2建筑结构抗震设计第三章单自由度弹性体系的水平地震作用PPT课件

合集下载

第三节 单自由度弹性体系的水平地震作用及其反应谱

第三节  单自由度弹性体系的水平地震作用及其反应谱

第三节 单自由度弹性体系的水平地震作用及其反应谱一、水平地震作用的基本公式 由上一节可知,()()[]()()t kx t x c t xt x m +=+- 0 3.26因()()r kx t xc ,略去不计,有()()[]()t kx t x t x m ≈+-0 3.27质点的绝对加速度为3.28()()()()()t x t x mkt xt x t a 20ϖ-=-=+= 将式3.24代入上式,得3.29质点的最大绝对加速度为()m ax a t a S =3.30一、 地震反应谱 反应谱分析法:求解结构最大地震反应的方法即反应谱分析法,这种方法是对单质点单自由度体系,在给定的阻尼比 时,取不同的自振周期T ,求出任意给定的地震波下的最大加速度 。

然后,以阻尼比 为参数,作出自振周期T 与最大反应的关系曲线族,即反应谱。

这样一来,对于任何单质点、单自由度体系,如果已知其自振周期T 、阻尼比 ,便可从反应谱图中直接查得该结构体系在特定地震波下的最大反应,实际运用是比较方便的。

图3.7是根据1940.5.18美国埃尔森特罗地震时地面运动加速度记录绘出的加速度反应谱曲线。

任何地震波所得的地震反应谱,几乎后共同的特点。

1、谱曲线是多峰点的,是由于地面运动的不规则造成的,但在阻尼比等于零时反应谱的谱值最大,而任何较小的阻尼比都能否使峰点削平很多。

2、当结构自振周期较小时,随周期T 的增加,反应急剧增长,而较大自振周期时,反应逐渐衰减、稳定。

目前,世界各国已普遍计算和利用地震反应谱。

在现今设计中,已有许多可以直接应用的地震反应谱,包括最大加速度、最大相对加速度或最大相对位移反应,以满足不同使用的要求。

aS 与质点质量的乘积即为水平地震作用的绝对最大值a mS F = 3.31二、 标准反应谱βGk x Sg x mg mS F max a max a =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛==00 3.32式中: k—— 地震系数 β—— 动力系数mg G =——重力(一)地震系数1、概念:即指地面运动最大加速度与重力加速度的比值2、公式:gxk max0 =3.333、有关因素:与地震烈度有关4、确定:见表 3.1 (二)动力系数β1、概念:即指单质点弹性体系在地震作用下最大反应加速度与地面最大加速度之比。

地震作用计算ppt课件

地震作用计算ppt课件

0.9 0.05 - 0.5 5
1——直线下降段的斜率调整系数; 1 0 . 0 2 ( 0 . 0 5 - ) / 8
2——阻尼调整系数,小于0.55时,
应取0.55。
2
1
0.05 - 0.06 1.7
8
二、 多质点体系水平地震作用
结构总的地震作用
F E k a 1G e q
0 0.1 Tg
T(s)
5Tg
6.0
4
a
第五章 地震作用 第三节 2amax 单质a 点(TTg体) 系2am水ax 平地震作用
0.45a max
a [2 0.2 -1(T - 5Tg )]amax
0 0.1 Tg
T (s)
5Tg
6.0
曲线由四部分组成
➢0<T<0.1区段,a为向上倾斜的直线
➢0.1<T<Tg区段,a为水平线
16
质点i的竖向地震作用标准值
Fvi
GiH i
n
FEvk
GiH i
i 1
规范要求:9度时,高层建筑楼层 的竖向地震作用效应应乘以1.5的增大 系数。
17
(二)大跨度结构的竖向地震计算
F E vk vG E
v ——竖向地震作用系数,按表采用;
GE ——重力荷载代表值。
结构类型
平板型网架、 钢屋架
➢Tg<T<5Tg区段,a为下降的曲线
➢5Tg<T<6.0s区段,a为下降直线
5
a
第五章 地震作用 第三节 2amax 单质a 点(TTg体) 系2am水ax 平地震作用
0.45a max
a [2 0.2 -1(T - 5Tg )]amax
0 0.1 Tg

