第三章课外思考题汇总(化工热力学)

合集下载

化工热力学马沛生第一版第三章习题答案

化工热力学马沛生第一版第三章习题答案

习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。

V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。

3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。

需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。

化工热力学 第三章(魏顺安课后习题)

化工热力学 第三章(魏顺安课后习题)


实际态 T、p
真实气体 H、S
1
理想气体 H 、S 基准态 T0、p 0
* 0
3
* 0


2
理想气体 H*、S* 实际态 T、p


1 2 3 因 p 0 1atm, 所 1 0 为 以 2 3
• 气体在基准态下的 H0和S0 是相对值:
e 0.78785 f P 1.5962 MPa
0.23845
普遍化方程
BPc P r Z 1 RTc Tr BPc B 0 B1 RTc
成于勤,毁于惰, 荒于嬉,败于奢
pr 0 1 ln i B B Tr


铁可磨,石可穿, 攻必克,胜必谦
H0 0
S0 0
id R
• 从设计过程可知:
H H0 H H2 H3 nH nH
id
S S0 S S2 S3 nS nS
1cal( 热力学 ) 4.184J
R
• 为方便后面求解,现将摩尔等压热容进行单位换算。
Cp (0.886 5.602 102 T 2.771 105 T 2 5.266 109 T 3 ) 4.184 3.707 0.2344 1.159 10 4 T 2 2.203 10 8 T 3 ( J .mol1 . K 1 ) T
ZRT 0.65500 8.314 410 Vm 0.40806 10 3 m 3 .mol1 p 5471.55 103
V nVm 1 0.40806 103 4.0806 104 m 3
• (2) 求H、S
设计如下热力学过程:

化工热力学课后习题答案

化工热力学课后习题答案

习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度 的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P =P (T ,V )的自变量中只有一个强度 性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

22. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或(以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P ,则mol,温度为 和水。

《化工热力学》通用型第二、三章答案精品文档34页

《化工热力学》通用型第二、三章答案精品文档34页

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。

而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。

因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。

理想气体状态方程是最简单的状态方程:2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r srTp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=s r p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。

化工热力学第三版答案第3章习题

化工热力学第三版答案第3章习题
A.>
B.<
C.=
3.T温度下的过热纯蒸汽的压力P(B。参考P-V图上的亚临界等温线。)
A.>
B.<
C.=
4.纯物质的第二virial系数B(A。virial系数表示了分子间的相互作用,仅是温度的函数。)
A仅是T的函数
B是T和P的函数
C是T和V的函数
D是任何两强度性质的函数
5.能表达流体在临界点的P-V等温线的正确趋势的virial方程,必须至少用到(A。要表示出等温线在临界点的拐点特征,要求关于V的立方型方程)
1.状态方程的偏离焓和偏离熵分别是______________________________________________________________和
__________________________________________________________;若要计算 和 还需要什么性质?____;其计算式分别是_________________________________________________________和
3.对于混合物体系,偏离函数中参考态是_________________________________________。
四、计算题
1.试用PR状态方程和理想气体等压热容方程 计算纯物在任何状态的焓和熵。设在 下的气体的焓和熵均是零。(列出有关公式,讨论计算过程,最好能画出计算框图)。
2.a和20℃变化到30MPa和300℃的焓变化和熵变化,既可查水的性质表,也可以用状态方程计算。
7.气体混合物的virial系数,如B,C…,是温度和组成的函数。(对。)
二、选择题
1.指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C。参考P-V图上的亚临界等温线。)

化工热力学答案课后总习题答案详解

化工热力学答案课后总习题答案详解

化工热力学答案—课后总习题答案详解第二章习题解答一.问答题:2-1为什么要研究流体的"VT关系?【参考答案】:流体P-V-T关系是化工热力学的基石,是化工过程开发和设讣、安全操作和科学研究必不可少的基础数据。

(I)流体的PVT关系可以直接用于设汁。

(2)利用可测的热力学性质(T, P, V等)计算不可测的热力学性质(H, S, G.等)。

只要有了旷/T关系加上理想气体的C;;, 可以解决化工热力学的大多数问题匚以及该区域的特征:同时指岀其它重要的点、2- 2 ⅛ P-V图上指出超临界萃取技术所处的区域,而以及它们的特征。

【参考答案】:1)超临界流体区的特征是:环、P>Pco2)临界点C的数学特征:(^PM Z)/ =° (在C点)($2p/刃2)・0 (在C点)3)饱和液相线是不同压力下产生第一个气泡的那个点的连线:4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。

