数据挖掘知识
2.数据挖掘技术基础知识
8 8 8
3. 现在的问题是:网络之后的下一个技术 热点是什么?
㈡ 网 络 之 后 的 下 一 个 技 术 热 点
让我们来看一些身边俯拾即是的现象: 《纽约时报》由 60 年代的 10~20 版扩张至 现在的 100~200 版,最高曾达 1572 版; 《北京青年报》也已是 16~40 版;市场营 销报已达 100 版。 然而在现实社会中,人均日阅读时间通常 为 30~45 分钟,只能浏览一份 24 版的报纸。
数据
过
80
的
KDD
,的
,
18 18 18
以后人们却在逐渐使用数据挖掘中, 发现有 以后 许多工作可以由统计方法来完成, 并认为最好的 策略是将统计方法与数据挖掘有机的结合起来。
数 据 挖 掘 逐 渐 演 变 的 过 程 ㈥
数据仓库的发展促使数据挖掘越来越热 越来越热。 越来越热 数据仓库技术的发展与数据挖掘有着密切 的 。 。 是, 数据仓库并 为有 掘 。 多数据挖掘可 是数据挖掘的 作数据 , 中挖 的发展是促 数据挖掘越来越热的
的数据 ,
的 技术 的数据 数数据挖掘技术已可以马上投入使用, 因 为支持的它的基础技术已成熟,他们是: 1. 海量数据搜集
㈣ 支 持 数 据 挖 掘 技 术 的 基 础
商业数据库正以一个空前的速度增长,且数 据仓库正在广泛地应用于各行业。 2. 强大的多处理器计算机 已成熟的 行 cpu 的技术可以 越 越 的 。 3. 数据挖掘算法 ,且 10 于 的 已 成为一 的技术。 成熟,
了 用的阶段;
17 17 17
㈥ 数据挖掘逐渐演变的过程
数据 的 , , 过
一 、 数 据 挖 掘 技 术 的 由 来
KDD (Knowledge discovery in database) 的 数据 数据 , 的 的过程 , 的 ,掘 的 的 , KDD 数据 的 的 程 , 过 掘的过程, 的 的 , 的 的 80 , 数据挖掘 (data mining) 的 程 , ,挖掘 的 数据挖掘的 的 , 过程 ; , , 的 ,
数据挖掘-知识点
1、数据库与数据仓库的对比数据库 数据仓库面向应用 面向主题数据是详细的 数据是综合和历史的保持当前数据 保存过去和现在的数据数据是可更新的 数据不更新对数据的操作是重复的 对数据的操作是启发式的操作需求是事先可知的 操作需求是临时决定的一个操作存取一个记录 一个操作存取一个集合数据非冗余 数据时常冗余操作比较频繁 操作相对不频繁查询基本是原始数据 查询基本是经过加工的数据事务处理需要的是当前数据 决策分析需要过去和现在的数据很少有复杂的计算 有很多复杂的计算支持事务处理 支持决策分析2、OLTP与OLAP,OLTP)是在网络环境下的事务处理工作,以快速的响应和频繁联机事物处理(On Line Transaction Processing的数据修改为特征,使用户利用数据库能够快速地处理具体的业务。
OLTP OLAP数据库数据 数据仓库数据细节性数据 综合性数据当前数据 历史数据经常更新 不更新,但周期刷新对响应时间要求高 响应时间合理用户数量大用户数量相对较小面向操作人员,支持日常操作 面向决策人员,支持决策需要面向应用,事务驱动面向分析,分析驱动3、数据字典和元数据:数据字典:是数据库中各类数据描述的集合,它在数据库设计中具有很重要的地位。
由:数据项;数据结构;数据流;数据存储;处理过程5部分组成。
元数据(metadata)定义为关于数据的数据(data about data),即元数据描述了数据仓库的数据和环境。
数据仓库的元数据除对数据仓库中数据的描述(数据仓库字典)外,还有以下三类元数据 :(1) 关于数据源的元数据(2) 关于抽取和转换的元数据(3) 关于最终用户的元数据4、数据从数据库到知识的流程:DB-->DW-->OLAP-->DM-->KDD-->DSS-->AI5、数据挖掘的含义:知识发现(KDD):从数据中发现有用知识的整个过程。
数据挖掘(DM):KDD过程中的一个特定步骤,它用专门算法从数据中抽取知识。
数据挖掘知识点归纳
知识点一数据仓库1.数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。
2.数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。
3.数据仓库围绕主题组织4.数据仓库基于历史数据提供消息,是汇总的。
5.数据仓库用称作数据立方体的多维数据结构建模,每一个维对应于模式中的一个或者一组属性,每一个单元存放某种聚集的度量值6.数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据7.提供提供多维数据视图和汇总数据的预计算,数据仓库非常适合联机分析处理,允许在不同的抽象层提供数据,这种操作适合不同的用户角度8.OLAP例子包括下钻和上卷,允许用户在不同的汇总级别上观察数据9.多维数据挖掘又叫做探索式多维数据挖掘OLAP风格在多维空间进行数据挖掘,允许在各种粒度进行多维组合探查,因此更有可能代表知识的有趣模式。
知识点二可以挖掘什么数据1.大量的数据挖掘功能,包括特征化和区分、频繁模式、关联和相关性分析挖掘、分类和回归、聚类分析、离群点分析2.数据挖掘功能用于指定数据挖掘任务发现的模式,分为描述性和预测性3.描述性挖掘任务刻画目标数据中数据的一般性质4.预测性挖掘任务在当前数据上进行归纳,以便做出预测5.数据可以与类或概念相关联6.用汇总、简洁、精确的表达描述类和概念,称为类/概念描述7.描述的方法有数据特征化(针对目标类)、数据区分(针对对比类)、数据特征化和区分8.数据特征化用来查询用户指定的数据,上卷操作用来执行用户控制的、沿着指定维的数据汇总。
