四种命题与充要条件

合集下载

高考第2课四种命题和充要条件

高考第2课四种命题和充要条件

高中数学学习材料金戈铁骑整理制作第2课四种命题和充要条件【自主学习】第2课四种命题和充要条件(本课时对应学生用书第页)自主学习回归教材1.(选修2-1P8习题1改编)命题:“若x2<1,则-1<x<1”的逆否命题是. 【答案】若x≥1或x≤-1,则x2≥12.(选修2-1P7练习改编)命题“若x<0,则x2>0”及其逆命题、否命题、逆否命题这四个命题中正确命题的个数为.【答案】2【解析】原命题为真,所以逆否命题为真;逆命题为“若x2>0,则x<0”为假命题,所以否命题为假.3.(选修2-1P20习题改编)判断下列命题的真假.(填“真”或“假”)(1)命题“在△ABC中,若AB>AC,则C>B”的否命题为命题.(2)命题“若ab=0,则b=0”的逆否命题为命题.【答案】(1)真(2)假4.(选修2-1P9习题4(2)改编)“sin α=sin β”是“α=β”的条件.(填“充分不必要”、“必要不充分”、“ 充要”或“ 既不充分也不必要”)【答案】必要不充分5.(选修2-1P20习题改编)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则r是q的条件,p是q的条件.【答案】充要必要【解析】q⇒s⇒r⇒q,所以r是q的充要条件;q⇒s⇒r⇒p,所以p是q的必要条件.1.记“若p则q”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p”,逆否命题为“若非q则非p”.其中互为逆否命题的两个命题同真假,即等价,原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题为真的个数只能是偶数.2.对命题“若p则q”而言,当它是真命题时,记作p⇒q,称p是q的充分条件,q是p的必要条件;当它是假命题时,记作p⇒/q,称p是q的非充分条件,q是p的非必要条件.3.①若p⇒q,且q⇒/p,则p是q的充分不必要条件;②若p⇒/q,且q⇒p,则p是q的必要不充分条件;③若p⇒q,且q⇒p,则p是q的充要条件,记作p⇔q;④若p⇒/p,且q⇒/p,则p是q的既不充分也不必要条件.4.证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).【要点导学】要点导学各个击破命题真假的判断例1在△ABC中,已知命题p:若C=60°,则sin2A+sin2B-sin A sin B=sin2C.(1)求证:命题p是真命题;(2)写出命题p的逆命题,判断逆命题的真假,并说明理由.【思维引导】(1)利用正弦定理将待证式转化为a2+b2-ab=c2,然后利用余弦定理即证;(2)分清命题p的条件与结论,正确地对原命题的条件和结论进行互换或否定.【解答】设△ABC的内角A,B,C所对的边分别为a,b,c.(1)因为C=60°,由余弦定理得c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.由正弦定理sin a A =sin b B =sin cC , 得sin 2C=sin 2A+sin 2B-sin A sin B. 故命题p 是真命题.(2)命题p 的逆命题:在△ABC 中, 若sin 2A+sin 2B-sin A sin B=sin 2C ,则C=60°. 它是真命题.证明如下:由sin 2A+sin 2B-sin A sin B=sin 2C 和正弦定理得c 2=a 2+b 2-ab.而由余弦定理c 2=a 2+b 2-2ab cos C ,得cos C=12. 因为0°<C<180°,所以C=60°.【精要点评】对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.变式 给出以下四个命题:①“若x+y=0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x+q=0有实数根”的逆否命题; ④若a+b 是偶数,则整数a ,b 都是偶数. 其中真命题是 .(填序号) 【答案】①③【解析】①显然正确;②不全等的三角形的面积不相等,故②不正确;③原命题正确,所以它的逆否命题也正确;④若a+b 是偶数,则整数a ,b 都是偶数或都是奇数,故④不正确.【精要点评】对命题真假的判断,正确的命题要加以论证;不一定正确的命题要举出反例,这是最基本的数学思维方式.在判断命题真假的过程中,要注意简单命题与复合命题之间的真假关系;要注意四种命题之间的真假关系.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.因此,四种命题中真命题的个数只能是0,2或4.充要条件的判断例2从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中,选出一种适当的填空.(1)(2015·泰安期末)已知a∈R,则“a2<a”是“a<1”的条件.(2)(2015·保定期末)若集合A={0,1},B={-1,a2},则“A∩B={1}”是“a=1”的条件.【思维引导】(1)找到不等式a2<a的解集为(0,1),然后根据“小范围能推大范围,大范围推不出小范围”进行判断.(2)判断充要条件时,可先分清条件与结论,若由条件能推出结论,则充分性满足;若由结论能推出条件,则必要性满足.【答案】(1)充分不必要(2)必要不充分【解析】(1)因为由a2<a,可得0<a<1,所以“a2<a”是“a<1”的充分不必要条件.(2)若A∩B={1},则a2=1,a=±1,所以充分性不满足,必要性满足,故“A∩B={1}”是“a=1”的必要不充分条件.【精要点评】在判断充分条件及必要条件时,首先要分清哪个是条件,哪个是结论;其次,要从两个方面,即“充分”与“必要”分别考查.判定时,对于有关范围的问题也可以从集合观点看,如p,q对应的范围为集合A,B,若AB,则A是B 的充分条件,B是A的必要条件;若A=B,则A,B互为充要条件.变式从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中,选出一种适当的填空.(1)“x=2kπ+π4(k∈Z)”是“tan x=1”的;(2)“22x y >⎧⎨>⎩,”是“44x y xy +>⎧⎨>⎩,”的 ;(3)“m<12”是“一元二次方程x 2+x+m=0有实数解”的 ; (4)对于数列{a n },“a n+1>|a n |(n ∈N *)”是“数列{a n }为递增数列”的 ;(5)“函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增”是“m ≥289x x +对任意的x>0恒成立”的 .【思维引导】判定p 是q 的什么条件,实际上就是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,这部分内容经常与其他知识点相结合考查.【答案】(1)充分不必要条件 (2)充分不必要条件 (3)必要不充分条件 (4)充分不必要条件 (5)充要条件【解析】(1)因为x=2k π+π4(k ∈Z )⇒tan x=1,但反过来不一定成立,即tan x=1⇒x=k π+π4(k ∈Z ),(2)因为x>2,y>2,根据不等式的性质易得x+y>4,xy>4,但反过来不一定成立,如x=13,y=24.(3)一元二次方程x 2+x+m=0有实数解⇔m ≤14,因为m ≤14⇒m<12,反之不成立,所以是必要不充分条件.(4)因为a n+1>|a n |(n ∈N *), 所以当n ≥2时,a n >0, 即当n ≥2时,a n+1>a n . 若a 1≥0,有a 2>|a 1|=a 1,若a 1<0,a 2>a 1显然成立,充分性得证.当数列{a n }为递增数列时,设a n =1-2n⎛⎫ ⎪⎝⎭,则a 2>|a 1|不成立.(5)函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增⇔f'(x )=3x 2+4x+m ≥0恒成立⇔Δ=16-12m ≤0⇔m ≥43.m ≥289xx +对任意x>0恒成立⇔m ≥2max 89x x ⎛⎫ ⎪+⎝⎭,又289x x +=89x x +≤892x x ⋅=43,所以m ≥43. 【精要点评】在判断时注意反例的应用;在判断“若p 则q ”较繁琐时,可以利用它的逆否命题“若非q 则非p ”,判断其是否正确;有时将某些条件转化为与它等价的条件再与另一条件进行判断会更简单 .结合充要条件求参数例3 已知集合M={x|x<-3或x>5},P={x|(x-a )(x-8)≤0}. (1)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的充要条件; (2)求实数a 的一个值,使它成为M ∩P={x|5<x ≤8}的一个充分不必要条件; (3)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的一个必要不充分条件. 【思维引导】求a 的取值范围使它成为M ∩P 的不同条件,可借助集合的观点,根据要求,求出成立时a 的取值范围.【解答】(1)由M ∩P={x|5<x ≤8},得-3≤a ≤5, 因此M ∩P={x|5<x ≤8}的充要条件是-3≤a ≤5.(2)即在集合{a|-3≤a ≤5}中取一个值,如取a=0,此时必有M ∩P={x|5<x ≤8}; 反之,M ∩P={x|5<x ≤8}未必有a=0,故a=0是所求的一个充分不必要条件. (3)即求一个集合Q ,使{a|-3≤a ≤5}是集合Q 的一个真子集.如果{a|a≤5},那么未必有M∩P={x|5<x≤8},但是M∩P={x|5<x≤8}时,必有a≤5,故a≤5是所求的一个必要不充分条件.【精要点评】解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.变式(2015·南通期中)若不等式x-1x>0成立的充分不必要条件是x>a,则实数a的取值范围是.【答案】[1,+∞)【解析】由不等式x-1x>0,得(1)(-1)x xx>0,得-1<x<0或x>1.由充分不必要条件的含义可知{x|x>a}为不等式解集的真子集,进而得到a≥1.充要条件的证明例4已知a,b,c都是实数,求证:方程ax2+bx+c=0有一个正根和一个负根的充要条件是ac<0.【思维引导】证明充分性,由“ac<0”推出“方程ax2+bx+c=0有一个正根和一个负根”,证明必要性是由“方程ax2+bx+c=0有一个正根和一个负根”推出“ac<0”,主要根据判别式、一元二次方程的根与系数的关系进行论证.【解答】设原方程的两根分别为x1,x2.①充分性:由ac<0,得a,c异号,所以Δ=b2-4ac>0,且x1x2=ca<0.故方程ax2+bx+c=0有一正一负两个实根.所以ac<0是原方程有一正一负两个实根的充分条件.②必要性:若方程ax2+bx+c=0有一个正根和一个负根,不妨设x1>0,x2<0,则x1x2<0,即ca<0,所以a,c异号,即ac<0.故ac<0是原方程有一正一负两个实根的必要条件.综上,ac<0是原方程有一正一负两个实根的充要条件.【精要点评】充要条件的证明应注意:(1)一般地,条件已知,证明结论成立是充分性,结论已知,推出条件成立是必要性.(2)有关充要条件的证明问题,要分清哪个是条件,哪个是结论.变式设数列{a n},{b n},{c n}满足:b n=a n-a n+2,c n=a n+2a n+1+3a n+2(n=1,2,3,…),求证:数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).【解答】必要性:设{a n}是公差为d1的等差数列,则b n+1-b n=(a n+1-a n+3)-(a n-a n+2)=(a n+1-a n)-(a n+3-a n+2)=d1-d1=0,所以b n≤b n+1(n=1,2,3,…)成立.又c n+1-c n=(a n+1-a n)+2(a n+2-a n+1)+3(a n+3-a n+2)=d1+2d1+3d1=6d1(常数)(n=1,2,3,…),所以数列{c n}为等差数列.充分性:设数列{c n}是公差为d2的等差数列,且b n≤b n+1(n=1,2,3,…).因为c n=a n+2a n+1+3a n+2,①所以c n+2=a n+2+2a n+3+3a n+4,②①-②,得c n-c n+2=(a n-a n+2)+2(a n+1-a n+3)+3(a n+2-a n+4)=b n+2b n+1+3b n+2.因为c n-c n+2=(c n-c n+1)+(c n+1-c n+2)=-2d2,所以b n+2b n+1+3b n+2=-2d2,③从而有b n+1+2b n+2+3b n+3=-2d2,④④-③,得(b n+1-b n)+2(b n+2-b n+1)+3(b n+3-b n+2)=0.⑤因为b n+1-b n≥0,b n+2-b n+1≥0,b n+3-b n+2≥0,所以由⑤得b n+1-b n=0(n=1,2,3,…).由此不妨设b n=d3(n=1,2,3,…),则a n-a n+2=d3(常数).由此c n=a n+2a n+1+3a n+2⇒c n=4a n+2a n+1-3d3,从而c n+1=4a n+1+2a n+2-3d3,两式相减得c n+1-c n=2(a n+1-a n)-2d3,因此a n+1-a n=12(cn+1-c n)+d3=12d2+d3(常数)(n=1,2,3,…),所以数列{a n}为等差数列.综上,数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).1.(2014·安徽卷)“x<0”是“ln(x+1)<0”的条件.【答案】必要不充分【解析】由ln(x+1)<0,得0<1+x<1,所以-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.2.(2015·安徽卷)设命题p:1<x<2,q:2x>1,则p是q的条件.【答案】充分不必要【解析】由q:2x>1=20,解得x>0,所以p⇒q,但q p,所以p是q的充分不必要条件.3.(2015·南通模考)已知集合M={x|x-2<0},N={x|x<a},若“x∈M”是“x∈N” 的充分条件,则实数a的取值范围是.【答案】[2,+∞)【解析】由题意得M={x|x-2<0}={x|x<2},因为“x∈M”是“x∈N”的充分条件,所以M⊆N,所以a≥2.4.求证:方程mx2-2x+3=0有两个同号且不相等的实数根的充要条件是0<m<1 3.【解答】①充分性:因为0<m<13,所以方程mx2-2x+3=0的判别式Δ=4-12m>0,且3m>0,所以方程mx2-2x+3=0有两个同号且不相等的实数根.②必要性:若方程mx2-2x+3=0有两个同号且不相等的实数根,则有124-1203mx xm∆=>⎧⎪⎨=>⎪⎩,,所以0<m<13.综上,得证.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第3~4页.【检测与评估】第2课四种命题和充要条件一、填空题1.命题“若a>b,则a+1>b”的逆否命题是.2.(2014·启东中学)若使“x≥1”与“x≥a”恰有一个成立的充要条件为{x|0≤x<1},则实数a的值是.3.(2015·重庆卷)“x>1”是“lo12g(x+2)<0”的条件.4.设集合S={0,a},T={x∈Z|x2<2},则“a=1”是“S⊆T”的条件.5.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.6.设n∈N*,则一元二次方程x2-4x+n=0有整数解的充要条件是n=.7.已知命题p:|x|>a,q:-12-1xx>0.若p是q的必要不充分条件,则实数a的取值范围是.8.(2015·郑州质检)给定方程:12x⎛⎫⎪⎝⎭+sin x-1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x0是方程的实数根,则x0>-1.其中正确的命题是.(填序号)二、解答题9.(2014·惠州一模)已知集合A=2331224|y y x x x⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,,,B={x|x+m2≥1}.若命题p:x∈A,命题q:x∈B,并且p是q的充分条件,求实数m的取值范围.10.设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.已知函数f(x)=4sin2π4x⎛⎫+⎪⎝⎭-23cos 2x-1,且给定命题p:x<π4或x>π2,x∈R.若命题q:-2<f(x)-m<2,且¬p是q的充分条件,求实数m的取值范围.三、选做题(不要求解题过程,直接给出最终结果)12.已知集合A={x|x2+2x-3≤0},B={x|(x-2a)[x-(a2+1)]≤0}.若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是.13.(2015·黄山质检)在平面直角坐标系中,定义两点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.现有以下命题:①已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;②原点O到直线x-y+1=0上任意一点P的直角距离d(O,P)的最小值为2 2;③若PQ表示P,Q两点间的距离,那么PQ≥22d(P,Q);其中为真命题的是.(填序号) 【检测与评估答案】第2课 四种命题和充要条件1.若a+1≤b ,则a ≤b2.0 【解析】由题意可得1x x a <⎧⎨≥⎩, 或1x x a ≥⎧⎨<⎩, 成立的充要条件为{x|0≤x<1},所以a=0.3.充分不必要 【解析】lo 12g (x+2)<0⇔x+2>1⇔x>-1,故“x>1”是“lo12g (x+2)<0”的充分不必要条件.4.充分不必要 【解析】当a=1时,S={0,1},又T={-1,0,1},则S ⊆T ,所以充分性成立;当S ⊆T 时,a=1或-1,所以必要性不成立.5.[-3,0] 【解析】因为命题“ax 2-2ax-3>0不成立”是真命题,则有a=0或204120a a a <⎧⎨+≤⎩,,解得a ∈[-3,0].6. 3或4 【解析】由x 2-4x+n=0,得(x-2)2=4-n ,即x=2±4-n .因为n ∈N *,方程要有整数解,所以n=3或4,故当n=3或4时方程有整数解.7. (-∞,0) 【解析】由命题p :|x|>a ⇔R 0-0x a x a x a a ∈<⎧⎨<>≥⎩,,或,,q :-12-1x x >0⇔x<12或x>1.因为p 是q 的必要不充分条件,所以使命题q 成立的不等式的解集是使命题p 成立的不等式解集的子集,所以a<0.8.②③④ 【解析】由题意可知方程12x ⎛⎫ ⎪⎝⎭+sin x-1=0的解等价于函数y=1-12x⎛⎫ ⎪⎝⎭与y=sin x 的图象交点的横坐标,在同一平面直角坐标系中分别作出它们的图象如图所示.(第8题)由图象可知:①该方程存在小于0的实数解,故①错误;②该方程有无数个实数解,故②正确;③该方程在(-∞,0)内有且只有一个实数解,故③正确;④若x 0是该方程的实数解,则x 0>-1,故④正确.9.由y=x 2-32x+1,配方得y=23-4x ⎛⎫ ⎪⎝⎭+716.因为x ∈324⎡⎤⎢⎥⎣⎦,,所以y min =716,y max =2,即y ∈7216⎡⎤⎢⎥⎣⎦,,所以A=7|216y y ⎧⎫≤≤⎨⎬⎩⎭. 由x+m 2≥1,得x ≥1-m 2,B={x|x ≥1-m 2}. 因为p 是q 的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34.故实数m 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦∪34∞⎡⎫+⎪⎢⎣⎭,.10.设m 是两个方程的公共根,显然m ≠0. 由题设知m 2+2am+b 2=0, ① m 2+2cm-b 2=0, ② 由①+②得2m (a+c+m )=0,所以m=-(a+c),③将③代入①得(a+c)2-2a(a+c)+b2=0,化简得a2=b2+c2,所以所给的两个方程有公共根的必要条件是a2=b2+c2.下面证明充分性.因为a2=b2+c2,所以方程x2+2ax+b2=0可化为x2+2ax+a2-c2=0,它的两个根分别为x1=-(a+c),x2=c-a.同理,方程x2+2cx-b2=0的两根分别为x3=-(a+c),x4=a-c.因为x1=x3,所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根.综上所述,方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.由q可得()-2() 2. m f xm f x>⎧⎨<+⎩,因为¬p是q的充分条件,所以在π4≤x≤π2的条件下,()-2()2m f xm f x>⎧⎨<+⎩,恒成立.由已知得,f(x)=2π1cos22x⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦-23cos 2x-1=2sin 2x-23cos 2x+1=4sinπ2-3x⎛⎫⎪⎝⎭+1.由π4≤x≤π2,知π6≤2x-π3≤2π3,所以3≤4sinπ2-3x⎛⎫⎪⎝⎭+1≤5.故当x=5π12时,f(x)max=5,当x=π4时,f(x)min=3,所以只需5-232mm>⎧⎨<+⎩,成立,即3<m<5.所以m的取值范围是(3,5).12.3--2∞⎛⎤⎥⎝⎦,【解析】因为集合A={x|x2+2x-3≤0}={x|-3≤x≤1},B={x|2a≤x≤a2+1}.因为“x∈A”是“x∈B”的充分不必要条件,所以A B,所以2112-3aa⎧+≥⎨≤⎩,,且等号不能同时取得,解得a≤-32,故实数a的取值范围是3--2∞⎛⎤⎥⎝⎦,.13.①③【解析】已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)=|2-sin2α|+|3-cos2α|=2-sin2α+3-cos2α=4,所以①正确;设直线上任意一点为(x,x+1),则原点O 到直线x-y+1=0上任意一点P的直角距离d(O,P)=|x|+|x+1|≥|x+1-x|=1,即其最小值为1,所以命题②错误;由基本不等式a2+b2≥12(a+b)2得PQ=221212(-)(-)x x y y+≥22(|x1-x2|+|y1-y2|)=22d(P,Q),所以命题③成立,综上所述,正确的命题为①③.。

