生物可降解高分子材料——聚乳酸

合集下载

生物降解型塑料-聚乳酸(PLA)

生物降解型塑料-聚乳酸(PLA)

生物降解型塑料-聚乳酸(PLA)清华大学美术学院 贺书俊 学号2012013080摘要: 近年来世界各国都高度重视源于可再生资源的可降解高分子材料的研究开发,聚乳酸因可生物降解、性能优异、应用广泛而深受青睐。

本文主要介绍了聚乳酸的降解机理、作为可降解塑料的应用现状、改进方法以及未来的发展趋势。

1、 聚乳酸简介单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH 与别的分子的-COOH 脱水缩合,-COOH 与别的分子的-OH 脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸。

聚乳酸也称为聚丙交酯,属于聚酯家族。

聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。

聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。

[1]2、 聚乳酸降解机理聚乳酸是典型的“绿色塑料”,因其良好的生物相容性、完全可降解性及生物可吸收性,是生物降解材料领域中最受重视的材料之一,下面就聚乳酸的降解机理进行介绍。

聚乳酸是一种合成的脂肪族聚酯,其降解可分为简单水解(酸碱催化)降解和酶催化水解降解。

从物理角度看,有均相和非均相降解。

非均相降解指降解反应发生在聚合物表面,而均相降解则是降解发生在聚合物内部。

从化学角度看,主要有三种方式降解:①主链降解生成低聚体和单体;②侧链水解生成可溶性主链高分子;③交链点裂解生成可溶性线性高分子。

本体侵蚀机理认为聚乳酸降解的主要方式为本体侵蚀,根本原因是聚乳酸分子链上酯键的水解。

聚乳酸类聚合物的端羧基(由聚合引入及降解产生)对其水解起催化作用,随着降解的进行,端羧基量增加,降解速率加快,从而产生自催化现象。

[2]因乳酸来源于可再生资源,经过聚合、改性、加工成制品,当制品废弃时,能完全被人体吸收或被环境生物所降解成二氧化碳和水,从而造福人类并无污染地回归自然,聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。

聚乳酸材料制备及性能研究

聚乳酸材料制备及性能研究

聚乳酸材料制备及性能研究在人工合成可降解高分子材料中,聚乳酸是近年来最受研究者们关注的一种。

它是一种生物可降解的热塑性脂肪族聚酯,是一种无毒、无刺激性,具有良好生物相容性、强度高、可塑性加工成型的生物降解高分子材料。

合成聚乳酸的原料可以通过发酵玉米等粮食作物获得,因此它的合成是一个低能耗的过程。

废弃的聚乳酸可以自行降解成二氧化碳和水,而且降解产物经光合作用后可再形成淀粉等物质,可以再次成为合成聚乳酸的原料,从而实现碳循环[3]。

因此,聚乳酸是一种完全具备可持续发展特性的高分子材料,在生物可降解高分子材料中占有重要地位。

迄今为止,学者们对聚乳酸的合成、性质、改性等方面进行了深入的研究。

2.1聚乳酸的合成聚乳酸以微生物发酵产物-乳酸为单体进行化学合成的,由于乳酸是手性分子,所以有两种立体结构。

聚乳酸的合成方法有两种;一种是通过乳酸直接缩合;另一种是先将乳酸单体脱水环化合成丙交酯,然后丙交酯开环聚合得到聚乳酸[4]。

2.1.1直接缩合[4]直接合成法采用高效脱水剂和催化剂使乳酸低聚物分子间脱水缩合成聚乳酸,是直接合成过程,但是缩聚反应是可逆反应,很难保证反应正向进行,因此不易得到高分子量的聚乳酸。

但是工艺简单,与开环聚合物相比具有成本优势。

因此目前仍然有大量围绕直接合成法生产工艺的研究工作,而研究重点集中在高效催化剂的开发和催化工艺的优化上。

目前通过直接聚合法已经可以制备具有较高分子量的聚乳酸,但与开环聚合相比,得到的聚乳酸分子量仍然偏低,而且分子量和分子量分布控制较难。

2.1.2丙交酯开环缩合[4]丙交酯的开环聚合是迄今为止研究较多的一种聚乳酸合成方法。

这种聚合方法很容易实现,并且制得的聚乳酸分子量很大。

根据其所用的催化剂不同,有阳离子开环聚合、阴离子开环聚合和配位聚合三种形式。

(1)阳离子开环聚合只有在少数极强或是碳鎓离子供体时才能够引发,并且阳离子开环聚合多为本体聚合体系,反应温度高,引发剂用量大,因此这种聚合方法吸引力不高;(2)阴离子开环聚合的引发剂主要为碱金属化合物。

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。

本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。

关键词:聚乳酸;生物降解;合成;应用随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。

处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。

而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。

聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。

此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。

它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。

利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。

1 生物降解机理[3,4]生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。

高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。

微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。

材料的结构是决定其是否可生物降解的根本因素。

合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。

聚乳酸(PLA)生物可降解材料资料

聚乳酸(PLA)生物可降解材料资料
聚乳酸制品废弃在土壤或水中,47天 内会在微生物、水、酸和碱的作用下彻 底分解成CO2和H2O,成为植物光合作用 的原料,不会对环境产生污染,因而是 一种完全自然循环型的可生物降解材料 。
6
DDaayy234120346837791
聚乳酸降解概述
❖ 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、 PLLA、PDLLA(消旋) 。
聚乳酸降解因素
(4)立构规整性的影响:
在碱性条件下, 降解速率为PDLA (PLLA)<P (LDL)A<PDLLA PDLLA 由于甲基处于间同立构或无规立构状态, 对水的吸收
速度较快, 因此降解较快; 而对PLLA及PDLA来说水解分为2个阶 段:第一阶段,水分子扩散进入无定型区,然后发生水解;第二阶段 是晶区的水解,相对来说较为缓慢。 (5)酶
LOGO
聚乳酸生物可降解材料
目录
1 2 3 4 5 6
2
2021/4/21
1 生物可降解材料概况
2021/4/21
生物降解材料是20世纪80年代后随着环境、能源等矛盾的凸 显而发展起来的新型材料,作为一种可自然降解的材料,在环 保方面起到了独特的作用,其研究和开发已得到迅速发展,作 为解决“白色污染”最为有效的途径,已引起环境专家、材料 学家及更多领域人士的关注。
聚乳酸的端羧基(由聚合引入及降解产生)对其水解起催化作用, 随着降解的进行, 端羧基量增加, 降解速率加快, 从而产生自 催化现象 。
内部降解快于表面降解, 这归因于具端羧基的降解产物滞留于 样品内,产生自加速效应 。
9
PLA的体内降解
❖ 随着降解进行,材料内部会有越来越多的羧基加速内部材 料的降解,进一步增大内外差异。当内部材料完全转变成 可溶性齐聚物并溶解在水性介质中时,就会形成表面由没 有完全降解的高聚物组成的中空结构。进一步降解才使低 聚物水解为小分子,最后溶解在水性介质中。整个溶蚀过 程是由不溶于水的固体变成水溶性物质。

