函数总结大全(很强很好很全)
函数知识点总结
函数知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!函数知识点总结函数知识点总结总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它是增长才干的一种好办法,是时候写一份总结了。
函数知识点总结
一一次函数1、正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.2、正比例函数图象和性质一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.3、一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx +b即y=kx,所以说正比例函数是一种特殊的一次函数.4、直线y=kx+b的图象和性质与k、b的关系如下表所示:5、直线y1=kx+b与y2=kx图象的位置关系:(1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象.(2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.6、直线l 1:y 1=k 1x +b 1与l 2:y 2=k 2x +b 2的位置关系可由其解析式中的比例系数和常数来确定:当k 1≠k 2时,l 1与l 2相交7、直线y=kx +b(k≠0)与坐标轴的交点.(1)直线y=kx 与x 轴、y 轴的交点都是(0,0);(2)直线y=kx +b 与x 轴交点坐标为(,0)与 y 轴交点坐标为(0,b).8、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.二 反比例函数1.定义:形如y =xk(k 为常数,k≠0)的函数称为反比例函数。
其他形式xy=k 、1-=kxy 、xk y 1∙=2.图像:反比例函数的图像属于双曲线。
(完整版)初中数学函数知识点归纳
初中数学函数板块的知识点总结与归类学习方法初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。
初中数学从性质上分,可以分为:一次函数、反比例函数、二次函 数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。
一、一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。
2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。
k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。
(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。
(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。
3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。
(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。
数学函数知识点大总结
数学函数知识点大总结一、函数的概念函数是数学中非常重要的一个概念,广泛应用于数学、物理、工程等领域。
它是将一个集合的元素映射到另一个集合的元素的一种规则。
函数的概念来源于实际生活中对变化规律的研究,是描述数量之间关系的一种数学工具。
函数的概念最早可以追溯到古希腊数学家欧几里德。
1.1 函数的定义在数学中,函数通常表示为y=f(x),其中f表示函数的名称,x称为自变量,y称为因变量。
函数f将自变量x的取值映射为因变量y的取值。
函数可看作是输入和输出之间的一种映射关系,即对每个自变量x,都有且只有一个对应的因变量y。
1.2 函数的符号表示在数学中,函数可以用多种符号来表示。
通常使用的有以下几种表示方法:y=f(x):表示函数f将自变量x映射为因变量y。
f:x→y:表示函数f将自变量x映射为因变量y。
f(x):表示函数f对自变量x的取值。
1.3 函数的分类函数是多种多样的,按照不同的性质可以进行分类。
主要的函数分类有以下几种:1.3.1 反函数如果一个函数f将自变量x的值映射为因变量y的值,那么存在一个反函数f^(-1),将因变量y的值映射为自变量x的值。
1.3.2 单调函数如果一个函数f的自变量增大时,因变量也随之增大(或者随之减小),则称该函数为单调函数。
1.3.3 周期函数如果一个函数f对于某一个正数T有f(x+T)=f(x)恒成立,则称函数f为周期函数,其中T 称为函数的周期。
1.3.4 奇偶函数如果对于任意的x,有f(-x)=-f(x)成立,则称函数f为奇函数;如果对于任意的x,有f(-x)=f(x)成立,则称函数f为偶函数。
1.3.5 反比例函数如果一个函数f的表达式为f(x)=k/x,其中k是一个非零常数,则称函数f为反比例函数。
二、初等函数初等函数是指由常数、自变量及各种基本初等函数通过有限次的代数运算(加、减、乘、除)和函数复合(函数与函数的运算)得到的函数。
所有初等函数都可以由基本初等函数(多项式函数、幂函数、指数函数、对数函数、三角函数、反三角函数)通过有限次的代数运算和函数复合得到。
高中数学函数完美归纳讲解
第一章函数概念导入1、集合〔子集,真子集、空集、补集、全集等表示和关系〕2、映射〔定义,一一映射〕3、增函数、减函数4、轴对称5、单调性定义设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y 与之对应,称变量y为变量x的函数,记作y=f<x>.自变量x、因变量y映射角度函数定义:定义在非空数集之间的映射称为函数要点1、对应法则和定义域是函数的两个要素2、函数是一种关系3、函数两组元素一一对应的规则〔这种关系使一个集合里的每一个元素对应到另一个集合里的唯一元素;第一组中的每个元素在第二组中只有唯一的对应量〕1、复合函数:y是u的函数,y=ψ〔u〕,u是x的函数,u =f〔x〕,y通过中间变量u构成了x的x→u→y,注意定义域. y=lgsinx2、反函数:x→y, y→x,性质:1、一一映射2、单调函数分类:一次函数y=kx+b★二次函数y=ax2+bx+c〔a,b,c为常数,a≠0>反比例函数y=k/x <k为常数且k≠0>指数函数y=a x<a>0,a≠1>对数函数y=logax〔a>0〕幂函数y=x a★三角函数<正弦,余弦,正切,余切,正割,余割>常用方法:待定系数法平移变换法数形结合法注:注意自定义〔抽象〕函数等学习应用,培养逻辑思维.第一节函数的一般化应用解析1-1-1函数的值域方法:1、巧用定理,整体变换.〔1〕函数3cos 3sin 2+--=x x y 的 最小值;〔2〕已知:αβαsin 5sin 2sin 322=+,α、βR ∈,求βα22cos cos +=u X 围.2、借题发挥,分式转化双曲线.()bc ad ,0c dcx b ax y ≠≠++=型求值域和画图的一般化应用. 〔1〕作函数1231+-=x x y 的图象 〔2〕求函数4235+-=x x y 的值域 1-1-2函数的奇偶性要 点判断函数的奇偶性前提是:函数的定义域必须关于原点对称. 〔1〕若为偶函数函数为奇)()()()()()(x f y x f x f x f y x f x f =⇔=-=⇔-=-〔2〕奇函数;0)0()(=⇒=f x y 在原点处有意义〔3〕任一个定义域关于原点对称的函数)(x f 一定可以表示成一个奇函数和一个偶函数之和即 偶奇2)()()(2)()()(x f x f x f x f x f -++--=例 题:〔1〕定义在),(+∞-∞上的函数)(x f 可以表示成奇函数g<x>与偶函数h<x>之和,若)110lg()(+=x x f ,那么〔 〕A 、)21010lg()(,)(++==-x x x h x x gB 、])110[lg(21)(],)110[lg(21)(x x h x x g x x -+=++=C 、2)110lg()(,2)(x x h x x g x -+==D 、2)110lg()(,2)(x x h xx g x ++=-= 1-1-3函数的单调性★常见于证明类问题,单调性证明一定要用定义.