2019年江苏高考数学复习§1.2 命题的四种形式、充要条件

2019年江苏高考数学复习§1.2 命题的四种形式、充要条件

q”成立的必要但不充分条件.求m的取值范围.
解析 p:-4≤x≤8,从而p为真时x的取值范围是集合P=[-4,8]. 同理可得,q为真时x的取值范围是集合Q=[1-m,1+m](m>0). 因为“非p”是“非q”成立的必要但不充分条件,所以“若非q,则 非p”是真命题,即“若p,则q”为真,“若q,则p”为假,故P⫋Q, 从而
1 m 4, 1 m 4, 或 解得m≥7. 1 m 8 1 m 8,
故m的取值范围是[7,+∞). 评析 一般地,在涉及参数的取值范围时,常常要从集合的包含、相等 关系来考虑,这是解此类问题的关键.本题中要特别注意端点值的取舍, 处理不当易出现漏解或增解现象.
例1 (1)命题“a,b∈R,若a2+b2=0,则a=b=0”的逆否命题是 . (2)下列命题是假命题的是 (填序号).
①命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”;
②若0<x< ,xsin x<1,则xsin2x<1;
2
③互相平行的两条直线在同一个平面内的射影必然是两条互相平行的
p是的必要不充分条件
p是q的充要条件
p是q的既不充分也不必要条件
3.利用等价转化法判断:A⇒B与¬ B⇒¬ A,B⇒A与¬ A⇒¬ B,A⇔B与¬ B ⇔¬ A是等价关系.一般地,对于条件或结论是不等关系(否定式)的命题, 运用等价法. 例2 (1)(2016江苏南京、盐城一模,7)设函数f(x)=cos(2x+φ),则“f(x)为 奇函数”是“φ= ”的
“充要”“既不充分也不必要”).
解析 (1)当φ= 时,f(x)=-sin 2x为奇函数,故必要性成立;而当φ= +2π