聚乳酸材料介绍

聚乳酸材料介绍

聚乳酸材料介绍聚乳酸是一种生物可降解的高分子材料,其化学名称为聚乳酸酯(PLA),是由乳酸分子经过聚合反应而成。

它具有优异的物理、化学和机械性能,同时还具有良好的生物相容性和可降解性,被广泛应用于医疗、食品包装、纺织等领域。

聚乳酸材料的物理性质聚乳酸是一种无色透明的高分子材料,在常温下为固体。

它的密度约为1.25 g/cm³,熔点在165-175℃之间。

聚乳酸具有良好的耐热性和耐候性,在高温下也不易变形或变色。

此外,它还具有一定的透光性和柔软性。

聚乳酸材料的化学性质聚乳酸是一种相对稳定的高分子材料,在常规条件下不会发生明显的化学反应。

但在强碱或强酸环境下,聚乳酸会发生水解反应,并最终分解成二氧化碳和水。

这使得它成为一种非常环保的材料,可以有效地减少对环境的污染。

聚乳酸材料的机械性能聚乳酸具有较高的强度和硬度,可以用于制造各种机械零件和工业用品。

它还具有良好的抗拉伸性、弯曲性和冲击性能,在一定程度上可以代替一些传统材料。

此外,聚乳酸还具有较好的耐磨性和耐腐蚀性,可用于制造化学容器、医疗器械等。

聚乳酸材料的生物相容性由于聚乳酸是一种天然产物,因此它具有良好的生物相容性。

在人体内分解时,它会被分解成二氧化碳和水,并被人体代谢掉。

这使得聚乳酸成为一种理想的医疗材料,在制造缝合线、支架、修复组织等方面应用广泛。

聚乳酸材料的可降解性聚乳酸是一种生物可降解的高分子材料,在自然界中会被微生物分解成二氧化碳和水。

这使得它成为一种环保的材料,可以有效地减少对环境的污染。

此外,聚乳酸还可以通过物理方法(如加热)或化学方法(如水解)来分解,从而实现回收再利用。

聚乳酸材料的应用由于聚乳酸具有良好的物理、化学和机械性能,以及优异的生物相容性和可降解性,因此被广泛应用于医疗、食品包装、纺织等领域。

在医疗领域中,聚乳酸被广泛用于制造缝合线、支架、修复组织等医疗器械。

它具有良好的生物相容性和可降解性,在人体内不会产生任何不良反应。

聚乳酸的性能、合成方法及应用

聚乳酸的性能、合成方法及应用

聚乳酸的性能、合成方法及应用一、本文概述聚乳酸(Polylactic Acid,简称PLA)是一种由可再生植物资源(例如玉米)提取淀粉原料制成的生物降解材料,具有良好的生物相容性和生物降解性。

随着全球环保意识的日益增强和可持续发展理念的深入人心,聚乳酸作为一种环保型高分子材料,其研究和应用受到了广泛的关注。

本文将全面介绍聚乳酸的性能特点、合成方法以及在实际应用中的广泛用途,旨在为读者提供关于聚乳酸的深入理解,推动其在各个领域的应用和发展。

本文首先将对聚乳酸的基本性能进行概述,包括其物理性能、化学性能以及生物相容性和降解性等方面的特点。

接着,将详细介绍聚乳酸的合成方法,包括开环聚合和缩聚法等,并分析不同合成方法的优缺点。

在此基础上,文章还将深入探讨聚乳酸在各个领域的应用情况,如包装材料、医疗领域、汽车制造、农业等。

文章还将对聚乳酸的未来发展趋势进行展望,以期为读者提供全面的聚乳酸知识,并为其在实际应用中的创新和发展提供参考。

二、聚乳酸的性能聚乳酸(PLA)作为一种生物降解塑料,具有一系列独特的性能,使其在众多领域中具有广泛的应用前景。

聚乳酸具有良好的生物相容性和生物降解性。

由于其来源于可再生生物质,聚乳酸在自然界中能够被微生物分解为二氧化碳和水,不会对环境造成污染。

这使得聚乳酸在医疗、包装、农业等领域具有广阔的应用空间。

聚乳酸具有较高的机械性能。

通过调整合成方法和工艺条件,可以得到具有优异拉伸强度、模量和断裂伸长率的聚乳酸材料。

这些特性使得聚乳酸在制造包装材料、纤维、薄膜等方面具有显著优势。

聚乳酸还具有良好的加工性能。

它可以在熔融状态下进行热塑性加工,如挤出、注塑、吹塑等,从而制成各种形状和尺寸的制品。

同时,聚乳酸的表面光泽度高,易于印刷和染色,为其在装饰、包装等领域的应用提供了便利。

另外,聚乳酸还具有较好的阻隔性能。

它可以有效地阻止氧气、水分和其他气体的渗透,从而保护包装物品免受外界环境的影响。

医药用高分子材料——聚乳酸

医药用高分子材料——聚乳酸

医药用高分子材料——聚乳酸聚乳酸(PAL)也称为聚丙交酯,属于聚酯家族。

它是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。

聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。

聚乳酸作为一种新型的高分子聚合材料有良好的生物相容性和生物降解性,是FDA认可的一类生物降解材料,最终降解产物是二氧化碳和水,对人体无毒、无刺激,因此聚乳酸及其共聚物已经成为生物医用材料中最受重视的材料之一。