5)过冷液体区的特征:给左压力下液体的温度低于该压力下的泡点温度。

6)过热蒸气区的特征:给左压力下蒸气的温度髙于该压力下的露点温度。

7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。

2-3要满足什么条件,气体才能液化?【参考答案】:气体只有在低于7;条件下才能被液化。

2-4不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决左偏离理想气体程度的最本质因素?【参考答案】:不同。

真实气体偏离理想气体程度不仅与7∖ P有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子7;, /和Q。

2-5偏心因子的概念是什么?为什么要提出这个槪念?它可以直接测呈:吗?【参考答案】:偏心因子。

为两个分子间的相互作用力偏离分子中心之间的作用力的程度。

其物理意义为:一般流体与球形非极性简单流体(氮,氟、毎)在形状和极性方而的偏心度。

为了提高计算复杂分子压缩因子的准确度。

化工热力学(第三版)第3章答案

化工热力学(第三版)第3章答案

化工热力学(第三版)习题解答集朱自强、吴有庭、李勉编著前言理论联系实际是工程科学的核心。

化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。

特别使他们感到困惑的是难以和实际问题进行联系。

为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。

凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。

《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。

《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。

为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。

在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。

使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。

参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。

在此深表感谢。

由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 的普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c ccR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.15 2.9846104.05310V -⨯=+⨯⨯350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

化工热力学第三版(完全版)课后习题答案解析

化工热力学第三版(完全版)课后习题答案解析

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。

U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。

H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。

U = 0 ,错误!未找到引用源。

H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。

《化工热力学》详细课后习题答案解析(陈新志)

《化工热力学》详细课后习题答案解析(陈新志)

2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。

化工热力学第三版第3章答案

化工热力学第三版第3章答案

化工热力学(第三版)习题解答集朱自强、吴有庭、李勉编著前言理论联系实际是工程科学的核心。

化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。

特别使他们感到困惑的是难以和实际问题进行联系。

为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。

凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。

《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。

《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。

为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。

在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。

使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。

参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。

在此深表感谢。

由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pit zer 的普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ ﻩﻩﻩﻩﻩ ﻩ(E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa,将它们代入a , b表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

化工热力学第三章习题答案

化工热力学第三章习题答案
题出水的汽化潜hfg根据题力学基本题系式依次求出h第二13年4月14日13年4月14日第二13年4月14日v1vfm10435103100010435m3题题水题蒸汽v2vgm167301031016730m3v2v116720m3将v代入utu37315604851030101131061672020879084j20879kj第二由dasdtpdv且dt001011310616720j16909kj由dgsdtvdp且dt0dp0第二饱饱
2013年3月28日
§第二题
2013年3月28日
§第二题
始态水为液体,V1 =Vf·m =1.0435× 10-3× 10=0.010435m3 终态水为蒸汽,V2 =Vg·m =1673.0× 10-3× 10=16.730m3 故△V= V2-V1=16.720m3 将△V代入△U=T△S-P△V,得 △U=373.15× 60.485 × 103-0.10113× 106 × 16.720 =20879084J≈20879kJ
2013年3月28日
§第二题
解法二 思路:查出水的汽化潜热Hfg,根据热力学基 本关系式依次求出△H,△S, △A,△U,△G
• 热力学基本关系式:
dH=TdS+Vdp dA=-SdT-pdV dU=TdS-pdV dG=-SdT+Vdp
T,p不变,V变 dH=TdS+Vdp=TdS dA=-SdT-pdV=-pdV dU=TdS-pdV dG=-SdT+Vdp=0
2013年3月28日
§第二题
由dA=-SdT-pdV,且dT=0,得 △A= -p△V= -0.10113× 106 × 16.720J =-1690.9kJ 由dG=-SdT+Vdp,且dT=0,dp=0,得 △G=0

化工热力学课后习题答案

化工热力学课后习题答案
dP s =
sv sl sv sl 1、表达纯物质的汽平衡的准则有 G (T ) = G (T )或G T ,V = G T ,V (吉氏函数) 、 dT
V sv
(
)
(
)
∆H vap T∆V vap
(Claperyon
(Maxwell 等面积规则) 。它们能(能/不能)推广到其它类型的相平衡。 方程) 、V 2、对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不同) ;一定温度下的泡点与露点,在 P -T 图上是重叠的(重叠/分开),而在 P-V 图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点 的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区。纯物质汽液平衡时,压 力称为蒸汽压,温度称为沸点。
s 汽化曲线方程是 P = 610.62 + 2.4688(T − 273.15)
2508 = 2.4688 8.314 × 273.15 273.15 × -1 610.62 PaK
解两直线的交点,得三相点的数据是: Pt = 615.09 Pa, Tt = 273.1575 K 2. 试由饱和蒸汽压方程(见附录 A-2) ,在合适的假设下估算水在 25℃时的汽化焓。
T2 T 终态的温度分别为 T1 和 T2,则该过程的 ;同样,对于初、终态压力相等的过程有 (对。状态函数的变化仅决定于初、终态与途径无关。 )
1
∆U = CV dT