建筑结构抗震设计第三章单自由度弹性体系的水平地震作用

建筑结构抗震设计第三章单自由度弹性体系的水平地震作用
即不同阻尼比的地震影响系数是有差别的:随着阻 尼比的减小,地震影响系数增大,而其增大的幅度则随 周期的增大而减小。
2
max
1
Tg
2021/3/7
结构抗震设计
16
设计特征周期
规范规定,根据建筑工程的实际情况,将地震动反应
谱特征周期Tg,取名为“设计特征周期”。
设计特征周期的值应根据建筑物所在地区的地震环境 确定。(所谓地震环境,是指建筑物所在地区及周围 可能发生地震的震源机制、震级大小、震中距远近以 及建筑物所在地区的场地条件等。)
式中 k11——使质点1产生单位位移而质点2保持不动时,
在质点1处所需施加的水平力; k12——使质点2产生单位位移而质点1保持不动时,
在质点1处引起的弹性反力; c11——质点1产生单位速度而质点2保持不动时,
在质点1处产生的阻尼力; c12——质点2产生单位速度而质点1保持不动时,
在质点1处产生的阻尼力;
在进行建筑结构地震反应分析时, 除了少数质量比较集中的结构 可以简化为单质点体系外,大 量的多层和高层工业与民用建 筑、多跨不等高单层工业厂房 等,质量比较分散,则应简化 为多质点体系来分析,这样才 能得出比较符合实际的结果。
一般,对多质点体系,若 只考虑其作单向振动时,则体 系的自由度与质点个数相同。
1、两自由度运动方程的建立 2、两自由度弹性体系的运动微分方程组 3、两自由度弹性体系的自由振动 三、多自由度弹性体系的自由振动 1、n自由度体系运动微分方程组 2、n自由度弹性体系的自由振动 四、振型分解法 1、两自由度体系振型分解法 2、n自由度体系振型分解法
2021/3/7
结构抗震设计
21
一、多质点和多自由度体系
15

建筑结构抗震设计课件第3章第4节

建筑结构抗震设计课件第3章第4节
X ni
i2
m1
i振型上的惯性力在
j振型上作的虚功
X1i
m2
mn
X X
2i ni
i2
m
X
i
Wij m1i2 X1i X1j m2i2 X2i X2 j L
i2
X
T j
m
X
i
2.主振型的正交性
i振型上的惯性力在 j振型上作的虚功:
Wij
i2
X
2k m2 k12
0
k k m2
m2
EI1
k2 m1
EI1
k1
X
1
1 1.618
X 2
1 0.618
(2k 2m) k 2m k2 0
1.618
0.618
1 0.618 k / m 2 1.618 k / m
X11 1 ; X12 1 X 21 1.618 X 22 0.618
y1 y2
X1 sin(t ) X2 sin(t )
k11 X1 k21 X1
k12 X 2 k22 X 2
m12 X1 0 m22 X 2 0
(
k11 k21
k12
k22
m1 0 0 m2
2
)
X1 X2
=
0 0
(k2 m)X 0...366
k2 m 0...(3 69)
i) i)
质点上的惯性力为:
X 21
m2
X
2i
2 i
I1(t) I2 (t)
m1 y1 m2 y2
m1
X
1i
2 i
sin(
i
t
i
m2

第三章2 工程结构地震反应分析与抗震验算.ppt

第三章2 工程结构地震反应分析与抗震验算.ppt

h 1 ---直线下降段的斜率调整系数;按下式确定
h1 = 0.02 + (0.05 - z ) / 8 当h1 < 0时,取h1 = 0
h2 - -阻尼调整系数,h2 < 0.55时,取h2 = 0.55
h2
=1+
0.05 - z 0.06 +1.7z
Tg : 特征周期,见表3.2
max:水平地震系数的最大值 α max = kβ max ,β max= 2.25
结构在地震持续过程中经受的最大地震作用为
F
=
F (t ) max
= m &x&(t) + &x&g (t) max
= mSa
= mg Sa
&x&g (t) max = Gk = G
&x&g (t) max
g
G ---集中于质点处的重力荷载代表值;
g ---重力加速度
= Sa
&x&g (t) max
地震特征周期分组的特征周期值(s)
场地类别




第一组 0.25
0.35
0.45 0.65
查表确定 Tg Tg = 0.3
第二组 0.30
0.40
第三组 0.35
0.45
0.55 0.75 0.65 0.90
例:单层单跨框架。屋盖刚度为无穷大,质量集中于屋 盖处。已知设防烈度为8度,设计地震分组为二组,Ⅰ类 场地;屋盖处的重力荷载代表值G=700kN,框架柱线刚 度 ic = EIc / h = 2.6104 kN m ,阻尼比为0.05。试求该结构多 遇地震时的水平地震作用。

第三章-单自由度体系结构的地震反应

第三章-单自由度体系结构的地震反应
-ξ ω t
P(t)
t
(t)
x(t)
() (a)
t
() (b)
xt =e
Pdt sin t (3.11) m
图3.7 瞬时冲量及其 引起的自由振动
3.3.2

一般动力荷载下的动力反应 般动力荷载下的动力反应—— 杜哈美积分
P()
图3.8示任一动力荷载,它 图3 8示任 动力荷载 它 的整个加载过程可看作是 由一系列瞬时冲量所组成。 运用叠加原理,把各个瞬 时冲量单独作用下的动力 反应求出 然后再叠加以 反应求出,然后再叠加以 求得总的动力反应。 冲量 P d 在 t t 引起的单自由度体系的振 动为
(3 1) (3.1) (3.2)
2x 2 x = a t x
c c c 2 = , ξ , 2 mω 2 mk m
称为阻尼比;k为弹簧系数;c为阻尼系数 称为阻尼比 为弹簧系数 为阻尼系数
k = , 叫做无阻尼的自振圆频率 m
P t a t = m Nhomakorabea3.4.2 运动方程数值计算解