20世纪50年代,由丙交酯(LA)开环聚合制得了高分子量的聚乳酸,但由于这类脂肪族聚酯对热和水比较敏感,长时间未引起人们的足够重视。

直到20世纪60年代,科学工作者重新研究PAL对水敏感这一特征时,发现聚乳酸适合作为可降解手术缝合线材料。

1966年,Kulkami等提出低分子量的PAL能够在体内降解,最终的代谢产物是CO2和H2O,中间产物乳酸也是体内正常代谢的产物,不会在体内积累,因此PAL在生物体内降解后不会对生物产生不良影响。

随后报道了高分子量的PAL也能在人体内降解,由此引发了以这类材料作为生物医用材料的开端。

1 聚乳酸及其共聚物在缓释药物中的作用缓释、控释制剂又称为缓释控释给药系统(sustained and controlled release drug delivery system),不需要频繁给药,能够在较长时间内维持体内有效的药物浓度,从而可以大大提高药效和降低毒副作用[4]。

聚乳酸及其共聚物被用作一些半衰期短、稳定性差、易降解及毒副作用大的药物控释制剂的载体,有效的拓宽了给药的途径,减少了给药的次数和给药量,提高了药物的生物利用度,最大限度的减少药物对全身特别是肝、肾的毒副作用。

高相对分子量聚乳酸用作缓释药物制剂的载体可分为两种:一是使用聚乳酸制作药物胶囊,可有效抑制吞噬细菌的作用,让药物定量持续释放以保持血药相当平稳;另一种是作为-囊膜材料用于药物酶制剂、生物制品微粒及微球的微型包覆膜,更有效控制药物剂量的平稳释放。

聚乳酸热稳定剂

聚乳酸热稳定剂

聚乳酸热稳定剂简介聚乳酸是一种生物可降解的高分子材料,具有广泛的应用前景。

然而,聚乳酸在高温条件下容易发生热降解,导致性能下降。

为了克服这一问题,研究人员开发了聚乳酸热稳定剂。

本文将对聚乳酸热稳定剂的概念、分类、作用机制以及应用前景进行详细介绍。

概念聚乳酸热稳定剂是指能够提高聚乳酸在高温条件下热稳定性的化合物。

它们通过吸收或转移热量、抑制自由基反应、阻断链传递等方式来延缓或阻止聚乳酸的热降解过程。

分类根据其作用机理和化学结构,聚乳酸热稳定剂可以分为以下几类:1.红外吸收型:这类稳定剂通过吸收红外辐射来转化为内部能量,并将其散发出去,从而减少了聚乳酸的温升。

