物理高考复习专题05 曲线运动(原卷版)
高考物理新课标件高考真题专项曲线运动
平抛运动的常见题型包括求平抛物体的初速度、落地时间、落地速度、位移、抛出点高 度等。
解题技巧
解决平抛运动问题的关键是明确平抛运动的性质,即水平方向的匀速直线运动和竖直方 向的自由落体运动的合运动。在解题时,可以根据已知条件列出水平方向和竖直方向的 位移或速度方程,然后联立求解未知量。同时,要注意利用运动的合成与分解的方法来
速度变化规律
平抛运动水平方向速度不变,竖 直方向速度逐渐增大,合速度也
逐渐增大,方向不断改变。
位移变化规律
水平方向位移随时间均匀增加,竖 直方向位移随时间二次方增加,合 位移也随时间增加,方向不断改变 。
加速度变化规律
平抛运动的加速度恒为重力加速度g ,方向竖直向下。
平抛运动在高考中常见题型和解题技巧
典型错误分析及避免策略
概念不清
对曲线运动的基本概念理解不透彻,导致在解题 过程中出现概念混淆或理解错误。避免策略:加 强对曲线运动基本概念的学习和掌握,明确各个 概念之间的区别和联系。
方法不当
选择不合适的解题方法或步骤不规范,导致解题 过程繁琐或答案错误。避免策略:熟练掌握各种 解题方法,根据题目的要求和已知条件选择合适 的方法,同时规范解题步骤。
平抛运动定义
物体以一定的初速度沿水平方向抛出,如果物体仅受重力作用,这样的运动叫 做平抛运作水平方向的匀速直线运动以及竖直方向的自由落体运动的合运 动。平抛运动的物体,由于所受的合外力为恒力,所以平抛运动是匀变速曲线 运动,平抛物体的运动轨迹为一抛物线。
平抛运动中速度、位移等物理量变化规律
联系
曲线运动与直线运动一样,都遵循牛顿运动定律和动量定理 等基本物理规律。同时,曲线运动中也涉及到功、能、动量 等基本概念。
高考物理曲线运动真题汇编(含答案)
高考物理曲线运动真题汇编(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m mA v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高三物理真题分类汇编专题曲线运动(原卷版)
高三物理真题分类汇编专题曲线运动(原卷版)专题05曲线运动(2022-2022)题型一、考查平抛运动规律的相关知识1、(2022全国2)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。
运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。
则A.第二次滑翔过程中在竖直方向上的位移比第一次的小B.第二次滑翔过程中在水平方向上的位移比第一次的大C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大2、(2022北京)用如图1所示装置研究平地运动。
将白纸和复写纸对齐重叠并固定在竖直的硬板上。
钢球沿斜槽轨道PQ滑下后从Q点飞出,落在水平挡板MN上。
由于挡板靠近硬板一侧较低,钢球落在挡板上时,钢球侧面会在白纸上挤压出一个痕迹点。
移动挡板,重新释放钢球,如此重复,白纸上将留下一系列痕迹点。
(1)下列实验条件必须满足的有____________。
A.斜槽轨道光滑B.斜槽轨道末段水平C.挡板高度等间距变化D.每次从斜槽上相同的位置无初速度释放钢球(2)为定量研究,建立以水平方向轴、竖直方向为y轴的坐标系。
a.取平抛运动的起始点为坐标原点,将钢球静置于Q点,钢球的________(选填“最上端”、“最下端”或者“球心”)对应白纸上的位置即为原点;在确定y轴时______(选填“需要”或者“不需要”)y轴与重锤线平行。
b.若遗漏记录平抛轨迹的起始点,也可按下述方法处理数据:如图2所示,在轨迹上取A、B、C三点,AB和BC的水平间距相等且均,测得AB和BC的竖直间距分别是y1和y2,则______(选填“大于”、“等于”或者“小于”)。
可求得钢球平抛的初速度大小为____________(已知当地重力加速度为g,结果用上述字母表示)。
