信号与系统课件ppt教材
合集下载
信号与系统 课件 奥本海姆 第一章

连续时间周期信号
离散时间周期信号
这种信号也称为功率信号,通常用它的平均功
率来表征。
1 T 2 P x(t ) dt (以T为周期) 或 T 0
1 P 2T
T
T
x(t ) dt
2
1 N 1 2 P x(n) N n 0
(以N为周期)或
N 1 2 P x ( n) 2 N 1 n N
,再据值进行尺度变换,再做时间反转。
由 做法一:
x(t )
1 0 1
1 x(t ) x(3t ) 2
1 1 x(t ) x(t ) x(3t ) 2 2
1 x(t ) 2
1
1 tt 2
t
t 3t
t
0 1/2 3/2
1
1 x (3t ) 2
t
0 1/6 1/2
N
E lim x(n) x(n)
2 N
N
2
在无限区间内的平均功率可定义为:
1 T P lim T 2T T
x(t)
2
dt
N 1 2 P lim x ( n) N 2 N 1 N
三类重要信号(按照信号的可积性或可和性划分): 1. 能量信号——信号具有有限的总能量,
x(t) 1 0 1 1 2 3
t
(a)
解1:
x(t) 1 0 1 1 2 3 1 x(t-3)
t
3
2
1
0 1
12Biblioteka 3456
t
(a) x(2t-3) 1 0 1 1 2 3 1
(b) x(-2t-3)
t
离散时间周期信号
这种信号也称为功率信号,通常用它的平均功
率来表征。
1 T 2 P x(t ) dt (以T为周期) 或 T 0
1 P 2T
T
T
x(t ) dt
2
1 N 1 2 P x(n) N n 0
(以N为周期)或
N 1 2 P x ( n) 2 N 1 n N
,再据值进行尺度变换,再做时间反转。
由 做法一:
x(t )
1 0 1
1 x(t ) x(3t ) 2
1 1 x(t ) x(t ) x(3t ) 2 2
1 x(t ) 2
1
1 tt 2
t
t 3t
t
0 1/2 3/2
1
1 x (3t ) 2
t
0 1/6 1/2
N
E lim x(n) x(n)
2 N
N
2
在无限区间内的平均功率可定义为:
1 T P lim T 2T T
x(t)
2
dt
N 1 2 P lim x ( n) N 2 N 1 N
三类重要信号(按照信号的可积性或可和性划分): 1. 能量信号——信号具有有限的总能量,
x(t) 1 0 1 1 2 3
t
(a)
解1:
x(t) 1 0 1 1 2 3 1 x(t-3)
t
3
2
1
0 1
12Biblioteka 3456
t
(a) x(2t-3) 1 0 1 1 2 3 1
(b) x(-2t-3)
t
信号与系统ppt课件

02
时不变:系统的特性不随时间变 化。
系统的数学模型为非线性微分方 程或差分方程。
03
频域分析方法不适用,需采用其 他方法如几何法、状态空间法等
。
04
时变系统
系统的特性随时间变 化,即系统在不同时 刻的响应具有不同的 特性。
时域分析方法:积分 方程、微分方程等。
系统的数学模型为时 变微分方程或差分方 程。
信号与系统PPT课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本特性 • 系统分析方法 • 系统分类与特性 • 系统应用实例
01
CHAPTER
信号与系统概述
信号的定义与分类
总结词
信号是传输信息的一种媒介,具有时间和幅度的变化特性。
详细描述
信号是表示数据、文字、图像、声音等的电脉冲或电磁波,它可以被传输、处理和记录。根据不同的特性,信号 可以分为模拟信号和数字信号。模拟信号是连续变化的物理量,如声音、光线等;数字信号则是离散的二进制数 据,如计算机中的数据传输。
04
CHAPTER
系统分类与特性
线性时不变系统
线性
系统的响应与输入信号的 线性组合成正比,即输出 =K*输入+常数。
时不变
系统的特性不随时间变化 ,即系统在不同时刻的响 应具有相同的特性。
频域分析方法
傅里叶变换、拉普拉斯变 换等。
非线性时不变系统
01
系统的响应与输入信号的非线性 关系,即输出不等于K*输入+常 数。
系统的定义与分类
总结词
系统是由相互关联的元素组成的整体,具有输入、输出和转 换功能。
详细描述
系统可以是一个物理装置、生物体、组织或抽象的概念,它 能够接收输入、进行转换并产生输出。根据不同的分类标准 ,系统可以分为线性系统和非线性系统、时不变系统和时变 系统等频域分析方法将信号和系统从时间域转换到频率域,通过分析系统的频率响应 来了解系统的性能,如系统的幅频特性和相频特性,这种方法特别适用于分析 周期信号和非周期信号。