常见的红外吸收型稳定剂有碳黑、金属氧化物等。

2.自由基捕捉型:这类稳定剂能够与聚乳酸降解产生的自由基发生反应,从而抑制或延缓聚乳酸的热降解过程。

常见的自由基捕捉型稳定剂有羟基磷酸酯、双酚A等。

3.阻断链传递型:这类稳定剂能够阻断聚乳酸链的传递,从而减少聚乳酸分子中活性端基的生成,延缓热降解过程。

常见的阻断链传递型稳定剂有二苯胺类化合物、硫代羟基化合物等。

作用机制聚乳酸热稳定剂通过不同的作用机制来提高聚乳酸的热稳定性。

1.红外吸收型稳定剂通过吸收红外辐射转化为内部能量,并将其散发出去,从而减少了聚乳酸分子中活性端基的生成和反应速度,延缓了热降解过程。

2.自由基捕捉型稳定剂能够与聚乳酸降解产生的自由基发生反应,从而抑制或延缓聚乳酸的热降解过程。

3.阻断链传递型稳定剂通过与聚乳酸链中的活性端基发生反应,阻断了链的传递过程,减少了聚乳酸分子中活性端基的生成和反应速度,从而延缓了热降解过程。

应用前景聚乳酸热稳定剂在聚乳酸材料的制备和应用中具有重要意义。

它们可以提高聚乳酸材料在高温条件下的热稳定性,延长其使用寿命,并且不会对材料的可降解性能造成明显影响。

因此,聚乳酸热稳定剂在医疗、包装、纤维等领域有着广泛的应用前景。

在医疗领域,使用聚乳酸制备的可降解支架、缝线等器械需要具有良好的耐温性能才能满足临床需求。

聚乳酸生物降解的研究进展

聚乳酸生物降解的研究进展

聚乳酸生物降解的研究进展一、本文概述随着全球环境问题的日益严峻,特别是塑料废弃物对环境的污染问题,生物降解材料的研究与应用越来越受到人们的关注。

聚乳酸(PLA)作为一种重要的生物降解材料,因其良好的生物相容性、可加工性和环保性,在包装、医疗、农业等领域具有广泛的应用前景。

本文旨在综述聚乳酸生物降解的研究进展,包括其生物降解机制、影响因素、改性方法以及应用现状,以期为聚乳酸的进一步研究和应用提供参考。

本文首先介绍了聚乳酸的基本性质,包括其分子结构、合成方法以及主要性能。

接着,重点分析了聚乳酸的生物降解机制,包括酶解、微生物降解和动物体降解等过程,并探讨了影响聚乳酸生物降解的主要因素,如结晶度、分子量、添加剂等。

在此基础上,本文综述了聚乳酸的改性方法,包括共聚、共混、填充和表面改性等,以提高其生物降解性能和机械性能。

本文总结了聚乳酸在包装、医疗、农业等领域的应用现状,并展望了其未来的发展趋势。

通过本文的综述,旨在为聚乳酸生物降解的研究与应用提供有益的参考,同时为推动生物降解材料的发展贡献一份力量。

二、聚乳酸的生物降解机理聚乳酸(PLA)的生物降解主要依赖于微生物的作用,这些微生物包括细菌和真菌,它们能够分泌特定的酶来降解PLA。

生物降解过程通常包括两个主要步骤:首先是微生物对PLA表面的附着和酶的产生,然后是酶对PLA的催化水解。

在降解过程中,微生物首先通过其细胞壁上的特定受体识别并附着在PLA表面。

随后,微生物开始分泌能够降解PLA的酶,这些酶主要包括聚乳酸解聚酶和酯酶。

聚乳酸解聚酶能够直接作用于PLA的酯键,将其水解为乳酸单体;而酯酶则能够水解PLA链末端的乳酸单体。

水解产生的乳酸单体可以被微生物进一步利用,通过三羧酸循环等途径转化为二氧化碳和水,或者用于微生物自身的生长和代谢。

这个过程中,微生物扮演了关键的角色,它们不仅能够降解PLA,还能够将降解产生的乳酸完全矿化为无害的物质。

值得注意的是,PLA的生物降解速率受到多种因素的影响,包括PLA的分子量、结晶度、形态、微生物的种类和活性、环境温度和湿度等。

先进高分子材料——聚乳酸

先进高分子材料——聚乳酸
现在市场上的PLA纤维及其原 料大部分来源于日本,美国 和德国
L/O/G/O
发展历史
Pelouze 首先发现了聚酸线性二聚体——乳酰乳酸的形成; Nef证实乳酸在低压和高温下发生脱水反应可形成3-7聚合度的低聚物
Carothers等提出使用乳酸二聚物聚合的二步法,合成高分子量的PLA
20世纪60年代后期,研究者开始研究PLA及其共聚物在生物医学方面的 运用,如手术缝合线
Ee Santis等分析了等规的PLLA(聚L-乳酸)和它们的共聚物在制药学 上的运用,如作为药物释放系统的基材等
1986,Battelle公司和杜邦公司各自开始了把PLA作为日用塑料应用的 生产和加工技术的研究
2005年1月,目前世界上最大的PLA生产公司Natureworks LLC,拥有 11-12种不同等级的PLA,适用于吹膜、双轴取向膜、热膜、注塑成型、 瓶子及纤维等不同用途
抗菌性
聚乳酸是唯一具有优良抑菌及抗霉特性的生 物可降解塑料。 一般的生物降解性塑料,细菌和霉菌等微生 物处于容易附生的倾向。 聚乳酸中含有极微量的乳酸或低聚物,这些 物质在材料表面浸出一部分,将材料表面与人 的肌肤同样保持弱碱性,防止了细菌和霉菌等 微生物的附着和繁殖。
安全性:
聚乳酸是由脂肪族聚酯构成的疏水性结晶性聚 合物,只要不在高温· 高湿环境下长时间放置,就 几乎不产生加水分解。作为发酵食品容器也有在 一定时间能够安全使用的质地。 焚化聚乳酸的燃烧热值是焚化传统塑料(如聚 乙烯)的一半,而且焚化聚乳酸绝对不会释放出 氮化物、硫化物等有毒气体。
由于聚乳酸复合材料的生物降解性 和利于回收,不对环境产生压力,可广 泛的用于生产一次性餐饮用具。例如 :塑料容器,杯子、盘子、食品容器(盒 )、液体容器(瓶、桶)、饮料用瓶、餐 具(刀、勺叉)、快餐盒、方便面碗、 开水冲泡餐具、电子微波炉加热餐具 等。也可用于休闲用品,如钓鱼、野 外旅行用具等。故其市场前景非常广 阔。

生物可降解聚乳酸的改性及其应用研究进展

生物可降解聚乳酸的改性及其应用研究进展

聚物橡胶、对乙烯基苯酚(PVPh) 、聚甲基丙烯酸甲酯(PMMA) 、聚丙烯酸甲
酯(PMA) 、线性低密度聚乙烯(LLDPE) 组成部分生物降解共混体系,这类体系 不能从根本上解决环境污染问题。
16
2.4
复合改性
将聚乳酸与其它材料复合旨在解决聚乳酸的脆性问题,达到增强 的目的,使其能满足于作为骨折内固定材料的用途。目前可以分为
22
把药物包埋于高分子聚合物基质中形成微球或微粒有多种技 术:凝聚法、乳液聚合法及界面聚合法、界面沉积法、乳液— 溶剂蒸发法等。其中乳液—溶剂蒸发法是应用最为普遍的一 种,对于含油性药物微球大都采用OPW乳化溶剂挥发P抽提 法。制备亲水性的多肽、蛋白质、疫苗微球通常采用相分离 法 和W1POPW2 复乳法溶剂挥发法。界面沉积法也可称
酯GA 的共聚物已商品化。
9
2.2.2
聚乳酸与聚乙二醇(PEG) 的嵌段共聚物
聚乙二
醇(PEG) 是最简单的低聚醚大分子,具有优良的生物相容性
和血液相容性、亲水性和柔软性。朱康杰等以辛酸亚锡作为
催化剂的条件下,通过开环聚合合成了PLA2PEG2PLA 的
三嵌段共聚物。这类嵌段共聚物具有亲水的PEG链段和疏水
8
2.2.1
丙交酯与乙交酯共聚
聚乙交酯(PGA) 是最简
单的线型脂肪族聚酯,早在1970 年,PGA 缝合线就已以 “Dexon”商品化,但PGA 亲水性好,降解太快,目前用单体 乳酸或交酯与羟基乙酸或乙交酯共聚得到无定型橡胶状韧性 材料,其中通过调节LLAPGA 的比例可控制材料的降解速 度,作为手术缝合线已得到临床应用,其中L2丙交酯与乙交
为自发乳化P溶剂扩散法,是制备均匀的纳米级微球的一种方
法。

聚乳酸PLA

聚乳酸PLA

聚乳酸(PLA)利用来自于谷物或其它有机物的发酵糖可以生产乳酸,而乳酸可以通过聚合反应得到一种线形脂肪族聚酯--聚乳酸(PLA)。

PLA的降解分为两个阶段,第一阶段是它的酯基团逐步水解成为乳酸和其它小分子,然后这些小分子被环境中的微生物所分解。

PLA经常和淀粉共混以增强其可降解性能并降低成本。

但是这种共混产物太脆了,因此常常还要加入一些增塑剂如甘油和山梨糖醇使其变得柔软一些。

一些生产者也经常使用一些别的可降解聚酯与PLA共混来达到替代增塑剂的目的。

PLA材料具有光洁的表面和高度的透明度,因此可以在某些应用领域同聚苯乙烯和PET竞争。

PLA 已经应用于如水果蔬菜、鸡蛋、熟食和烘烤食品的硬包装。

PLA薄膜正在用于三明治、饼干和鲜花等商品的包装上。

还有将PLA吹塑成瓶子用于包装水、汤、食品和食用油等方面的应用。

一些汽车制造商,最著名的如日本的丰田公司,正在进行将PLA和其它可生物降解塑料应用于未来轿车的研究。

完全生物质高分子材料——聚乳酸〔PLA〕是被世界视作继金属材料、无机材料、高分子材料之后的“第四类最具广泛应用价值和环保应用价值的新型高分子材料”,是国家列入“九五”、“十五”、“863”、“十一五”和《国家中长期科技发展计划》重点科研攻关项目之一。