高考物理曲线运动题20套(带答案)及解析
高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
高考物理新力学知识点之曲线运动真题汇编含答案解析(5)
高考物理新力学知识点之曲线运动真题汇编含答案解析(5)一、选择题1.如图所示,人在岸上用轻绳拉船,若要使船匀速行进,则人拉的绳端将做()A.减速运动B.匀加速运动C.变加速运动D.匀速运动2.光滑水平面上,小球m的拉力F作用下做匀速圆周运动,若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法正确的是()A.若拉力突然消失,小球将沿轨迹Pb做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将可能沿半径朝圆心运动D.若拉力突然变大,小球将可能沿轨迹Pc做近心运动3.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则()A.A球受绳的拉力较大B.它们做圆周运动的角速度不相等C.它们所需的向心力跟轨道半径成反比D.它们做圆周运动的线速度大小相等平面内运动,在x方向的速度图像和y方向的位移图4.有一个质量为4kg的物体在x y像分别如图甲、乙所示,下列说法正确的是()A.物体做匀变速直线运动B.物体所受的合外力为22 NC.2 s时物体的速度为6 m/s D.0时刻物体的速度为5 m/s5.关于物体的受力和运动,下列说法正确的是()A.物体在不垂直于速度方向的合力作用下,速度大小可能一直不变B.物体做曲线运动时,某点的加速度方向就是通过这一点的曲线的切线方向C.物体受到变化的合力作用时,它的速度大小一定改变D.做曲线运动的物体,一定受到与速度不在同一直线上的合外力作用6.如图所示,小孩用玩具手枪在同一位置沿水平方向先后射出两粒弹珠,击中竖直墙上M、N两点(空气阻力不计),初速度大小分别为v M、v N,、运动时间分别为t M、t N,则A.v M=v N B.v M>v NC.t M>t N D.t M=t N7.如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A,人以速度v0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为,与水平面的夹角为,此时物块A的速度v1为A. B.C. D.8.一个人在岸上以恒定的速度v,通过定滑轮收拢牵引船上的绳子,如图所示,当船运动到某点,绳子与水平方向的夹角为α时,船的运动速度为()A .υB .cos vC .v cosαD .v tanα9.下列与曲线运动有关的叙述,正确的是 A .物体做曲线运动时,速度方向一定时刻改变B .物体运动速度改变,它一定做曲线运动C .物体做曲线运动时,加速度一定变化D .物体做曲线运动时,有可能处于平衡状态10.如图所示为一皮带传动装置,右轮的半径为,a 是它边缘上的一点。
曲线运动(解析版)——2025年高考物理一轮复习讲练测(新教材新高考)
A.梦天实验舱内,水球体积越小其惯性越大B.击球过程中,水球对“球拍C.击球过程中,水球所受弹力是由于水球发生形变产生的D.梦天实验舱内可进行牛顿第一定律的实验验证....A.3.2m【答案】D【详解】根据题意可知,排球被击出后做平抛运动,竖直方向上有:A.轨迹1,玻璃管可能做匀加速直线运动B.轨迹2,玻璃管可能做匀减速直线运动C.轨迹3,玻璃管可能先做匀加速直线运动,然后做匀减速直线运动D.轨迹4,玻璃管可能做匀减速直线运动【答案】C【详解】A.若玻璃管沿水平向右做匀减速直线运动,加速度向左,则合力向左,而合速度向右上,则蜡块....【答案】D【详解】AB.根据:a w=A .飞行的时间之比:2:1t t =乙甲B .水平位移之比:2:1x x =甲乙A .在A 、C 两点时,速度方向相反B .在B 点时,手机受到合力为零C .