定 义区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数,若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数.性 质奇函数在关于原点对称的区间上单调性相同;偶函数在关于原点对称的区间上单调性相反.证明办法:作差法:若x1<x2,f<x1>-f<x2>>0 单调递减若x1<x2,f<x1>-f<x2><0 单调递增作商法:若x1<x2,f<x1>/f<x2>>0单调递减若x1<x2,f<x1>/f<x2>>0单调递增讨 论复合函数的增减问题ψ<x>为增函数,f<x>为增函数,y 为增函数ψ<x>为增函数,f<x>为减函数,y 为减函数))x ((f y ϕ=ψ<x>为减函数,f<x>为增函数,y 为减函数 ψ<x>为减函数,f<x>为减函数,y 为增函数〔1〕 设)(x f 为奇函数,且在区间[a,b] <0<a<b>上单调减,证明)(x f 在[-b,-a]上单调减.〔2〕)3(log )(221a ax x x f +-=在),2[+∞上减函数,则a 的X 围:〔-4,4] 1-1-4函数的平移和伸缩平移规则:左加右减)()()(a x f y a x f y x f y a a -=−−−−→−+=−−−−→−-=个单位右移个单位左移 上加右减b x f y x f b y bx f y x f b y x f y b b -=→=+−−−−→−+=→=-−−−−→−-=)()()()()(个单位下移个单位上移伸缩规则: 横向变倒数)0()()(1,>=−−−−−−−−−→−=ωωωx f y x f y 倍横坐标变为原来的纵坐标不变 纵向成倍数1-1-5函数的对称性中心对称轴对称若)(x f y =对R x ∈满足)()(x b f x a f -=+,则)(x f y =关于直线2b a x +=对称;〔由2)()(x b x a x -++=求得〕 函数)()(x b f y x a f y -=+=与关于直线2a b x -=对称. 〔由x b x a -=+解得〕例题解析1、函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是〔 〕 A.,020x x y x ⎧≥⎪=< B.2,00x x y x ≥⎧⎪=< C.,020x x y x ⎧≥⎪=⎨⎪<⎩D.2,00x x y x ≥⎧⎪=⎨<⎪⎩ 2、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________. 3、设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于〔 C 〕〔A 〕3 〔B 〕4 〔C 〕5 〔D 〕6 4、的值域求函数x x y -+-=535、221223x x y x x -+=-+求函数的值域6、231223y x x =-+-求函数的值域7、给出四个函数,分别满足①f<x+y>= f<x>+ f<y>②g<x+y>= g<x> g<y>③h<xy>= h<x>+ h<y>④t<xy>= t<x> t<y>,又给出四个函数图象正确的匹配方案是〔 〕〔A 〕①—丁②—乙③—丙④—甲〔B 〕①—乙②—丙③—甲④—丁 〔C 〕①—丙②—甲③—乙④—丁〔D 〕①—丁②—甲③—乙④—丙8.若)(x f y =对R x ∈满足)2()2(x f x f -=+,则)(x f y =的对称轴为函数)2()2(x f y x f y -=+=与的对称轴为 9.f<x>为定义在)0,(-∞ ),0(+∞上的偶函数,且在),0(+∞上为减,①求证f<x>在)0,(-∞上为增函数;10.已知4254)(,252-+-=≥x x x x f x 则有 A .最大值45 B .最小值45 C .最大值1 D .最小值111.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+= 则=)5(fA .0B .1C .25D .512.)(x f 为定义在R 上的偶函数,且)3()5(x f x f -=+对R x ∈恒成立,则 )(x f y =的一个周期为:13.设)12(+=x f y 为偶函数,则)2(x f y =的一条对称轴为第二节二次函数定义,解析式,条件,定义域,值域.一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c则称y 为x 的二次函数.判定公式,求根公式,韦达定理等回顾掌握.表达式类型:1、一般式:y=ax 2+bx+c 〔a,b,c 为常数,a ≠0〕2、顶点式:y=a<x-h>2+k [抛物线的顶点P 〔h,k 〕] 对于二次函数y=ax 2+bx+c 其顶点坐标为 <-b/2a,<4a c-b 2>/4a>3、交点式:y=a<x-x ₁><x-x ₂> [仅限于与x 轴有交点A 〔x ₁ ,0〕和 B 〔x ₂,0〕的抛物线]性质关系:1、a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下.IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大2、图像为抛物线,是轴对称图形,对称轴为直线x = -b/2a3、2.抛物线有一个顶点P,坐标为P < -b/2a ,<4ac-b2>/4a >4.一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时〔即ab>0〕,对称轴在y轴左;当a与b异号时〔即ab<0〕,对称轴在y轴右. 5.常数项c决定抛物线与y轴交点.抛物线与y轴交于〔0,c〕6.抛物线与x轴交点个数Δ= b2-4ac>0时,抛物线与x轴有2个交点.Δ= b2-4ac=0时,抛物线与x轴有1个交点.Δ= b2-4ac<0时,抛物线与x轴有0个交点7、当a>0时,函数在x= -b/2a处取得最小值f<-b/2a>=4ac-b2/4,在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{x|x≥4ac-b^2/4a}.相反亦然.例题应用解析:1.如图13-28所示,二次函数y=x2-4x+3的图象交x轴于A、B 两点,交y轴于点C,则△ABC的面积为< >A、6B、4C、3D、12.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x<单位:分>之间满足函数关系:y=-0.1x2+2.6x+43<0<x <30>.y值越大,表示接受能力越强.<1>x在什么X围内,学生的接受能力逐步增强?x在什么X 围内,学生的接受能力逐步降低?<2>第10分时,学生的接受能力是什么?<3>第几分时,学生的接受能力最强?3.某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:<1>当销售单价定为每千克55元时,计算月销售量和月销售利润;<2>设销售单价为每千克x元,月销售利润为y元,求y与x 的函数关系式<不必写出x的取值X围>;<3>商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?4.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量〔件〕与每件的销售价〔元〕满足一次函数:〔1〕写出商场卖这种商品每天的销售利润与每件的销售价间的函数关系式.〔2〕如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?5.