目前直接对运动微分方程进行数值积分的方法,如 平均加速度法、线性加速度法、纽马克—法、 Wilson-法等。 数值方法的基本思路 t 0 , t 0 及各个分点间的递 x 利用初始条件 x t 0 ,x 推关系,一步一步地向下进行递推计算

叫做激振加速度
地面运动作用下单自由度体系的运动方程
X(t) -mXg(t)
D S
I
Xg(t) (a) (b) (c)
图3.4
力学模型

x(t ) 质量块的绝对加速度 相对加速度为 x(t ) xg (t ) ,相对加速度为

建筑结构抗震设计课件第3章(下)

建筑结构抗震设计课件第3章(下)
1)引起结构产生扭转的原因主要有哪些? 2)规则结构如何考虑扭转效应的影响? 3)需要进行扭转计算的结构: j振型时第i层质心处的水平地震作用标准值计算公式Fxji(Fyji、Ftji); 考虑单向水平地震作用时,结构的地震作用效应(扭转效应)Sx(Sy)的计算方 法;
考虑双向水平地震作用效应时,结构地震作用效应的计算方法,0.85的物理意 义。
竖向地震作用的影响是显著的:
根据地震计算分析,对于高层建筑、高耸及大跨结构,竖向 地震影响显著。结构竖向地震内力NE/与重力荷载产生的内力NG 的比值沿高度自下向上逐渐增大,烈度为8度时为50%至90%,9 度时可达到或超过1;335m高的电视塔上部,8度时为138%;高 层建筑上部,8度时为50%至110%。
2、考虑扭转影响的水平地震作用
M D&& CD& K D M D&&g (t)
1
M
cos
D
1n1
1
D&&g (t)
d&&g (t)
M
sin
D
1n1Leabharlann 0M0n1
d&&g (t) ---地面运动加速度 D ---地面运动方向与x轴夹角
3n
设 D(t) X i qi (t) Aq(t) i 1 D&(t) Aq&(t)
Ftji j tj ri2 jiGi
Fx ji
Ftji x
分别为j振型i层的x方向、y方向和
Fy ji
转角方向的地震作用标准值
j振型i层质心处地震作用
思考题
1、底部剪力法的计算步骤是怎样的? 1)底部总剪力计算 2)高阶振型影响如何考虑? 3)屋顶突出屋面附属建筑鞭梢效应的考虑及计算

建筑结构抗震ppt课件

建筑结构抗震ppt课件

第一章 绪论
建筑结构抗震设计
烈度表
分为1-12度(不同的国家的分度方法不同)
中国地震烈度表
分项:人的感觉,大多数房屋震害程度,其他现象, 加速度(水平向)厘米/秒² ,速度(水平向)厘米/秒
I度:为无感觉,损坏一个别砖瓦掉落墙体微细裂缝; 河岸和松软土上出现裂缝。
第一章 绪论
建筑结构抗震设计
VI (6)度:惊慌失措,仓惶逃出;饱和砂层出现喷砂冒 水。地面上有的砖烟囱轻度裂缝、掉头;加 速度63厘米/秒² 。
第一章 绪论
建筑结构抗震设计
(多遇烈度)
.55度
(设防烈度)
度左右
(罕遇烈度)
第一章 绪论
设计地震分组
6度近震
设计地震分组是新规范新提 出的概念,用以代替旧规范设计 近震、设计远震的概念。 6度远震
在宏观烈度大体相同 条件下,处于大震级远离 震中的高耸建筑物的震害 比中小级震级近震中距的 情况严重的多。
第一章 绪论
建筑结构抗震设计
板块说:
大陆漂移假说:它是德国气象学家魏格纳(Wegener) (1880~1930年)在讲课中提出来的。
这一假说在约10年时间内没有受到地质界的重视。在 1922年2月16日有一篇评述魏格纳的书的一无人署名的短文, 发表于著名的科学杂志《自然》上,说“该书直接应用了物 理学原理,但遭到许多地质学家的强烈反对”。
建筑结构抗震设计
震级是一次地震强弱的等级。
现国际上的通用震级表示为
里氏震级。(Richter)
查尔斯·里 克特(1900~
用标准的地震仪在距震中100km19处85年记) 录 最大水平位移A(以µm=10-6 m计)。
震级M=logA