课件信号与系统奥本海姆.ppt

2. System a process of signals, in which input signals are transformed into output signals
4
Ch1. Signals and Systems
Signal:the carrier of information 信号:信息的载体
1
SIGNALS AND SYSTEMS
• 信号与系统
8
Main content : Ch1. Signals and Systems
• Continuous-Time and Discrete-Time Signals 〔连续时间与离散时间信号〕
• Transformations of the Independent Variable〔自变量的变换〕
信号是信息的具体物理表现形式,包含了信息的 具体内容。总是1个或多个独立变量的函数。
同一信息可以有不同的物理表现形式,因此对应 有不同的信号,但这些不同的信号都包含同一个信息。 这些不同的信号之间可以相互转换。
例如语音信息用声压表示,可用电压或电流信号 作为载体;也可以用一组数据(01)信号作载体。对应 模拟信号和数字信号,可以AD转换。
2
Ch1. Signals and Systems
控制论创始人维纳认为: 信息是人或物体与外部世界交换内容的名称。内 容是事物的原形,交换是信息载体[信号]将事物原形 [内容]映射到人或物体的感觉器官,人们把这种映射 的结果认为获得了信息。通俗地说,信息指人们得到 的消息。
信息多种多样、丰富多彩,具体的物理形态也千 差万别。
• Basic System Properties (根本系统性质) 9
Ch1. Signals and Systems
4
Ch1. Signals and Systems
Signal:the carrier of information 信号:信息的载体
1
SIGNALS AND SYSTEMS
• 信号与系统
8
Main content : Ch1. Signals and Systems
• Continuous-Time and Discrete-Time Signals 〔连续时间与离散时间信号〕
• Transformations of the Independent Variable〔自变量的变换〕
信号是信息的具体物理表现形式,包含了信息的 具体内容。总是1个或多个独立变量的函数。
同一信息可以有不同的物理表现形式,因此对应 有不同的信号,但这些不同的信号都包含同一个信息。 这些不同的信号之间可以相互转换。
例如语音信息用声压表示,可用电压或电流信号 作为载体;也可以用一组数据(01)信号作载体。对应 模拟信号和数字信号,可以AD转换。
2
Ch1. Signals and Systems
控制论创始人维纳认为: 信息是人或物体与外部世界交换内容的名称。内 容是事物的原形,交换是信息载体[信号]将事物原形 [内容]映射到人或物体的感觉器官,人们把这种映射 的结果认为获得了信息。通俗地说,信息指人们得到 的消息。
信息多种多样、丰富多彩,具体的物理形态也千 差万别。
• Basic System Properties (根本系统性质) 9
Ch1. Signals and Systems
信号与系统全套课件

滤波器设计和应用
滤波器的概念和分类
根据滤波器的频率响应特性,可分为低通、高通、带通和带阻滤 波器等。
滤波器设计方法
包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等设计方法, 以及数字滤波器的设计等。
滤波器的应用
在通信、音频处理、图像处理等领域广泛应用,如信号去噪、平 滑处理、频率选择性传输等。
04 信号与系统复频域分析
状态变量分析法概述
1
状态变量分析法是一种基于系统内部状态变量描 述系统动态行为的方法。
2
它适用于线性时不变系统,可以方便地分析系统 的稳定性、能控性、能观性等重要特性。
3
状态变量分析法通过引入状态变量的概念,将高 阶微分方程转化为一阶微分方程组,从而简化系 统分析和设计的复杂性。
状态方程和输出方程建立
系统函数的性质
系统函数具有因果性、稳定性、频率 响应等性质,这些性质决定了系统的 基本特性和性能指标。