面向属性的归纳技术可以用来进行数据的泛化和特征化,而不必与用户交互。
形式有饼图、条图、曲线、多维数据立方体和包括交叉表在内的多维表。
结果描述可以用广义关系或者规则(也叫特征规则)提供。
9.用规则表示的区分描述叫做区分规则。
10.数据频繁出现的模式叫做频繁模式,类型包括频繁项集、频繁子项集(又叫频繁序列)、频繁子结构。
大数据挖掘基础知识解析
大数据挖掘基础知识解析随着互联网和物联网的迅速发展,各种形式的数据不断涌现,大数据时代已经到来。
如何从海量数据中找到有用的信息,并为企业和个人决策提供依据,已经成为当今社会所关注和追求的问题。
而大数据挖掘作为从数据中发掘规律和知识的一种重要手段,正在被广泛应用。
本文将对大数据挖掘的基础知识进行解析。
一、什么是大数据挖掘?大数据挖掘是指在大数据集中发现新的、有价值的、难以被发现的知识和信息的过程,它是通过挖掘数据的内在联系和规律来获得有用的信息。
大数据挖掘需要结合多个学科的理论和技术,如企业决策分析、机器学习、数据库管理、高性能计算等。
二、大数据挖掘的应用领域(1)金融领域。
通过大数据挖掘,可以对金融市场的趋势和风险进行分析和预测,以便制定有效的投资策略。
(2)医疗领域。
医疗数据是一个重要的大数据源,大数据挖掘可以帮助医生和医院进行患者诊治方面的决策,判断病情的严重性,诊断疾病,对医疗资源进行优化调配。
(3)市场营销。
大数据挖掘可以分析和预测消费者的购物行为和购买趋势,以便制定更加精准的市场营销策略和增加销售额。
(4)社交媒体。
大数据挖掘可以对社交媒体数据进行分析,帮助企业了解和掌握用户的需求和喜好,以便进行更有针对性的产品研发和服务。
三、大数据挖掘的主要技术与方法(1)数据集成。
大数据挖掘需要从各个数据源中搜集数据,并将其进行整合和清洗,以便于后续的处理与分析。
(2)数据预处理。
数据预处理是大数据挖掘中的一个重要步骤,它包括数据采样、数据过滤、数据转换、数据标准化等。
通过对数据进行预处理,可以确保数据的质量和可信度。
(3)数据探索性分析。
数据探索性分析可以帮助挖掘潜在的模式和知识。
它主要包括可视化和统计分析两个方面。
(4)分类预测。
分类预测是大数据挖掘中的一项重要任务,它可以将数据集中的对象分为几个不同的类别,以便于后续的决策分析。
(5)聚类分析。
聚类分析是大数据挖掘中的一种无监督学习方法,它可以将数据集中的对象分为若干个不同的簇,以便于挖掘簇内的规律和知识。
数据挖掘基础知识要点梳理
数据挖掘基础知识要点梳理数据挖掘是一项通过发现和分析大量数据以提取有用信息的过程。
这项技术广泛应用于商业、金融、医疗和其他领域,以帮助组织做出更明智的决策。
为了更好地理解数据挖掘的基础知识和要点,本文将梳理数据挖掘的重要概念和技术。
1. 数据挖掘的定义和目标数据挖掘是从大量数据中自动发现模式、关联、异常和趋势的过程。
其目标是提取出对于业务决策有意义的信息,并根据这些信息进行预测和优化。
2. 数据挖掘的步骤数据挖掘通常包括以下步骤:a) 数据清洗:清理数据并处理缺失值、重复值和异常值。
b) 数据集成:将多个数据源整合到一个统一的数据集中。
c) 数据转换:将数据转换成合适的格式和表示形式,以便进行分析。
d) 数据挖掘:使用各种技术和算法来发现模式、关联和趋势。
e) 模式评估:评估挖掘结果的有效性和可行性。
f) 结果解释:解释挖掘结果并将其应用于实际业务问题。
3. 数据挖掘的应用数据挖掘可以应用于各个领域,例如:a) 市场营销:通过分析客户数据来识别潜在消费者群体和需求趋势。
b) 银行和金融:用于信用评估、客户关系管理和欺诈检测。
c) 医疗保健:用于疾病预测、生物信息学和药物研发等。
d) 社交网络:用于社交推荐、用户行为分析和关系网络挖掘等。
4. 常用的数据挖掘技术和算法a) 分类算法:用于将数据集分类为已知类别。
b) 聚类算法:用于将数据集分为相似组。
c) 关联规则挖掘:用于发现数据项之间的关联关系。
d) 预测建模:用于根据历史数据进行未来趋势预测。
e) 异常检测:用于识别与正常模式不符的异常数据。
5. 数据挖掘的挑战和限制进行数据挖掘时,还会面临一些挑战和限制,例如:a) 数据质量问题:包括数据缺失、数据错误和噪声干扰等。
b) 高维数据:随着数据维度增加,挖掘和分析变得更复杂。
c) 隐私和安全问题:在处理敏感数据时需要保护隐私和数据安全。
d) 解释性问题:模型的黑盒性可能使解释结果变得困难。
总结:数据挖掘是从大量数据中发现有用信息的过程,通过清洗、集成、转换、挖掘和评估等步骤来实现。
数据挖掘复习知识点整理
数据挖掘:是从大量数据中发现有趣(非平庸的、隐含的、先前未知、潜在实用)模式,这些数据可以存放在数据库,数据仓库或者其他信息存储中。
挖掘流程:(1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类) (6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过 (1) 数据特征化:目标类数据的普通特性或者特征的汇总; (2) 数据区分:将目标类数据的普通特性与一个或者多个可比较类进行比较; (3)数据特征化和比较来得到。
关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起浮现的条件,通常要满足最小支持度阈值和最小置信度阈值。
分类:找出能够描述和区分数据类或者概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。