《水平地震作用》课件

《水平地震作用》课件

地震对建筑物的影响
地震对建筑物会产生各种破坏和损害。了解地震对建筑物结构、基础和设备 的影响。
建筑物的抗震能力
建筑物的抗震能力是指其抵御地震力量的能力。了解建筑物抗震能力的重要 性以及影响因素。
抗震结构设计的原则
抗震结构设计遵循一些基本原则,以确保建筑物在地震中保持稳定。了解这 些原则和设计指南。
《水平地震作用》PPT课 件
探索水平地震作用的世界,了解地震波、地震烈度和抗震技术。揭示地震对 建筑物的影响并提供防震减灾的关键方法。
什么是水平地震作用
地震波是水平地震作用的重要组成部分,它是地球内部能量释放所产生的振动传播。了解地震波的特性 和类型。
地震波产生的原因
地震波是由地震破裂时释放的能量引起的。了解地震波产生的原因,包括板 块运动、断层滑移和岩石变形。
地震波的ห้องสมุดไป่ตู้类
地震波可以分为三类:P波、S波和表面波。了解它们的传播方式、速度和影 响。
什么是地震烈度
地震烈度是描述地震影响强度的量度。了解地震烈度与地震震级的区别以及评定烈度的方法。
地震烈度的表述方式
地震烈度通常用数字(1-12度)和描述性词语来表示。了解这些表述方式以及它们在建筑物抗震设计中 的重要性。

单自由度体系结构的地震反应(2)

单自由度体系结构的地震反应(2)
g
• 动力系数(放大倍数)
= Sa
xg max
7
建筑结构抗震 单自由度体系的地震反应
二、地震影响系数
• 地震系数 k= xg max
g
反应地面运动强烈程度。一般,地震烈度愈大,地面 运动加速度愈大,地震系数也愈大,因而,地震系数 与地震烈度之间有一定的对应关系。
地震烈度与地震系数的关系
地震烈度
6
7
2 1+0.05 0.08+1.6
20
建筑结构抗震 单自由度体系的地震反应 六、 《抗震规范》设计反应谱
2. 地震影响系数曲线的确定 1)选用国内、外近300条地震纪录,按场地类别归类,统 计拟合出标准地震影响系数曲线。
2)谱曲线的峰值 max :取决于设防烈度
表5-5 水平地震影响系数最大值αmax
对应关系,这样给定任一地面运动,即可做出一条a-T 曲线称作加速度反应谱曲线。
13
建筑结构抗震 单自由度体系的地震反应 四、地震反应谱
反应谱曲线的特点 1)多峰值;2)阻尼影响大;3)随周期变化规律显著
El Centro波加速度反应谱
El Centro波速度反应谱
14
建筑结构抗震 单自由度体系的地震反应 五、设计地震反应谱
地震系数k 0.05
0.1
表3-3
8
9
0.2
0.4
8
建筑结构抗震 单自由度体系的地震反应 二、地震影响系数
• 动力系数(放大倍数) = Sa xg max
反应单质点体系最大绝对加速度与地面运动最大加速度 的比值,表示由于动力效应,质点的最大绝对加速度比 地面运动最大加速度放大了多少倍.
9
建筑结构抗震 单自由度体系的地震反应 三、水平地震作用的计算

3—3 单自由度体系的水平地震作用与反应谱

3—3  单自由度体系的水平地震作用与反应谱

F(t) = −m[ɺɺg (t) + ɺɺ(t)] x x
F(t) = −m[ɺɺg (t) + ɺɺ(t)] = cx(t) + kx(t) ≈ kx(t) x x ɺ
3.3.2 地震反应谱
1、定义与计算 将式( 将式(3—32) 32)
1 x(t) = dx(t) = − ∫ ɺɺg (τ )e−ζω(t−τ ) sin ω′(t −τ )dτ x ω′
2π 1 β(T) = ⋅ T ɺɺg (t) x
2、动力系数 x S 41) 式(3—41) F = mg ɺɺ • = Gkβ(T) 中的动力系数 g x ɺɺ (t) 为 β(T) = Sa / ɺɺg (t) max x (3—43) (3— 将式( 39)代入上式, 将式(3—39)代入上式,则得 ( 3-3-6)
t ∫0
代入( 代入(3-3-2)式 F(t) = −m[ɺɺg (t) + ɺɺ(t)] = cx(t) + kx(t) ≈ kx(t) x x ɺ ,并注意到 ω′ = ω 地震作用, 地震作用,即 及 k = mω2 即,则得水平
t F(t) = mω2 x(t) = −mω∫0 ɺɺg (τ )e−ζω(t−τ ) sin ω(t −τ )dτ x (3 - 3 - 3 )
设计地震 分组 第一组 第二组 第三组 I 0.25 0.30 0.35
特征周期 Tg 值(s)
场 地 类 别 II 0.35 0.40 0.45 III 0.45 0.55 0.65 IV 0.65 0.75 0.90
3、Tg
≤ T ≤ 5Tg
区段:在这一区段为曲线下降
段,曲 线呈双曲线 变化:
1、地震系数 x ɺɺg (t ) max Sa F = mg • 41) 式(3-41) g x ɺɺg (t) 地震系数为