T2
∆H = C P dT
T1


二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是 T 的 1mol 理想气体从 (Pi , Vi) 等温可逆地膨胀到 (Pf , Vf) ,则所做的功为 W = RT ln Pf Pi Wrev = RT ln Vi V f (以 V 表示)或 rev (以 P 表示)。

化工热力学习题与思考题(自考)

化工热力学习题与思考题(自考)
化工热力学习题与思考题 第一部分:思考题 Chapter1.绪论 1-1 化工热力学的研究范围、主要应用、研究方法及其特点? 1-2 化工热力学中的主要名词和术语?如:体系、外界、环境、状态、过程、循环、可逆等 1-3 状态函数定义、分类、特点?并能举例说明。如:表压是不是状态函数?为什么? 1-4 过程参数?并能举例说明。 1-5 何谓温度?如何表示?各种表示方法之间的关系? 1-6 何谓循环?分类?作用?特点? Chapter2.流体的 p、V、T 关系 2-1 为什么纯物质的热力学性质可用平面图完整地表示出来? 2-2 临界状态?当物质处于临界点时有何特点? 2-3 理想气体微观模型、状态方程形式、作用及方程中各参数的含义? 2-4 真实气体微观模型?真实气体状态方程通常有哪几种类型?熟悉几个典型的真实气体状 态方程如:Van der Waals、R-K、S-R-K、Virial Eq 等及方程中各参数的含义。 2-5 立方型状态方程通常可采用何法求解?(掌握 Newton 迭代法) 2-6 对比态原理?偏心因子? 2-7 普遍化法种类?是否通用?如何使用? 2-8 造成气体混合物非理想性的原因?典型的混合规则?虚拟临界参数? 2-9 体积膨胀系数、压缩系数的定义式? Chapter3.纯流体的热力学性质 3-1 单相流体系统基本方程? 3-2 点函数间的数学关系式——Green 定律、Euler 连锁式及其应用? 3-3 Maxwell 关系式及其作用? 3-4 纯理想气体、液体、固体状态变化过程的焓、熵变计算? 3-5 纯真实气体状态变化过程的焓、熵变计算的方法类型? 3-6 剩余性质的定义及其处理方法? 3-7 湿蒸汽的概念?干度的计算? 3-8 常用热力学数据表格的使用(至少掌握线性内插法)? 3-9 T-S 图的构成,图中点、线、面的含义及典型热力过程在图中的表示? Chapter5.化工过程能量分析 5-1 热力学第一定律的内容?作用?表达式?局限性? 5-2 何谓稳流体系?稳流体系热力学第一定律表达式?简化形式及其用途? 5-3 热效率的定义、典型过程热效率的计算(至少掌握换热器的有关计算) 。 5-4 热转化为功的条件、方向、极限?卡诺定理内容、表达式、应用? 5-5 熵的定义、微观意义?典型过程熵变的计算? 5-6 热力学第二定律的内容?作用?表达式? 5-7 理想功、损失功、热力学效率的定义、计算? 5-8 以下说法中哪个是正确的(1)体系所经历的过程的不可逆程度越大,则该体系的熵变就 越大; (2)不论体系经历什么样的过程,其熵变总是增大的; (3)只要体系经历的是实际过

《化工热力学》详细课后习题答案解析(陈新志)

《化工热力学》详细课后习题答案解析(陈新志)

2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。

化工热力学各章节习题

化工热力学各章节习题

化工热力学各章节习题第一章绪论一、选择题(共3小题,3分)1、(1分)关于化工热力学用途的下列说法中不正确的是()A. 可以判断新工艺、新方法的可行性。

B. 优化工艺过程。

C. 预测反应的速率。

D•通过热力学模型,用易测得数据推算难测数据;用少量实验数据推算大量有用数据。

E•相平衡数据是分离技术及分离设备开发、设计的理论基础。

2、(1分)关于化工热力学研究特点的下列说法中不正确的是()(A )研究体系为实际状态。

(B)解释微观本质及其产生某种现象的内部原因。

(C)处理方法为以理想态为标准态加上校正。

(D)获取数据的方法为少量实验数据加半经验模型。

(E)应用领域是解决工厂中的能量利用和平衡问题。

3、(1分)关于化工热力学研究内容,下列说法中不正确的是()A. 判断新工艺的可行性。

B.化工过程能量分析。

C.反应速率预测。

D.相平衡研究参考答案一、选择题(共3小题,3分)1、(1 分)C2、(1 分)B3、(1 分)C第二章流体的PVT关系一、选择题(共17小题,17分)1、(1分)纯流体在一定温度下,如压力低于该温度下的饱和蒸汽压,则此物质的状态为()。

