0 L
a2 1 0 L
0 1 1 L 0b1 b2 L M 0 0 L 0 M M 0 0 0 L
1 1
bn1 bn
0
0

【例】:
1、设行列式 det A 的元素为 aij ,行列式
n
试证: det D det A x Aij ,其中 Aij 为 aij 在 det A 中的代数余子式。 i, j1
证明:把 det D 升阶得到
n
n
n

精编考研线性代数知识框架图资料

精编考研线性代数知识框架图资料

考研线性代数知识框架图()000,nT A r A n A A Ax x Ax A Ax A A A E ββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 注:全体n 维实向量构成的集合nR 叫做n 维向量空间.()0A r A n A A A Ax A λ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量注:()()0a b r aE bA n aE bA aE bA x λ+<⎧⎪+=⇔+=⎨⎪⎩0有非零解=-⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量152p 教材;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1⑤范德蒙德行列式:()1222212111112n ij nn i j n n n nx x x xx x x x x x x ≥≥≥---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m nA ⨯()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1A A A *-= 注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1②1()()AE E A -−−−−→初等行变换③1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:m n m nA A A+= ()()m nmnA A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i iA c β= ,(,,)i s =1,2⇔iβ为iAx c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示. 同理:C 的行向量能由B 的行向量线性表示,T A 为系数矩阵.√ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A O CB B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭11112222A B AB A B ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得√ 0Ax =与0Bx =同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组0Ax =与0Bx =同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔PQ B =(右乘可逆矩阵Q ). √ 判断12,,,s ηηη是0Ax =的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη都是0Ax =的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材.⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()r A A O =⇔=0.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑪ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等行变换得到的矩阵,等于用相应的初等矩阵左乘A ; 对A 施行一次初等列变换得到的矩阵,等于用相应的初等矩阵右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B . 记作:A B =12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅⑬ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅.⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10 ⑰ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑱ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.√ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 0≤()m n r A ⨯≤min(,)m n ②()()()TTr A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70⑤ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭⑥()r AB ≤{}min (),()r A r B⑦ ,,()()()m n n s A B r AB r A r B ⨯⨯=⇒+若且0≤n ⑧()()A r AB r B ⇒=若可逆()()B r AB r A ⇒=若可逆⑨若0()()()m n Ax r A n r AB r B ⨯⇔=⎧=⇒⎨=⎩ 只有零解且A 在矩阵乘法中有左消去律0AB B AB AC B C =O ⇒=⎧⎨=⇒=⎩;若()()()n s r B n r AB r B ⨯=⇒= 且B 在矩阵乘法中有右消去律.√ 初等矩阵的性质:1212,,,0,,,()()A n n Ax n Ax A Ax r A r A Ax n βαααβαααβββ⇔=<⇔⇒⇔=−−−−−→=⇔=⇔=⇔==当为方阵时有无穷多解 表示法不唯一线性相关有非零解0 可由线性表示有解有唯一组解 1212,,,0()(),,,()(A n n Ax A r A r A Ax r A r αααββαααβ⎧⎪⎪⎪⎪⎨⎪⎪⇔⎪⇒⇔=−−−−−→≠⇒⎪⎩⇔≠⇔=⇔<当为方阵时表示法唯一 线性无关只有零解0克莱姆法则 不可由线性表示无解)()1()A r A r A ββ⎧⎪⎨⎪⇔+=⎩注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x x x αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解是的两个解是其导出组的解211212112212112212),0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解 √ 设A 为m n ⨯矩阵,若()r A m =,⇒()()r A r A β=⇒Ax β=一定有解, 当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限.n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+(,)(,)(,)c c c αβαβαβ==E A λ-.