建筑结构抗震设计地震作用

建筑结构抗震设计地震作用

12
图3.3
不同阻尼下单自由度体系的自由振 动
13
因此 , 在计算体系的自 振频率时通常可不考 虑阻尼的影响 , 从而简化了计算过程 。 由 于地 震发生前体系处于静止状态 , 即体系的初位移 x ( 0 ) 和初速度 ( 0 ) 均为 零 , 也就是 式 ( 3 . 9 ) 等于零 , 则地震作用下体系齐 次方程的通解为零 。
23
( 3 ) 震中距和场地条件的影响 震中距和场地条件对反应谱形状有很大影响 , 震中距越大 、 土质越松软 , 加速度反应谱峰 值对应的结构周期也越长 ( 见图 3 . 6 ), 因 此在结构抗震设计时需考虑震中距和场地条件的 影响 。
24
图3.5
地震反应谱的特征 ( El Cen tro )
4
3 ) 动力分析阶段 时程分析法的产生是一种飞跃 , 它使抗震计 算理论由 等效静力分析进入直接动力 分析 。 时程 分析法是对结构物的运动微分方程直接进行逐步积 分求解的一种动力分析方法 。 由 时程分析可得到 各质点随时间变化的位移 、 速度和加速度动力 反 应 , 并进而计算出构件内力的时程变化关系 。
27
3.3.1 设计反应谱的定义 首先对同一类场地上的地震动分别计算其反应 谱 , 然后对这些谱曲线进行统计分析 , 求出 其 中最有代表性的平滑的平均反应谱 , 称为设计反 应谱 。
28
3.3.2 影响因素 设计反应谱的主要影响因素有设防烈度 、 场 地类别 、 设计地震分组和阻尼比 。 设防烈度越高 , 地震动峰值加速度一般越大 , 设计反应谱的谱值一般越大 ; 场地类别 ( 其 划分见下节内 容 ) 反映了 建筑物所在场地的地质 条件 ,《 抗震规范 》 通过设计地震分组反映震 中距的影响 , 这两个因素均影响反应谱的频谱特 性。

建筑结构抗震设计(PPT,共81页)

建筑结构抗震设计(PPT,共81页)
提供了较大的侧向刚度,位移得到控制。
3.1
结构抗震概念设计
五、合理的结构材料
• 延性系数(表示极限变形与相应屈服变形之比)高; • “强度/重力”比值大(轻质高强); • 匀质性好; • 正交各向同性; • 构件的连接具有整体性、连续性和较好的延性,并
图 断层和断裂带 “有地震必有断层,有断层必有地震”
3.1
结构抗震概念设计
断裂及其工程影响
地质调查结果: •沿龙门山中央主断裂 带的地表破裂从映秀镇 至北川长200km; • 沿龙门山山前断裂带 的地表破裂从都江堰至 汉旺镇长40km 。
(图源:张培震, 2008)
汶川地震的 启示和教训
位于地震 断层的建筑, 由于地震断错 和地面强大振 动,带来房屋 毁灭性坍塌。
填充墙。
4层以上平面图
2)竖向不规则:塔楼上部(4层
楼面以上),北、东、西三面布
置了密集的小柱子,共64根,支
承在过渡大梁上,大梁又支承在
其下面的10根柱子上。上下两部
分严重不均匀,不连续。
3)主要破坏:第4层与第5层之 间(竖向刚度和承载力突变),周围
4层以下平面图
剖面图
柱子严重开裂,柱钢筋压屈;塔楼西立面、其他立面窗下和电梯井处的空心砖填充墙
• 这里的“规则”包含了对建筑平面、立面外形尺寸,抗 侧力构件的布置、质量分布,直至承载力分布等诸多因 素的综合要求。
• “规则”的具体界限随结构类型的不同而异,需要建筑 师和结构师相互配合,才能设计出抗震性能良好的建筑。
3.1
结构抗震概念设计
• 建筑抗震设计应符合抗震概念设计的要求,不应采用严 重不规则的设计方案;
①竖向抗侧力构件不连续时,该构件传递给水平转换

建筑抗震课件(第三章 地震作用和结构抗震验算)

建筑抗震课件(第三章 地震作用和结构抗震验算)
建 为什么要称为地震作用﹖ 是因为结构地震反应是地震通过结构惯性引起的,因此地
筑 震作用(即结构地震惯性力)是间接作用,而不称为荷载,但 为了应用方便,将地震作用等效为某种形式的荷载作用,
抗 这就是等效地震荷载。

3.1 概述
第 3.1.2 质点体系及其自由度

实际结构在地震作用下摇晃的现象十分复杂。在计 算地震作用时,为了将实际问题的主要矛盾突出来,
三 质点自振周期变化的曲线为地震反应谱。 由于地震的随机性,即使在同一地点、同一烈度,每次地震的地面加速
章 度记录也很不一致,因此需要根据大量的强震记录计算出对应于每一条 强震记录的反应谱曲线,然后统计求出最有代表性的平均曲线作为设计 依据,这种曲线称为标准反应谱曲线。
建 筑 抗 震 各种因素对反应谱的影响
章 运用理论公式进行计算设计,需将复杂的建筑结构
简化为动力计算简图。
单质点弹性体系
建 筑 多质点弹性体系 抗 震
3.1 概述
第 单质点弹性体系 三 章
常常将水箱及其支 架的一部分质量集 中在顶部,以质点 m来表示