1.3充分条件、必要条件与命题的四种形式

1.3充分条件、必要条件与命题的四种形式

1.充分条件、必要条件与充要条件(1)“若p ,则q ”形式的命题为真时,记作p ⇒q ,称p 是q 的充分条件,q 是p 的必要条件. (2)如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充要条件,q 也是p 的充要条件.p 是q 的充要条件又常说成q 当且仅当p ,或p 与q 等价.2.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(2)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ )(3)命题“α=π4,则tan α=1”的否命题是“若α=π4,则tan α≠1”.( × ) (4)若一个命题是真命题,则其逆否命题是真命题.( √ )(5)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ )1.(2015·重庆)“x >1”是“12log (x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件答案 B解析 x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”成立的充分不必要条件.因此选B.2.已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 a =3时A ={1,3},显然A ⊆B .但A ⊆B 时,a =2或3.所以A 正确.3.(教材改编)命题“若x 2>y 2,则x >y ”的逆否命题是( )A .“若x <y ,则x 2<y 2”B .“若x ≤y ,则x 2≤y 2”C .“若x >y ,则x 2>y 2”D .“若x ≥y ,则x 2≥y 2”答案 B解析 根据原命题和其逆否命题的条件和结论的关系,得命题“若x 2>y 2,则x >y ”的逆否命题是“若x ≤y ,则x 2≤y 2”.4.已知命题p :若x =-1,则向量a =(1,x ),与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .4答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.5.(教材改编)下列命题:①x =2是x 2-4x +4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件;③sin α=sin β是α=β的充要条件;④ab ≠0是a ≠0的充分不必要条件.其中为真命题的是________(填序号).答案 ②④题型一 充分条件、必要条件的判定例1 (1)(2015·四川)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件(2)一次函数y =-m n x +1n的图象同时经过第一、三、四象限的必要不充分条件是( ) A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0答案 (1)B (2)B解析 (1)根据指数函数的单调性得出a ,b 的大小关系,然后进行判断.∵3a >3b >3,∴a >b >1,此时log a 3<log b 3正确;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件. (2)∵y =-m n x +1n 经过第一、三、四象限,故-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.思维升华 充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.(1)(2015·陕西)“sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 (2)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 (1)A (2)A解析 (1)∵sin α=cos α⇒cos 2α=cos 2α-sin 2α=0;cos 2α=0⇔cos α=±sin α⇒/ sin α=cos α,故选A.(2)当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A. 题型二 充分必要条件的应用例2 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].引申探究1.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈(綈P )是x ∈(綈S )的必要不充分条件,求实数m 的取值范围.解 由例题知P ={x |-2≤x ≤10},∵綈P 是綈S 的必要不充分条件,∴P ⇒S 且S ⇒/ P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.(1)ax 2+2x +1=0至少有一个负实根的充要条件是( )A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.答案 (1)C (2)⎣⎡⎦⎤0,12 解析 (1)方法一 当a =0时,原方程为一元一次方程2x +1=0,有一个负实根.当a ≠0时,原方程为一元二次方程,有实根的充要条件是Δ=4-4a ≥0,即a ≤1.设此时方程的两根分别为x 1,x 2,则x 1+x 2=-2a ,x 1x 2=1a, 当只有一个负实根时,⎩⎪⎨⎪⎧a ≤1,1a <0⇒a <0; 当有两个负实根时,⎩⎪⎨⎪⎧ a ≤1,-2a<0,⇒0<a ≤1.1a >0综上所述,a ≤1. 方法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B.(2)命题p 为⎩⎨⎧⎭⎬⎫x |12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A ={x |x >1或x <12}, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12, ∴0≤a ≤12. 题型三 命题的四种形式例3 (1)命题“若x ,y 都是偶数,则x +y 也是偶数“的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数(2)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 答案 (1)C (2)B解析 (1)由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”.(2)先证原命题为真:当z 1,z 2互为共轭复数时,设z 1=a +b i(a ,b ∈R ),则z 2=a -b i ,则|z 1|=|z 2|=a 2+b 2, ∴原命题为真,故其逆否命题为真;再证其逆命题为假:取z 1=1,z 2=i ,满足|z 1|=|z 2|,但是z 1,z 2不互为共轭复数,∴其逆命题为假,故其否命题也为假,故选B.思维升华 (1)写一个命题的其他三种命题时,需注意:①对于不是“若p ,则q “形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若α=π3,则cos α=12”的逆命题是( ) A .若α=π3,则cos α≠12B .若α≠π3,则cos α≠12C .若cos α=12,则α=π3D .若cos α≠12,则α≠π3(2)(2016·承德月考)已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③答案 (1)C (2)A解析 (1)命题“若α=π3,则cos α=12”的逆命题是“若cos α=12,则α=π3”. (2)命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确,故选A.1.等价转化思想在充要条件中的应用典例 (1)已知p :(a -1)2≤1,q :∀x ∈R ,ax 2-ax +1≥0,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]解析 (1)由(a -1)2≤1解得0≤a ≤2,∴p :0≤a ≤2.当a =0时,ax 2-ax +1≥0对∀x ∈R 恒成立;当a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4, ∴q :0≤a ≤4.∴p 是q 成立的充分不必要条件.(2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.∴{x |x >a }{x |x <-3或x >1},∴a ≥1.答案 (1)A (2)A温馨提醒 (1)本题用到的等价转化①将綈p ,綈q 之间的关系转化成p ,q 之间的关系.②将条件之间的关系转化成集合之间的关系.(2)对一些复杂、生疏的问题,利用等价转化思想转化成简单、熟悉的问题,在解题中经常用到.[方法与技巧]1.充要条件的几种判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件.2.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.[失误与防范]1.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.2.当一个命题有大前提而要写出命题的其他两种形式时,必须保留大前提.3.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p ,则q ”的形式.A 组 专项基础训练(时间:30分钟)1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”答案 B解析 依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.(2015·天津)设x ∈R ,则“1<x <2”是“|x -2|<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由|x -2|<1得1<x <3,所以1<x <2⇒1<x <3;但1<x <3⇒/ 1<x <2,故选A.3.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A .3B .2C .1D .0答案 C解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.4.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C.5.设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 因为菱形的对角线互相垂直,所以“四边形ABCD 为菱形”⇒“AC ⊥BD ”,所以“四边形ABCD 为菱形”是“AC ⊥BD ”的充分条件;又因为对角线垂直的四边形不一定是菱形,所以“AC ⊥BD ”⇒“四边形ABCD 为菱形”,所以“四边形ABCD 为菱形”不是“AC ⊥BD ”的必要条件.综上,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.6.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分不必要的条件B .必要不充分的条件C .充要条件D .既不充分也不必要的条件答案 C解析 由维恩图易知充分性成立.反之,A ∩B =∅时,由维恩图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.7.(2015·北京)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 m ⊂α,m ∥β⇒/ α∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件.8.函数f (x )=⎩⎪⎨⎪⎧log2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a >1答案 A解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间关系得{a |a <0}{a |a ≤0或a >1},故答案选A.9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________. 答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.10.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3}, ∴⎩⎪⎨⎪⎧ -1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2. 11.给定两个命题p 、q ,若綈p 是q 的必要而不充分条件,则p 是綈q 的________条件.答案 充分不必要解析 若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p ⇒/ q ,其逆否命题为p ⇒綈q 但綈q ⇒p ,所以p 是綈q 的充分不必要条件. 12.下列命题:①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f (x )=log 2x ,则f (|x |)是偶函数.其中正确命题的序号是________.答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,所以a >b 正确;对于②,sin 30°=sin 150°⇒/ 30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③正确;④显然正确.B 组 专项能力提升(时间:15分钟)13.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 C解析先证“a>b”⇒“a|a|>b|b|”.若a>b≥0,则a2>b2,即a|a|>b|b|;若a≥0>b,则a|a|≥0>b|b|;若0>a>b,则a2<b2,即-a|a|<-b|b|,从而a|a|>b|b|.再证“a|a|>b|b|”⇒“a>b”.若a,b≥0,则由a|a|>b|b|,得a2>b2,故a>b;若a,b≤0,则由a|a|>b|b|,得-a2>-b2,即a2<b2,故a>b;若a≥0,b<0,则a>b.综上,“a>b”是“a|a|>b|b|”的充要条件.14.(2015·湖北)设a1,a2,…,a n∈R,n≥3.若p:a1,a2,…,a n成等比数列;q:(a21+a22+…+a2n-1)(a22+a23+…+a2n)=(a1a2+a2a3+…+a n-1a n)2,则()A.p是q的必要条件,但不是q的充分条件B.p是q的充分条件,但不是q的必要条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件答案 B解析若p成立,设a1,a2,…,a n的公比为q,则(a21+a22+…+a2n-1)(a22+a23+…+a2n)=a21(1+q2+…+q2n -4)·a22(1+q2+…+q2n-4)=a21a22(1+q2+…+q2n-4)2,(a1a2+a2a3+…+a na n)2=(a1a2)2(1+q2+…+q2n-4)2,-1故q成立,故p是q的充分条件.取a1=a2=…=a n=0,则q成立,而p不成立,故p不是q的必要条件,故选B.15.(2015·浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A 中元素的个数,命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C),()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立答案 A解析命题①成立,若A≠B,则card(A∪B)>card(A∩B),所以d(A,B)=card(A∪B)-card(A∩B)>0.反之可以把上述过程逆推,故“A≠B”是“d(A,B)>0”的充分必要条件;命题②成立,由维恩图,知card(A∪B)=card(A)+card(B)-card(A∩B),d(A,C)=card(A)+card(C)-2card(A∩C),d(B,C)=card(B)+card(C)-2card(B∩C),∴d(A,B)+d(B,C)-d(A,C)=card(A)+card(B)-2card(A∩B)+card(B)+card(C)-2card(B∩C)-[card(A)+card(C)-2card(A∩C)]=2card(B)-2card(A∩B)-2card(B∩C)+2card(A∩C)=2card(B)+2card(A∩C)-2[card(A∩B)+card(B∩C)]≥2card(B )+2card(A ∩C )-2[card((A ∪C )∩B )+card(A ∩B ∩C )]=[2card(B )-2(card(A ∪C )∩B )]+[2card(A ∩C )-2card(A ∩B ∩C )]≥0,∴d (A ,C )≤d (A ,B )+d (B ,C )得证.16.已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.17.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的________条件.答案 充分不必要解析 ∵a -b >1,即a >b +1.又∵a ,b 为正数,∴a 2>(b +1)2=b 2+1+2b >b 2+1,即a 2-b 2>1成立,反之,当a =3,b =1时,满足a 2-b 2>1,但a -b >1不成立.所以“a -b >1”是“a 2-b 2>1”充分不必要条件.18.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________.答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确.由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确.由a 2+b 2≠0可以推出a ,b 不全为零,反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,③不正确,④正确.。

专题02 四种命题和充要条件 (原卷版)

专题02 四种命题和充要条件 (原卷版)

专题02 四种命题和充要条件【名师预测】江苏高考对命题、充要条件等的考查涉及面较广,常与其他知识结合起来综合考查,主要是判断命题的真假和命题之间的关系。

在江苏高考中主要是以填空题的形式出现,难度一般不大,常与函数、不等式、三角函数、向量、立体几何等知识点结合起来综合考查。

【知识精讲】1.命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充分条件与必要条件p ⇒q 且q ppq 且q ⇒p p ⇔q p q 且qp【典例精练】考点一 四种命题的关系及其真假例1. 命题p :“若a b >,则11a b<”的否命题是________(填:真、假)命题.例2. 命题“若α=π4,则tan α=1”的逆否命题是________________.例3. 给出以下四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②(易错题)“全等三角形的面积相等”的否命题; ③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题; ④若ab 是正整数,则a ,b 都是正整数. 其中真命题是________.(写出所有真命题的序号) 考点二 充分、必要条件的判定例4.“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的________条件. 例5.设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的______条件. 考点三 充分、必要条件的应用例6.已知p :x ≥a ,q :x 2-2x -3≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________. 例7.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.例8. 若关于x 的不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4,则实数a 的取值范围是________.【名校新题】一、填空题1.(2019·江苏如东高级中学高三期中)命题“若 ,则 ”的否命题为___________. 2.(2019·江苏连云港期末)命题“若0x <,则20x >”的逆否命题为____. 3.(2019·江苏如东高级中学高三期中)“ ”是“”的________条件.4.(2019·江苏省如皋中学高考模拟)“a =b ”是=的_________条件.5.(2018·江苏扬州高三期中)已知条件p :x >a ,条件q :.若p 是q 的必要不充分条件,则实数a 的取值范围是_______.6.(2018·江苏江阴期中)若“ ”是“ ”成立的充分不必要条件,则实数 的取值范围是____________.7.(2019·江苏盐城高三期中)设函数,则k =﹣1是函数 为奇函数的_______条件(选填“充分不必要、必要不充分、既不充分又不必要、充要”之一)8.(2018·江苏清江中学高考模拟)下列有关命题的说法正确的是___(请填写所有正确的命题序号). ①命题“若 ,则 ”的否命题为:“若 ,则 ”; ②命题“若 ,则 ”的逆否命题为真命题; ③条件 ,条件 ,则 是 的充分不必要条件;④已知 时, ,若 是锐角三角形,则 .9.(2019·江苏扬州中学月考)在△ABC 中,角A ,B 均为锐角,则“cosA>sinB”是“△ABC 是钝角三角形”的_____条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”)10.(2019·江苏启东中学月考)已知命题p :()()310x x -+>,命题q :()222100x x m m -+->>,若命题p 是命题q 的充分不必要条件,则实数m 的范围是______. 二、解答题11.(2018·江苏常州期中)已知集合{}|22A x a x a =-≤≤+(0a >),{}2|340B x x x =+-≤.(1)若3a =,求A B ;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.12.(2019·南师大附中检测)设p :实数x 满足x 2+2ax -3a 2<0(a >0),q :实数x 满足x 2+2x -8<0,且q 是p 的必要不充分条件,求a 的取值范围.。

高考数学 复习《充分条件、必要条件与命题的四种形式》

高考数学 复习《充分条件、必要条件与命题的四种形式》
(2) 若 AB ,则 A B A
若 A B=A ,则 A B 真
(3) 若 x y 5,则x 2且y 3
若 x=2或y=3,则x y=5 假
典型例题 例5、已知p :|1 x 1 | 2; q : x2 2x 1 m2 0(m 0),
3 若p是q的必要不充分条件,求实数m的范围.
⑶充要条件
( p q)
⑷既不充分也不必要条件 ( p q 且q p )
练习: 在下列电路图中,开关 A 闭合是灯泡 B 亮的什么条件:
⑴如图①所示,开关 A 闭合是灯泡 B 亮的_充__分__不__必__要_条件; ⑵如图②所示,开关 A 闭合是灯泡 B 亮的必 __要 ___不__充__分_条件;
典型例题
例 3、写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)若 x2 y2 0 ,则 x, y 全为 0
(2)正偶数不是质数
(3)若 a 0 ,则 a b 0
(4)相似的三角形是全等三角形
(1) (2) (3) (4) 原命题 真 假 真 假 逆命题 真 假 假 真 否命题 真 假 假 真 逆否命题 真 假 真 假
既不充分也不必要条件 4)若A=B ,则甲是乙的充要条件。
典型例题
例 1、指出下列命题中,p 是 q 的什么条件.
⑴p: x 1 0 ,q: x 1 x 2 0 ; 充分不必要
⑵p:两直线平行,q:内错角相等; 充要 ⑶p: a b ,q: a2 b2 ; 既不充分也不必要 ⑷p:四边形的四条边相等,q:四边形是正方形.
1.互为逆否关系的一对命题,同真或同假。 2.互逆关系的一对命题,不一定同真假。 3.互否关系的一对命题,不一定同真假。
典型例题

充要条件

充要条件

二、新课
① 认清条件和结论。 ② 考察p q和q p的真假。 ① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。
三、小结
如果已知p q,则说p是q的充分条件, q是p的必要条件。 如果既有p q,又有q p,就记作 p q, 则说p是q的充要条件。
二.新课讲解
在真命题(1)、(2)中,p足以导致q,也就是说条件 p充分了。 在假命题(3)、(4)中条件p不充分。
在真命题(2)(3)中,p是q成立所必须具备的前提。 在假命题(1)(4)中,p不是q成立所必须具备的前提。
(二)充要条件
1、定义1:如果已知p q,则说p是q的充分条件。 定义2:如果已知q p,则说p是q的必要条件。 定义3:如果既有p q,又有q p,就记作 p q, 则说p是q的充要条件。
答:(1) p (3) p
q, q q, q
p (2) p p (4) p
q, q p q, q p
为变口。【嘈杂】cáozá形(声音)杂乱; 【哔】(嗶)bì[哔叽](bìjī)名密度比较小的斜纹的毛织品。【便函】biànhán名形式比较简便的、 非正式公文的信件(区别于“公函”)。甚(多见于早期白话)。 【倡】chānɡ〈书〉①指以演奏、歌舞为业的人。 ③超过规定的重量。 照耀:~青 史|~千古。【陈言】2chényán〈书〉名陈旧的话:~务去。 体裁可以多样化。本市居民的~问题已基本解决。外表:~面|地~|由~及里。⑥〈方 〉量用于某些带把儿的东西:一~斧头|两~锄头。同两方面或多方面有关系的:~学科。【车厂】chēchǎnɡ名①旧时租赁人力车或三轮车的处所。像
① 认清条件和结论。 ② 考察p q和q p的真假。