()E A f λλ-=.√ ()f λ是矩阵A 的特征多项式⇒()f A O =E A λ-=0. Ax x Ax x λ=→ 与线性相关√12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则λ=0为A 的特征值,且0Ax =的基础解系即为属于λ=0的线性无关的特征向量.√ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr ,23n λλλ====0 p 指南358.√ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=② 若A 满足()0f A =,则A 的任何一个特征值必满足()i f λ=0.√ 设1110()m m m m f x a x a x a x a --=++++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++为A 的一个多项式.√ 1231122,T A mm k kAa b aA bE A A AA A Aλλλλλλλλλλλ-*⎧⎪++⎪⎪⎨= 是的特征值则:分别有特征值 .⎪⎪⎪⎪⎪⎩ √ 1231122,A mm k kAa b aA bEAx A x A A A λλλλλλλλλλ-*⎧⎪++⎪⎪⎪⎨=⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. √ 2,mA A 的特征向量不一定是A 的特征向量. √ A 与TA 有相同的特征值,但特征向量不一定相同.1B P AP -= (P 为可逆矩阵) 记为:A B1B P AP -= (P 为正交矩阵)A 与对角阵Λ相似. 记为:AΛ (称Λ是A√ A 可相似对角化⇔()i i n r E A k λ--= i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121212112212(,,,)(,,,)(,,,)(,,,)n n n n n n PPA A A A λλααααααλαλαλααααλΛ⎛⎫⎪⎪=== ⎪ ⎪⎝⎭. 注:当i λ=0为A 的特征值时,A 可相似对角化⇔i λ的重数()n r A =-= 0Ax =基础解系的个数. √ 若A 可相似对角化,则其非零特征值的个数(重数重复计算)()r A =. √ 若n 阶矩阵A 有n 个互异的特征值,则A 可相似对角化.√ 若A Λ⇒k A =1k P P -Λ=,1211()()()()()n A P P P P ϕλϕλϕϕϕλ--⎛⎫⎪⎪=Λ= ⎪ ⎪⎝⎭√ 相似矩阵的性质:① A B =tr tr② A B = 从而,A B 同时可逆或不可逆 ③ ()()r A r B = ④TT AB ;11A B -- (若,A B 均可逆);**A B⑤kk AB (k 为整数);()()f A f B ,()()f A f B =⑥,A B A B CD C D ⎛⎫⎛⎫⇒ ⎪ ⎪⎝⎭⎝⎭⑦E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.注:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量.√ 数量矩阵只与自己相似.√ 对称矩阵的性质: ① 特征值全是实数,特征向量是实向量;② 不同特征值对应的特征向量必定正交;注:对于普通方阵,不同特征值对应的特征向量线性无关;③ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ④ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑤ 一定有n 个线性无关的特征向量,A 可能有重的特征值,该特征值i λ的重数=()i n r E A λ--).TAA E =√ A 为正交矩阵⇔A 的n 个行(列)向量构成n的一组标准正交基.√ 正交矩阵的性质:① 1TA A -=;② TTAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.1211(,,,)n nTn ij i j i j f x x x x Ax a x x ====∑∑ ij ji a a =,即A 为对称矩阵,12(,,,)T n x x x x =T B C AC =. 记作:A B (,,A B C 为对称阵为可逆阵)二次型的规范形中正项项数pr p -;2p r -. (r 为二次型的秩)√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:AB√ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x x Ax =经过正交变换合同变换可逆线性变换x Cy =化为21ni i f d y =∑√ 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由()r A +正惯性指数负惯性指数唯一确定的.√ 当标准形中的系数i d 为-1或0或1时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 惯性定理:任一实对称矩阵A 与唯一对角阵1111⎛⎫⎪ ⎪ ⎪ ⎪-⎪⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭合同. √ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量;② 对n 个特征向量正交化、单位化;③ 构造C (正交矩阵),作变换x Cy =,则1112221()()TT T T Tn n n y d y y d y Cy A Cy y C ACY y C ACY y d y -⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪⎪⎪=== ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭新的二次型为21ni if d y =∑,Λ的主对角上的元素i d 即为A 的特征值.123,,ααα线性无关,112122111313233121122()()()()()()T TT T T Tβααββαβββαβαββαββββββ=⎧⎪⎪⎪⎪=-⎨⎪⎪=--⎪⎪⎩正交化 单位化:111βηβ=222βηβ= 333βηβ= 技巧:取正交的基础解系,跳过施密特正交化。