如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形的边米,面积为平方米.〔1〕求:与之间的函数关系式,并求当米时,的值;〔2〕设矩形的边米,如果满足关系式即矩形成黄金矩形,求此黄金矩形的长和宽.第三节三角函数知识点回顾角①角的静态定义:具有公共点的两条射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边.角的大小与边的长短没有关系;角的大小决定于角的两条边X开的程度,角可以分为锐角、直角、钝角、平角、周角这五种.锐角:小于90°的角叫做锐角直角:等于90°的角叫做直角钝角:大于90°而小于180°的角叫做钝角平角:等于180°的角叫做平角周角:等于360°的角叫做周角②角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角.所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边.角的X 围可扩大到实数R.A=a+2k π<k ∈Z>角的度量弧度与角度在数学中,弧度和角度是角的量度单位.定义:弧长等于圆半径的弧所对的圆心角为1弧度. 弧长公式:)n (180rn )(L 为角度π弧长 弧度和角度变化公式〔r=1〕.1-3-1三角函数的初等基本表示正弦余弦正切余切正割余割在平面直角坐标系xOy 中,从点O 引出一条射线OP ,设旋转角为θ,设OP=r,P 点的坐标为〔x,y 〕有 正弦函数 sin θ=y/r 余弦函数 cos θ=x/r 正切函数 tan θ=y/x 余切函数 cot θ=x/y 正割函数 sec θ=r/x 余割函数 csc θ=r/y〔斜边为r,对边为y,邻边为x.〕1-3-2三角函数的数值符号与特殊值特殊角的三角函数值例题函数名称 第一象限第二象限第三象限第四象限正 弦 + + - - 余 弦 + - - + 正 切 + - + - 余 切 + - + - 正 割 + - 1 + 余 割 ++--函数名称 030456090正 弦21 22 23 1余 弦123 22 21 0正 切0 33 13----余 切---- 3133正 割1332 22-----余 割------22332 11. sin<-619π>的值是< > A.21 B. -21C. 23D. -232. 若sin θcos θ>0,则θ在< >A. 第一,二象限B. 第一, 三象限C. 第一, 四象限D. 第二, 四象限5.设tan α=71,tan β=31,α、β均为锐角,则α+2β的值是 < > A.4πB. 43πC.45πD. 434或ππ 2.当x ≠2πk <k ∈Z >时,xx xx cot cos tan sin ++的值是 < > A.恒正B.恒负 C.非负D.无法确定6.如果角θ满足条件sin θ>0,cos θ<0,则θ是 < > A.第二象限角B.第二或第四象限角 C.第四象限角D.第一或第三角限角 7.若cot θ=3,则cos 2θ-21sin 2θ的值是 < > A.-65B.-54C.53D.54 1-3-2三角函数公式1.诱导公式sin<-a>=-sin<a>sin<π/2-a>=cos<a>cos<-a>=cos<a> cos<π/2-a>=sin<a> sin<π/2+a>=cos<a> sin<π-a>=sin<a> cos<π/2+a>=-sin<a> cos<π-a>=-cos<a> sin<π+a>=-sin<a> cos<π+a>=-cos<a> 2.两角和与差的三角函数sin<a+b>=sin<a>cos<b>+cos<α>sin<b>sin<a-b>=sin<a>cos<b>-cos<a>sin<b>cos<a+b>=cos<a>cos<b>-sin<a>sin<b>cos<a-b>=cos<a>cos<b>+sin<a>sin<b>tan<a+b>=<tana+tanb>/<1-tanatanb>tan<a-b>=<tana-tanb> /〔1+tanatanb〕3.和差化积公式sinA+sinB=2sin[<A+B>/2]cos[<A-B>/2]cosA+cosB=2cos[<A+B>/2]cos[<A-B>/2]tanA+tanB=sin<A+B>/cosAcosBtanA-tanB=sin<A-B>/cosAcosB4.积化和差公式2sinAcosB=sin<A+B>+sin<A-B>2cosAsinB=sin<A+B>-sin<A-B>2cosAcosB=cos<A+B>+cos< A-B>2sinAsinB=-cos<A+B>cos<A-B>5.二倍角公式sin<2a>=2sin<a>cos<a>cos<2a>=cos2 <a>-sin2<a>=2cos2<a>-1=1-2sin2<a>6.半角公式7.万能公式8.辅助角公式9.降幂公式10.推导公式tanAtanBtan<A+B>+tanA+tanB-tan<A+B>=0例题1、sin15°sin30°sin75°的值等于< > A.43 B. 83 C. 81 D. 41 2、 已知θ∈﹝0,3π﹞,则315sin θ+35cos θ的取值X 围< > A. ﹝ -35,35﹞ B. ﹝ 0,65﹞ C. ﹝ 35,65﹞ D. ﹝ 0,35﹞ 3、tan300°+cot405°的值为< > A.1+3 B. 1-3C.-1-3 D.-1+3 4.设a=sin14°+cos14°,b=sin16°+cos16°,c=26.则a,b,c 的大小关系是< > A. a <b <c B. a <c <b C. b <c <a D. b <a <c 5.︒-︒+75tan 175tan 1的值为< >A.3 B. -3 C.33 D. -336.设f<sin α+cos α>=sin αcos α ,则f<cos 6π>的值为< > A.83 B.81 C.-81D.-837.sin7°cos37°-sin83°cos53°=________. 8.tan20°+tan40°+3tan20°tan40°=_________.9.sin<2π-α>=53,cos2α=__________.10.已知tan α=3,ααααcos sin 2cos sin 3-+=___________.11、化简:<1> sin50°〔1+3tan10°〕 <2>)5sin()cos()6cos()2sin()2tan(αππααπαπαπ------12、已知sin α=32,α∈<2π,π> ,cos β=-43,β∈<π,23π> 求sin<α-β>, cos<α+β>, tan<α+β>. 13、已知2π<β<α<43π,cos<α-β>=1312,sin<α+β>=-53.求sin2α1-3-3 正弦函数定义对于任意一个实数x 都有唯一确定的值sinx 与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数.正弦型函数解析式:y=Asin<ωx+φ>+b图像定义域与值域 X ∈R, y ∈[-1,1] 最值和零点①最大值:当x=2k π+<π/2> ,k ∈Z 时,y max =1 ②最小值:当x=2k π+<3π/2>,k ∈Z 时,y min =-1 零值点: <k π,0> ,k ∈Z 对称性:1>对称轴:关于直线x=<π/2>+k π,k ∈Z 对称 2>中心对称:关于点<k π,0>,k ∈Z 对称 周期性最小正周期:2π 奇偶性: 奇函数 单调性:在[-<π/2>+2k π,<π/2>+2k π],k ∈Z 上是增函数 在[<π/2>+2k π,<3π/2>+2k π],k ∈Z 上是减函数 正弦型函数与其性质根据正弦型函数解析式:y=Asin<ωx+φ>+bφ:决定波形与X 轴位置关系或横向移动距离〔左加右减〕 ω:决定周期〔最小正周期T=2π/∣ω∣〕 A :决定峰值〔即纵向拉伸压缩的倍数〕b :表示波形在Y 轴的位置关系或纵向移动距离〔上加下减〕 正弦函数的作图"五点作图法〞即取当X 分别取0,π/2,π,3π/2,2π时y 的值.