PLA是一种高分子环保聚酯材料,此材料具有理化性能优良、透明度极高、生物及化学降解性能好且降解时间可控、无毒无味、耐酸碱、防病菌、防紫外线、易加工成型且表面更加光滑及易降解生成对环境无害的二氧化碳和水等诸多优良的性能,而且在透气性、防皱性、高强度、高弹性、耐热性和可生物降解性等方面更是尤为出众,因而它还是生产纤维类纺织品的良好天然材料。

其用途相当广泛,可应用于工业、农业、林业、建筑业、纺织业、食品包装业、日常用品、文化体育、医疗卫生等各个领域。

生物质材料——聚乳酸〔PLA〕必将取代聚乙烯〔PE〕、聚丙烯〔PP〕等化学石油基塑料,可全面有效地解决世界性“白色污染”的难题。

聚乳酸的合成、结构及性能

聚乳酸的合成、结构及性能

聚乳酸的合成、结构及性能摘要聚乳酸是生物可降解的高分子合成材料,由于其降解产物无毒,在生物医学和环保领域都得到了广泛的关注。

本文对聚乳酸的合成方法、结构、性能等进行了系统阐述。

并对聚乳酸进行了展望。

关键词聚乳酸合成方法结构性能引言聚乳酸(PLA)又称为聚丙交酯,是一种新型的、对环境友好且性能优良的高分子材料。

而聚乳酸本身无毒、无刺激性.还具有很好的生物相容性和人体体内可吸收性,它在环境中能被微生物或在酸碱性水溶液介质中被降解为乳酸并最终被完全分解成二氧化碳和水。

对环境不造成任何的污染与危害。

因此,可以广泛地应用于人造骨骼等医用塑料、地膜保温棚等农用塑料,一次性餐盒等食具塑料以及各种塑料制品,也可以加工成纤维、织物并制成服装,市场潜力极大[1]。

1.聚乳酸的晶体结构[2]只要PLA的立体规整度足够高,本体或溶液中的PLA就会结晶。

PLA结晶度、晶体大小和形态均影响制品的性能(如冲击强度、开裂性能、透明性等)。

现已发现PLA有3种晶格结构,即α晶系,β晶系,γ晶系,它们分别具有不同的螺旋构象和单元对称性。

在不同结晶条件或不同外场诱导作用下,可形成不同类型的球晶。

α晶系是最常见也是最稳定的一种晶型,它可以在熔融、冷结晶以及低温溶液纺纱等过程中形成。

Sancta等最先报道α晶系为斜方晶体,晶胞的三条棱的边长a,b,c分别为1.07,0.645,2.78nm,晶轴之间的夹角(α,β,γ)均为90°。

晶胞中PLA分子链的构象为左旋的103 螺旋(每3个乳酸单元上升10×10-10m,下同)。

Marge等的研究显示,PLA的α晶系中a,b,c分别为1.07,0.61,2.89 nm,α,β, γ均为90°。

α晶系的熔融温度为185℃。

β晶系最先由Elgin等提出:β晶系可在高温溶液纺纱过程中形成,它也是一种稳定的晶型。

只有在高温、高拉伸率的情况下,α晶系才能够转变成β晶系。

β晶系a,b,c分别为1.031,1.821,0.900nm,α,β,γ均为90°,是斜方晶体,分子链构象为左旋的31螺旋(每个乳酸单元上升3×10-10m,下同),每个晶格包含6个螺旋。

生物可降解材料聚乳酸的制备及应用

生物可降解材料聚乳酸的制备及应用

生物可降解材料聚乳酸的制备及应用聚乳酸是由微生物发酵所产生乳酸单体聚合而成的高分子聚合物,它的特点是无毒、无刺激气味、可降解、生物相容性良好,所以广泛应用到了医学、食品包装和汽车电子等领域。

聚乳酸在自然界中通过土壤、水或微生物的作用下都能实现无污染的分解,可降解的特性既推动了各个领域的发展,也满足了我国构建绿色环保型社会的要求。

因此,对于聚乳酸的研究规模随之扩大,通过对聚乳酸合成、改性以及应用,促进聚乳酸的价值发挥,进而为社会进步奠定坚实基础。

1 聚乳酸具备的生物性质1.1 生物可降解性乳酸主要由植物发酵而来,主要成分包括玉米、小麦等可再生资源,所以聚乳酸有着良好的可降解性质。

废弃的聚乳酸产物在土壤中微生物或水的作用下会完全分解成水和二氧化碳,对空气和土壤都没有任何污染,同时还有利于促进植物的光合作用。

1.2 生物相容性据相关研究显示,聚乳酸可以在人体中实现完全无害的分解,分解后的主要产物即是二氧化碳和水,并且在人体新陈代谢的过程中即可完成分解,所以其生物相容性良好。

在不断实践应用的过程中,证实了聚乳酸和人体的相容性,如将其作为植入人体的生物材料,后续没有任何的不良反应发生,逐渐取代了金属材料的地位。

1.3 优越的物理性质聚乳酸优越的物理性质主要体现在柔韧性良好、透明度充足、机械强度足够和良好的热稳定性,这些物理性质无疑满足了各行各业的具体要求,相较于不可降解材料和其他可讲解材料的优势都较为明显。

1.4 可加工性聚乳酸本身的可加工性良好,实际加工起来只需要充分结合其热塑性即可,能够以各种不同的方式进行热塑成型,满足了各种形态的要求,赋予了其良好的加工性能。

2 聚乳酸的合成制备方式2.1 间接聚合制备间接聚合法指的是开环聚合。

首先,将乳酸作为原材料,并通过缩聚和解聚的方式得到环形丙交酯。

其次,将丙交酯进行开环聚合从而得到聚乳酸。

开环聚合的方式主要通过对反应时间、反应温度和选择不同催化剂种类来实现对聚乳酸分子量合成的过程,这一方法的优势在于反应原理简单、反应过程可控,缺点是聚乳酸的后续提纯过程较为复杂且需要的成本偏高。

PLA聚乳酸发泡片材生产工艺技术研究

PLA聚乳酸发泡片材生产工艺技术研究

PLA聚乳酸发泡片材生产工艺技术研究聚乳酸(Polylactic acid,PLA)是一种生物可降解高分子材料,具有良好的生物相容性和可降解性能,在医疗、包装、农业等领域有广泛的应用前景。