导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、含糊集)。
预测:建立连续值函数模型,预测空缺的或者不知道的数值数据集。
孤立点:与数据的普通行为或者模型不一致的数据对象。
聚类:分析数据对象,而不考虑已知的类标记。
训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或者分组,从而产生类标号。
第二章数据仓库数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。
从一个或者多个数据源采集信息,存放在一个一致的模式下,并且通常驻留在单个站点。
数据仓库通过数据清理、变换、继承、装入和定期刷新过程来构造。
面向主题:排除无用数据,提供特定主题的简明视图。
集成的:多个异构数据源。
时变的:从历史角度提供信息,隐含时间信息。
非易失的:和操作数据的分离,只提供初始装入和访问。
联机事务处理OLTP:主要任务是执行联机事务和查询处理。
联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或者‘知识工人’提供服务。
数据挖掘导论知识点总结
数据挖掘导论知识点总结数据挖掘是一门综合性的学科,它涵盖了大量的知识点和技术。
在本文中,我将对数据挖掘的导论知识点进行总结,包括数据挖掘的定义、历史、主要任务、技术和应用等方面。
一、数据挖掘的定义数据挖掘是从大量的数据中发掘出有价值的信息和知识的过程。
它是一种将数据转换为有意义的模式和规律的过程,从而帮助人们进行决策和预测的技术。
数据挖掘能够帮助我们从海量的数据中找到潜在的关联、规律和趋势,从而为决策者提供更准确和具有实际意义的信息。
二、数据挖掘的历史数据挖掘的概念最早可追溯到20世纪60年代,当时统计学家和计算机科学家开始尝试使用计算机技术来处理和分析大量的数据。
随着计算机硬件和软件技术的不断发展,数据挖掘逐渐成为一门独立的学科,并得到了广泛应用。
三、数据挖掘的主要任务数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测和预测等。
分类是将数据划分为多个类别的过程,其目的是帮助我们将数据进行分组和识别。
聚类是将数据划分为多个簇的过程,其目的是发现数据中的潜在模式和规律。
关联规则挖掘是发现数据中的关联规则和频繁项集的过程,其目的是发现数据中的潜在关联和趋势。
异常检测是发现数据中的异常值和异常模式的过程,其目的是发现数据中的异常现象。
预测是使用数据挖掘技术对未来进行预测的过程,其目的是帮助我们做出更准确的决策。
四、数据挖掘的技术数据挖掘的技术包括统计分析、机器学习、人工智能、数据库技术和数据可视化等。
统计分析是数据挖掘的基础技术,它包括描述统计、推断统计和假设检验等方法。
机器学习是一种使用算法和模型来识别数据模式和规律的技术,常见的机器学习算法包括决策树、神经网络、支持向量机和朴素贝叶斯等。
人工智能是数据挖掘的前沿技术,它包括自然语言处理、图像识别和智能决策等方面。
数据库技术是数据挖掘的技术基础,包括数据存储、数据检索和数据管理等技术。
数据可视化是数据挖掘的重要技术,它能够帮助我们将数据呈现为可视化的图表和图形,从而更直观地理解数据。
数据挖掘的基础知识和应用案例
数据挖掘的基础知识和应用案例数据是当今社会最宝贵的资源之一,而数据挖掘则是将这些数据转换为有价值的信息。
在互联网时代,我们每天都产生大量的数据,例如搜索记录、交易数据、社交媒体活动等,这些数据包含了丰富的信息,如果能够将其挖掘出来,就能为企业、政府和个人带来巨大的价值。
1.数据挖掘基础知识1.1 数据预处理在进行数据挖掘之前,需要对原始数据进行预处理。
这个过程包括数据清理、数据集成、数据变换和数据规约等,其目的是将原始数据转换为适合挖掘的数据。
数据清理是指对数据进行纠错、缺失值填补、异常值处理等操作,以确保数据的质量。
数据集成是将来自不同数据源的数据进行合并,并去除重复数据。
数据变换是指对数据进行归一化、降维、离散化等操作,以便于后续的算法处理。
数据规约是将数据集缩小到可以处理的大小,可以通过随机抽样、聚类等方式实现。
1.2 数据挖掘算法数据挖掘算法是指用于从数据中挖掘出模式和关系的数学方法和技术。
主要包括分类、聚类、关联规则和预测等四种常见算法。
分类算法是将数据进行分类,例如将邮件分类为垃圾邮件和非垃圾邮件。
聚类算法是将相似的数据进行分组,例如将顾客根据购买习惯分为不同的群体。
关联规则算法是用于寻找数据中的关联关系,例如购买商品A的人也有可能会购买商品B。
预测算法是根据已有的数据对未来进行预测,例如预测股票价格。
1.3 最佳实践数据挖掘的最佳实践包括选择合适的算法、确定特征、调整参数、评估模型等。
选择合适的算法要考虑数据的特征、目标和数据大小等因素。
确定特征是指选择重要的特征来进行挖掘,可以通过特征选择算法来实现。
调整参数是指对算法参数进行调整,以获得最佳性能。
评估模型是指对算法的结果进行评估,例如使用交叉验证和AUC等指标来评估分类算法的性能。
2.应用案例2.1 推荐系统推荐系统是利用用户的历史行为和其他信息来推荐相似的产品或服务,例如淘宝和京东的商品推荐。
推荐系统的实现需要大量的数据并使用复杂的算法,例如协同过滤、基于内容的过滤和深度学习等。
数据挖掘基础知识详细介绍
数据挖掘基础知识详细介绍数据挖掘是一种通过对大量数据的分析和建模来发现有用模式和规律的过程。
它可以帮助我们从海量数据中提取有意义的信息,并用于预测、决策分析和优化等领域。
本文将详细介绍数据挖掘的基础知识,包括数据预处理、数据挖掘任务、常用算法和评估方法等内容。