例题1、函数y=2sinxcosx 的最小正周期是< > A. 2π B. π C.2π D. 4π2、函数f<x>=cos 4x-sin 4x 是< > A. 奇函数 B. 偶函数C.非奇非偶函数D. 既是奇函数又是偶函数3.函数y=cos<3x+4π>的图象是由y=cos3x 的图象怎样平移而来的< > A.向左平移4π个单位 B.向右平移4π个单位C.向左平移12π个单位D.向右平移12π个单位4.下列各区间中,函数y=sin<x+4π>的单调增区间是< >A. ﹝2π,π﹞B. ﹝0, 4π﹞C. ﹝4π,2π﹞ D. ﹝-π,0﹞5.<12分>用五点作图法作出函数y=3sin2χ-cos 2χ的图象,并指出这个函数的振幅,周期,频率,相位与最值.6. 右图为)sin(ϕω+=x A y 的图象的一段,求其解析式.7设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x .〔Ⅰ〕求ϕ;〔Ⅱ〕求函数)(x f y =的单调增区间;〔Ⅲ〕画出函数)(x f y =在区间],0[π上的图像.8. 设函数x c x b a x f sin cos )(++=的图象经过两点〔0,1〕,〔1,2π〕,且在2|)(|20≤≤≤x f x 内π,##数a 的的取值X 围.9. 若函数)4sin(sin )2sin(22cos 1)(2ππ+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.1-3-4正弦定理与余弦定理1-3-4-1正弦定理在一个三角形中,各边和它所对角的正弦的比相等.即2R sinCcsinB b sinA a ===〔2R 在同一个三角形中是恒量,是此三角形外接圆的半径的两倍〕1-3-4-1-1 正弦定理的推广与应用一、三角形面积公式: 1.典型公式 2.海伦公式假设有一个三角形,边长分别为a 、b 、c,三角形的面积S 可由以下公式求得: ())c -P )(b -P )(a -P (P S c b a 21P =++=三角形设而公式里的p 为半周长 二. 正弦定理的变形公式<1> a=2RsinA, b=2RsinB, c=2RsinC; <2> sinA : sinB : sinC = a : b : c;<3>相关结论:1-3-4-1余弦定理对于任意三角形 三边为a,b,c 三角为A,B,C 满足性质1-3-5三角函数题型演练1. 试判断方程sinx=π100x实数解的个数. 2. 已知函数.3cos 33cos 3sin )(2xx x x f +=〔Ⅰ〕将f<x>写成)sin(φω+x A 的形式,并求其图象对称中心的横坐标与对称轴方程〔Ⅱ〕如果△ABC 的三边a 、b 、c 满足b 2=ac,且边b 所对的角为x,试求x 的X 围与此时函数f<x>的值域.3. 已知△ABC 三内角A 、B 、C 所对的边a ,b ,c ,且.2222222ca cc b a b c a -=-+-+ 〔1〕求∠B 的大小; 〔2〕若△ABC 的面积为433,求b 取最小值时的三角形形状. 4. 求函数y=)32cot()32sin(ππ--x x 的值域.5. 求函数y=1sec tan 1sec tan +--+x x x x 的单调区间.6. 已知ctgxx x x f ++-=112cos 2sin )(①化简f<x>;②若53)4sin(=π+x ,且π<<π434x ,求f<x>的值;7. 已知ΔABC 的三个内角A 、B 、C 成等差数列,且A<B<C,tgA ·tgC 32+=,①求角A 、B 、C 的大小;②如果BC 边的长等于34,求ΔABC 的边AC 的长与三角形的面积.8. 已知21)(),,2(,53sin =β-πππ∈α=αtg ,求tg<α-2β>.9. 已知函数x x x x f cos sin sin 3)(2+-=〔I 〕求函数)(x f 的最小正周期; 〔II 〕求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域.10. 在⊿ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且10103cos ,21tan ==B A 〔1〕求tanC 的值; 〔2〕若⊿ABC 最长的边为1,求b.11. 如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E,AB=2.〔1〕求cos ∠CBE 的值;〔2〕求AE. 12. 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且c a bC B +-=2cos cos .〔1〕求角B 的大小;〔2〕若4,13=+=c a b ,求a 的值.13.已知S △ABC =103,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.14.已知△ABC 中,Ab B ac c b a c b a cos cos ,2222==-+-+且,试判断△ABC 的形状.15.求值:16.在△ABC 中,a =6,b =2,c=3+1,求A 、B 、C 与S △.17.已知:k 是整数,钝角△ABC 的三内角A 、B 、C 所对的边分别为a 、b 、c〔1〕若方程组⎪⎩⎪⎨⎧+=+=+)1(32722k y kx k y x 有实数解,求k 的值.〔2〕对于〔1〕中的k 值,若,2sin k C =且有关系式C c B b A b c 222sin sin sin )(=+-,试求A 、B 、C 的度数. 第四节 指数函数1-4-1知识点回顾1-4-1-1幂函数形如y=x a <a 为常数〕的函数,称为幂函数.性质:〔1〕所有的图形都通过〔1,1〕这点.<a ≠0>〔2〕当a 大于0时,幂函数为单调递增的,而a 小于0时,幂函数为单调递减函数.〔3〕当a 大于1时,幂函数图形下凸;当a 小于1大于0时,幂函数图形上凸.〔4〕当a 小于0时,a 越小,图形倾斜程度越大.〔5〕显然幂函数无界限.〔6〕a=0,该函数为偶函数{x|x≠0}.1-4-1-1反比例函数幂函数中,a=-1时,为双曲线.画图,研究渐进线.重温习本章1-1-1中的第二题.1-4-1-2指数函数定义与性质指数函数的一般形式为y=a x<a>0,a≠1>性质:〔2〕指数函数的值域为大于0的实数集合.〔3〕函数图形都是下凹的.〔4〕a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.〔5〕函数总是在某一个方向上无限趋向于X轴,永不相交.〔6〕函数总是通过〔0,1〕点〔8〕显然指数函数无界.〔9〕指数函数既不是奇函数也不是偶函数.〔10〕当两个指数函数中的a互为倒数时,两个函数关于y 轴对称,但这两个函数都不具有奇偶性.1-4-1-3指数函数的应用比较大小1、同幂不同底以y轴为分界线分情况讨论2、同底不同幂方法1、比〔差〕商法2、函数单调性应用法3、中值法第五节 对数函数1-5-1对数定义与性质定义:一般地,如果a 〔a 大于0,且a 不等于1〕的b 次幂等于N,那么数b 叫做以a 为底N 的对数,记作b N log a =,其中a 叫做对数的底数,N 叫做真数.底数a 则要大于0且不为1对数的运算性质当a>0且a ≠1时,M>0,N>0,那么:〔1〕N log M log MN log a a a +=〔2〕N log M log NM log a a a -= 〔3〕M nlog M log a n a =〔n ∈R 〕〔4〕换底公式:alog M log M M log b b a =<b>0且b ≠1〕 〔5〕a b b alog 1log = 〔6〕M a M a =log〔7〕N Na a log 1log -=〔8〕M rM a a r log 1log = 〔9〕M rs M a s a r log log = 对数与指数之间的关系 当a>0且a ≠1时,N log x N a a x =→=对数函数的常用简略表达方式:〔1〕常用对数:b log lgb 10=〔2〕自然对数:b log lnbe = e=2.718281828... 