聚乳酸发泡片材是一种轻质保温材料,具有保温隔热、阻燃、节能环保等优点,被广泛应用于建筑、交通工程等领域。

本文旨在探讨聚乳酸发泡片材的生产工艺技术,为其工业化生产提供技术支持。

聚乳酸发泡片材的生产工艺一般包括原料处理、发泡机生产、品质检测与控制等环节。

下面分别进行详细介绍。

一、原料处理1.聚乳酸的选材:聚乳酸的分子量、熔融流动性以及熔融温度等物性参数对发泡片材的品质影响较大。

因此,合理选择聚乳酸的牌号和生产工艺条件,以满足发泡片材的要求。

2.助剂的添加:在聚乳酸中添加一定比例的助剂可改善材料的熔融流动性、改变材料的热稳定性和综合性能。

常用的助剂有增韧剂、抗氧剂和光稳定剂等。

二、发泡机生产1.设备选择与调试:根据生产规模和需要,选择相应的发泡机设备,并进行设备的调试和优化,确保其正常运行和稳定性。

2.发泡剂的添加:聚乳酸发泡片材的发泡剂一般选择物理发泡剂或化学发泡剂。

物理发泡剂包括空气、氮气、温室气体等,而化学发泡剂则包括氨脂类和无卤素类等。

在添加发泡剂时,需根据实际需要确定加入量和添加方式。

3.模具设计与制作:根据发泡片材的要求,设计模具,并制作成型部件。

模具的形状和结构会直接影响材料的发泡质量和外观。

4.发泡工艺控制:发泡片材的发泡温度、压力和时间等参数需要合理控制,以保证发泡效果的稳定性和一致性。

三、品质检测与控制1.物性测试:对发泡片材的物理性能和化学性能进行测试,包括熔融指数、密度、拉伸强度、碳含量、热稳定性等。

通过测试结果,确定材料的质量标准和控制范围。

2.外观检测:对发泡片材的外观进行检测,包括表面平整度、发泡均匀性和无明显缺陷等。

通过外观检测,判断材料的表面质量,并及时调整工艺参数。

3.可降解性评价:对聚乳酸发泡片材的可降解性能进行评价,包括水分吸收、土壤分解等指标,以确保材料的环境友好性。

聚乳酸

聚乳酸

聚乳酸理化性质聚乳酸特性聚乳酸的优点生产方法挤出级树脂的市场应用注塑级树脂的市场应用口腔固定材料眼科材料聚乳酸PLA在生物医药领域的应用电子电器领域的应用一次性用品的应用聚乳酸CAS号: 31852-84-3英文名称: 1,3-dioxan-2-one英文同义词: polytrimethylene carbonate;1,3-Dioxan-2-one homopolymer 中文名称: 聚乳酸中文同义词: 聚乳酸;聚三亚甲级碳酸酯;1,3-二氧杂环己烷-2-酮均聚物CBNumber: CB51260965分子式: C4H6O3分子量: 0MOL File: 31852-84-3.mol聚乳酸化学性质安全信息聚乳酸性质、用途与生产工艺理化性质聚乳酸又称聚羟基丙酸或聚交酯。

由乳酸单体缩聚而成的可生物降解的高分子材料。

可溶于氯仿、丙酮、二氧六环、二甲基甲酰胺、苯、甲苯等溶剂,不溶于石油醚等饱和烷烃。

有良好的生物相容性和血液相容性,体外抗凝血性能好,可被人体降解,以二氧化碳和水排出体外。

因此,聚乳酸可制成不同材料,如用熔融挤出法制成纤维作可吸收缝合线;纤维的编织物可作人体组织修补材料;制成薄膜材料用作肌腱组织的防粘连膜、骨膜生长隔离膜、药物缓释载体等。

聚乳酸可与其他生物材料复合使用,如与磷酸三钙或碳纤维复合制成板材,可用作接骨板。

聚乳酸PLA的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸、注射、吹塑。

由PLA制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,还具有PS相似的光泽度和加工性能,因此具有广阔的市场前景,用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、建筑、农业、林业、造纸和医疗卫生等领域。

图1为聚乳酸PLA的化学结构式。

聚乳酸特性聚乳酸简称PLA,是以微生物的发酵产物L-乳酸为单体聚合成的一类聚合物,是一种无毒、无刺激性,具有良好生物相容性,可生物分解吸收,强度高,不污染环境,可塑性加工成型的高分子材料。

聚乳酸

聚乳酸

新型包装材料——聚乳酸一、简介聚乳酸(polylactic acid, 简称PLA)是以乳酸为单体化学合成的,也称聚丙交酯,是具有可生物降解的高分子聚酯材料,其分子式为(C3H4O2)n。

聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。

聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。

聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。

由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,还具有聚苯乙烯(PS)相似的光泽度和加工性能,因此具有广阔的市场前景,用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。

美国和日本已开始工业化生产PLA。

意大利一公司使用美国生产的天然聚交酯(PLA)设计和制造新鲜农产品包装材料,这种新的包装材料将在欧洲的零售商店使用。

天然的PLA 是一种生物基的聚合物,由100%来自玉米淀粉的细菌发酵而成。

PLA不仅具有较高的强度和透明度,而且为零售商提供了包装天然产品使用天然基包装材料的机会。

二、PLA材料性能聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)使用可再生的植物资源(如玉米)所提出的淀粉原料制成。

淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。

其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,是公认的环境友好材料。

(2)机械性能及物理性能良好。

聚乳酸(PLA)含有有序排列的光学活性中心,其结晶性和刚性较高,制成的薄膜抗张强度是聚乙烯薄膜的数倍。

PLA还具有最良好的抗拉强度及延展度,适用于吹塑、热塑等各种加工方法,加工方便。

也可以采用各种普通加工方式生产,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。

(优选)聚乳酸的降解机理.

(优选)聚乳酸的降解机理.