一、数据预处理数据预处理是数据挖掘的第一步,其目的是对原始数据进行清洗和转换,以便提高数据挖掘的准确性和可靠性。
常用的数据预处理方法包括数据清洗、数据集成、数据变换和数据规约。
1. 数据清洗:数据清洗是指通过处理异常值、缺失值和噪声等问题,使得数据变得更加干净和可靠。
常用的数据清洗方法有删除无效数据、插补缺失值和平滑噪声等。
2. 数据集成:数据集成是将来自不同数据源的数据整合成一个一致且可用的数据集。
数据集成过程需要解决数据冗余、一致性和主键匹配等问题。
3. 数据变换:数据变换是将原始数据通过一系列操作转换成适合数据挖掘的形式。
常用的数据变换方法包括标准化、归一化、离散化和属性构造等。
4. 数据规约:数据规约是通过压缩和抽样等方式减少数据集的大小,以提高数据挖掘的效率和可扩展性。
常用的数据规约方法有维度规约和数值约简等。
二、数据挖掘任务数据挖掘任务是指在数据集中发现隐藏的模式和规律。
常见的数据挖掘任务包括分类、聚类、关联规则挖掘和异常检测等。
1. 分类:分类是将事先定义好的类别标签分配给数据集中的样本。
分类算法通过学习已知样本的特征和标签之间的关系,可以用于预测未知样本的类别。
2. 聚类:聚类是将数据集中的样本划分为若干组,使得组内的样本相似度高,而组间的样本相似度低。
聚类算法可以帮助我们发现数据集中的潜在分组和簇结构。
3. 关联规则挖掘:关联规则挖掘是发现数据集中频繁出现的项集之间的关联关系。
常用的关联规则挖掘算法有Apriori算法和FP-growth 算法等。
4. 异常检测:异常检测是找出数据集中与其他样本不符合的异常样本。
异常检测算法可以帮助我们发现数据集中的异常点和离群值。
数据挖掘知识点概况及试题
第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3、数据处理通常分成两大类:联机事务处理和联机分析处理.4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。
5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP 实现。
6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。
7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。
8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发"的)、企业级的、详细的数据库,也叫运营数据存储。
9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则.10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。
第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据.2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。
因此,我们要求ETL过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。
3、数据抽取的两个常见类型是静态抽取和增量抽取。
静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。
4、粒度是对数据仓库中数据的综合程度高低的一个衡量。
数据挖掘与知识发现的关系
数据挖掘和知识发现是紧密相关的领域,它们都涉及从大量数据中提取有用的信息和知识。
以下是它们之间的关系:1.数据挖掘(Data Mining):数据挖掘是一种通过应用统
计分析、机器学习和模式识别等技术,从大规模数据集中发现隐藏的模式、规律和知识的过程。
数据挖掘的目标是通过对数据的整理、转换和建模,寻找其中的内在结构和关联,以帮助人们做出决策、预测趋势或发现新的见解。
2.知识发现(Knowledge Discovery):知识发现是一个
更广泛的过程,它包括使用数据挖掘技术来发现新的、有价值的知识,并将其转化为可理解和可应用的形式。
知识发现不仅涉及模式和规律的发现,还包括数据预处理、特征选择、模型评估和知识表示等环节。
3.数据挖掘通常是知识发现过程的一部分,它在知识发现中
扮演着重要的角色。
通过数据挖掘技术,可以从原始数据中提取出各种类型的模式和规律,如关联规则、分类模型、聚类结果等。
这些挖掘得到的知识可以进一步用于解决问题、做出预测、优化业务流程等。
总之,数据挖掘是知识发现的重要工具和技术手段,通过运用数据挖掘方法,可以从大规模的数据中提取出有意义的知识,进而为决策和创新提供支持。
数据挖掘知识竞赛题库及答案
数据挖掘知识竞赛题库及答案1、什么是KDD?A、A.数据挖掘与知识发现B、B.领域知识发现C、C.文档知识发现D、D.动态知识发现答案:A--------------------------------2、数据挖掘的主要任务是从数据中发现潜在的规则,从而能更好的完成描述数据、预测数据等任务。
A:对B:错答案:对--------------------------------3、数据挖掘的预测建模任务主要包括哪几大类问题?数据挖掘的预测建模任务主要包括哪几大类问题?()A.分类B.回归C.模式发现D.模式匹配答案:AB--------------------------------4、以下哪些学科和数据挖掘有密切联系?A、统计B、计算机组成原理C、矿产挖掘D、人工智能答案:AD--------------------------------5、离群点可以是合法的数据对象或者值。