通常情况下只取e=2.71828 对数函数的定义.1-5-2对数函数定义与性质对数函数的一般形式为 y=㏒<a>x,它实际上就是指数函数的反函数<图象关于直线y=x 对称的两函数互为反函数〕,可表示为x=a y .因此指数函数里对于a 的规定〔a>0且a ≠1〕,同样适用于对数函数. 性质定义域:〔0,+∞〕值域:实数集R定点:函数图像恒过定点〔1,0〕.单调性:a>1时,在定义域上为单调增函数,并且上凸; 0<a<1时,在定义域上为单调减函数,并且下凹.奇偶性:非奇非偶函数,或者称没有奇偶性.周期性:不是周期函数零点:x=1例题1.3log 9log 28的值是 〔 〕 A .32 B .1 C .23 D .2 2.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是〔 〕A .z <x <yB .x <y <zC .y <z <xD .z <y <x 3. 已知x 1是方程3lg =⨯x x 的一个根, 2x 是方程310=⨯x x 的一个根, 那么21x x +的值是 < >A. 6B. 3C. 2D. 14. ,0z log log log y log log log x log log log 324243432===则z y x ++的值为 < >A. 50B. 58C. 89D. 1115. 当1a >时, 在同一坐标系中, 函数x a y -=与=y x log a 的图象是图中的 < >6.设5.1344.029.01)21(,8,4-===y y y ,则〔 〕A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 27.在下列图象中,二次函数y =ax 2+bx +c 与函数y =<a b>x 的图象可能是 〔 〕8.已知函数f <x >的定义域是<0,1>,那么f <2x >的定义域是〔 〕A .<0,1>B .<21,1> C .<-∞,0> D .<0,+∞>9.若122-=x a ,则x x xx aa a a --++33等于 〔 〕 A .22-1 B .2-22 C .22+1 D . 2+110.设f <x >满足f <x >=f <4-x >,且当x >2 时f <x >是增函数,则a =f <1.10.9>,b = f <0.91.1>,c =)4(log 21f 的大小关系是〔 〕A .a >b >cB .b >a >cC .a >c >bD .c >b >a11. 若函数)x (f 与=)x (g x ) 21 (的图象关于直线x y =对称, 则)x 4(f 2-的单调递增区间是< >A. ]2 ,2(-B. ) ,0[∞+C. )2 ,0[D. ]0 ,(-∞二. 填空题12. 已知522x x =+-, 则=+-x x 88.13. 若函数=y 2x log 2+的反函数定义域为),3(∞+ , 则此函数的定义域为.14. 已知=y )ax 3(log a -在]2 ,0[上是x 的减函数, 则a 的取值X 围是.15.函数=)x (f )1a ,0a (a x ≠>在]2 ,1[上的最大值比最小值大2a , 则a 的值为.16. 已知函数12x )x (f -=的反函数为)x (f 1-, )1x 3(log )x (g 4+=.<1> 若≤-)x (f 1)x (g ,求x 的取值X 围D;<2> 设函数)x (f 21)x (g )x (H 1--=,当∈x D 时, 求函数)x (H 的值域.17. 已知常数1a >, 变数x 、y 有关系3y log x log a log 3x a x =-+.<1>若t a x =)0t ( ≠, 试以a 、t 表示y ;<2>若t 在) ,1[∞+内变化时, y 有最小值8, 求此时a 和x 的值各为多少?18. 已知函数=)x (f ,329x x ⋅-判断f <x>是否有反函数? 若有, 求出反函数; 若没有, 怎么改变定义域后就有反函数了?19.设0≤x ≤2,求函数y =1224221++⋅--a a xx 的最大值和最小值. 第六节 函数与方程1-6-1理论思想1、函数与方程的思想方法是高中数学思想方法的主线,函数思想是指在解决某些问题时,用联系和变化的观点提出数学对象,抽象出变量间的函数系,再利用函数的有关性质,使问题得以解决.2、方程思想是指将研究的变量设为未知数,根据题意布列方程,通过对方程的研究,使问题得以解决.方程与函数是两个不同的概念,但它们有着密切的联系.对于同一个问题,可以用不同的观点去分析,从而引出不同的方法.3、重要关系A 、方程()()f x g x =的解是两函数()y f x =和y=g(x)图象交点的横坐标;B 、不等式()()x g x f 的解集是函数()y f x =的图象在函数y=g(x)的图象上方的取值集合;C 、不等式()()()f x g x ><的解集的区间端点值要么是函数()y f x =和y=g(x)的公共定义域的区间端点值,要么是相应方程()()f x g x =的解.5. 数形结合是重要的数学思想方法,借助函数的图象,再结合分析、推理来解决与函数有关的问题.6. 函数的思想方法贯穿于高中数学理论和应用的各个侧面,解题时,一般据题意先建立目标函数,而后通过对函数性质的研究加以解决. 7. 解复杂的方程或不等式时,注意换元化归,分类讨论.例题解析函数问题方程化1、已知函数18log )(223+++=x n x mx x f 的定义域为R,值域为[0,2],##数m 、n .设08)(8)1(,91,1822222=-+--++=+≤≤+++=n t x x m t n x mx x t t x nx mx t 得又由则方程问题函数化1、方程lgx+x=3的解所在区间为. 〔〕A .<0,1>B .<1,2>C .<2,3>D .<3,+∞> 2.如果关于的方程有一个根小于-1,另一个根大于1,##数的取值X 围.方程的实根即是的图象与轴交点的横坐标.原方程有一个根小于-1,另一个根大于1的充要条件是函数y=f<x>的图象与轴有两个交点分别在区间<-∞,-1>与〔1,+∞〕上.由于y=f<x>的图象是开口向上的抛物线,因此以上条件等价于即解得3、若关于x的方程lg〔x2+20x〕-lg〔8x-6a-3〕=0有惟一的实根,##数a的取值X围.原方程等价于x2+20x>0,x2+20x=8x-6a-3,即:x<-20或x>0,①x2+12x+6a+3=0. ②令f〔x〕=x2+12x+6a+3.〔1〕若抛物线y=f〔x〕与x轴相切,有Δ=144-4〔6a+3〕=0,即a=〔11/2〕.将a=〔11/2〕代入②,得x=-6,不满足①.∴a≠〔11/2〕.〔2〕若抛物线y=f〔x〕与x轴相交〔如图2-12〕,注意到其对称轴为x=-6,故交点的横坐标有且仅有一个满足①的充要条件为图2-12f〔-20〕≥0,解得-〔163/6〕≤a<-〔1/2〕.f〔0〕<0,∴当-〔163/6〕≤a<-〔1/2〕时,原方程有惟一解.数型结合思想上面方程可以等价于x2+20x=8x-6a-3〔x<-20或x>0〕. ③问题转化为:##数a的取值X围,使直线y=8x-6a-3与抛物线y=x2+20x〔x<-20或x>0〕有且仅有一个公共点.虽然这两个函数的图象都很明确,但在什么情况下它们有且仅有一个公共点,却并不明显.如果把方程③稍作变形,如x2+12x+3=-6a〔x<-20或x>0〕.再在同一直角坐标系中分别作出抛物线y=x2+12x+3〔x<-20或x>0〕和直线y=-6a,如图2-13所示.当且仅当3<-6a≤163,即-〔163/6〕≤a<-〔1/2〕时,直线与抛物线仅有一个公共点.∴当-〔163/6〕≤a<-〔1/2〕时,原方程有惟一的实根.