高中数学充分条件、必要条件与命题的四种形式例题解析

高中数学充分条件、必要条件与命题的四种形式例题解析

§1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件1.当命题“如果p,则q”经过推理证明判定为真命题时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.这几种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.2.若p⇒q,但q⇏p,称p是q的充分不必要条件,若q⇒p,但p⇏q,称p是q的必要不充分条件.知识点二充要条件1.一般地,如果p⇒q,且q⇒p,就记作p⇔q,此时,我们说,p是q的充分且必要条件,简称充要条件.p是q的充要条件,又常说成q当且仅当p,或p与q等价.2.从集合的角度判断充分条件、必要条件和充要条件.若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件若A=B,则p,q互为充要条件若A⊈B且B⊈A,则p既不是q的充分条件,也不是q的必要条件其中p:A={x|p(x)成立},q:B={x|q(x)成立}.1.若p是q的充分条件,则p是唯一的.(×)2.“若p,则q”是真命题,而“若q,则p”是假命题,则p是q的充分不必要条件.(√) 3.q不是p的必要条件时,“p⇏q”成立.(√)4.若p是q的充要条件,则命题p和q是两个相互等价的命题.(√)5.若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题型一充分、必要、充要条件的判断例1下列各题中,p是q的什么条件?(指充分不必要、必要不充分、充要、既不充分也不必要条件)(1)p:x=1或x=2,q:x-1=x-1;(2)p:m>0,q:x2+x-m=0有实根;(3)p:四边形的对角线相等,q:四边形是平行四边形.考点充要条件的概念及判断题点充要条件的判断解(1)因为x=1或x=2⇒x-1=x-1,x-1=x-1⇒x=1或x=2,所以p是q的充要条件.(2)因为m>0⇒方程x2+x-m=0的判别式Δ=1+4m>0,即方程有实根,方程x2+x-m=0有实根,即Δ=1+4m≥0⇏m>0,所以p是q的充分不必要条件.(3)p是q的既不充分也不必要条件.反思感悟充分条件、必要条件的两种常用的判断方法(1)定义法:①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件;③尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p的必要条件;②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同时q也不是p的必要条件.跟踪训练1下列各题中,试分别指出p是q的什么条件.(1)p :两个三角形相似,q :两个三角形全等; (2)p :f (x )=x ,q :f (x )在(-∞,+∞)上为增函数; (3)p :A ⊆B ,q :A ∩B =A ; (4)p :a >b ,q :ac >bc . 考点 充要条件的概念及判断 题点 充要条件的判断解 (1)∵两个三角形相似⇏两个三角形全等,但两个三角形全等⇒两个三角形相似, ∴p 是q 的必要不充分条件.(2)∵f (x )=x ⇒f (x )在(-∞,+∞)上为增函数,但f (x )在(-∞,+∞)上为增函数⇏f (x )=x ,∴p 是q 的充分不必要条件.(3)∵p ⇒q ,且q ⇒p ,∴p 是q 的充要条件.(4)∵p ⇏q ,且q ⇏p ,∴p 是q 的既不充分也不必要条件.题型二 充分条件、必要条件、充要条件的应用命题角度1 由充分条件、必要条件求参数范围例2 已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件,即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{m |0<m ≤3}. 引申探究1.若本例中“p 是q 的必要不充分条件”改为“p 是q 的充分不必要条件”,其他条件不变,求实数m 的取值范围.解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的充分不必要条件,设p 代表的集合为A ,q 代表的集合为B ,所以A B .所以⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.解不等式组得m >9或m ≥9, 所以m ≥9,即实数m 的取值范围是[9,+∞).2.若本例中p ,q 不变,是否存在实数m 使p 是q 的充要条件?若存在,求出m 的值;若不存在,说明理由.解 因为p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0).若p 是q 的充要条件,则⎩⎪⎨⎪⎧-2=1-m ,10=1+m ,m 不存在.反思感悟 由条件关系求参数的取值(范围)的步骤 (1)根据条件关系建立条件构成的集合之间的关系. (2)根据集合端点或数形结合列方程或不等式(组)求解.跟踪训练2 (1)“不等式(a +x )(1+x )<0成立”的一个充分不必要条件是“-2<x <-1”,则实数a 的取值范围是________. 考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 (2,+∞)解析 不等式变形为(x +1)(x +a )<0, 因为当-2<x <-1时不等式成立, 所以不等式的解集是-a <x <-1. 由题意有(-2,-1)(-a ,-1), 所以-2>-a ,即a >2.(2)已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 [-1,5]解析 因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P ,所以⎩⎪⎨⎪⎧ a -4≤1,a +4≥3,即⎩⎪⎨⎪⎧a ≤5,a ≥-1,所以-1≤a ≤5.命题角度2 探求充要条件例3 求关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立的充要条件. 考点 充要条件的概念及判断 题点 寻求充要条件解 由题意可知,关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立,等价于对于方程ax 2-ax +1=0中,⎩⎨⎧a >0,Δ<0⇔0<a <4.反思感悟 求一个问题的充要条件,就是利用等价转化的思想,使得转化前后的两个命题所对应的解集是两个相同的集合,这就要求我们转化的时候思维要缜密.跟踪训练3 直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是m =________. 考点 充要条件的概念及判断 题点 寻求充要条件 答案 -4或0解析 由题意知,直线与圆相切等价于圆心(1,1)到直线x +y +m =0的距离等于半径2, 即|2+m |2=2,得m =-4或0.充要条件的证明典例 求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. 证明 充分性(由ac <0推证方程有一正根和一负根),∵ac <0,∴一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac >0, ∴原方程一定有两不等实根,不妨设为x 1,x 2,则x 1x 2=ca <0,∴原方程的两根异号,即一元二次方程ax 2+bx +c =0有一正根和一负根. 必要性(由方程有一正根和一负根推证ac <0), ∵一元二次方程ax 2+bx +c =0有一正根和一负根, 不妨设为x 1,x 2,∴由根与系数的关系得x 1x 2=ca <0,即ac <0,此时Δ=b 2-4ac >0,满足原方程有两个不等实根.综上可知,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.[素养评析] (1)一般地,证明“p 成立的充要条件为q ”时,在证充分性时应以q 为“已知条件”,p 是该步中要证明的“结论”,即q ⇒p ;证明必要性时则是以p 为“已知条件”,q 为该步中要证明的“结论”,即p ⇒q .(2)通过论证数学命题,学会有逻辑地思考问题,探索和表述论证过程,能很好的提升学生的逻辑思维品质.1.“-2<x <1”是“x >1或x <-1”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充要条件 答案 C解析 ∵-2<x <1⇏x >1或x <-1,且x >1或x <-1⇏-2<x <1,∴“-2<x <1”是“x >1或x <-1”的既不充分也不必要条件.2.设命题p :x 2-3x +2<0,q :x -1x -2≤0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 命题p :1<x <2;命题q :1≤x <2,故p 是q 的充分不必要条件. 3.“θ=0”是“sin θ=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由于当“θ=0”时,一定有“sin θ=0”成立,反之不成立,所以“θ=0”是“sin θ=0”的充分不必要条件.4.记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________. 答案 (-∞,-3]解析 由于A ={x |x 2+x -6<0}={x |-3<x <2},B ={x |y =lg(x -a )}={x |x >a },而“x ∈A ”是“x ∈B ”的充分条件,则有A ⊆B ,则有a ≤-3.5.“a =0”是“直线l 1:x -2ay -1=0与l 2:2x -2ay -1=0平行”的________条件. 答案 充要解析 (1)∵a =0,∴l 1:x -1=0,l 2:2x -1=0, ∴l 1∥l 2,即a =0⇒l 1∥l 2. (2)若l 1∥l 2,当a ≠0时, l 1:y =12a x -12a ,l 2:y =1a x -12a .令12a =1a,方程无解. 当a =0时,l 1:x -1=0,l 2:2x -1=0,显然l 1∥l 2. ∴a =0是直线l 1与l 2平行的充要条件.充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,常采用如下方法:(1)定义法:分清条件p 和结论q ,然后判断“p ⇒q ”及“q ⇒p ”的真假,根据定义下结论.(2)等价法:将命题转化为另一个与之等价的又便于判断真假的命题.(3)集合法:写出集合A={x|p(x)}及集合B={x|q(x)},利用集合之间的包含关系加以判断.一、选择题1.“ab ≠0”是“直线ax +by +c =0与两坐标轴都相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 ab ≠0,即a ≠0且b ≠0,此时直线ax +by +c =0与两坐标轴都相交;又当ax +by +c =0与两坐标轴都相交时,a ≠0且b ≠0.2.下列“若p ,则q ”形式的命题中,p 是q 的充分条件的命题个数为( ) ①若f (x )是周期函数,则f (x )=sin x ; ②若x >5,则x >2; ③若x 2-9=0,则x =3. A .0 B .1 C .2 D .3 答案 B解析 ①中,周期函数还有很多,如y =cos x ,所以①中p 不是q 的充分条件;很明显②中p 是q 的充分条件;③中,当x 2-9=0时,x =3或x =-3,所以③中p 不是q 的充分条件.所以p 是q 的充分条件的命题的个数为1,故选B.3.已知向量a ,b 为非零向量,则“a ⊥b ”是“|a +b |=|a -b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 |a +b |2=|a -b |2⇔a 2+b 2+2a ·b =a 2+b 2-2a ·b ⇔a ·b =0.4.已知圆O :x 2+y 2=1,直线l :ax +by +c =0,则a 2+b 2=c 2是圆O 与直线l 相切的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 由直线与圆相切得|c |a 2+b 2=1,即a 2+b 2=c 2;a 2+b 2=c 2时也有|c |a 2+b 2=1成立,即直线与圆相切.5.若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当a >0且b 2-4ac <0时,对任意x ∈R ,ax 2+bx +c >0成立,即充分性成立.反之,则不一定成立.如当a =0,b =0,且c >0时,对任意x ∈R ,ax 2+bx +c >0成立.综上,“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的充分不必要条件.6.设函数f (x )=|log 2x |,则f (x )在区间(m,2m +1)(m >0)内不是单调函数的充要条件是( ) A .0<m <12B .0<m <1 C.12<m <1 D .m >1答案 B解析 f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1.f (x )的图象在(0,1)内单调递减, 在(1,+∞)内单调递增.f (x )在(m,2m +1)(m >0)上不是单调函数等价于⎩⎪⎨⎪⎧m <1,2m +1>1⇔0<m <1. 7.已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A ,B ,C 三点共线的充要条件是( ) A .λ1=λ2=-1 B .λ1=λ2=1 C .λ1λ2=1 D .λ1λ2=-1答案 C解析 依题意,知A ,B ,C 三点共线⇔AB →=λAC →⇔λ1a +b =λa +λλ2b ⇔⎩⎪⎨⎪⎧λ1=λ,λλ2=1,即λ1λ2=1.故选C.8.设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别是集合M 和N ,那么“a 1a 2=b 1b 2=c 1c 2”是“M =N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a 1a 2=b 1b 2=c 1c 2<0,则M ≠N , 即a 1a 2=b 1b 2=c 1c 2⇏M =N ; 反之,若M =N =∅,即两个一元二次不等式的解集为空集时,只要求判别式Δ1<0,Δ2<0(a 1<0,a 2<0),而与系数之比无关.二、填空题9.设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由于方程有整数根,由判别式Δ=16-4n ≥0.得1≤n ≤4,逐个分析,当n =1,2时,方程没有整数解;而当n =3时,方程有正整数解1,3;当n =4时,方程有正整数解2.故n =3或4.10.设p :1≤x <4,q :x <m ,若p 是q 的充分条件,则实数m 的取值范围为________. 答案 [4,+∞)解析 据题意知,p ⇒q ,则m ≥4.11.给出下列三个命题:①“a >b ”是“3a >3b ”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件.其中真命题的序号为________.答案 ③解析 ①∵函数y =3x 是R 上的增函数,∴“a >b ”是“3a >3b ”的充要条件,故①错误;②∵2π>π2,cos 2π>cos π2,∴α>β⇏cos α<cos β;∵cos π<cos 2π,π<2π,∴cos α<cos β⇏α>β.∴“α>β”是“cos α<cos β”的既不充分也不必要条件,故②错误;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件,正确.三、解答题12.已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0},若p 是q 的充分条件,求实数a 的取值范围.解 化简B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1}; ②当a <13时,B ={x |3a +1≤x ≤2}. 因为p 是q 的充分条件且A 为非空集合,所以A ⊆B ,于是有⎩⎪⎨⎪⎧ a ≥13,a 2+1≤3a +1,2a ≥2,或⎩⎪⎨⎪⎧ a <13,a 2+1≤2,2a ≥3a +1,解得1≤a ≤3或a =-1.综上,a 的取值范围是{a |1≤a ≤3或a =-1}.13.设a ,b ,c 是△ABC 的三个内角A ,B ,C 所对的边.求证:a 2=b (b +c )的充要条件是A =2B .证明 充分性:∵A =2B ,∴A -B =B ,则sin(A -B )=sin B ,则sin A cos B -cos A sin B =sinB ,结合正弦、余弦定理得a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc=b ,化简整理得a 2=b (b +c ); 必要性:由余弦定理a 2=b 2+c 2-2bc cos A ,且a 2=b (b +c ),得b 2+bc =b 2+c 2-2bc cos A ,∴1+2cos A =c b =sin C sin B, 即sin B +2sin B cos A =sin C =sin(A +B )=sin A cos B +cos A sin B ,∴sin B =sin A cos B -cos A sin B =sin(A -B ),由于A ,B 均为三角形的内角,故必有B =A -B ,即A =2B . 综上,知a 2=b (b +c )的充要条件是A =2B .14.已知p :x 2+2x -3>0,q :x >a (a 为实数).若綈q 的一个充分不必要条件是綈p ,则实数a 的取值范围是________.答案 [1,+∞)解析 将x 2+2x -3>0化为(x -1)(x +3)>0,所以p :x >1或x <-3,所以綈p :-3≤x ≤1.又綈q :x ≤a ,且綈q 的一个充分不必要条件是綈p ,所以a ≥1.15.设x ,y ∈R ,求证:|x +y |=|x |+|y |成立的充要条件是xy ≥0.证明 充分性:如果xy ≥0,则有xy =0和xy >0两种情况,当xy =0时,不妨设x =0,得|x+y|=|y|,|x|+|y|=|y|,∴等式成立.当xy>0,即x>0,y>0或x<0,y<0时,又当x>0,y>0时,|x+y|=x+y,|x|+|y|=x+y,∴等式成立.当x<0,y<0时,|x+y|=-(x+y),|x|+|y|=-x-y=-(x+y),∴等式成立.总之,当xy≥0时,|x+y|=|x|+|y|成立.必要性:若|x+y|=|x|+|y|且x,y∈R,得|x+y|2=(|x|+|y|)2,即x2+2xy+y2=x2+y2+2|x|·|y|,∴|xy|=xy,∴xy≥0.综上可知,xy≥0是等式|x+y|=|x|+|y|成立的充要条件。