水塔
支承水箱的支架 则简化为无质量 而有弹性的杆件, 其高度等于水箱
的重心高
3.1 概述
建 去的微量,故:

m[x(t) xg (t)] kx(t)


3.3单质点弹性体系的水平地震作用计算

这样,在地震作用下,质点在任一时刻的相对位移
三 将与该时刻的瞬时惯性力成正比。因此,可认为这一相
章 对位移是在惯性力的作用下引起的,虽然惯性力并不是
真实作用于质点上的力,但惯性力对结构体系的作用和

地震作用PPT课件

地震作用PPT课件
丙 类 丁 类
一般情况下,当抗震设防烈度为6-8度时,应符合本地区抗震设防烈度 提高1度的要求;当9度时,应符合比9度抗震设防更高的要求,对较小 的乙类建筑,当其结构改用抗震性能较好的结构类型时,应允许仍按 本地区抗震设防烈度的要求采取抗震措施
应符合本地区抗震设防烈度度的要求
应允许比本地区抗震设防烈度的要求适当降低,但抗震设防烈度为6度 时不应降低
相对速度反应谱
相对位移反应谱
第21页/共62页
绝对加速度反应谱
不同场地条件对反应谱的影响
将多个地震反应谱平均后得平均加速度反应谱:
Sa / g
软土层
厚的无粘性土层
坚硬场地
岩石
周期(s)
场地条件对反应谱的影响:硬土反应谱的峰值对应的周期 较短,即硬土的卓越周期短;软土反应谱的峰值对应的周期较 长,即软土的卓越周期长。
60
70
时 间 /s
水平震动:使结构产生移动和摇摆
扭转震动:使结构扭转(概念设计)
竖向震动:使结构竖向震动(震中附近的高烈度地区)
其中,对建筑结构造成破坏的主要是水平震动和扭转震动。
第3页/共62页
3.2 地震作用
3.2.1 地震作用的特点
地面震动三要素:强度(振幅值)、频谱和持续时 间。
当地震烈度大且作用时间长,或卓越周期(频谱 分析中能量占主导地位的频率成分)与结构的自振周 期接近,或持续时间长,将对建筑物造成的影响严重。
影响a值大小的因素除与自振周期和阻尼比外,还有场 地特征周期Tg。场地特征周期与场地、场地土的性质和设 计地震分组有关。
场地类别 第一组 第二组 第三组
地震特征周期分组的特征周期值(s)
Ⅰ0 0.20 0.25

建筑结构抗震设计ppt53页

建筑结构抗震设计ppt53页
1.0.1 课程简介
建筑结构抗震设计是综合了地震成因,强烈地面运动,结构物的动力特性和地震反应等方面的研究成果而发展起来的一门多科性的学科,它涉及地球物理学、地质学、地震学、工程力学(结构动力学、材料力学、结构静力学)、工程结构学(钢筋混凝土结构、钢结构、地基与基础)、施工技术等多方面的知识。
1.0.2 课程性质和目的
1.1.1 地震类型与成因
什么是地震?地震是指因地球内部缓慢积累的能量突然释放而引起的地球表层的振动 。地震是一种自然现象,地球上每天都在发生地震,一年约有500万次。其中约5万次人们可以感觉到;能造成破坏的约有1000次; 7级以上的大地震平均一年有十几次。目前记录到的世界上最大地震是8.9级,发生于1960年5月22日的智利地震。
抗震设防烈度
6度
7度
8度
9度
设计设计基本地震加速度值
0.05g
0.1g(0.15g)
0.2g(0.3g)
0.4g
1.2.3 基本烈度与地震区划
设计地震分组:是新规范新提出的概念,用以代替旧规范设计近震、设计远震的概念。
在宏观烈度大体相同条件下,处于大震级远离震中的高耸建筑物的震害比中小级震级近震中距的情况严重的多。 设计地震分三组,对于Ⅱ类场地,第一、二、三组的设计特征周期分别为:0.35s、0.40s、0.45s.
1.1.2 地震波
地震波:地震产生的地壳运动(振动)以波的形式从震源向各个方向传播并释放能量,这种波称为地震波。 地震波包含:体波和面波。1、体波:在地球内部传播的波。纵波:在传播过程中,介质质点的振动方向与波的前进方向一致,又称为压缩波或疏密波。特点:周期短,振幅小,波速快, 引起地面竖向颠簸。纵波也叫初波横波:在传播过程中,介质质点的振动方向与波的前进方向垂直,故又称为剪切波。特点:周期较长,振幅较大,波速慢, 引起地面水平摇晃。横波也叫次波。