稳定性判据和稳态误差分析
稳定性判据
通过系统函数的极点分布来判断系统的 稳定性,常用的稳定性判据有劳斯判据 、奈奎斯特判据等。
VS
稳态误差分析
稳态误差是指系统对输入信号响应的稳态 分量与期望输出之间的差值,通过分析系 统函数和输入信号的特性,可以对系统的 稳态误差进行定量评估。
信号与系统全套课件
目 录
• 信号与系统基本概念 • 信号与系统时域分析 • 信号与系统频域分析 • 信号与系统复频域分析 • 离散时间信号与系统分析 • 状态变量分析法在信号与系统中的应用
01 信号与系统基本概念
信号定义与分类
信号定义
信号是传递信息的函数,它可以是时间的函数,也可以是其 他独立变量的函数。在信号处理中,通常将信号表示为时间 的函数,即s(t)。
西安电子科技大学信号与系统课件ppt-第1章信号与系统

般步骤: (1)若信号 f(t)→f(at+b),则先反转,后展缩,再平 移; ( 2 ) 若信号 f(mt+n)→f(t) ,则先平移,后展缩,再
反转;
(3)若信号f(mt+n)→f(at+b),则先实现f(mt+n)→f(t), 再进行f(t)→f(at+b)。
例1―4试粗略地画出下列信号的波形图: (1) f1(t)=(2-3e-t)· u(t); (2) f2(t)=(5e-t-5e-3t)· u(t); (3) f3(t)=e-|t|(-∞<t<∞); (4) f4(t)=cosπ(t-1)· u(t+1); (5) f5(t)=sin π /2 (1-t)· u(t-1); (6) f6(t)=e-tcos10πt(u(t-1)-u(t-2));
系统的输入和输出是连续时间变量 t 的函数,叫作
连续时间系统。输入用f(t)表示,输出用y(t)表示。
图1.6 连续时间信号及反转波形
图1.7 离散时间信号及反转波形
7.平移
以变量t- t0代替信号f(t)中的独立变量t,得信号f(tt0) ,它是信号 f(t) 沿时间轴平移 t0 的波形。这里 f(t) 与 f(t-t0)的波形形状完全一样,只是在位置上移动了t0(t0为 一实常数)。 t0 >0,f(t)右移; t0 <0,f(t)左移;平移距 离为| t0 |。 图1.8表示连续时间信号的平移。这类信号在雷 达、声纳和地震信号处理中经常遇到。利用位移信号
图1.9 f(t)、f(2t)、f(t/2)的波形
9.综合变换 以变量at+b代替f(t)中的独立变量t,可得一新的信 号函数 f(at+b) 。当 a> 0时,它是 f(t) 沿时间轴展缩、平 移后的信号波形;当a<0时,它是f(t)沿时间轴展缩平 移和反转后的信号波形,下面举例说明其变换过程。
反转;
(3)若信号f(mt+n)→f(at+b),则先实现f(mt+n)→f(t), 再进行f(t)→f(at+b)。
例1―4试粗略地画出下列信号的波形图: (1) f1(t)=(2-3e-t)· u(t); (2) f2(t)=(5e-t-5e-3t)· u(t); (3) f3(t)=e-|t|(-∞<t<∞); (4) f4(t)=cosπ(t-1)· u(t+1); (5) f5(t)=sin π /2 (1-t)· u(t-1); (6) f6(t)=e-tcos10πt(u(t-1)-u(t-2));
系统的输入和输出是连续时间变量 t 的函数,叫作
连续时间系统。输入用f(t)表示,输出用y(t)表示。
图1.6 连续时间信号及反转波形
图1.7 离散时间信号及反转波形
7.平移
以变量t- t0代替信号f(t)中的独立变量t,得信号f(tt0) ,它是信号 f(t) 沿时间轴平移 t0 的波形。这里 f(t) 与 f(t-t0)的波形形状完全一样,只是在位置上移动了t0(t0为 一实常数)。 t0 >0,f(t)右移; t0 <0,f(t)左移;平移距 离为| t0 |。 图1.8表示连续时间信号的平移。这类信号在雷 达、声纳和地震信号处理中经常遇到。利用位移信号
图1.9 f(t)、f(2t)、f(t/2)的波形
9.综合变换 以变量at+b代替f(t)中的独立变量t,可得一新的信 号函数 f(at+b) 。当 a> 0时,它是 f(t) 沿时间轴展缩、平 移后的信号波形;当a<0时,它是f(t)沿时间轴展缩平 移和反转后的信号波形,下面举例说明其变换过程。
信号与系统ppt课件

结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。