答案:√--------------------------------1、下面哪个属于定量的属性类型:在上题中,属于定量的属性类型是:() A标称B序数C区间D相异答案:C--------------------------------2、只有非零值才重要的二元属性被称作:只有非零值才重要的二元属性被称作:()A.计数属性B.离散属性C.非对称的二元属性D.对称属性答案:C--------------------------------3、定量属性可以是整数值或者是连续值。
答案:正确--------------------------------4、中心趋势度量模(mode)是指A、算术平均值B、数据集中出现频率最高的值C、最大值D、最小值答案:数据集中出现频率最高的值--------------------------------5、以下哪些是属于中心趋势的度量A、平均值B、标准差C、五数概括D、中位数答案:平均值■中位数--------------------------------1、数据清洗的方法不包括A、缺失值处理B、噪声数据清除C、一致性检查D、重复数据记录处理答案:D--------------------------------2、对数据进行数据清理、集成、变换、规约是数据挖掘哪个步骤的任务?A、频繁模式挖掘B、分类和预测C、数据预处理D、噪声检测答案:数据预处理--------------------------------3、以下哪项不属于数据规约的方法?A、数据迁移B、维规约C、数据压缩D、数值规约答案:数据迁移--------------------------------4、大数据预处理的方法不包含以下哪个选项?A、数据清洗B、数据变换C、数据采集D、数据规约答案:数据采集--------------------------------5、在噪声数据中,波动数据比离群点数据偏离整体水平更大。
数据挖掘面试题目(3篇)
第1篇一、基础知识1. 请解释什么是数据挖掘?它与数据分析、数据仓库等概念有什么区别?解析:数据挖掘是从大量数据中提取有价值信息的过程,通常涉及使用统计方法、机器学习算法等。
数据分析侧重于对数据的理解和解释,而数据仓库则是存储大量数据的系统,用于支持数据分析和挖掘。
2. 什么是特征工程?为什么它在数据挖掘中很重要?解析:特征工程是指将原始数据转换为更适合模型处理的形式的过程。
它包括特征选择、特征提取和特征变换等。
特征工程的重要性在于,它可以提高模型的准确性和泛化能力,减少过拟合,提高模型的可解释性。
3. 请解释什么是机器学习?它与数据挖掘有什么关系?解析:机器学习是使计算机能够从数据中学习并做出决策或预测的方法。
数据挖掘是机器学习的一个应用领域,它使用机器学习算法来发现数据中的模式和知识。
4. 什么是监督学习、无监督学习和半监督学习?解析:- 监督学习:在已知输入和输出关系的情况下,学习一个函数来预测输出。
例如,分类和回归。
- 无监督学习:在只有输入数据的情况下,学习数据的结构和模式。
例如,聚类和关联规则学习。
- 半监督学习:结合了监督学习和无监督学习,使用部分标记数据和大量未标记数据。
5. 什么是交叉验证?它在数据挖掘中有什么作用?解析:交叉验证是一种评估模型性能的方法,通过将数据集分为训练集和验证集,不断替换验证集来评估模型在不同数据子集上的表现。
它有助于减少模型评估中的偏差和方差。
二、数据处理与预处理6. 什么是数据清洗?请列举至少三种常见的数据清洗任务。
解析:数据清洗是指识别和纠正数据中的错误、异常和不一致的过程。
常见的数据清洗任务包括:- 缺失值处理:识别并处理缺失的数据。
- 异常值检测:识别和修正异常值。
- 数据格式化:统一数据格式,如日期格式、货币格式等。
7. 什么是数据标准化?它与数据归一化有什么区别?解析:数据标准化是指将数据缩放到具有相同尺度范围的过程,通常使用z-score 标准化。
数据分析知识:常见的数据挖掘算法
数据分析知识:常见的数据挖掘算法数据挖掘是从大量数据中提取有价值信息的过程。
数据挖掘是利用计算机技术、统计学和人工智能对大量数据进行深入的分析和挖掘,并找出潜在的规律、趋势和模式。
数据挖掘的目的是通过挖掘数据的内在价值来提高决策的质量。
数据挖掘算法是实现数据挖掘的核心。
数据挖掘算法是一组用来发现隐藏在数据中的模式、趋势和因果关系的技术。
下面我们来介绍一些常见的数据挖掘算法。
1.分类算法分类算法是一种监督学习算法,用于对一组已知类别的数据进行分类。
最常见的分类算法是决策树、朴素贝叶斯和支持向量机。
-决策树决策树是一种基于树状结构的分类算法。
决策树通过将数据集划分成更小的数据集来构建决策树,并基于各种属性对数据进行分类。
决策树是一种简单而强大的分类算法,可用于大型数据集的分类,适用于分类和回归问题。
-朴素贝叶斯朴素贝叶斯是一种概率统计分类算法。
它基于贝叶斯定理和假设特征之间存在独立性来进行计算。
在朴素贝叶斯算法中,每个属性被视为独立的特征,因此称为“朴素”。
它通常用于文本分类、垃圾邮件过滤等问题。
-支持向量机支持向量机是一种常用的分类和回归算法。
它基于将数据集分为两个类别的最佳超平面来进行分类。
支持向量机算法在数据分类的最优边界上寻找最大化间隔。
2.聚类算法聚类算法是一种无监督学习算法,用于将一个未标记的数据集分成多个类别。
最常见的聚类算法有k均值聚类、层次聚类和DBSCAN。
- k均值聚类k均值聚类是一种常用聚类算法,它基于距离度量将数据点划分为k个簇。
它通过将数据点归入离其最近的簇来进行分类。