2 PLA的体内降解
整个溶蚀过程是由不溶于水的固体变成水溶性 物质。
宏观上是材料整体结构破坏,体积变小,逐渐 变为碎片,最后完全溶解并被人体吸收或排出体外;
微观上是聚合物大分子链发生化学分解,如分 子量变小、分子链断开和侧链断裂等, 变为水溶性 的小分子而进入体液,被细胞吞噬并被转化和代谢。
3 PLA的体外降解
总之,人体可通过自身的各种代谢途径加以消 除,以确保内环境的稳定,以利于各项生命活动的 正常进行。
聚乳酸的降解机理
1 概述
聚乳酸(PLA) 是一种具有优良的生物相容性和 可生物降解性的合成高分子材料。PLA这种线型热 塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯 等一些植物中提取的淀粉为最初原料,经过酶分解 得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经 过化学合成得到高纯度聚乳酸。
1 概述
3 PLA的体外降解
微生物在自然界中普遍存在,聚乳酸可以被多 种微生物降解。如镰刀酶念珠菌,青霉菌,腐殖菌 等。
不同细菌对不同构形的聚乳酸的降解情况是不 同的。研究结果表明,镰刀酶念珠菌、青霉菌都可 以完全吸收D,L 乳酸,部分还可以吸收可溶的聚乳 酸低聚物。
4 降解影响因素
4 降解影响因素
4 降解影响因素
聚乳酸(PLA)分子结构式如图,其中的酯键 易水解,能在体内或土壤中经微生物的作用降解生 成乳酸,代谢最终产物是水和二氧化碳,所以对人 体不会产生毒副作用,使用非常安全。因此聚乳酸 已经被应用于医学、药学等许多方面,如用作外科 手术缝合线、药物控制释放系统等等。
1 概述
由于乳酸具有旋光性,因此对应的聚乳酸有三 种:PDLA、PLLA、PDLLA(消旋) 。
5.3 用于脂肪酸、丙氨酸等物质的合成 在肝脏细胞中,乳酸经由丙酮酸、乙酰辅酶A

聚乳酸(PLA)生物可降解材料

聚乳酸(PLA)生物可降解材料

良好的透明性和光泽度
PLA具有与传统的石油基塑料相似的 透明性和光泽度,可用于制造需要透 明度的产品。
PLA材料的用途
包装材料
PLA可制成一次性餐具、塑料袋等包装材料, 替代传统的石油基塑料。
3D打印材料
PLA是3D打印领域常用的材料之一,可用于 制造各种定制产品。
医疗领域
PLA可用于制造医疗用品,如手术缝合线、 药物载体等。
水解反应使PLA分子链断裂成较小的分子片段, 氧化反应则使PLA分子链上的碳碳键断裂。
随后,微生物如细菌、真菌等开始利用这些小 分子片段进行生长和繁殖,进一步降解PLA材 料。
影响PLA材料生物降解的因素
环境温度和湿度
较高的温度和湿度有利于PLA材料的生物降 解。
PLA材料的结构和性质
PLA材料的分子量、结晶度、添加剂等都会 影响其生物降解性能。
PLA是一种热塑性聚合物,具有与传 统的石油基塑料相似的加工性能和物 理性质。
PLA材料的特性
可完全生物降解
PLA在自然环境中可被微生物分解为 水和二氧化碳,具有良好的环保特性。
良好的加工性能
PLA具有良好的热塑性,可采用传统 的塑料加工技术进行成型加工,如注 塑、吹塑、挤出等。
良好的机械性能
PLA具有较高的拉伸强度、弯曲模量 和冲击强度,可满足各种应用需求。
PLA的降解速度过快,导致其性能不稳定,容易在正常使 用过程中出现损坏。
01
降解速度过慢
PLA的降解速度过慢,导致其难以在短 时间内完全分解,对环境造成一定的负 担。
02
03
降解条件控制
需要控制PLA的降解条件,以确保其在 适当的条件下进行分解,同时保持良 好的性能和稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物可降解高分子材料——聚乳酸
摘要:论述了聚乳酸的基本性质、性能、应用及展望,指出了聚乳酸是一种新型绿色环保可生物降解的高分子材料.
关键词:绿色高分子;聚乳酸;生物可降解高分子材料
人类在21世纪的最大课题之一是保护环境。

橡胶、塑料和合成纤维虽然与人类的生活密切相关,但大多不能自然分解,其废弃物会造成白色污染。

20世纪90年代末刚刚实现工业化的聚乳酸(Poly Lactic Acid,PLA)是其中最有发展前景的一种,它是一种真正的新型绿色高分子材料,也是目前综合性能最出色的环保材料【1】。

1聚乳酸的基本性质
聚乳酸(PLA)是以微生物的发酵产物L—乳酸为单体聚合成的一类聚合物,具体性能【2】见表1.由于具有独特的可生物降解性能、生物相容性能和降解后不会遗留任何环保问题等特点,将成为未来应用发展前景广阔的生态环保材料。

聚乳酸的分子量对降解性能有重要的影响.在相同降解时间和降解环境下,分子量高的降解速率比分子量低的慢.这是因为随着聚合物分子量的提高,聚合物分子间的作用力增大、结晶度增高,且分子量低的聚合物末端羧基的数目较多,更容易发生水解.PDLLA的降解速率比PLLA的快.就是由于PLLA为结晶性聚合物,而PDLLA为无定型聚合物.无定型聚合物的结构疏松,水的渗透快,可以由外到里同时水解【3】。

表1聚乳酸的基本性能
2聚乳酸的合成方法
目前合成聚乳酸(PLA)的方法主要分为直接缩聚法和间接法(即丙交酯开环聚合、扩链反应等)【2】。

2.1直接缩聚
乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡,不易得到高分子量的聚合物。

但是乳酸的来源充足,价格便宜,所以直接法合成聚乳酸比较经济合算。

研究表明,延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物分子量,在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加人催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸.它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融一固相缩聚法和反应挤出聚合法等.
2.1.1溶液缩聚法
采用一种高沸点的溶剂和乳酸、水进行共沸,高沸点溶剂脱水后再回流到溶液中,将反应中的水带出反应体系,促进反应正向进行,合成聚乳酸.该方法虽然可以合成高分子量的聚乳酸,但是高沸点溶剂的引人使产物的最后纯化比较困难,成本仍然较高.
2.1.2熔融缩聚法
该方法工艺路线简单,操作简单,要求高真空或者氮气保护.但是产物的分子量不高,主要是因为反应后期体系的粘度较大,小分子水难以除去,因此有待于进一步完善.2000年日本学者合成M。