信号与系统_郑君里_第三版_课件

2016/5/9
9
1.2.2 典型信号 一、指数信号 指数信号的表达式为
f (t ) Ke t
f (t )
Ke t ( 0)
Ke t ( 0)
K
Ke t ( 0)
0
t
2016/5/9
10
二、正弦信号
正弦信号和余弦信号二者仅在相位上相差 2 ,统称为正 弦信号,一般写作
1、确定性信号与随机性信号
对于确定的时刻,信号有确定的数值与之对应,这样的信号称为 确定性信号。不可预知的信号称为随机信号。
2、周期信号与非周期信号
在规则信号中又可分为周期信号与非周期信号。所谓周期信号 就是依一定时间间隔周而复始,而且是无始无终的信号。时间上不 满足周而复始特性的信号称为非周期信号。
2016/5/9
(t t0 )
(1) 0
t0
t
21
(2) 用极限定义
(t ) 。 我们可以用各种规则函数系列求极限的方法来定义
例如:(a)用矩形脉冲取极限定义
2
δ(t)
1
0
(1)
2
4
4
2
t
1
t
(t ) lim [u(t ) u(t )] 0 2 2
2016/5/9
演示
22
(b)用三角脉冲取极限定义
2
δ(t)
1
0
(1)
2
2
t
t
t 1 (t ) lim (1 )[u (t ) u (t )] 0
2016/5/9
信号与系统PPT全套课件

T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统
Signals & System
A.V.Oppenheim 2nd Edition
概论
• 信号就是函数。离散时间与 连续时间函数。(但不是所有的的
函数都适合做信号,常见信号及其运算。)
• 系统就是对信号的变换。(变
换海洋中的一滴水,特别的一类:线性移 不变系统—LTI 系统)
• 给定信号和系统求变换后的 信号。
• 什么是信号? • 信号是消息的表现形式,消息则是信
号的具体内容。 • 什么是系统? • 系统是物理器件的集合,对给信号转换器。
信号的描述: 数学上:信号表示为一个或多个 变量的函数 形态上:信号表现为一种波形
自变量: 时间、位移 周期、频率、相位、幅度
x(t) x(t t0 )
当 t0 0时,信号向右平移 t0 t0 0 时,信号向左平移 t0
当 n0 0 时,信号向右平移 n0
n0 0 时,信号向左平移 | n0 |
2. 反转变换:Reflection of Signals x(t ) x(t) 信号以 t 0 为轴呈镜像对称。
与连续时间的情况相同。 3. 尺度变换: Scaling
x(t)]
其中
例1:
-2
x(t)
2 1
-2 -1 0
t
12
xe (t)
1
t
0
2
xo (t)
1
-1
t
1 -1
例2. 信号的奇偶分解:
1.3 复指数信号与正弦信号
(Exponential and Sinusoidal Signals ) 一. 连续时间复指数信号
x(t) Ceat 其中 C, a 为复数
2 0
3、正弦信号
x(t) Acos(0t ) A e je j0t A e je j0t
离散时间信号在 [n1, n2 ] 区间的平均 功率为
P 1
n2 x(n) 2
n2 n1 1 nn1
在无限区间上也可以定义信号的总 能量:
• 连续时间情况下:
E
T
lim T T
2
x(t) dt
2
x(t) dt
•离散时间情况下:
N
E
lim x(n) 2
N n N
x(n) 2
n
在无限区间内的平均功率可定义为:
x(t) 1 T
2
P
lim T
2T
T
dt
P
lim
N
1
N
x(n) 2
2N 1 nN
1.2 自变量变换
Transformations of the Independent Variable)
一.由于信号可视为自变量的函数,当自 变量改变时,必然会使信号的特性相 应地改变。
1. 时移变换:Shift of Signals
• 给定变换前后的信号,确定 系统。
• 给定信号和系统直接求系统 的响应—时域分析。(在LTI前
提下信号与系统的统一。)
• 信号的变换分析:傅立叶级 数、傅立叶变换、拉氏变换、 z 变换。(送你一双看穿表象的慧眼。)
• 抽样定理 (风马牛不相及的两种信号
之间的联系,数字化时代的基石。)
信号与系统问题无处不在
一.信号: 信号可以描述范围极其广泛的物理现象。
信号可以分为确知信号与随机信号,也可以 分为连续时间信号与离散时间信号。
确知信号可以表示成一个或几个自变量的 函数。作为信号分析的基础,本课程只研究 确知信号。