k均值聚类是一种简单而高效的聚类算法,适用于基于距离度量的数据集。
-层次聚类层次聚类是一种基于树状结构的聚类算法。
它将数据集划分成多个层次,并在每个层次上进行分类。
它在初始阶段将每个数据点视为单个类别,并通过计算各个类别之间的相似度来进行合并。
层次聚类是一种灵活而高效的聚类算法,适用于大型数据集。
- DBSCANDBSCAN是一种基于密度的聚类算法。
数据挖掘的基础知识和方法
数据挖掘的基础知识和方法数据挖掘是一种从大量数据中提取出有价值信息的技术和过程,它涉及到多个学科领域,包括统计学、机器学习、模式识别等。
在当今信息化时代,数据挖掘在各个领域中被广泛应用,能够帮助人们发现隐藏在大数据背后的规律和趋势,为决策提供支持。
本文将介绍数据挖掘的基础知识和常用方法。
一、数据挖掘的基础知识1. 数据集数据挖掘的第一步是获取数据集,数据集是指从现实世界中收集到的一组相关数据。
数据集可以包括数值、文本、图像等多种类型的数据。
2. 数据预处理数据预处理是数据挖掘中的重要一环,它包括数据清洗、数据集成、数据变换和数据规约等步骤。
数据清洗是指去除数据集中的异常值、噪声和缺失值,以保证数据的质量。
数据集成是指将多个数据源的数据整合到一个数据集中。
数据变换是指将原始数据转化为适合挖掘的形式,例如将文本数据转化为向量表示。
数据规约是指通过选择、抽样、聚类等方法减少数据集的规模。
3. 数据可视化数据可视化是将数据通过图表、图像等形式展现出来,以便人们更直观地理解数据。
数据可视化可以帮助发现数据之间的关系、趋势和异常。
二、数据挖掘的常用方法1. 分类与预测分类与预测是数据挖掘中的核心任务之一,它用于根据已有的数据样本来预测未知样本的类别或值。
常用的分类与预测方法包括决策树、朴素贝叶斯、支持向量机等。
2. 聚类分析聚类分析是将数据集中的样本按照相似性进行分组的方法。
聚类分析可以帮助发现数据中的潜在类别和结构。
常用的聚类方法包括K均值聚类、层次聚类、DBSCAN等。
3. 关联规则挖掘关联规则挖掘是发现数据中的频繁项集和关联规则的方法。
关联规则是指数据中的项之间的关联关系,例如购物篮分析中的商品组合。
常用的关联规则挖掘算法包括Apriori算法和FP-growth算法。
4. 时序分析时序分析是分析数据随时间变化的规律和趋势的方法。
时序分析可以应用于预测、异常检测等场景。
常用的时序分析方法包括时间序列模型、循环神经网络等。
数据挖掘与知识发现复习要点
数据预处理
1.中心趋势度量:均值、中位数、众数、中列数P21-23
2.数据预处理的主要任务P29
3.数据清理:为什么要清理、缺失值的处理方法、噪声数据的平滑方法(分箱、聚类、回归)P30-34
4.数据集成(概念)P34
5.数据变换:概念,最小-最大规范化、Z-Score、小数定标P38-40
4.层次聚类:概念、凝聚的层次聚类(AGNES算法,答题要求:写出点到点的距离,每步合并的簇、合并后的结果)、分裂的层次聚类(DIANA算法了解)P135-136
5.基于密度的聚类(DBSCAN算法)(核心点、直接密度可达、密度可达、密度相连、噪声)P143-144
*分类
1. 分类的过程P160-162
2.KNN算法P164-165(看课件例题,答题要求:写出未知样本与各个已知样本的距离或相似度,指出k个最近邻,写出未知样本所属类别)
3.决策树的概念P167-170
4.ID3分类算法:信息熵、信息增益、建立决策树、ID3算法的特点、C4.5算法的改进P171-174、176(此部分注意概念即可)
5.贝叶斯定理相关概念P181-182(看课件)
题型:
一、选择题(共28分,14小题)
二、判断题(共7分,7小题)
三、简答题(共20分,3小题)(数据仓库、关联规则提升度、KNN分类算法)
四、算法应用题(共45分,3小题,关联规则、聚类、分类三大类算法)
知识点:
绪论
1.KDD的概念P2;KDD的过程P3-4
2.数据挖掘的对象(关系数据库、数据仓库、事务数据库)
5.关联规则的评估:计算提升度P104-106
*聚类分析
1.聚类的概念P118
数据挖掘的常见技术
数据挖掘的常见技术数据挖掘是一种通过从大量数据中发现隐藏模式、关联和信息的过程。
它利用各种算法和技术来分析数据,并从中提取有价值的知识和见解。
在这篇文章中,我们将介绍一些常见的数据挖掘技术。
一、聚类分析聚类分析是一种将数据分组为具有相似特征的集合的技术。
它通过计算数据点之间的相似性来确定数据点的聚类。
聚类分析可以用于市场细分、社交网络分析等许多领域。
二、关联规则挖掘关联规则挖掘是一种寻找数据集中项之间关联关系的技术。
它通过识别频繁项集和关联规则来发现数据中的关联模式。
关联规则挖掘可以用于购物篮分析、推荐系统等。
三、分类和回归分析分类和回归分析是一种通过学习数据集中的样本来预测新数据的技术。
分类分析将数据分为不同的类别,而回归分析则预测数据的数值。
这些技术可以应用于信用评分、风险分析等。
四、异常检测异常检测是一种识别数据中异常或异常模式的技术。
它可以帮助发现潜在的欺诈行为、故障检测等。
异常检测可以使用统计方法、机器学习方法等。
五、文本挖掘文本挖掘是一种从大量文本数据中提取有用信息的技术。
它可以用于情感分析、主题建模等。
文本挖掘通常使用自然语言处理和机器学习技术。
六、时间序列分析时间序列分析是一种研究时间序列数据的技术。
它可以用于预测未来趋势、分析季节性变化等。
时间序列分析可以使用统计方法、神经网络等。
七、网络分析网络分析是一种研究网络结构和关系的技术。
它可以帮助发现社交网络中的关键人物、识别网络中的社群等。
网络分析可以使用图论、机器学习等方法。
八、决策树决策树是一种通过树状结构表示决策规则的技术。