国防科技大学线性代数与解析几何课程建设的特色

国防科技大学线性代数与解析几何课程建设的特色

第25卷第6期大学数学V01.25,№.6 2009年12月CoLLEGE M A T H E M A T I C S Dec.2009国防科技大学“线性代数与解析几何’’课程建设的特色冯良贵,戴清平,谢端强,李超,陈挚(国防科技大学理学院数学与系统科学系,长沙410073)[摘要]介绍国防科技大学线性代数与李间解析几何课程在教材内容的选取编排、分层教学的实施、考核方式的规范、试题库的建设和使用以及该课程与其他课程的衔接等问题上所做的特色研究和建设.[关键词]线性代数与解析几何;课程建设;特色[中图分类号]G423.07;0151.2[文献标识码]C[文章编号]1672—1454(2009)06—0011一03线性代数与解析几何是本科教育的重要基础课程.随着教育部新制定的“工科类本科数学基础课程教学基本要求”的出台和国家精品课程的建设,以及数学实验题材的教学和计算机的广泛应用,我国新的教学思想和教学手段不断出现,线性代数与解析几何的课程建设已经取得了一些成果并得到了一定程度的推广应用.这些成果包括出版了一系列的教材和辅导资料,新教学方法的实施和考核方法的改革,各种电子课件的编制和网络资源的扩充,多层次和多类别的评价体系逐步完善等.但是在教材内容的选取编排、分层教学的实施和考核方式的规范、试题库的建设和使用以及该课程与其他课程的衔接等问题上还有待进一步研究和探讨.对于这些问题,我校线性代数与解析几何教学组进行了一些探索,并形成了自己的一定特色.1合理编排教学内容突出初等行变换化最简行阶梯形的作用在进行线性代数与解析几何课程的教材建设和课程教学中,教学内容的选取和编排是非常重要的.1.合理安排行列式、矩阵、线性方程组和向量的编写顺序.现有教材在行列式、矩阵、线性方程组和向量的安排上尽管都有自己的特色,但是怎样处理好它们的先后顺序,还有待进一步很好解决,其困难在于这几个方面在内容和方法上有交叉部分.比如:线性方程组的解结构必须利用向量空间才能解决,而讨论向量与向量空间必须用到线性方程组的求解和矩阵的秩,矩阵的秩及其相关思想必须利用行向量和列向量才能把握本质.我们编写的教材采用了把线性方程组分开讲解的处理方式.作为行列式的应用在第一章讲解Cra mer法则;在矩阵一章中利用初等行列变换方法讲述线性方程组和矩阵方程的Gauss消元法,从而得到了线性方程组的一般解法,并且用矩阵的秩给出了有解判断方法;利用线性方程组的一般解法和有解判断方法,完全解决了第i章中几何向量、直线和平面及其关系的判断以及向量组的线性相关和线性无关的判断等问题;用向量空间和向量空间基的思想准确描述了线性方程组的解结构.2.利用最简行阶梯形的方法统一解决相关问题.求解线性方程组、求解矩阵方程AX=B、判断两组向量是否等价和判断两组向量是否生成相同的向量空间等问题,都可以利用最简行阶梯形来解决.[收稿日期]2007—07—10[基金项目]国防科技大学“十一五”教育教学研究课题;湖南省教育教学研究课题(U2009104)12大学数学第25卷在求解线性方程组Ax=6时,其实质是对A进行初等行变换和将其化为最简行阶梯形,同时把相应的变换作用在6上.求解矩阵方程A X=B时,把分块矩阵[A B]中的A进行初等行变换将其化为最简行阶梯形,同时把相应的变换作川在B上,既可以判断其是否有解,同时口J求得其解.如果记A一[口。

【高考数学】全部知识点结构图汇总

【高考数学】全部知识点结构图汇总

高中数学全部知识点结构图汇总1、集合、映射、函数、导数及微积分2、三角函数与平面向量3、数列与不等式4、解析几何5、立体几何6、统计与概率7、其他部分内容菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实,累累北雁南飞, 满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中,午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流,水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂, 机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错,落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无,阻花花红柳绿,花色,迷人花香醉人花,枝招展百花齐放百花盛开百花争艳, 绚丽多彩五彩缤纷草绿草如, 标准答案一、填空题。

(每空1分, , , , 共,22分)1、4120500000 41.205 2092 2、3、12 4、14 32 7:7、1080cm2 8、, 6 9、2a2 10、3 11、3:2 12、558 810 13、20 14、18 ,二、判断题。

(对的打“√”, 错的打“×”), (共5分)15、×, 16、√17、√18、×19、√, 三、选择(将正确答案的字母填入括号里)。

(5份)20、A 21B 22、B 23、C 24、B 四、计算。

(30分,)28、3、3 6、2 6、6 第(1)题画图正确计2分, 数对表示正确计2分29、表面积:8×8×6+4×4×4+2×2×4体积:8×8×8+4×4×4+2×2×2 30、d=16.56÷(1+3.14)=4dm r=2dm 容积:3.14×22×4= 六、解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档