连续时间信号的例子:
离散时间信号的例子:
连续时间信号在离散时 刻点上的样本可以构成一个离 散时间信号。
信号的分类: 函数自变量数目:一维信号和 多维信号
函数自变量取值的连续性和离 散性:连续时间信号和离散 时间信号
函数周期性与否:周期信号和 非周期信号
本章的基本内容:
• 信号的描述 • 信号的自变量变换 • 基本信号 • 系统及其数学模型 • 系统的性质
1.1 连续时间与离散时间信号
(Continuous-Time and Discrete-Time Signals)
综合示例: 由 x(t) x(3t 1)
2
做法一:x(t) x(t 1) x(3t 1)
2
2
x(t )
1
t t1 2
x(t 1 ) 2
1
t
t
0
1
0 1/2 3/2
x(3t 1 )
t 3t
2
1
t
0 1/6 1/2
二. 周期信号与非周期信号:
周期信号: x(t T ) x(t)
二. 信号的能量与功率:
连续时间信号在 [t1,t区2 ]间的能量定义为
:
E t2 x(t) 2 dt t1
连续时间信号在 [t1, t2 ]区间的平均功率定
义为:
P 1 t2 x(t) 2 dt
t2 t1 t1
离散时间信号在 [n1, n2 ] 区间的能量
定义为
n2
E
x(n) 2
nn1
满足此关系的正实数(正整数)中最小
的一个,称为信号的基波周期 T0(N0)。 x(t) c 可视为周期信号,但它的基波周期
没有确定的定义。 可以视为周期信号,其基波周期 N0 1
非周 期信 号
连续时间 周期信号
离散时间周 期信号
周期信号
三.奇信号与偶信号:odd Signals and even Signals
x(t) x(at)
a 1 时, x(at) 是将 x(t) 在时间上压缩a倍
0 a 1
时, x(at)是将 x(t) 在时间上扩展1/a倍。
由于离散时间信号的自变量只能取整 数值,因而尺度变换只对连续时间信号 而言。
例如:
3
2
22
11
n
0 1 2 34 56
22 2
n
0 12 3
显然上例中, 是从 中依次抽出 自变量取偶数时的各点而构成的。这一 过程称为对信号 的抽取(decimation)
1. 实指数信号: C,a 为实数
a 0 呈单调指数上升。
a 0 呈单调指数下降。 a 0 x(t) C 是常数。
2. 周期性复指数信号:
a j0,不失一般性取
C 1 x(t) e j0t cos0t j sin 0t 实部与虚部都是正弦信号。
x(t)
显然是周期的,其基波周期为:T0
如果有 x(t) x(t) 或 信号为奇信号(镜像奇对称)
则称该
如果有 x(t) 或x(t) 则称该信号是
偶信号(镜像偶对称)
任何信号都能分解成一个偶信号与 一个奇信号之和。
对实信号有:
x(t) xe (t) xo (t)
1 xe (t) 2 [x(t) x(t)]
其中
xo
(t)
1 2
[x(t)
Signals & System
A.V.Oppenheim 2nd Edition
概论
• 信号就是函数。离散时间与 连续时间函数。(但不是所有的的
函数都适合做信号,常见信号及其运算。)
• 系统就是对信号的变换。(变
换海洋中的一滴水,特别的一类:线性移 不变系统—LTI 系统)
• 给定信号和系统求变换后的 信号。
• 什么是信号? • 信号是消息的表现形式,消息则是信
号的具体内容。 • 什么是系统? • 系统是物理器件的集合,对给信号转换器。
信号的描述: 数学上:信号表示为一个或多个 变量的函数 形态上:信号表现为一种波形
自变量: 时间、位移 周期、频率、相位、幅度
x(t) x(t t0 )
当 t0 0时,信号向右平移 t0 t0 0 时,信号向左平移 t0
当 n0 0 时,信号向右平移 n0
n0 0 时,信号向左平移 | n0 |
2. 反转变换:Reflection of Signals x(t ) x(t) 信号以 t 0 为轴呈镜像对称。
与连续时间的情况相同。 3. 尺度变换: Scaling
x(t)]
其中
例1:
-2
x(t)
2 1
-2 -1 0
t
12
xe (t)
1
t
0
2
xo (t)
1
-1
t
1 -1
例2. 信号的奇偶分解:
1.3 复指数信号与正弦信号
(Exponential and Sinusoidal Signals ) 一. 连续时间复指数信号
x(t) Ceat 其中 C, a 为复数