它可以帮助做出分类和回归决策。
决策树可以使用信息增益、基尼指数等方法构建。
九、支持向量机支持向量机是一种通过构建超平面来做分类和回归的技术。
它可以处理高维数据和非线性问题。
支持向量机可以使用不同的核函数进行分类。
十、神经网络神经网络是一种模拟人脑神经元之间连接的技术。
它可以用于分类、回归等任务。
神经网络可以使用不同的层次和激活函数进行建模。
学习数据挖掘的基本知识
学习数据挖掘的基本知识第一章:数据挖掘的定义和概念数据挖掘是指通过使用计算机技术和算法,从大量数据中自动发掘并提取出有价值的信息和知识的过程。
它可以帮助人们发现隐藏在数据背后的模式、关联和趋势,以辅助决策和预测未来的趋势。
在数据挖掘中,需要重点关注几个基本概念。
首先是数据采集,它包括从各种来源获取数据的过程,如数据库、互联网、传感器等。
其次是数据预处理,即对原始数据进行清洗和整理,以去除噪声、缺失值和异常样本,并进行归一化、编码等处理。
接下来是特征选择和转换,通过选择最具代表性的特征和将数据转换到合适的表示形式,以提高挖掘的精度和效率。
最后是模型构建和评估,选择适当的挖掘算法和模型进行训练和测试,并通过评估指标来评价挖掘结果的质量。
第二章:常用的数据挖掘技术和算法数据挖掘涵盖了多个技术和算法,下面介绍几种常用的技术和算法。
1. 关联规则挖掘:通过挖掘不同项之间的关联关系,发现在一个项集中某些项的出现往往导致了另一些项的出现。
例如,购买尿布的人也往往同时购买啤酒。
2. 分类和预测:通过对已有数据的特征和标签进行训练,构建分类模型或预测模型,用于对新数据进行分类或预测。
例如,通过分析患者的病历数据和疾病结果,建立疾病预测模型。
3. 聚类分析:将数据集中的对象按照相似性进行分组,使得组内的对象相似度高,组间的相似度低。
例如,将顾客按购买行为进行分组,以便进行精准推荐。
4. 时间序列分析:对具有时间属性的数据进行分析和预测,揭示数据随时间变化的规律。
例如,通过分析过去几年的销售数据,预测未来几个季度的销售趋势。
第三章:数据挖掘过程中的常见问题和挑战在进行数据挖掘的过程中,可能会遇到一些常见问题和挑战。
1. 维度灾难:随着数据维度的增加,计算和存储的成本呈指数级增长。
因此,如何进行特征选择和降维是一个关键问题。
2. 数据质量:原始数据中可能包含噪声、缺失值和异常样本,这会对数据挖掘结果的准确性造成影响。
如何进行数据清洗和整理是一个必须解决的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年12月18日5时6分
24
分类 VS 预测 相同点
两者都需要构建模型来估计未知值
不同点
分类法主要是用来预测类标号(分类属性值) 预测法主要是用来估计连续值(量化属性值
2014年12月18日5时6分
4
统计学与数据挖掘的区别
数据
样本数量不同(在统计学中样本数量大于30,则成为大样本) 数据来源和质量不同 数据挖掘既可以处理结构化数据,也可以处理非结构化和异型数据 有些数据挖掘的分析方法是统计学中没有的,如强调实时分析(协同过滤) 统计分析方法在对大规模数据处理时不能像数据挖掘那样采用神经网络、遗传算法等 机器学习的方法 模型(统计学) VS 模式(数据挖掘) 统计建模强调模型的普适性,数据挖掘强调从数据中发现模式 统计学强调模型,运算量居于次要地位 数据挖掘的精华在于结果的未知性,强调探索性分析,与之对应的是算法而不是模型 统计学:以数学为基础,每种方法有严格的证明体系(主成分分析,回归分析) 数据挖掘:采用合理的算法,这些算法不全都有坚实的数学基础作支撑。
其中和是回归系数,可以根据给定的数据 点,通过最小二乘法来求得
多元回归:Y = + 1X1 + 2 X2
线性回归的扩展,设计多个预测变量,可以 用最小二乘法求得上式中的,1 和2
非线性回归:Y = + 1X1 + 2 X22+ 3
X33
对不呈线性依赖的数据建模 使用多项式回归建模方法,然后进行变量变 换,将非线性模型转换为线性模型,然后用 最小二乘法求解
方法
模型(模式)
算法
方法论
2014年12月18日5时6分
5
怎么做数据挖掘?
数据挖掘一般流程
定义问题 数据理解 数据预处 理 建立模型 实际挖掘 工作 评价和解 释 应用
各步骤之间互相影响、反复调整,形成一种螺旋式上升的过程
2014年12月18日5时6分 6
数据导入
数据预处理
模型挖掘
EP
1 2
(t pi
O pi )
2
2014年12月18日5时6分
18
优点
• 预测精度总的来说较高
• 健壮性好,训练样本中包含错误时也可正常工作
• 输出可能是离散值、连续值 • 对目标进行分类较快
缺点
• 训练(学习)时间长
• 蕴涵在学习的权中的符号含义很难理解 • 很难跟专业领域知识整合
决策树的生成包括两个阶样本中选择包含信息量最大的属性作为根节点 其次,中间结点是该根节点出发的的所有子集中包含信息量最大的属性 树的修剪 识别并删除那些反映噪声或孤立点的分支
决策树的构建过程是一个递归的过程,所以需要确定停止条件,否则过程将不会结束。一种 最直观的方式是当每个子节点只有一种类型的记录时停止,但是这样往往会使得树的节点过多,导 致过拟合问题(Overfitting)。另一种可行的方法是当前节点中的记录数低于一个阀值, 那么就停止分割,将记录中出现比例最大对应的分类作为当前叶节点的分类。
数据挖掘基本知识与算法介绍
数据应用部 黄金宝 2014-5-16
2014年12月18日5时6分
1
目录
数据挖掘的基本概念 数据挖掘流程 数据挖掘的基本算法 数据挖掘应用及演示案例
2014年12月18日5时6分
2
什么是数据挖掘?