A .饱和蒸汽 B.饱和液体C.过冷液体D.过热蒸汽2、(1分)超临界流体是下列__________ 条件下存在的物质。

A. 高于T c和高于P cB.临界温度和临界压力下C.低于T c和高于P cD.高于T c和低于P c3、(1分)对单原子气体和甲烷,其偏心因子3,近似等于____________。

A. 0B. 1C. 2D. 34、(1 分)0.1Mpa ,400K 的N2 1kmol体积约为_________3A 3326LB 332.6LC 3.326LD 33.26 m5、(1分)下列气体通用常数R的数值和单位,正确的是__________C 82.05 cm atm/KD 8.314 J/km°l K3 3A 8-314 10 Pa m /kmol KB 1.987cal/kmol K6、(1分)超临界流体是下列_____ 条件下存在的物质。

马沛生 主编 化工热力学 第三章习题解答汇编

马沛生 主编 化工热力学 第三章习题解答汇编

第三章 纯流体的热力学性质计算思考题3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态?答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。

3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。

3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物?答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。

3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。

热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随着温度的变化”,这种说法是否正确?答:不正确。

剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。

3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零?答:不是。

只有理想气体在定温过程中的热力学内能和焓的变化为零。

3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否交叉使用这些图表求解蒸气的热力过程?答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。

不能够交叉使用这些图表求解蒸气的热力过程。

3-8 氨蒸气在进入绝热透平机前,压力为2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某人提出只要控制出口压力就可以了。

你认为这意见对吗?为什么?请画出T -S 图示意说明。

答:可以。

因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。

3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。

假设1kg 已被冷至-5℃的液体。

化工热力学课后答案

化工热力学课后答案

化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2.封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4.理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5.封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2.封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln =(以P 表示)。

3.封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的W= 0 ,Q=,U=,H= 。

B 等温过程的W=,Q=,U= 0 ,H= 0 。

第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)2.当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。

(错。

如温度大于Boyle温度时,Z>1。

)4.纯物质的三相点随着所处的压力或温度的不同而改变。

(错。

纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。

化工热力学思考题

化工热力学思考题

9、精馏1、蒸馏过程用于分离,其分离依据是。

2、t~x~y图是如何得到,根据相律,下左图中A、B、C三点的自由度各为多少,A、B、C、D、E分别处于什么状态。

3、在t~x~y图上定性表示一股组成为y0的饱和蒸气与一股为x0的饱和液体进行混合后的结果。

若生成的新的气、液两相组成为y1和x1,则y1 y0,x1 x0。

4、拉乌尔定律的关系式为,它适用于;挥发度的定义式为,相对挥发度的定义式为,什么条件下:。

5、在具有最高和最低恒沸点的双组分物系中,恒沸点处的特征为其a值为。

6.同一二元物系,当总压升高时,混合液泡点温度将,各组分的饱和蒸气压,组分间挥发度,因此,压力升高将精馏分离。

7、一定F、xF的双组分理想溶液,采用平衡蒸馏和简单蒸馏两种方法处理,当最终残液组成相同时,试比较最终温度,馏出液平均组成,馏出液量。

8、在精馏塔中取相邻三块理论板,自上而下为n-1、n、n+1,若T表示露点,t表示泡点,则Tn tn,Tn tn-1,Tn+1 Tn。

9、在精馏塔任一理论板上,离开的气相露点温度离开的液相泡点温度,进入此板的气相露点温度离开此板的气相露点温度,精馏塔底温度一定塔顶温度,原因。

10、连续精馏过程进料热状况可有种,已知q = 0.7,说明是进料,加料中液体量与总加料量之比为。

11、设计时,若保持xD不变,易挥发组分的回收率不变,加大回流比,N将提高加料温度,N将,提高操作压力,N将,增加进料量10 %,N将。

12、精馏塔操作时,增加塔釜蒸气用量,而F、xF、q、L不变,则精馏段L/V ,提馏段L/V ,塔顶xD ,塔底xW? (用图表示)。

13、某二元混合液,进料量为100 kmol/h,xF = 0.6,要求得到塔顶xD=0.9,在塔顶产品产量最大时,塔底残液量为。

14、在连续精馏塔中,进行全回流操作,测得相邻两板上液相组成分别为xn-1=0.7,xn=0.5,已知a = 3,则yn= ,xn* = ,第n板液相单板效率EmL = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档