工程结构抗震设计原理

工程结构抗震设计原理

sin
(t
)d
max
最大速度反应
第三章 地震作用和结构抗震验算
14
工程结构抗震设计原理
质点的绝对加速度为
x xg 2x 2x

2
t 0
xg ( )e (t )
cosd (t
)d
2 2 2
d
t 0
xg
(
)e


(Tg T
) 2 max
[20.2 1(T 5Tg )]max
第三章0 0地.1震作T用g 和结构抗震验算 5Tg
T (s) 6.0
23
工程结构抗震设计原理
---冲量法
第三章 地震作用和结构抗震验算
10
工程结构抗震设计原理
(1).瞬时冲量的反应
A.t=0 时作用瞬时冲量有 pΔt冲量=动量的改变量m(v2-v1) 瞬时冲量
P mx0
x0 P / m
x0Hale Waihona Puke 1 2P m
( )2
0
冲击荷载作用前初速度为0初位移为0,冲击荷载作用后初速度不为0
工程结构抗震设计原理
第三章 地震作用和结构抗震验算
第三章 地震作用和结构抗震验算
1
工程结构抗震设计原理
§3.1 概述
抗震设计(抗震设计概念设计,抗震计算,抗震构造措施) 地震作用(水平,竖向) 结构的地震反应 结构、构件的地震作用效应(M,N,Q,变形)
地震作用和结构抗震验算是建筑抗震设计的重要环 节,是确定所设计的结构满足最低抗震设防安全要求的 关键步骤。
(t