四种命题与充要条件(高三复习课)

四种命题与充要条件(高三复习课)

四种命题与充要条件【教学目标】了解命题的逆命题、否命题与逆否命题;理解必要条件、充分条件与冲要条件的意义,会分析四种命题的相互关系。

【重点难点】1.注重四种命题之间的相互关系,命题间关系的互相转化。

2.充要条件的判断方法: ⑴定义法: ⑵等价法: ⑶集合法; 一、知识梳理 1.(1)四种命题原命题:如果p ,那么q (或若p 则q );逆命题:若q 则p ; 否命题:若⌝p 则⌝q ;逆否命题:若⌝q 则⌝p . (2)四种命题之间的相互关系这里,原命题与逆否命题,逆命题与否命题是等价命题.2.充分条件:如果p ⇒q ,则p 叫q 的充分条件,原命题(或逆否命题)成立,命题中的条件是充分的,也可称q 是p 的必要条件。

必要条件:如果q ⇒p ,则p 叫q 的必要条件,逆命题(或否命题)成立,命题中的条件为必要的,也可称q 是p 的充分条件。

充要条件:如果既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 叫做q 的充分必要条件,简称充要条件,原命题和逆命题(或逆否命题和否命题)都成立,命题中的条件是充要的。

二.基础自测:1.22bc ac >是b a >成立的 .2.已知a 、b 、c 为非零的平面向量.甲:a ·b =a ·c ,乙:b =c ,则甲是乙的 条件.3.在△ABC 中,“A >30°”是“sin A >21”的 条件. 4.若条件p :a >4,q :5<a <6,则p 是q 的_____________5.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的6.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是_________. 7.“若15≤ab ,则a ≤3或b ≤5”是_______命题.(填“真”或“假”)8.已知a 、b 是两个命题,如果a 是b 的充分条件,那么⌝a 是⌝b 的_____条件.三、典型例题[例1 ] 求证:关于x 的方程02=++c bx ax 有一根为1的充分必要条件是0=++c b a变式训练:求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件.方法提炼: [例2 ]已知325:>-x p ; 0541:2>-+x x q ,试判断p ⌝是q ⌝的什么条件?[例3 ] 已知{}44|:+<<-=a x a x A p ,=B q :21|0.43x x x ⎧⎫≥⎨⎬-+⎩⎭若p 是q ⌝的必要条件,求实数a 的取值范围.[例4] 若A 是B 的必要而不充分条件,C 是B 的充要条件,D 是C 的充分而不必要条件,判断D 是A 的什么条件?变式训练:已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①r 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件; ⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是方法提炼:四、课堂反馈1.命题“若函数()()1,0log ≠>=a a x x f a 在其定义域内是减函数,则02log <a 的逆否命题是_______.2.已知d c b a ,,,为实数,且d c >,则“b a >”是“d b c a ->-”的__________条件.3.若命题p 的逆命题是q ,命题p 的逆否命题是x ,则q 与x 的关系是________.4.已知b a ,是实数,则“0>a 且0>b ”是“0>+b a 且0>ab ”的_______条件.5. “22≤≤-a ”是“实系数一元二次方程012=++ax x 有虚根”的________条件.6.在△ABC 中,“A >B ”是“cos A <cos B ”的 条件.7. 条件1:>x p ,条件2:-<x q ,则p ⌝是q ⌝的 条件。

充分条件必要条件与命题的四种形式-命题的四种形式(省一等奖)

充分条件必要条件与命题的四种形式-命题的四种形式(省一等奖)

四种命题(2)目标:1.理解四种命题的关系,并能利用这个关系判断命题的真假。

2.培养观察分析、抽象概括能力和逻辑思维能力;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。

重点:理解四种命题的关系。

难点:逆否命题的等价性。

过程:一、复习引入1.四种命题及其形式如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题就叫做互逆命题;如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么这样的两个命题就叫做互否命题;如果一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,那么这样的两个命题就叫做互为逆否命题.原命题:若p则q;逆命题:若q则p;否命题:若−p则−q;逆否命题:若−q 则−p.2.说出命题“若两个三角形全等,则这两个三角形相似”的逆命题、否命题、逆否命题。

(解答略)二、新课1.四种命题的相互关系互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题.因此,四种命题之间的相互关系,可用下图表示:2.四种命题的真假关系一个命题的真假与其他三个命题的真假有如下三条关系:例1:判断以下四种命题的真假原命题:“若 a = 0 则 ab = 0”是真命题逆命题:“若 ab = 0 则 a = 0”是假命题否命题:“若 a ≠ 0 则 ab ≠ 0”是假命题逆否命题:“若 ab ≠ 0 则 a ≠ 0”是真命题例2:判断以下四种命题的真假原命题:若四边形ABCD为平行四边形,则对角线互相平分。

真逆命题:若四边形ABCD对角线互相平分,则它为平行四边形;真否命题:若四边形ABCD不是为平行四边形,则对角线不平分;真逆否命题:若四边形ABCD对角线不平分,则它不是平行四边形;真归纳小结:(学生回答,教师整理补充)(1)原命题为真,它的逆命题不一定为真;(2)原命题为真,它的否命题不一定为真;(3)原命题为真,它的逆否命题一定为真。

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件

命题及其关系、充分条件与必要条件1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念概念方法微思考若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A⊈B且A⊉B,则p是q的既不充分又不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“对顶角相等”是命题.(√)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)当q是p的必要条件时,p是q的充分条件.(√)(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√)题组二教材改编2.下列命题是真命题的是()A.矩形的对角线相等B.若a>b,c>d,则ac>bdC.若整数a是素数,则a是奇数D.命题“若x2>0,则x>1”的逆否命题答案 A3.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等4.“x-3=0”是“(x-3)(x-4)=0”的____________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案充分不必要题组三易错自纠5.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件答案 C解析x>y⇏x>|y|(如x=1,y=-2),但当x>|y|时,能有x>y.∴“x>y”是“x>|y|”的必要不充分条件.6.已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.答案(-∞,2]解析由已知,可得{x|2<x<3}{x|x>a},∴a≤2.题型一命题及其关系1.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的方差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是________.答案 ①③2.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是( )A.不拥有的人们会幸福B.幸福的人们不都拥有C.拥有的人们不幸福D.不拥有的人们不幸福答案 D3.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中真命题为________.(填写所有真命题的序号)答案 ①②③解析 ①“若xy =1,则x ,y 互为倒数”的逆命题是“若x ,y 互为倒数,则xy =1”,显然是真命题,故①正确;②“面积相等的三角形全等”的否命题是“面积不相等的三角形不全等”,显然是真命题,故②正确;③若x 2-2x +m =0有实数解,则Δ=4-4m ≥0,解得m ≤1,所以“若m ≤1,则x 2-2x +m =0有实数解”是真命题,故其逆否命题是真命题,故③正确;④若A ∩B =B ,则B ⊆A ,故原命题错误,所以其逆否命题错误,故④错误.4.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是________________. 答案 若方程x 2+x -m =0没有实根,则m ≤0思维升华 (1)写一个命题的其他三种命题时,需注意:①对于不是“若p ,则q ”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分、必要条件的判定 例1 (1)已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 D 解析 取α=7π3,β=π3,α>β成立,而sin α=sin β,sin α>sin β不成立. ∴充分性不成立;取α=π3,β=13π6,sin α>sin β,但α<β,必要性不成立. 故“α>β”是“sin α>sin β”的既不充分也不必要条件.(2)已知条件p :x >1或x <-3,条件q :5x -6>x 2,则綈p 是綈q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A解析 由5x -6>x 2,得2<x <3,即q :2<x <3.所以q ⇒p ,p ⇏q ,所以綈p ⇒綈q ,綈q ⇏綈p ,所以綈p 是綈q 的充分不必要条件,故选A.思维升华 充分条件、必要条件的三种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,进行判断,适用于条件和结论带有否定性词语的命题.跟踪训练1 (1)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的( )A.充要条件B.既不充分又不必要条件C.充分不必要条件D.必要不充分条件 答案 D解析 非有志者不能至,是必要条件;但“有志”也不一定“能至”,不是充分条件.(2)设p :⎝⎛⎭⎫12x <1,q :log 2x <0,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 答案 B解析 由⎝⎛⎭⎫12x <1知x >0,所以p 对应的集合为(0,+∞),由log 2x <0知0<x <1,所以q 对应的集合为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件.题型三 充分、必要条件的应用例2 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].引申探究若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练2 (1)设p :|2x +1|<m (m >0);q :x -12x -1>0.若p 是q 的充分不必要条件,则实数m 的取值范围为__________.答案 (0,2]解析 由|2x +1|<m (m >0),得-m <2x +1<m ,∴-m +12<x <m -12. 由x -12x -1>0,得x <12或x >1. ∵p 是q 的充分不必要条件,又m >0,∴m -12≤12,∴0<m ≤2.(2)设n ∈N +,则一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由Δ=16-4n ≥0,得n ≤4,又n ∈N +,则n =1,2,3,4.当n =1,2时,方程没有整数根;当n =3时,方程有整数根1,3,当n =4时,方程有整数根2.综上可知,n =3或4.利用充要条件求参数范围逻辑推理是从事实和命题出发,依据规则推出其他命题的素养.逻辑推理的主要形式是演绎推理,它是得到数学结论、证明数学命题的主要方式,也是数学交流、表达的基本思维品质. 例 已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.答案 ⎣⎡⎦⎤0,12 解析 方法一 命题p 为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧ a +1≥1,a <12, ∴0≤a ≤12. 方法二 命题p 为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1, 命题q 为B ={x |a ≤x ≤a +1}.∵綈p 是綈q 的必要不充分条件,∴p 是q 的充分不必要条件,即A B .∴⎩⎪⎨⎪⎧ a +1≥1,a <12或⎩⎪⎨⎪⎧a +1>1,a ≤12,∴0≤a ≤12. 素养提升 例题中得到实数a 的范围的过程就是利用已知条件进行推理论证的过程,数学表达严谨清晰.1.已知命题p :若a <1,则a 2<1,则下列说法正确的是( )A.命题p 是真命题B.命题p 的逆命题是真命题C.命题p 的否命题是“若a <1,则a 2≥1”D.命题p 的逆否命题是“若a 2≥1,则a <1”答案 B解析 若a =-2,则(-2)2>1,∴命题p 为假命题,∴A 不正确;命题p 的逆命题是“若a 2<1,则a <1”,为真命题,∴B 正确;命题p 的否命题是“若a ≥1,则a 2≥1”,∴C 不正确;命题p 的逆否命题是“若a 2≥1,则a ≥1”,∴D 不正确.故选B.2.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A.逆命题B.否命题C.逆否命题D.否定答案 B解析 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.3.(2018·天津)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 答案 A解析 由⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12,即“x 3<1”⇏“⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分不必要条件. 故选A.4.(2018·西安模拟)设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要条件 答案 A解析 由(a -b )a 2<0可知a 2≠0,则一定有a -b <0,即a <b ;但a <b 即a -b <0时,有可能a =0,所以(a -b )a 2<0不一定成立,故“(a -b )a 2<0”是“a <b ”的充分不必要条件,故选A.5.有下列命题:①“若x +y >0,则x >0且y >0”的否命题;②“矩形的对角线相等”的否命题;③“若m >1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题;④“若a +7是无理数,则a 是无理数”的逆否命题.其中正确的是( )A.①②③B.②③④C.①③④D.①④ 答案 C解析 ①的逆命题“若x >0且y >0,则x +y >0”为真,故否命题为真;②的否命题为“不是矩形的图形对角线不相等”,为假命题;③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m >1”.因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题; ④原命题为真,逆否命题也为真.6.若实数a ,b 满足a >0,b >0,则“a >b ”是“a +ln a >b +ln b ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 C解析设f(x)=x+ln x,显然f(x)在(0,+∞)上是增加的,∵a>b,∴f(a)>f(b),∴a+ln a>b+ln b,故充分性成立;∵a+ln a>b+ln b,∴f(a)>f(b),∴a>b,故必要性成立,故“a>b”是“a+ln a>b+ln b”的充要条件,故选C.7.已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件答案 C解析方法一∵数列{a n}是公差为d的等差数列,∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d,∴S4+S6=10a1+21d,2S5=10a1+20d.若d>0,则21d>20d,10a1+21d>10a1+20d,即S4+S6>2S5.若S4+S6>2S5,则10a1+21d>10a1+20d,即21d>20d,∴d>0.∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.方法二∵S4+S6>2S5⇔S4+S4+a5+a6>2(S4+a5)⇔a6>a5⇔a5+d>a5⇔d>0.∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.8.已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则实数k的取值范围是()A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(-∞,-1]答案 B解析由q:(x+1)(2-x)<0,得x<-1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2,+∞),故选B.9.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”,错误;②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,正确;③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,正确.10.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 充分不必要解析 ∵函数f (x )是奇函数,∴若x 1+x 2=0,则x 1=-x 2,则f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0成立,即充分性成立;若f (x )=0,满足f (x )是奇函数,当x 1=x 2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0,但x 1+x 2=4≠0,即必要性不成立.故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.11.在△ABC 中,角A ,B 均为锐角,则“cos A >sin B ”是“△ABC 为钝角三角形”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充要解析 因为cos A >sin B ,所以cos A >cos ⎝⎛⎭⎫π2-B ,因为角A ,B 均为锐角,所以π2-B 为锐角, 又因为余弦函数y =cos x 在(0,π)上是减少的,所以A <π2-B ,所以A +B <π2, 在△ABC 中,A +B +C =π,所以C >π2, 所以△ABC 为钝角三角形;若△ABC 为钝角三角形,角A ,B 均为锐角,则C >π2,所以A +B <π2, 所以A <π2-B ,所以cos A >cos ⎝⎛⎭⎫π2-B , 即cos A >sin B .故“cos A >sin B ”是“△ABC 为钝角三角形”的充要条件.12.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,m ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是____________.答案 (2,+∞)解析 因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.13.已知α,β∈(0,π),则“sin α+sin β<13”是“sin(α+β)<13”的______________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 充分不必要解析 因为sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以若sin α+sin β<13,则有sin(α+β)<13,故充分性成立;当α=β=π2时,有sin(α+β)=sin π=0<13,而sin α+sin β=1+1=2,不满足sin α+sin β<13,故必要性不成立.所以“sin α+sin β<13”是“sin(α+β)<13”的充分不必要条件.14.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是____________. 答案 ⎣⎡⎦⎤-12,43 解析 解不等式|x -m |<1,得m -1<x <m +1.由题意可得⎝⎛⎭⎫13,12(m -1,m +1),故⎩⎨⎧ m -1≤13,m +1≥12且等号不同时成立,解得-12≤m ≤43.15.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________.答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,解得1<m <32, 即q :1<m <32. 因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32, 解得13≤a ≤38,所以实数a 的取值范围是⎣⎡⎦⎤13,38.16.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,0≤x ≤2,B ={x |x +m 2≥2},p :x ∈A ,q :x ∈B ,p 是q 的充分条件,则实数m 的取值范围是________________.答案 ⎝⎛⎦⎤-∞,-54∪⎣⎡⎭⎫54,+∞ 解析 由y =x 2-32x +1=⎝⎛⎭⎫x -342+716,0≤x ≤2, 得716≤y ≤2,∴A =⎣⎡⎦⎤716,2. 又由题意知A ⊆B ,∴2-m 2≤716,∴m 2≥2516. ∴m ≥54或m ≤-54.。