第七节函数与不等式1-7-1理论思想1、不等式的性质与均值定理等重要不等式,是求解函数定义域、值域、判断函数单调性以与求解函数最值问题的有力工具2、利用函数的单调性,是求解比较大小问题或进行某些不等式证明的重要途径3、函数的思想、数形结合的思想、分类讨论的思想以与函数、方程、不等式之间的相互转化,是灵活处理函数与不等式问题的基本的思想和方法.例题解析1、解关于x的不等式分析一:这是解无理不等式,一般思路是化无理不等式为有理不等式解一:原不等式1. 当a>0时:I>II>∴a>0时原不等式的解集为[-a,0]2. a<0时I>II>∴a<0时,原不等式的解集为3.a=0时,原不等式化为此时解集为分析二:用数形结合解不等式解二:在同一直角坐标系XOY中作曲线C:,作直线l: y=2x+a由得∴如图〔3〕得a>0时,原不等式的解集为[-a,0]如图〔4〕得,a<0时,原不等式的解集为当a=0时,解法同解法一〔略〕例3.若对于任意实数x,不等式恒成立,求a的取值X围.分析一:系数较繁,但有联系,先换元,化简不等式.令t=,则原不等式化为:<3+t>x2-2tx+2t>0 令f<x>=<3+t>x2-2tx+2t考察二次函数f<x>的图象知:得t>0∴>0 得0<a<1,即a的取值X围为0<a<1.凸函数的概念:[定义]如果函数f<x>满足对定义域上任意两个数x1,x2都有<f<x1>+f<x2>>/2>=f<<x1+x2>/2>,那么f<x>为凹函数,或下凸函数.[定义]如果函数f<x>满足对定义域上任意两个数x1,x2都有<f<x1>+f<x2>>/2<=f<<x1+x2>/2>,那么f<x>为凸函数,或上凸函数.同样,如果不等式中等号只有x1=x2时才成立,我们分别称它们为严格的凹凸函数。
函数的基础知识大全(完整)(包括函数在高考中所有考点知识)
函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。
(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)
函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。
函数的知识点归纳总结
函数的知识点归纳总结1. 函数的定义和调用- 函数是一段完成特定任务的代码块,可以重复使用。
- 函数的定义一般包括函数名、参数列表和函数体。
- 调用函数时,需要使用函数名和传入参数的值。
2. 函数的参数- 函数可以接收输入参数,用于在函数内部进行操作。
- 参数可以分为位置参数和关键字参数。
- 可以定义默认参数值,使得参数在调用时变得可选。
3. 函数的返回值- 函数可以返回一个值,用于向调用者传递结果。
- 可以返回多个值,以元组的形式返回。
4. 函数的作用域- 函数内部的变量和函数外部的变量是独立的。
- 函数可以访问外部变量,但是不能修改其值,除非使用`global`关键字。
5. 匿名函数- 匿名函数是一种简单的函数,不需要使用`def`关键字来定义。
- 使用`lambda`关键字来创建匿名函数。
6. 递归函数- 递归函数是一种调用自身的函数。
- 递归函数可以解决一些数学和计算问题。
7. 高阶函数- 高阶函数可以接收函数作为参数或者返回一个函数。
- 可以用于实现函数式编程的一些特性,比如map、filter和reduce。
8. 内置函数- 编程语言提供了一些内置函数,用于完成一些常见的操作。
- 例如,Python中的`print`、`len`、`range`等函数。
9. 函数的重载- 有些编程语言支持函数的重载,允许定义多个同名函数。
- 函数的重载可以根据参数的类型和个数来决定调用哪个函数。
10. 闭包- 闭包是一个函数和其环境变量的组合。
- 闭包可以保存函数的状态,使得函数可以记住之前的操作。
11. 装饰器- 装饰器是一种特殊的函数,用于修改其他函数的行为。
- 可以用于添加日志、认证、性能测试等功能。
12. 函数式编程- 函数式编程是一种编程范式,将计算视为数学函数的求值。
- 函数式编程强调函数的纯度和不可变性。
13. 函数的异常处理- 函数中可能会发生异常,需要使用异常处理机制来应对。
- 可以使用`try`、`except`、`finally`关键字来处理异常。
常见函数(附思维导图)
2.2常见函数一、一次函数和常函数:思维导图:(一) 、一次函数 (二)、常函数 定义域:(- ∞,+ ∞) 定义域: (- ∞,+ ∞) 值 域:(- ∞,+ ∞) 正 k=0 反 值 域:{ b }解析式:y = kx + b ( k≠ 0 ) 解析式:y = b ( b 为常数)图 像:一条与x 轴、y 轴相交的直线 图 像:一条与x 轴平行或重合的直线b x x o x b=0b<0b=0 b>0b<0K > 0 k < 0单调性: k > 0 ,在(- ∞,+ ∞)↑ 单调性:在(- ∞,+ ∞)上不单调k < 0 ,在(- ∞,+ ∞)↓奇偶性:奇函数⇔=0b 奇偶性: 偶函数 非奇非偶⇔≠0b周期性: 非周期函数 周期性:周期函数,周期为任意非零实数反函数:在(- ∞,+ ∞)上有反函数 反函数:在(- ∞,+ ∞)上没有反函数反函数仍是一次函数例题:-- 二、二次函数1、定义域:(- ∞,+ ∞)2、值 域: ),44[,02+∞-∈>ab ac y a]44,(,02ab ac y a --∞∈<3、解析式:)0(2≠++=a c bx ax y 4、图 像:一条开口向上或向下的抛物线开口向下,开口向上;正负:增大,开口缩小绝对值:随着,00<>a a a a正半轴相交与负半轴相交与y c y c c,0,0><对称轴:ab x 2-=对称轴: ;)44,2(2ab ac ab --顶点: 轴交点个数图像与x ac b →-=∆42:与x 轴交点的个数。
两个交点,0>∆一个交点,0=∆无交点,0<∆5、单调性:↑+∞-↓--∞>),2[]2,(,0ab ab a↓+∞-↑--∞<),2[]2,(,0ab ab a6、奇偶性:偶函数⇔=0b 7、周期性:非周期函数8、反函数:在(- ∞,+ ∞)上无反函数,上及其子集上有反函数或在),2[]2,(+∞---∞ab ab例题:三、反比例函数和重要的分式函数(一)、反比例函数 (二)、分式函数bax dcx y ++= 定义域:(- ∞,0)∪(0,+ ∞) 定义域:),(),(+∞---∞aba b 值 域:(- ∞,0)∪(0,+ ∞) 值 域: ),(),(+∞-∞a c a c解析式:)0()(≠=k xk x f 解析式:)(a bx b ax d cx y -≠++=图 像:以x 轴、y 轴为渐进线的双曲线 图 像:以abx -=和a c y =为渐近线的双曲线y y0 x 0 xk > 0 k < 0单调性: k>0,(- ∞,0)↓,(0,+ ∞)↓ 单调性:在),(a b --∞和),(+∞-ab上 k<0,(- ∞,0)↑,(0,+ ∞)↑ 单调性相同 奇偶性:奇函数 奇偶性:非奇非偶 对称性:关于原点对称 对称性:关于点),(aca b -成中心对称周期性:非周期函数 周期性:非周期函数 反函数:在定义域上有反函数, 反函数:在定义域有反函数,反函数是其本身。
函数总结大全(很强很好很全)
一次函数一、定义与定义式:自变量X和因变量y有如下关系:y=kx+b则此时称y是X的一次函数。
特别地,当b=0时,y是X的正比例函数。
即:y=kx ( k为常数,k ≠ 0)二、一次函数的性质:1. y的变化值与对应的X的变化值成正比例,比值为k即:y=kx+b ( k为任意不为零的实数b取任何实数)2•当X=O时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像一一一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与X 轴和y轴的交点)2 .性质:(1)在一次函数上的任意一点P(X, y),都满足等式:y=kx+b。
( 2)一次函数与y轴交点的坐标总是(0,b),与X轴总是交于(-b∕k,0)正比例函数的图像总是过原点。