存在太多数据挖掘的定义,但基本上有这样一种描述结构
To find / discover / extract / dredge / harvest 、、、 Interesting / novel / useful / implicit / actable / meaningful 、、、 Information / knowledge / patterns / trends / rules / anomalies 、、、
2014年12月18日5时6分
21
Bagging技术演示
boost技术演示
2014年12月18日5时6分
22
预 测 注:预测是构造和使用模型评估给定样本可能具有的属性 或值空间. 常用的预测方法 回归分析
神经网络
2014年12月18日5时6分
23
回归分析 线性回归:Y = + X
2014年12月18日5时6分
17
2.感知机
感知机原理: 神经元i的输入(神经元J输出)为
Ii
[w ij xj
i ]
作用函数为[0,1]型阶梯函数
Xj为神经元j的输入,wij是连接权值,神经元i的输出为
Oi f(I i )
设神经元i的期望输出为D,通过样本学习,修正权值,使得计算输出和期望 输出之差尽可能小 3.BP神经网络 (1)多层网络结构(不仅有输入、输出结点还有一层或多层隐结点,每一层 连接都对应一个连接权值和结点阀值) (2)作用函数为(0,1)S型函数 (3)误差公式为
它们同时输入神经元j,神经元的单输出用oj表示
特性2:输入类型:兴奋性和抑制性
生物神经元具有不同的突触性质和突触强度,其对输入 的影响是使有些输入在神经元产生脉冲输出过程中所 起的作用比另外一些输入更为重要。图(b)中对神经 元的每一个输入都有一个加权系数wij,称为权重值, 其正负模拟了生物神经元中突触的兴奋和抑制,其大
2014年12月18日5时6分
14
优点
• 算法简单,易理解
• 有坚实的数学理论支撑,同时有稳定的分类效率
缺点
• 模型假设的各属性之间相互独立,这个在实际应用中很
难实现
2014年12月18日5时6分
15
常用的分类方法——神经网络
神经网络是一组连接的输入/输出单元,每个连接都与一个权相连。 在学习阶段,通过调整神经网络的权,使得能够预测输入样本的 正确标号来学习。 1.MP模型 每个神经元的状态只取0或1,分别代表抑制与兴奋,每个神经元 的状态由MP方程决定: (其中Wi是权值,T是阀值,f(x)是作用函数) y f[ Wi x Ei T ] 1.[0,1]阶梯函数
2014年12月18日5时6分
19
其他的分类方法
Logistic回归
支持向量机(SVM) k-最临近分类(K-NN) 遗传算法 粗糙集方法
2014年12月18日5时6分
20
提高分类法的准确性 Bagging技术和boosting技术都通过将T个学习得到的分 类法C1,C2…CT组合起来,从而创造一个改进的分类法C* Bagging技术 对训练集S进行T次迭代,每次通过放回取样选取样本集St, 通过学习St得到分类法Ct 对于未知样本X,每个分类法返回其类预测,作为一票 C*统计得票,并将得票最高的预测赋予X Boosting技术 每个分类Ct赋予一个权值 Ct的权值取决于分类准确率
student?
no no
yes yes
excellent no
fair yes
2014年12月18日5时6分
13
常用的分类方法——贝叶斯分类
贝叶斯分类利用统计学中的贝叶斯定理,来预测类成员的概率,即给定 一个样本,计算该样本属于一个特定的类的概率。(假设每个属性之间 都是相互独立的,并且每个属性对分类问题产生的影响都是一样的) 算法过程; 1.待分类项X=(a1、a2、….an),其中a为X的一个特征的属性 2.类别集合Y=(c1、c2、…cn),现在计算P(c1/X)、P(c2/X).. P(cn/X)
3
数据挖掘的理解
• 数据挖掘是指从数据库的大量数据中揭示 出隐含的、先前未知的并有潜在价值的信 息的非平凡过程。
要点一
• 数据挖掘是一种决策支持过程,它主要 基于人工智能、机器学习、模式识别、统
要点二
计学、数据库、可视化技术等,高度自动
化地分析企业的数据,做出归纳性的推理, 从中挖掘出潜在的模式,帮助决策者调整 市场策略,减少风险,做出正确的决策。
2014年12月18日5时6分 9
分类(有监督的学习过程,根据训练数据集和类标号属性,构建模型来分类现
有数据,并用来分类新数据)
第一步,建立一个模型,描述预定数据类集和概念集
分类算法
训练数 据集
分类规则
IF rank = ‘professor’ OR years > 6 THEN tenured = ‘yes’
应用决策树: 对未知样本进行分类
在决策树上对新样本从根结点开始,按照样本属性的取值,逐渐沿着决策树向下, 直到叶节点,该叶节点代表的类就是新样本的类别
2014年12月18日5时6分 11
优点
• 决策树简单易理解,容易生成便于解释的规则
• 既能处理数值型属性,也能处理非数值型的属性 • 能在相对较短时间内对大量数据源作出可行且效果良好的结果(高
3根据贝叶斯定理P(ci/X)= P(X/ci)* P(ci)/ P(X)=
4.计算P(ck/X)= max(P(ci/X))=max(
P(aj/ci)* P(ci)/ P(X)
P(aj/ci)* P(ci)/ P(X))
5.对所有的类别P(X)是常数,故P(aj/ci)* P(ci)最大项对应的类别就是X所属 类别
In massive data / large data set / large database / data warehouse 、、、
Wisdom Knowledge Information Data
2014年12月18日5时6分
Knowledge + experience Information + rules Data + context