充分条件必要条件与命题的四种形式

充分条件必要条件与命题的四种形式

若 原 命 题 为 “ 若 p , 则 q” , 则 其 逆 命 题 是 __若__q_,__则__p_____;否命题是 _若__非__p_,__则__非__q__;逆 否命题是__若__非__q_,__则__非__p___.
(2)四种命题间的关系
思考感悟 “否命题”与“命题的否定”有何不同? 提示: “否命题”与“命题的否定”是两个不 同的概念,如果原命题是“若p,则q”,那么这 个原命题的否定是“若p,则非q”,即只否定结 论,而原命题的否命题是“若非p,则非q”,即 既否定命题的条件,又否定命题的结论.
考点探究•挑战高考
考点突破
考点一 四种命题及其关系
在判断四种命题之间的关系时,首先要分清命题的 条件与结论,再比较每个命题的条件与结论之间的 关系,要注意四种命题关系的相对性,一旦一个命 题定为原命题,也就相应地有了它的“逆命题”、“ 否命题”和“逆否命题”.
例1 分别写出下列命题的逆命题、否命题、
.
∴这样的 m 不存在.
(2)由题意“x∈P”是“x∈S”的必要条件,则 S⊆P. ∴11- +mm≥ ≤-102 ,∴m≤3. 综上,可知 m≤3 时,x∈P 是 x∈S 的必要条 件.
【误区警示】 (2)中“x∈P”是“x∈S”的必 要条件,是由S⇒P即S是P的子集,并不一定是 真子集.
互 动 探 究 本 例 中 条 件 不 变 , 若 (2) 小 题 中 “x∈P”是“x∈S”的必要不充分条件,如 何求解? 解:∵“x∈P”是“x∈S”的必要不充分条件,
(3)∵ff-xx=1,
∴f(-x)=f(x),
∴y=f(x)是偶函数.
∴p⇒q.
取 f(x)=x2 为 R 上的偶函数,
但f-x在 fx

充要条件

充要条件
把抓住了安全绳子,仅存一线生机的他死死抓住绳索,暗自哭喊着:“上帝,你救救我吧!”“可以,不过你要相信我所说的一切。”上帝怜悯道。“好!好!你说吧。”他惊喜万分。上帝顿了顿说:“你放下绳索,就可得救。”好不容易抓住这根救命绳索的登山者,
二.新课讲解
(1)若x=y,则x2=y2。(2)有两角相等的三角形是等腰三角形。 (3)ax2+ax+1>0的解集为R,则0<a<4。 (4)若a2>b2,则a>b。
祝贺的就是卢茨! 此时,最让欧文斯感动的是卢茨伟大的胸怀和高尚的品格。 生活中我们常会感动。但是在奥运赛场上,为对手出主意,真心地帮助对手,因而自己失去可能获得的金牌,卢茨的胸怀和品格确实让人格外惊佩。 根据材料选择一个恰当的角度写一篇作文,不少于800 字。 ? [写作提示]材料作文重要的是对材料所蕴含意义的提炼。在准确提炼材料主旨之后,考生可选恰当的角度发表议论或展开想象的翅膀,在生活中寻找类似的典型材料加以发挥,挥笔成文。角度的选择可以是多方面的,如,真诚的友谊超越了国界,真挚的友情比获得冠军更为重要, 他具有海洋般广阔的胸怀等。 ? 37. 阅读下面材料,根据要求作文。 农民种高粱,有一道程序叫“晒根”,就是把高粱两边的根锄断,晒在日头下。过些时候来培上土,高粱就开始疯长,拼命的朝下扎根。夏天即使再风大雨大,高粱有了结实的根,照样能站住。不光是高粱,小葱秧也 要摆在地上晒几天,晒得蔫蔫的再栽,一沾水土,立马就活了过来,越发精神。 人也是这样的,学着吃吃苦。风雨人生路,适当晒晒根,很有必要。 看了这个故事,你有什么感想,请以“折磨与成长”为话题,联系生活实际,写一篇不少于800字的文章,题目自拟,文体自选,立意自 定。 [写作提示]这是一道由生活引发出来的话题,从常规思维的角度看,植物的根是不能随便动的,可这个农民偏要故意锄断高粱的根,晒在日头下,从而促使它拼命的朝下扎根,以便日后经得起风吹雨打。这种看似反常的举动实际上是符合常理的:久在水土中的根易生惰性,而晒蔫 的断根,一沾水土,就会爆发出生命的潜能,这是求生的本能使然。人也是这样,“生于忧患,死于安乐”,穷人的孩子早当家,从来纨绔无伟男;生活富裕了,再富的日子也要学会穷着过,学着吃吃苦,将终生受益。 ? 38. 阅读下面材料,根据要求作文。 在有着悠久造船历史的西班 牙港口城市巴赛罗那,有一家著名的造船厂,它已经有一千多年的历史。这个造船厂从建厂的那一天开始就建立了一个规矩,所有从造船厂出去的船舶都要造一个模型留在厂里,并把这只船出厂后的命运由专人刻在模型上。厂里有专门的船舶陈列馆用来陈列船舶模型,里面陈列着将近10 万只船舶模型。每一个模型上都详细记录着该船舶经历的风风雨雨。在陈列室最里面的一面墙上,是对上千年造船厂所有出厂船舶的概述:造船厂出厂的近10万只船舶当中,有6000只在大海中沉没,有9000只因为受伤严重不能再进行修复航行,有6万只船舶都遭遇过20次以上的大灾难, 没有一只船舶没有受伤的经历。 现在,这个造船厂的船舶陈列馆,早已突破了原来的意义,成为西班牙最为著名的旅游景点,成为西班牙人教育后代获取精神力量的象征。这也正是西班牙人吸取智慧的地方:所有的船舶,不论用途是什么,只要到大海里航行,就会受伤,就会遭遇灾难。 这个故事引发了你什么样的联想呢?请以“成功与挫折”为话题写一篇不少于800字的文章,题目自拟,立意自定,文体自选。 ? [写作提示]所有的船舶,不论用途是什么,只要到大海里航行,就会受伤,就会遭遇灾难。人生也是这样,只要你有追求,只要你去做事,就不会一帆风顺。 没有风平浪静的海洋,没有不受伤的船,没有不遭受挫折的人生。如果因为遭遇了磨难就怨天尤人,如果因为遭遇了挫折就自暴自弃,如果因为面对逆境而放弃了追求,如果因为受了伤害就一蹶不振,那你就大错特错了。常言道:“失败乃成功之母。”成功是从失败中总结出来的。成功 与挫折是一对孪生兄弟。一个人,只要你做事,就会遭受挫折,就会犯错误。而如果你什么事都不做,虽然不会犯错误,也无挫折可言,然而你的生命也就失去了意义。扬起你生命的风帆吧,当你到达人生的终港时,“生命船舶”陈列馆中,时间将会留下你辉煌的风雨人生,而其中让你 感到骄傲的不是成功的鲜花,而是光荣的挂彩。 ? 39. 阅读下面材料,根据要求作文。 旭日固然为一日之始的象征,苏醒的大地沐浴在它温暖的光照之下,使人感到无限的温暖。然而早晨,上午,中午,午后乃至夕照之时,它仍撒下大量光热……太阳在一日中始终都在无私地放射着自 己的热量,犹如人生的全程,任何阶段都潜伏着巨大的创造性。征程一生,决非仅有绝对唯一的“起点”,而是随时是振奋可为的拓荒之始。 这则材料中的“起点”能引起你联想些什么呢?请以“起点”为话题写一篇不少于800字的文章, 所写内容必须在话题范围之内,题目自拟,立 意自定,文体自选。 ? [写作提示]俗话说:“一日之计在于晨。”这是以常规思维方法看问题:认为太阳早升晚落,似乎一到晚间太阳光照就不存在了。其实太阳放射热量是不分昼夜的,如果站在西半球,我们的晚上恰是他们的早晨。可见将早晨视为一日之始只是相对而言的。人生也 是如此:征程一生,决非仅有绝对唯一的“起点”,而是随时是振奋可为的拓荒之始。“起点”是不受年龄限制的,少年有为固然可喜,中年起步为时未晚,“八十岁学吹鼓手”也未尝不可。“起点”是无处不在的。人生道路上只有“起点”,没有“终点”,每一个起点都是生命的亮点, 让我们选择好每一个人生的起点,它们将成为我们生命的轨迹,成为人世间最美丽的风景线。 ? 40. 阅读下面材料,根据要求作文。 一位登山爱好者,在一次攀登雪峰的过程中,突然刮起了十级大风,漫天飞舞,能见度仅一米左右。此时登山爱好者不慎失去重心,摔落悬崖,幸好他一

1.3 充要条件

1.3 充要条件

2 1 2.“m< ”是“一元二次方程x +x+m=0有实数解”的 ( 4
)
(A)充分不必要条件. (C)必要不充分条件.
(B)充要条件. (D)既不充分也必要条件.
2
【解析】∵一元二次方程x +x+m=0有实数解的充要条件是
1 1 Δ=1-4m≥0,即m≤ ,∴“m< ”是该方程有实数解的充分不 4 4
【分析】根据四种命题的定义来确定一个原命题的逆命题 、否命题、逆否命题.当命题较简单时,可直接判断其真假,若命题 本身复杂或不易直接判断时,可利用其逆否命题来判断真假. 【解析】对于①,若log2a>0=log21,则a>1,所以函数f(x)=logax在其 定义域内是增函数,因此①是假命题,故①不正确;对于②,依据一 个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题 是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数, 但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则 b∉M”与命题“若b∈M,则a∉M”互为逆否命题,因此二者等价,所 以④正确.综上可知正确的说法有②④,故选B. 【答案】B
∵p是q的充分不必要条件,∴不等式|12 2
x 1 |≤2的解集是不等 3
式x -2x+1-m ≤0(m>0)解集的真子集.又∵m>0,∴不等式(*)的 解集为{x|1-m≤x≤1+m}.
1 m 2, ∴ 1 m 10

1 m 2, 1 m 10,
高考第一轮复习用书· 数学(理科)
第一章 1.3 充要条件
变式训练1 命题“若f(x)是奇函数,则f(-x)是奇函数”的否 命题是 ( )

充分条件必要条件充要条件及命题的四种形式模板

充分条件必要条件充要条件及命题的四种形式模板

4)若A=B ,则甲是乙的
充分且必要条件
A
B
A =B
3)
4)
小结 充分必要条件的判断方法:
定义法、集合法、等价法(逆否命题)
新课
复习 新课 小结 作业
练习1、 判断下列命题中前者是后者的什么条件? 后者是前者的什么条件?
(1)若a>b,c>d,则a+c>b+d。 (2)ax2+ax+1>0的解集为R,则0<a<4。 (3)若a2>b2,则a>b。
2:若┐A是┐B的充要条件,┐C是┐B的充要条件,则A为C的
(A )条件
A.充要 B必要不充分 C充分不必要 D不充分不必要
练习4、
1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
充分条件与必要条件
典型例题
例2.填表
p
q
p是q的什么条件 q是p的什么条件
y是有理数 y是实数
充分
必要
x5
x3
充分
必要
m,n是奇数 m+n是偶数 充分
必要
ab
ab
必要
x A且x B x A B 充分 必要
充分 必要 充分
ab 0
a0
( x 1)( y 2) 0 x 1且y 2
则b2 4ac 0 .