2 0
3、正弦信号
x(t) Acos(0t ) A e je j0t A e je j0t
离散时间信号在 [n1, n2 ] 区间的平均 功率为
P 1
n2 x(n) 2
n2 n1 1 nn1
在无限区间上也可以定义信号的总 能量:
• 连续时间情况下:
E
T
lim T T
2
x(t) dt
2
x(t) dt
•离散时间情况下:
N
E
lim x(n) 2
N n N
x(n) 2
n
在无限区间内的平均功率可定义为:
x(t) 1 T
2
P
lim T
2T
T
dt
P
lim
N
1
N
x(n) 2
2N 1 nN
1.2 自变量变换
Transformations of the Independent Variable)
一.由于信号可视为自变量的函数,当自 变量改变时,必然会使信号的特性相 应地改变。
1. 时移变换:Shift of Signals
• 给定变换前后的信号,确定 系统。
• 给定信号和系统直接求系统 的响应—时域分析。(在LTI前
提下信号与系统的统一。)
• 信号的变换分析:傅立叶级 数、傅立叶变换、拉氏变换、 z 变换。(送你一双看穿表象的慧眼。)
• 抽样定理 (风马牛不相及的两种信号
之间的联系,数字化时代的基石。)
信号与系统问题无处不在
一.信号: 信号可以描述范围极其广泛的物理现象。
信号可以分为确知信号与随机信号,也可以 分为连续时间信号与离散时间信号。
确知信号可以表示成一个或几个自变量的 函数。作为信号分析的基础,本课程只研究 确知信号。
连续时间信号的例子:
离散时间信号的例子:
连续时间信号在离散时 刻点上的样本可以构成一个离 散时间信号。
信号的分类: 函数自变量数目:一维信号和 多维信号
函数自变量取值的连续性和离 散性:连续时间信号和离散 时间信号
函数周期性与否:周期信号和 非周期信号
本章的基本内容:
• 信号的描述 • 信号的自变量变换 • 基本信号 • 系统及其数学模型 • 系统的性质
1.1 连续时间与离散时间信号
(Continuous-Time and Discrete-Time Signals)
综合示例: 由 x(t) x(3t 1)
2
做法一:x(t) x(t 1) x(3t 1)
2
2
x(t )
1
t t1 2
x(t 1 ) 2
1
t
t
0
1
0 1/2 3/2
x(3t 1 )
t 3t
2
1
t
0 1/6 1/2
二. 周期信号与非周期信号:
周期信号: x(t T ) x(t)
二. 信号的能量与功率:
连续时间信号在 [t1,t区2 ]间的能量定义为
:
E t2 x(t) 2 dt t1
连续时间信号在 [t1, t2 ]区间的平均功率定
义为:
P 1 t2 x(t) 2 dt
t2 t1 t1
离散时间信号在 [n1, n2 ] 区间的能量
定义为
n2
E
x(n) 2
nn1
满足此关系的正实数(正整数)中最小
的一个,称为信号的基波周期 T0(N0)。 x(t) c 可视为周期信号,但它的基波周期
没有确定的定义。 可以视为周期信号,其基波周期 N0 1
非周 期信 号
连续时间 周期信号
离散时间周 期信号
周期信号
三.奇信号与偶信号:odd Signals and even Signals
x(t) x(at)
a 1 时, x(at) 是将 x(t) 在时间上压缩a倍
0 a 1
时, x(at)是将 x(t) 在时间上扩展1/a倍。
由于离散时间信号的自变量只能取整 数值,因而尺度变换只对连续时间信号 而言。
例如:
3
2
22
11
n
0 1 2 34 56
22 2
n
0 12 3
显然上例中, 是从 中依次抽出 自变量取偶数时的各点而构成的。这一 过程称为对信号 的抽取(decimation)
1. 实指数信号: C,a 为实数
a 0 呈单调指数上升。
a 0 呈单调指数下降。 a 0 x(t) C 是常数。
2. 周期性复指数信号:
a j0,不失一般性取
C 1 x(t) e j0t cos0t j sin 0t 实部与虚部都是正弦信号。
x(t)
显然是周期的,其基波周期为:T0
如果有 x(t) x(t) 或 信号为奇信号(镜像奇对称)
则称该
如果有 x(t) 或x(t) 则称该信号是
偶信号(镜像偶对称)
任何信号都能分解成一个偶信号与 一个奇信号之和。
对实信号有:
x(t) xe (t) xo (t)
1 xe (t) 2 [x(t) x(t)]
其中
xo
(t)
1 2
[x(t)