超过10万的PLLA熔融聚合比溶液聚合操作简单,免去了高沸点溶剂的提纯,是减少辅助剂使用的最佳方法.它有利于降低成本、提高安全性、提高产率、缩短反应时间,是绿色化学的重要研究方向之—【4】.
2.1.3熔融固相缩聚
在聚合温度低于预聚物的熔点,而高于其玻璃化转变温度下进行的一种聚合方法.当熔融聚合产物继续进行固相缩聚时,随结晶度的不断提高,这些低分子
物质以及大分子的端基聚集在无定型区,可发生酯化反应而相互连接,有利于反应向生成聚乳酸的方向进行,使分子链增长,这些加长的分子链在晶区边缘结晶,使得聚合物结晶度增加,限制副反应的发生,促进残留单体的转化率.
2.2开环聚合
目前研究合成聚乳酸的最多方法是丙交酯的开环聚合,其开环聚合的机理有阳离子聚合、阴离子聚合、配位聚合3种。

2.2.1阳离子开环聚合
阳离子开环聚合反应是引发剂与单体相互作用生成箱子或镩氧离子,经单分子开环反应生成酰基正离子,然后单体再对这种增长中心进攻[5].这类引发剂种类很多质子酸(HCL,RSO,H等)、路易斯酸(AlCl3,SnCL4。

等)、烷基化试剂(CF3SO3CH3等)还有ZnO,SnO,PbO,SnO2,MgO,TiCl4等.以引发剂SnCL4为例,其反应机理:
2.2.2阴离子开环聚合
阴离子开环聚合反应是以催化剂亲核进攻丙交酯的羰基,酰氧键断裂后生成的.这类反应一般以强碱为催化剂,如Na2CO3、KOH、ROLi、ROK等.现以ROLi为例,反应
L-丙交酯阴离子开环聚合经常伴有消旋现象,这是由于丙交酯环上的叔碳原子脱质子所致.这类催化剂反应速度快、活性高,可进行本体或溶液聚合,但副反应极为明显,不利于制备高的聚合物。

2.2.3配位插入开环聚合
配位插入开环聚合反应一般认为是单体上的氧原子与催化剂金属的空轨道配位络合,单体再在金属一碳或金属一烷氧链上进行插入和增长[6].催化剂主要为过渡金属有机化合物和氧化物.这类反应的催化剂种类很多如烷基金属和烷基金属化合物.如AL(Oi2Pr)3,,Sn(Oct)2、烷基稀土配位化合物、BuSnOMe、卟啉铝等.其中Sn(Oct)2:已成为最常用、最有效的催化剂,其催化剂机理为:
卟啉铝作为配位开环聚合的一种催化剂,其引发聚合得到的聚合物的分子量分布非常窄.而且这种催化剂有很好的立构选择性.但是这类催化剂的活性不高。

2.3扩链聚合
聚乳酸的扩链反应中首先要进行熔融聚合.以乳酸单体为原料,氯化亚锡为催化剂在真空条件下进行熔融聚合,所得产物不经过进一步处理.将制得的聚乳酸于氮气中,加入一定比例的扩链剂,在所设定的温度和时间下进行扩链反应.反应结束后,产物用氯仿溶解、甲醇沉淀,50℃下真空干燥,得到白色粉末产物.
3聚乳酸的应用与研究展望
聚乳酸因其良好的生物降解性和优异的力学性能而倍受人们广泛的关注,而且聚乳酸在所有生物可降解聚合物中熔点最高、结晶度大、透明度极好,很适合做纤维、薄膜及模压制品等,加上它能够用于更新的资源合成,所以人们正把更多的注意力转移到其生物降解性能的研究。

利用聚乳酸在人体内可降解的特性,它在医用绷带、一次性手术衣、防粘连膜、尿布、医疗制成固定装置等方面的应用,以及在农业、林业、渔业、园艺以至各种各类的日用品方面将具有日益广泛的应用前景。

聚乳酸具有潜在的应用,如包装材料:包括挠性薄膜、食品容器、行李箱等;一次性用品:包括瓶子,杯子,碟子,缸等;纤维、非织造布:包括织物纤维、个人和医用的卫生用品;纸浆涂料;可生物降解热熔胶。

总之,PLA 及其共聚物是一类极有前途的可降解高分子材料[7].。

聚乳酸的成功开发和应用,为解决资源短缺、生存环境保护及废弃物处理提供了—个非常好的方法。

由于聚乳酸是一种可完全生物降解脂肪族聚酯类高分子材料,在自然环境下,通过微生物、水等介质逐渐降解成小分子聚合物,并最终降解为对环境无害的二氧化碳和水。

聚乳酸的研究和开发有望为解决环境污染问题提供一条新的途径。

聚乳酸及其共聚物的合成途径和制备方法的研究及开发是高分子材料特别是生物材料的—个重要发展方向,开发经济、生物相容性和降解性好的聚乳酸材料也将成为这个领域的热点[8].。

发展相容和降解高分子材料是治理污染的有效途径,其应用前景很广泛。

聚乳酸作为一种无毒、无刺激性、具有优良生物相容性和生物降解性的合成高分子材料,将成为取代以石油为来源的传统聚合物的新一代环境友好,新型绿色环保可生物降解的高分子材料。

参考文献
[1] 史铁钧,董智贤.聚乳酸的性能、合成方法及应用[J].化工新型材料,2000,
29(5):13-16.
[2] 杨帆,陈一岳,林茵,等.聚乳酸的降解性能及其微球剂的研究[J].实验研
究,2002,3(5):263—265.
[3] 马强,杨青芳,姚军燕.聚乳酸的合成研究[J].高分子材料科学与工程,2004,
20(3):21-23.
[4] 汪朝阳,赵耀明.熔融一固相缩聚法中固相聚合对聚乳酸合成的影响[J].材
料科学与工程,2002,20(3):403-406.
[5] 李永振,贺继东,李阳.聚乳酸的化学合成与应用[J].化学推进剂与高分子
材料,2007,5(5):39-43.
[6] 王俊凤,张军,张学龙,等.聚乳酸合成的研究进展[J].化工时刊,2007,21(6):
51-56.
[7] 郝国庆.可降解高分子材料聚乳酸综述[J].太原科技,2006,10(10):l-6.
[8] 陈景华.绿色环保型材料聚乳酸的应用研究[J].印刷工业,2005(1):19-22.。

相关文档
最新文档