(6方)程若a有b ax02, 则bx a c 0 0;(a 0) 两个不等的实数解假
b2 4ac 0

四种命题与充要条件

四种命题与充要条件

四种命题与充要条件 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】常用逻辑用语与充要条件【高考考情解读】 1.本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查.2.试题以选择题、填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下.1.命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)原命题为“若p则q”,则它的逆命题为若q则p;否命题为若┐p则┐q;逆否命题为若┐q则┐p.(2)原命题与它的逆否命题等价;逆命题与它的否命题等价.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理,即,可以转化为判断它的逆否命题的真假.命题真假判断的方法:(1)对于一些简单命题,若判断其为真命题需推理证明.若判断其为假命题只需举出一个反例.(2)对于复合命题的真假判断应利用真值表.(3)也可以利用“互为逆否命题”的等价性,判断其逆否命题的真假.3.充分条件与必要条件的定义(1)若pq且q p,则p是q的充分非必要条件.(2)若qp且p q,则p是q的必要非充分条件.(3)若pq且qp,则p是q的充要条件.(4)若p q且q p,则p是q的非充分非必要条件.设集合A={x|x满足条件p},B={x|x满足条件q},则有(1)若AB,则p是q的充分条件,若A⊇B,则p是q的充分不必要条件;(2)若BA,则p是q的必要条件,若B⊇A,则p是q的必要不充分条件;(3)若A=B,则p是q的充要条件;(4)若AB,且BA,则p是q的既不充分也不必要条件.2.充分、必要条件的判定方法(1)定义法,直接判断若p则q、若q则p的真假.(2)传递法.(3)集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则①若AB,则p是q的充分条件;②若BA,则p是q的必要条件;③若A=B,则p是q的充要条件.(4)等价命题法:利用A?B与┐B?┐A,B?A与┐A?┐B,A?B与┐B?┐A的等价关系,对于条件或结论是否定式的命题,一般运用等价法,利用原命题和逆否命题是等价的这个结论,有时可以准确快捷地得出结果,是反证法的理论基础.1.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:2.(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q;p且q的否定:非p或非q.注:1.逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同.如“x∈A或x∈B”,是指:x∈A且xB;xA且x∈B;x∈A且x∈B三种情况.再如“p真或q真”是指:p真且q假;p假且q真;p真且q真三种情况.2.命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论. 命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系. 3.含一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题.1.(2013·皖南八校)命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析 依题意得原命题的逆命题是:若一个数的平方是正数,则它是负数.选B.2.(2012·湖北)命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 答案 B解析这是一个特称命题,特称命题的否定不仅仅要否定结论而且要将相应的存在量词“存在一个”改为全称量词“任意一个”,故选B 。

高考总复习:四种命题、充要条件知识梳理重点

高考总复习:四种命题、充要条件知识梳理重点

数学高考总复习:四种命题、充要条件【考纲要求】1、理解命题的概念.2、了解“若p ,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系。

3、理解必要条件、充分条件与充要条件的意义. 【知识网络】【考点梳理】一、命题:可以判断真假的语句。

二、四种命题原命题:若p 则q ; 原命题的逆命题:若q 则p ;原命题的否命题:若p ⌝,则q ⌝; 原命题的逆否命题:若q ⌝,则p ⌝ 三、四种命题的相互关系及其等价性 1、四种命题的相互关系2、互为逆否关系的命题同真同假,即原命题与逆否命题的真假性相同,原命题的逆命题和否命题的真假性相同。

所以,如果某些命题(特别是含有否定概念的命题)的真假性难以判断,一般可以判断它的逆否命题的真假性。

四、充分条件、必要条件和充要条件1、判断充要条件,首先必须分清谁是条件,谁是结论,然后利用定义法、转换法和集合法来判断。

如:命题p 是命题q 成立的××条件,则命题p 是条件,命题q 是结论。

又如:命题p 成立的××条件是命题q ,则命题q 是条件,命题p 是结论。

又如:记条件,p q 对应的集合分别为A,B 则A B ⊂,则p 是q 的充分不必要条件;A B ⊃,则p 是q 的必要不充分条件。

2、“⇒”读作“推出”、“等价于”。

p q ⇒,即p 成立,则q 一定成立。

3、充要条件已知命题p 是条件,命题q 是结论(1)充分条件:若p q ⇒,则p 是q 充分条件.所谓“充分”,意思是说,只要这个条件就够了,就很充分了,不要其它条件了。

如:3x <是4x <的充分条件。

(2)必要条件:若q p ⇒,则p 是q 必要条件.所谓“必要”,意思是说,这个条件是必须的,必要的,当然,还有可能需要其它条件。

如:某个函数具有奇偶性的必要条件是其定义域关于原点对称。

函数要具有奇偶性首先必须定义域关于原点对称,否则一定是非奇非偶。

40826四种命题及充要条件

40826四种命题及充要条件

大白高中高三数学学练稿 主备: 王永爱 审核: 数学组 类型:一轮复习课 日期:140826 编号:002【知识要点】 四种命题及充要条件1. 命题的概念:在数学中把用语言、符号或式子表达的,可以 的陈述句叫做命题. 其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.命题的四种形式及关系:原命题:若p 则 q 逆命题:若 则否命题:若 则 逆否命题:若 则原命题与逆否命题总是具有 的真假性,逆命题与否命题也总是具有 的真假性.2. 充分条件、必要条件:(1)如果p q ⇒,则p 是q 的 条件;q 是p 的 条件 (2)若p ⇒q ,且q p ⇒,p 是q 的 条件;若p ⇒q ,但q≠> p , p 是q 的 条件;若p ≠>q ,但q ⇒ p , p 是q 的 件;若p ≠>q ,且q ≠> p , p 是q 的 条件. (3)集合与充要条件: 【课前热身】1. 下列命题:①“全等三角形的面积相等”的逆命题;②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60°”的逆否命题.其中真命题的序号是________ 2. “x >2”是“1x <12”的________条件.3. 已知a ,b ∈R ,则“a =b ”是“a +b2=ab ”的____________条件.【典型应用】例1:已知命题“若函数f (x )=e x-mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的( ) A .否命题“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”是真命题 B .逆命题“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”是假命题 C .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”是真命题 D .逆否命题“若m >1,则函数f (x )=e x-mx 在(0,+∞)上不是增函数”是真命题练1:命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是 例2:已知下列各组命题,其中p 是q 的充分必要条件的是 ( ) A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :f -xf x=1;q :y =f (x )是偶函数 C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A练2:给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真.命题的序号是________. 例3:已知集合M ={x |x <-3或x >5},P ={x |(x -a )·(x -8)≤0}.(1)求实数a 的取值范围,使它成为M ∩P ={x |5<x ≤8}的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件.练3:已知p :x 2-4x -5≤0,q :|x -3|<a (a >0).若┐p 是┐q 的充分不必要条件,求a 的取值范围.例4:已知p :⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0 (m >0),且p 是q 的必要而不充分条件,求实数m 的取值范围.【自我反馈】1.(2011·天津)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0}, 则“x ∈A ∪B ”是“x ∈C ”的 条件2.(2012·天津) 设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的 条件。

集合充要条件与四种命题真假

集合充要条件与四种命题真假

线(即PQ 为焦点弦);②P 、O 、M 共线;③MQ ∥x 轴.若把上述三部分中任两个组合成条件,必定可以导出第三个性质.图7【例7】 已知抛物线y 2=2px ,焦点为F ,顶点为O ,经过F 的直线交抛物线于P 、Q 两点,点M 在抛物线的准线上,且MQ ∥x 轴,证明:P 、O 、M 三点共线.证:如图7,∵F (p2,0),∴经过点F 的直线PQ 的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0,设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两个根,∴y 1y 2=-p 2.∵MQ ∥x 轴,且点M 在准线上,∴点M 的坐标为(-p2,y 2),故直线OM 的斜率为k =y 2-p 2=2py 1=y 1x 1.即k 也是直线OP 的斜率,∴直线PM 经过原点,即P 、Q 、M 三点共线.【例8】 已知抛物线y 2=2px ,焦点为F ,顶点为O ,PQ 为抛物线的一条弦,连结PO 并延长交准线于M 点,若MQ ∥x 轴,则弦PQ 的长最小值为 .解:∵P 、Q 、M 三点共线,且MQ ∥x 轴,故PQ 为焦点弦,而焦点弦的长最小值是通径的长,∴弦PQ 的最小值为2p. 学习体验集合、充要条件与四种命题真假浙江绍兴市二中 王 琛高中数学实验课本新增了“简易逻辑”一节,放在“集合”一节之后,并与“集合”共同组成整个高中数学教材的第一章,体现了两者的工具性与重要性,同时还暗示了两者之间的一些内在联系.本文想与大家共同探讨这些内在联系的一部分.1.集合与充要条件设满足条件p 的元素x 组成集合为P ,满足结论q 的元素x 组成集合为Q ,则集合与充要条件有以下结论(图为韦恩图):(1)P 是q 的充分条件ΖP ΑQ.(2)P 是q 的充分不必要条件ΖP <Q.(如图1)(3)P 是q 的必要条件ΖQ ΑP.(4)P 是q 的必要不充分条件ΖQ <P (如图2).(5)P 是q 的充要条件ΖP =Q (如图3).(6)P 是q 的既不充分也不必要条件ΖP∩Q ≠P 且P ∩Q ≠Q (如图4).图1 图2 图3数学大世界·高中版 2004.1、2图4 2.集合与四种命题真假关系一个命题的真假与其他三个命题的真假有如下三条关系(新教材第一册(上)第31页):(1)原命题为真,它的逆命题不一定为真.(2)原命题为真,它的否命题不一定为真.(3)原命题为真,它的逆否命题一定为真.与之相应的集合及韦恩图关系如下(以下符号意义同上):(1)原命题“若p 则q ”的集合表示:x ∈P ]x ∈Q (如图5).(2)逆命题“若q 则p ”不一定为真的集合表示:x ∈Q ]\ x ∈P (如图6).(3)否命题“若 p 则 q ”不一定为真的集合表示:x |P ]\ x |Q (如图6).(4)逆否命题“若 q 则 p ”为真的集合表示:x |Q ]x |P (如图7).图5 图6 图73.充要条件与四种命题真假关系(1)p 是q 的充要条件Ζ原命题“若p 则q ”与逆命题“若q 则p ”皆为真命题.(2)p 是q 的充分不必要条件Ζ原命题“若p 则q ”为真命题且逆命题“若q 则p ”为假命题.(3)p 是q 的必要不充分条件Ζ原命题“若p 则q ”为假命题且逆命题“若q 则p ”为真命题.(4)p 是q 的既不充分也不必要条件Ζ原命题“若p 则q ”与逆命题,“若q 则p ”皆为假命题.4.应用举例数学解题中若能充分利用上述集合、充要条件及四种命题真假关系之间的联系,会使问题的理解更为清晰,解题更为简洁.以下举例说明.【例1】 已知二次函数y =2x 2-1在区间[a ,b ]上有最小值-1,则下列关系式一定成立的是( ).(A )a ≤0或a <0≤b (B )a <0<b(C )a <b <0或a <0<b (D )0<a <b 或a <b <0分析:二次函数y =2x 2-1在区间[a ,b ]上有最小值-1Ζa <0≤b 或a <0≤b ,所以一定成立的选项的范围应比a <0≤b 或a <0≤b 范围大,所以选(A ).【例2】 已知a 为非零实数,x 为某一实数,记命题p :x ∈{-a ,a};命题q :|x |=a 则命题p 成立是命题q 成立的( )条件.(A )充分不必要 (B )必要不充分(C )充分必要 (D )既不充分也不必要分析:命题q 对应集合有可能是空集,此时为命题p 对应集合的真子集,所以答案为B.【例3】 已知集合M ={x |log a (2-12x 2)>log a (a -x )},Z 表示整数集合.若M ∩Z ={1},求实数a 的取值范围.分析及略解:M ∩Z ={1}充要条件为1∈M ……①且M Α(0,2) ……②.由①可得a >1;原不等式的同解不等式组为x <a ,5-2a >0,1-5-2a <x <1+5-2a结合②知a 还需满足不等式组5-2a >0,1-5-2a ≥0,1+5+2a ≥0 得2≤a <52.所以同时满足①、②的a 的范围为:2≤a <52.2004.1、2 数学大世界·高中版。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用逻辑用语与充要条件【高考考情解读】1•本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查 2试题以选择题、填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下.1. 命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题. 其中判断为真的语句叫真命题,判断为假的语句叫假命题.2•四种命题及其关系(1) 原命题为“若p则q”,则它的逆命题为若 q则p:否命题为若「 p贝归q;逆否命题为若二q贝归P •⑵原命题与它的逆否命题等价:逆命题与它的否命题等价•四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理,即,可以转化为判断它的逆否命题的真假.命题真假判断的方法:⑴对于一些简单命题,若判断其为真命题需推理证明.若判断其为假命题只需举出一个反例.(2) 对于复合命题的真假判断应利用真值表.(3) 也可以利用互为逆否命题”的等价性,判断其逆否命题的真假.3. 充分条件与必要条件的定义(1) 若p? q且q p,则p是q的充分非必要条件.(2) 若q? p且p―q,则p是q的必要非充分条件.(3) 若p? q且q? p,则p是q的充要条件.(4) 若p―q 且 q—p,则 p是q的非充分非必要条件.设集合A={x|x满足条件p}, B= {x|x满足条件q},则有⑴若A? B,则p是q的充分条件,若A B,则p是q的充分不必要条件;⑵若B? A,则p是q的必要条件,若B A则p是q的必要不充分条件;⑶若A= B,则p是q的充要条件;(4) 若A? B,且B? A,则p是q的既不充分也不必要条件.2 •充分、必要条件的判定方法(1)定义法,直接判断若 p则q、若q则p的真假.⑵传递法.⑶集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)} , B= {x|q(x)}, 则①若A? B,则p是q的充分条件;②若B? A则p是q的必要条件;③若A= B,则p是q 的充要条件.⑷等价命题法:利用 A? B与「B? n A, B? A与「A? n B, A? B 与n B? n A的等价关系,对于条件或结论是否定式的命题,一般运用等价法,利用原命题和逆否命题是等价的这个结论,有时可以准确快捷地得出结果,是反证法的理论基础.热点分类突破解斬离考1. 简单的逻辑联结词(1) 命题中的“且”、“或“非”凹作逻辑联结词.(2) 简单复合命题的真值表:2. 全称量词与存在量词(1) 常见的全称量词有“任意一个” “一切”“每一个” “任给”“所有的”—(2) 常见的存在量词有“存在一个”“至少有二个” “有些”“有一个” “某个”“有的”等.3. 全称命题与特称命题(1) 含有全称量词的命题叫全称命题.(2) 含有存在量词的命题叫特称命题.4. 命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q; p且q的否定:非p或非q.注:1. 逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同•如“x€ A或x€ B” , 是指:x € A且x?B; x?A且x€ B; x€ A且x€ B三种情况.再如“ p真或q真”是指:p 真且q假;p 假且q真;p真且q真三种情况.2. 命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3. 含一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题.1. (2013皖南八校)命题“若一个数是负数,则它的平方是正数”的逆命题是()A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C. “若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”解析依题意得原命题的逆命题是:若一个数的平方是正数,则它是负数.选 B.2. (2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是()A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数答案 B解析这是一个特称命题,特称命题的否定不仅仅要否定结论而且要将相应的存在量词“存在一个”改为全称量词“任意一个”,故选 B。