3. k,b与函数图像所在象限:当k> 0时,直线必通过一、三象限,y随X的增大而增大;当k V 0时,直线必通过二、四象限,y随X的增大而减小。
当b >0时,直线必通过一、二象限;当b=0时,直线通过原点当b V0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点0(0, 0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k v0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A (x1 , y1) ; B (x2, y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(X, y),都满足等式y=kx+b。
所以可以列出2个方程:y仁kx1+b ①••和口y2=kx2+b •…②(3)解这个二元一次方程,得到k, b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1. 当时间t 一定,距离S是速度V的一次函数。
函数公式总结
函数公式总结
函数是一种数学工具,用于描述输入值(自变量)和输出值(因变量)之间的关系。
以下是一些常见的函数公式:
1. 线性函数:f(x) = ax + b,其中a和b是常数,描述了一条直线。
2. 二次函数:f(x) = ax^2 + bx + c,其中a、b和c是常数,描述
了一个开口向上或向下的抛物线。
3.指数函数:f(x)=a^x,其中a是常数,描述了一个在x轴正半轴上
逐渐上升的曲线。
当a>1时,曲线呈增长趋势;当0<a<1时,曲线呈递减
趋势。
4. 对数函数:f(x) = loga(x),其中a是底数,描述了一个在x轴
正半轴上先逐渐增长然后缓慢增长的曲线。
5.三角函数:包括正弦函数、余弦函数和正切函数等,描述了周期性
变化的曲线。
6.分段函数:可以采用不同的公式描述不同区间内的函数值,例如:
f(x)={x^2,x<0;x,x>=0}描述了一个折线,当x<0时,函数值为x的平方;当x>=0时,函数值为x。
这只是部分函数公式,实际上函数有很多不同的类型和形式。
关于函数数学知识点归纳
关于函数数学知识点归纳函数是数学中一个重要的概念,它描述了一种输入和输出之间的关系。
在数学中,函数有许多重要的性质和应用。
下面我将对函数的定义、性质和应用进行归纳总结。
一、函数的定义和表示方式函数是一个映射关系,将一个集合中的每个元素(称为自变量)映射到另一个集合中的唯一元素(称为函数值或因变量)。
函数的定义可以用不同的表示方式来表达,包括:-函数的关系式表示,例如f(x)=2x+1-函数的表格表示,将自变量和函数值以表格形式列出。
-函数的图像表示,将函数的自变量和函数值在坐标系中用点进行表示。
二、函数的分类函数可以按照其定义域和值域的性质进行分类,包括:-实函数:定义域和值域都是实数集。
-复函数:定义域和值域都是复数集。
-元函数或映射:定义域和值域是两个不同的数集。
三、函数的性质函数具有以下重要的性质:1.定义域:函数定义的范围,是自变量可以取值的集合。
2.值域:函数值可以取的范围,是函数映射到的集合。
3.单调性:函数在定义域内是单调递增或单调递减的。
4.奇偶性:函数关于原点对称或关于y轴对称。
5.周期性:函数具有一些周期,即f(x+T)=f(x)。
6.对称轴:函数的图像在条直线上对称。
7.最大值和最小值:函数在定义域上的最大值和最小值。
8.极值:函数在一些特定点上的最大值或最小值。
四、函数的运算函数可以进行一些运算,包括:-函数的加法(f(x)+g(x))和减法(f(x)-g(x))。
- 函数的数乘(af(x))。
-函数的乘法(f(x)*g(x))和除法(f(x)/g(x))。
-函数的复合(f(g(x))。
五、基本的数学函数数学中有一些基本的函数,它们经常在各种数学问题中出现,包括:1. 线性函数:f(x) = ax + b,其中a和b为常数。
2.幂函数:f(x)=x^n,其中n为整数。
3.指数函数:f(x)=a^x,其中a为常数。
4. 对数函数:f(x) = log_a(x),其中a为常数。
常见函数知识点总结
常见函数知识点总结函数是数学中的一个重要概念,它在数学和科学中有着广泛的应用。
在学习函数的过程中,有一些常见的知识点是需要掌握的,包括函数的定义、函数的性质、函数的图像、函数的分类、函数的运算、函数的应用等。
本文将对这些常见的函数知识点进行总结,希望能够帮助读者更好地理解和掌握函数的相关知识。
一、函数的定义函数是一种特殊的关系,它规定了每个自变量对应一个唯一的因变量。
具体来说,如果对于每一个自变量x,都有唯一的因变量y与之对应,那么我们就说y是x的函数,记作y=f(x)。
其中,x称为自变量,y称为因变量,f称为函数。
例如,f(x)=x^2就是一个函数,它表示自变量x的平方值作为因变量。
二、函数的性质1. 定义域和值域:函数的定义域是所有自变量可能取值的集合,值域是所有因变量可能取值的集合。
2. 奇偶性:如果对于任意的x,有f(-x)=-f(x),那么函数f(x)是奇函数;如果对于任意的x,有f(-x)=f(x),那么函数f(x)是偶函数。
3. 单调性:如果对于任意的x1<x2,有f(x1)<f(x2),那么函数f(x)是增函数;如果对于任意的x1<x2,有f(x1)>f(x2),那么函数f(x)是减函数。
4. 周期性:如果存在一个正数T,使得对于任意的x,有f(x+T)=f(x),那么函数f(x)是周期函数。
5. 对称性:如果对于任意的x1和x2,有f(x1)=f(x2),那么函数f(x)是对称函数。
三、函数的图像函数的图像是在坐标系中用曲线或点表示的。
常见的函数图像有直线、抛物线、三角函数曲线、指数函数曲线、对数函数曲线等。
在图像上,我们可以通过函数的性质来判断函数的奇偶性、单调性、周期性、对称性等。
例如,奇函数的图像关于原点对称,偶函数的图像关于y轴对称,增函数的图像是逐渐上升的,周期函数的图像有明显的重复规律等。
四、函数的分类1. 初等函数:包括多项式函数、有理函数、指数函数、对数函数、三角函数、反三角函数、指数对数函数等。
所有关于函数的知识点总结
所有关于函数的知识点总结在数学中,函数通常是指自变量和因变量之间的一种对应关系。
直观上,我们可以将函数理解为一个机器,它接收一个输入,经过某种变换,产生一个输出。
这样的一个变换关系通常可以用一个数学表达式来表示。
函数的定义多种多样,主要有显式定义、隐式定义、参数形式定义、递推式定义等。
在这些定义下,函数可以是分段函数、多元函数、实函数、分数函数、三角函数以及反三角函数等等。
一、函数的基本概念1.1 函数的定义函数是最基本的数学概念之一。
函数是一个特殊的映射关系,它将一个集合中的元素对应到另一个集合中的唯一元素。
在数学上,一般来说,我们记函数为f,它表示从集合A到集合B的一个映射。
函数的定义可以表述为:设A和B为非空集合。
若集合A中的每一个元素a通过某种确定的方法f,都有一个确定的元素b与之对应,那么就说f是从A到B的一个函数,记作f:A→B。
其中,a叫做自变量,b叫做因变量。
我们通常用f(a)来表示b。
这里有一点需要注意,函数的定义域和值域的选择对函数的性质有重要影响,而且通常情况下,函数的定义域和值域并不是任意确定的,而是根据实际应用需要选择的。
由于函数的百变性,在数学上我们还有不少关于这部分的内容需要学习。
1.2 函数的图像函数的图像是研究函数的一个重要工具。
通常来说,我们先确定函数的定义域,然后确定自变量取值的范围,并根据函数的定义,计算出对应的因变量的值。
最终,我们可以得到一系列有序对(x,y),根据这些点我们可以绘制出这个函数的图像。
通常来说,我们绘制的图像是平面直角坐标系中的二维图像,但是有时候我们为了更好的表示函数的性质,会用到三维图形或者等高线图等。
利用函数的图像,我们可以直观的了解函数的性质和规律。
1.3 常见函数函数的定义是非常广泛的,数学中有非常多的函数概念。
其中常见的函数有多项式函数、指数函数、对数函数、三角函数等等。