)
sin

d
(t

单自由度体系结构的地震反应

单自由度体系结构的地震反应
加速度反响谱曲线:一系列Sa---T曲线。即单自由度体系在给定的 地震作用下最大加速度与体系自振周期的关系曲线称为该反响的地 震反响谱。加速度反响谱曲线将地震作用计算从复杂的动力求解转 换为简单的查图表方式,利用体系自振周期直接获得最大加速度反 响。是目前地震作用计算理论的根底。
加速度反响谱曲线确定过程:
应取0.9。 4)直线下降段,自5倍特征周期至6s区段,下降斜率调整系
数η1应取0.02,阻尼调整系数η2=1 。
地震影响系数曲线
2 当建筑构造的阻尼比按有关规定不等于0.05时,地震影响系 数曲线的阻尼调整系数和形状参数应符合以下规定:
1) 曲线下降段的衰减指数应按下式确定:
0.900..3056
• 由?抗震标准?可直接查得地震影响系数α,从而可方便地求得 单质点体系的水平地震作用。
F 由ma Sm 2 T• x g g 0S g 1 m aa xS g 0 ta x • g 0( G ) e 2 T ( t ) • s S i g n a2 T x ( 0 tg m ) a• d xx 0 m Sa m ax 得a x :k
• 对假设干条个地面运动加速度时程,可得到假设干条α-T曲
线。
• 对不同的建筑场地分类,对得到的α-T曲线进展统计、拟合,
并结合工程经历适当进展调整,可确定对应场地的标准α-T
曲线,即为标准的地震影响系数曲线。
• 假设构造的阻尼比不等于0.05,可在标准地震影响系数的根
底上进展修正而得到。
• 按照以上思路所得到的地震影响系数-自振周期曲线为设计
得 a ( t ) 0 t x 0 () e ( t )• si ( t n ) d
§3.3 单自由度体系地震作用及其反响谱
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/11/7
结构抗震设计
2
第三章重点、难点和基本要求
重点和难点: 1、重要术语、概念、定义 2、单(多)自由度体系地震反应和地震作用计算 3、底部剪力法 4、结构抗震验算
基本要求: 掌握结构抗震验算基本方法
2020/11/7
结构抗震设计
3
§3-3 单自由度弹性体系的水平地震作用 ----地震反应谱法
由于地震发生时,可变荷载往往达不到其标准值而采用
组合值(即组合值系数乘以可变荷载标准值),故建筑物
的重力荷载代表值是地震发生时根据遇合概率确定的
“有效重力”。由于重力荷载代表值是按荷载标准值确
定的,所以F按式G
计算得到的地震作用也是标
准值。
2020/11/7
结构抗震设计
7
组合值系数
可变荷载种类 雪荷载
设防烈度与地震系数的对应关系
设防烈度
6
7
8
9
地震系数
0.05 0.10(0.15) 0.20(0.30) 0.40
k 地x震g (Βιβλιοθήκη g系) m数ax地震动峰值加速xg度max
地震系数是地震动峰值加速度(地面运动的最大绝对加速度)与
重力加速度的比值,也就是以重力加速度为单位的地震动峰值加
速度。
2020/11/7
结构抗震设计
10
地震动峰值加速度和设计基本地震加速度与地震系数
抗震设防烈度和设计基本地震加速度的对应关系
抗震设防烈度
6
7
8
9
设计基本地震加速度 0.05g 0.10g 0.15g 0.20g 0.30g 0.40g
表中设计基本地震加速度的取值与《中国地震动参数区划图》所 规定的地震动峰值加速度相当。
2020/11/7
结构抗震设计
6
二、建筑的重力荷载代表值
地震动时能作质量产生地震作用(惯性力)的各种竖向荷 载,称为重力荷载。抗震设计时,在地震作用标准值的 计算中和结构构件地震作用效应的基本组合中,建筑物 重力荷载的取值称为重力荷载代表值。《抗震规范》规 定,建筑物的重力荷载代表值应取结构和构配件自重(恒 载)标准值和各可变荷载(活荷载)组合值之和。各可变荷 载的组合值系数按规范取值。
屋面积灰荷载 屋面活荷载
按实际情况考虑的楼面活荷载
按等效均布活荷载考 虑的楼面活荷载
藏书库、档案库 其它民用建筑
吊车悬吊物重力
硬钩吊车
软钩吊车
组合值系数 0.5 0.5
不考虑
1.0 0.8 0.5 0.3 不考虑
2020/11/7
结构抗震设计
8
三、抗震设计反应谱
1、地震系数k
地 大震 绝系对数加速度k)与xg重(t)力m加ax/速g是度地的震比动值峰,值也加就速是度以(重地力面加运速动度的为最单
若考虑到
,并取
,则得水平地震作用,即
k/m
在最大结绝构对抗F 加震( 速设t) 度计 的中m 乘,2 积只x ( 。需t) 求 出 m 水平0 t地 x ( g 震) 作e 用 的( t 最 ) 大s绝对i ( 值t n ,) 即d 质点质量m与
2020/11/7
结构抗震设计
5
计算水平地震作用最大值的基本公式
设防烈度 6
7
8
9
地震系数 0.05 0.10(0.15) 0.20(0.30) 0.40
从表中可以看出,地震系数反映某地区基本烈度的大 小,当基本烈度确定后,地震系数为常数。
但必须注意,地震烈度的大小还取决于地震持续时间 和地震波的频谱特性。统计分析表明,烈度每增加一 度,k值大致增加一倍。
2020/11/7
设F为水平地震作用最大值,则得 F m x ( g t ) x ( t ) m m a0 t x x ( g ) e ( t ) s ( i t n ) d max
或 FmSa ,这里,S a 0 t x ( g ) e ( t ) si( n t ) dmax
第三章 地震作用和结构抗震验算
一、课程内容 二、重点、难点和基本要求
2020/11/7
结构抗震设计
1
第三章 课程内容
§3-1 概述 §3-2 单自由度弹性体系的地震反应 §3-3 单自由度弹性体系的水平地震作用——地震反 应谱法 §3-4 多自由度弹性体系的地震反应 §3-5 多自由度弹性体系的水平地震作用——振型分 解反应谱法 §3-6 底部剪力法和时程分析法 §3-7 水平地震作用下的扭转效应 §3-8 结构的竖向地震作用 §3-9 结构自振周期的近似计算 §3-10 地震作用计算的一般规定 §3-11 结构抗震验算
令: Sa xg max
, xg max k g
代入上式,并以FEK代替F,则得计算水平地震作用的基本
公式: F E K m g k k G G
式中: FEK--水平地震作用标准值; Sa--质点加速度最大 值;xg max ----地震动峰值加速度;β----动力系数; k----地震系数; α----地震影响系数;G----建筑的重力荷载代表值。 求作用在质点上的水平地震作用FEK,关键在于求 出地震系数k和动力系数β,或者是地震影响系数α。
上式表明F ,( 在t ) 地 震 作m 用 x ( g 下t ,) 质 x 点( 任t ) 一 时c x 刻( 的t ) 相 对k 位( 移t ) 与 x 该k 瞬( 时t ) 的x 惯性力成正
比,且比例系数为体系的刚度k。因此可以认为这一位移是由该瞬时的惯性 力引起的,故可将惯性力理解为一种能反映地震影响的等效荷载。
位的地震动峰值加速度。 显然,地面加速度愈大,地震的影响就愈强烈,即地震烈度愈大。 所以,地震系数与地震烈度有关,都是地震强烈程度的参数。 例如,地震时在某处地震加速度记录的最大值,就是这次地震在 该处的k值(以重力加速度g为单位)。
2020/11/7
结构抗震设计
9
设防烈度与地震系数的对应关系
地面运动加速度愈大.地震烈度愈高,故地震系数与 地震烈度之间有一定的对应关系:
一、水平地震作用的计算公式 二、建筑的重力荷载代表值 三、抗震设计反应谱
2020/11/7
结构抗震设计
4
一、水平地震作用的计算公式
地面水平运动时,作用于单自由度体系质点上的惯性力F(t)为
F ( t) m x ( gt) x ( t)
若考虑到cx(t)<<kx(t)而略去不计,则得
结构抗震设计
11
2、动力系数
相关文档
最新文档