2. 已知a, b, c€ R,命题“若a+ b + c= 3,贝U a2+ b2+ c2>3”的否命题是()A .若 a+ b + C M 3,贝U a2+ b2+ c2<3B .若 a+ b + C= 3,则 a2+ b2+ C2<3C.若 a+ b + C M 3,贝U a2+ b2+ C2> 3D .若 a2+ b2+ C2》3,贝V a+ b+ C= 3答案 A解析从“否命题”的形式入手,但要注意“否命题”与“命题的否定”的区别.命题的否命A. 若log a 2 0,则函数B. 若log a 2 0,则函数C. 若log a 2 0,则函数D. 若log a 2 0,则函数f (x) log a x(a 0,af (x) log a x(a 0,af (x) log a x(a 0,af (x) log a x(a 0,a1)在其定义域内不是减函数1)在其定义域内不是减函数1)在其定义域内是减函数1)在其定义域内是减函数【山东省临沂市某重点中学2014届高三9月月考】命题“若函数f(x) log a x(a 0,a 1)在其定义域内是减函数,则log a 2 0. ”的逆否命题是(【答寛】A【解析】先对命题肮逆,然后取否可得攜若1吧2仝贝廊数丁⑴二1%辰Q 0卫疋1)在其定义域內不是减函数匕遗丄厶叩题“若x, y都是偶数,则x+ y也是偶数”的逆否命题是()A .若x+ y是偶数,则x与y不都是偶数B .若x+ y是偶数,则x与y都不是偶数C.若x+ y不是偶数,则x与y不都是偶数D .若x+ y不是偶数,则x与y都不是偶数答案 C解析由于“x, y都是偶数”的否定表达是“x, y不都是偶数”,“x+ y是偶数”的否定表达是“ x+ y 不是偶数”,故原命题的逆否命题为“若x + y不是偶数,则x, y不都是偶数”,故选C.5. 与命题“若a€ M则b?M等价的命题是()A.若a?M 则b?MB.若b?M 则a€ MC.若a?M 则b€ MD.若b€ M 则a?M解析:因为原命题只与逆否命题是等价命题, 所以只需写出原命题的逆否命题即可.故选 D 答案:D4.下列命题中为真命题的是( )A .命题“若x>y,则x>|y|”的逆命题B .命题“若x>1,则x2>1 ”的否命题C.命题“若x= 1,贝U x2+ x- 2= 0”的否命题D .命题“若x2>0,则x>1”的逆否命题答案 Ay y>0解析对于A ,其逆命题:若x>|y|,贝U x>y,是真命题,这是因为x>|y|= ,必有x>y;—y y<0对于B,否命题:若x<1,贝U x2<1,是假命题.如 x=— 5, x2= 25>1;对于C,其否命题:若X M1,贝U x2+ x—2丰0,因为x=— 2时,x2+ x— 2= 0,所以是假命题;对于 D,若x2>0,则 x>0或x<0,不一定有x>1,因此原命题的逆否命题是假命题,故选 A.2. 已知命题p: ? n€ N,2n>1 000,则「p 为().A. ? n€ N,2n<1 000B. ? n€ N,2n>1 000C. ? n€ N,2n w 1 000D. ? n€ N,2n v 1 000解析特称命题的否定是全称命题.即p: ? x € M p(x),则「p: ? x € Mr p(x).故选A.答案 A4. (2012湖北改编)命题“存在X0€ ?R Q, x0 € Q”的否定是()A .存在 X0D € /?R Q, x0 € QB .存在 X0€ ?R Q,X3D€ /QC.任意 xD € /?R Q , x3€ Q D .任意 x€ ?R Q , x3D € /Q答案 D解析“存在”的否定是“任意”,x3€ Q的否定是x3D € /Q.命题“存在X0€ ?R Q, x0€ Q”的否定是“任意x€ ?R Q, x3D € /Q ”,故应选D.1. (2011安徽)命题“所有能被2整除的整数都是偶数”的否定.是()A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数答案 D解析由于全称命题的否定是特称命题,本题“所有能被2整除的整数都是偶数”是全称命题,其否定为特称命题“存在一个能被2整除的整数不是偶数”.2. (2012 辽宁改编)已知命题 p:对任意 X1, x2 € R, (f(X2)— f(x1)) (x2— X1)>0,则r p 是()A .存在 X1 , X2 € R , (f(X2) — f(X1))(X2— X1)w 0B .对任意 X1 , X2 € R , (f(X2) — f(X1))(X2— X1) <0C.存在 X1 , X2 € R , (f(X2) — f(X1))(X2— X1)<0D .对任意 X1, X2€ R , (f(X2)— f(X1))(X2— X1)<0答案 C解析r p:存在 X1, X2€ R, (f(x2) — f(X1))(X2 — X1)<0.2. (2012安徽)命题“存在实数x,使x>1 ”的否定是()A .对任意实数x,都有x>1B. 不存在实数x,使x<1C. 对任意实数X ,都有X W 1D. 存在实数x,使x<1 答案 C解析利用特称命题的否定是全称命题求解.“存在实数x,使x>1 ”的否定是“对任意实数x,都有X W 1”.故选C.11. 给出以下三个命题:①若 ab w 0,贝U a<0 或 b<0;②在△ ABC 中,若 sin A= sin B,贝U A= B;③在一元二次方程 ax2+ bx+ c= 0中,若b2— 4ac<0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是()A .① B.② C.③ D .②③答案(1)A (2)B、 1 1解析⑴不等式2x2+ x— 1>0的解集为x x>?或x<— 1 ,故由x>2? 2x2+ x— 1>0 ,但2x2+ x1—1>0D? /x>2,故选 A.⑵在△ ABC中,由正弦定理得 sin A= sin B? a= b? A= B.故选B.6. 下列结论:①若命题p:存在x€ R , tan x= 1;命题q:对任意x€ R , x2— x+ 1>0.则命题“ p且「q”是假命题;a②已知直线I仁ax+ 3y— 1 = 0, I2: x+ by+ 1= 0,则h丄12的充要条件是£ =— 3;③命题“若x2— 3x+ 2= 0,则x = 1”的逆否命题:“若X M1,则x2— 3x+ 2丰0”.其中正确结论的序号为_________ .答案①③解析①中命题p为真命题,命题q为真命题,所以p且「q为假命题,故①正确;②当b= a= 0时,有11丄|2,故②不正确;③正确.所以正确结论的序号为①③.5. ___________________________________ 下列命题中正确命题的序号是 .①若 ac2>bc2,则 a>b;②若 sin a= sin 3 贝a= B;③“实数a= 0”是“直线x— 2ay= 1和直线2x— 2ay= 1平行”的充要条件;④若f(x)= Iog2x,则f(|x|)是偶函数.答案①③④解析对于①,ac2>bc2, c2>0, ••• a>b 正确;对于②,sin 30 = sin 150 D° /30 = 150 ° 所以②错误;对于③,11// |2? A1B2= A2B1,即—2a = — 4a? a = 0且A1C2工A2C1,所以③对;对于④显然对.6. _______________________________________________________________________________ 已知p(x) :x2+ 2x— m>0,如果p(1)是假命题,p(2)是真命题,贝U实数m的取值范围为____________ .答案[3,8)解析因为p(1)是假命题,所以1 + 2 — m W 0,解得m>3;又因为p(2)是真命题,所以 4+ 4— m>0,解得m<8.故实数m的取值范围是3 W m<8.以下命题是真命题的序号是_________ .(1) “若f(x)是奇函数,则f( — x)也是奇函数”的逆命题;(2) “若x, y是偶数,则x+ y也是偶数”的否命题;⑶“正三角形的三个内角均为60 °的否命题;⑷“若a+ b+ c= 3,贝U a2+ b2+ c2》3”的逆否命题;【解析】对于(4),只需证明原命题为真,T a + b + c= 3,「. (a+ b+ c)2= 9.••• a2+ b2+ c2+ 2ab+ 2bc+ 2ca= 9,从而 3(a2+ b2+ c2)》9a2+ b2+ c2>3 成立.【答案】⑴(3)(4)2. 下列命题中正确的是()A .若命题p为真命题,命题q为假命题,则命题“ p A q”为真命题B. “ sin a= 是“ a=n的充分不必要条件2 6C. l为直线,a, B为两个不同的平面,若I丄B, a丄则I// aD .命题“ ?x€ R, 2x>0”的否定是“ ?x o € R,2x o W 0”答案 D解析对A,只有当p, q全是真命题时,p A q为真;对B , sin a= £? a= 2k n+^-J或 2k n+5n,2 6 6k € Z ,故“sin a='”是“ a= n的必要不充分条件;对C, I丄B a丄I // a或l? a;对D ,2 6全称命题的否定是特称命题,故选 D.15.给出下列四个命题:①命题“若a= B,则cos a= cos B的逆否命题;②“ ?X0€ R,使得 x2— X0>0” 的否定是:“ ?x€ R,均有 x2— x<0”;③命题“ x2= 4”是“ x=— 2”的充分不必要条件;④p: a € {a, b, c} , q: {a}? {a, b, c}, p 且 q 为真命题.其中真命题的序号是_________ .(填写所有真命题的序号)答案①④解析对①,因命题“若a= B,则cos a= cos B'为真命题,所以其逆否命题亦为真命题,①正确;对②,命题“?x o€ R,使得x0 — x o>O”的否定应是:“? x€ R,均有x2— x<0”,故②错;对③,因由“x2= 4”得x= ±2,所以“x2= 4”是“x=— 2”的必要不充分条件,故③错;对④,p, q均为真命题,由真值表判定p且q为真命题,故④正确10.给出下列命题:①?x€ R,不等式x2+ 2x>4x— 3均成立;②若 Iog2x+ Iog x2>2,贝V x>1 ;③“若a>b>0且c<0 ,则c>c”的逆否命题;a b④若p且q为假命题,则p, q均为假命题.其中真命题是()A .①②③ B.①②④ C.①③④ D .②③④答案 A解析①中不等式可表示为(x— 1)2+ 2>0,恒成立;②中不等式可变为Iog2x+ — >2,得x>1;Iog2x1 i③中由a>b>0,得-<-,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为a b假只能得出p, q中至少有一个为假,④不正确.12. 给出下列命题:①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m>1,则mf— 2( nu 1) x + 3>0的解集为R'的逆命题.其中真命题是________ .(把你认为正确命题的序号都填在横线上)解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,. _ 2②③正确.又因为不等式mx— 2(mu 1)x+ nu 3>0的解集为 R,n>0 m>0由2? ? m>1.A = 4 mU 1 —4m mU 3 <0 m>1故⑤正确.答案:②③⑤3. 设x, y€ R,则“ x2+ y2>9”是“ x>3 且y》3”的()A .充分不必要条件B .必要不充分条件C.充分必要条件 D .既不充分也不必要条件答案 B解析结合图形与性质,从充要条件的判定方法入手•如图:X2+ y2>9表示以原点为圆心,3为半径的圆上及圆外的点,当 x2+ 卄9时,x>3且y》3并不一定成立,当x= 2, y= 3时,x2+ y2>9,但x>3且y>3不成立;而x>3且y》3时,x2+ y2>9 一定成立,故选 B.一个命题的否命题、逆命题、逆否命题是根据原命题适当变更条件和结论后得到的形式上的命题,解这类试题时要注意对于一些关键词的否定,如本题中等于的否定是不等于,而不是单纯的大于、也不是单纯的小于•进行充要条件判断实际上就是判断两个命题的真假,这里要注意断定一个命题为真需要进行证明,断定一个命题为假只要举一个反例即可.4. a>o”是’ai>o 的()A .充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析因为ai>0? a>0或a<0,所以a>0? |a|>0,但|a|>0 a>0,所以a>0是|a|>0的充分不必要条件,故选A.5. 0 V X V 5是不等式x — 2|<4成立的()A .充分不必要条件B .必要不充分条件C.充要条件 D .既不充分也不必要条件解析由|x— 2|<4,得一2<x<6。

相关文档
最新文档