这些函数都有各自的定义域、值域和图像。
另外,我们还有一些常见的特殊函数,比如阶乘函数、取整函数、绝对值函数等。
函数知识点归纳
函数知识点归纳函数是数学中非常重要的概念,它贯穿了从初中到高中乃至大学的数学学习。
理解函数的相关知识对于解决数学问题和理解数学的本质有着至关重要的作用。
接下来,咱们就来详细归纳一下函数的知识点。
一、函数的定义函数是一种特殊的对应关系。
设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合B 的一个函数。
记作 y = f(x),x∈A。
其中,x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与 x 的值相对应的 y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
需要注意的是,定义域、值域和对应关系是函数的三要素。
当且仅当这三要素完全相同时,两个函数才能被认为是相同的。
二、函数的表示方法函数常见的表示方法有三种:解析法、列表法和图象法。
解析法就是用数学表达式来表示两个变量之间的对应关系,比如常见的一次函数 y = kx + b,二次函数 y = ax²+ bx + c 等。
列表法是通过列出表格来表示两个变量之间的对应关系,通常用于定义域是有限集合的情况。
图象法是用函数图象来表示两个变量之间的对应关系,形象直观,比如画出函数 y = x²的图象,可以清晰地看出函数的性质。
三、函数的性质1、单调性函数的单调性是指函数在定义域的某个区间上,函数值随着自变量的增大而增大(或减小)的性质。
如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
2、奇偶性设函数 f(x)的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 x∈D,且 f(x) = f(x),那么函数 f(x)就叫做奇函数;如果对于定义域 D 内的任意一个 x,都有 x∈D,且 f(x) = f(x),那么函数 f(x)就叫做偶函数。
函数知识点归纳
函数知识点归纳函数是数学中的一个重要概念,它在数学、科学、工程等领域都有着广泛的应用。
下面就来对函数的相关知识点进行归纳。
一、函数的定义函数是一种特殊的对应关系,给定一个非空的数集 A,对 A 中的任意数 x,按照某种确定的对应关系 f,在另一个非空数集 B 中都有唯一确定的数 y 与之对应,就称对应关系 f 是集合 A 上的一个函数,记作 y = f(x),x∈A。
这里需要注意的是,函数中的每个输入值x 都对应唯一的输出值y。
二、函数的表示方法1、解析法用数学式子表示两个变量之间的对应关系,如 y = 2x + 1。
2、列表法列出表格来表示两个变量之间的对应关系。
3、图象法用图象表示两个变量之间的对应关系,如一次函数的图象是一条直线。
三、函数的三要素1、定义域函数自变量的取值范围。
在确定定义域时,需要考虑分式的分母不为零、偶次根式的被开方数非负、对数的真数大于零等限制条件。
2、值域函数值的集合。
值域的确定方法有观察法、配方法、换元法等。
3、对应法则函数的核心,它决定了如何将定义域中的每个元素对应到值域中的元素。
四、常见函数类型1、一次函数形如 y = kx + b(k、b 为常数,k≠0)的函数,其图象是一条直线。
2、二次函数一般式为 y = ax²+ bx + c(a≠0),图象是一条抛物线。
3、反比例函数形如 y = k/x(k 为常数,k≠0),图象是双曲线。
4、指数函数形如 y = a^x(a>0 且a≠1),当 a>1 时,函数单调递增;当 0<a <1 时,函数单调递减。
5、对数函数形如 y =logₐx(a>0 且a≠1),与指数函数互为反函数。
五、函数的单调性1、增函数如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁<x₂时,都有 f(x₁)<f(x₂),那么就说函数 f(x)在区间 D 上是增函数。
2、减函数如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁<x₂时,都有 f(x₁)>f(x₂),那么就说函数 f(x)在区间 D 上是减函数。
最全函数知识点总结高中
最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。
在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。
其中A称为定义域,B称为值域。
1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。
比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。
我们可以看到,函数本质上就是一种输入与输出的关系。
1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。
1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。
1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。
1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。
1.7 函数的分类函数可以分为初等函数和非初等函数。
初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。
非初等函数包括无穷级数、常微分方程等。
1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。
1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。
1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。
对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。
1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。
二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。
函数总结大全(很全)
高一函数知识汇总一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x 轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
很好很强很全(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通一、三象限,y随x的增大而增大;当k<0时,直线必通二、四象限,y随x的增大而减小。
当b>0时,直线必通一、二象限;当b=0时,直线通过原点当b<0时,直线必通三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通一、三象限;当k<0时,直线只通二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中原有水量S。
g=S-ft。
六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|当△0.图象与x轴只有一个交点;当△0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.反比例函数形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。
2.对于双曲线y=k/x ,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。