在C 点时,线中拉力最小D .在B 、D 两点时,线中拉力相同【答案】A【详解】A .手机在一个周期内,两次经过最低点,所以在A .204tan h hh L q =-B .202tan h hh Lq =-C .()2028gL v g h h h =++A.当转盘的角速度增至B.若2R r=A.A、B的线速度大小之比为B.A、B的角速度大小之比为C.A、C的周期之比为3D.A、C的向心加速度大小之比为A .BD 为电场的一条等势线B .该匀强电场的场强大小为C .轻绳的最大拉力大小为7mgD .轻绳在A 【答案】BC【详解】AB .由图像知6pq =为等效最低点,76p为等效最高点,根据动能定理可知:2W mgl=-由于为匀强电场,则可知BD 不是电场的等势线,故C .在等效最低点拉力最大,可得①如图甲,在某一高度处释放塑料球,使之在空气中竖直下落。
塑料球速度逐渐增加,最终达到最大速度m v ,测量并记录m v 。
②如图乙,用重锤线悬挂在桌边确定竖直方向,将塑料球和一半径相同的钢球并排用一平板从桌边以相同的速度同时水平推出;③用频闪仪记录塑料球和钢球在空中的一系列位置,同时测量塑料球下落时间①如图1,用胶水把细竹棒中心固定在电动机转轴上;②按图2把直流电动机固定在铁架台上,细竹棒保持水平,用导线把电动机接入电路中;③把一端系有小球的细棉线系牢在细竹棒的一端,测出系线处到转轴距离x;合上开关,电动机转动,使小球在水平面上做匀速圆周运动,调节电动机的转速,使小球转速在人眼可分辨范围为宜。
历年(2019-2023)高考物理真题专项(曲线运动)练习(附答案)
历年(2019-2023)高考物理真题专项(曲线运动)练习一、单选题1.(2023ꞏ全国ꞏ统考高考真题)小车在水平地面上沿轨道从左向右运动,动能一直增加。
如果用带箭头的线段表示小车在轨道上相应位置处所受合力,下列四幅图可能正确的是()A.B.C.D.2.(2023ꞏ全国ꞏ统考高考真题)一质点做匀速圆周运动,若其所受合力的大小与轨道半径的n次方成正比,运动周期与轨道半径成反比,则n等于()A.1 B.2 C.3 D.43.(2023ꞏ全国ꞏ统考高考真题)一同学将铅球水平推出,不计空气阻力和转动的影响,铅球在平抛运动过程中()A.机械能一直增加B.加速度保持不变C.速度大小保持不变D.被推出后瞬间动能最大4.(2023ꞏ湖南ꞏ统考高考真题)如图(a),我国某些农村地区人们用手抛撒谷粒进行水稻播种。
某次抛出的谷粒中有两颗的运动轨迹如图(b)所示,其轨迹在同一竖直平面内,抛出点均为O,且轨迹交于P点,抛出时谷粒1和谷粒2的初速度分别为1v和2v,其中1v方向水平,2v方向斜向上。
忽略空气阻力,关于两谷粒在空中的运动,下列说法正确的是()A.谷粒1的加速度小于谷粒2的加速度B.谷粒2在最高点的速度小于1vC.两谷粒从O到P的运动时间相等D.两谷粒从O到P的平均速度相等5.(2023ꞏ辽宁ꞏ统考高考真题)某同学在练习投篮,篮球在空中的运动轨迹如图中虚线所示,篮球所受合力F的示意图可能正确的是( )A.B.C.D.6.(2023ꞏ浙江ꞏ统考高考真题)铅球被水平推出后的运动过程中,不计空气阻力,下列关于铅球在空中运动时的加速度大小a、速度大小v、动能E k和机械能E随运动时间t 的变化关系中,正确的是( )A.B.C.D.7.(2023ꞏ江苏ꞏ统考高考真题)达ꞏ芬奇的手稿中描述了这样一个实验:一个罐子在空中沿水平直线向右做匀加速运动,沿途连续漏出沙子。
若不计空气阻力,则下列图中能反映空中沙子排列的几何图形是( )A.B.C.D.8.(2023ꞏ浙江ꞏ高考真题)如图所示,在考虑空气阻力的情况下,一小石子从O点抛出沿轨迹O PQ运动,其中P是最高点。
高考物理曲线运动题20套(带答案)
高考物理曲线运动题20套(带答案)一、高中物理精讲专题测试曲线运动1.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤3.“抛石机”是古代战争中常用的一种设备,如图所示,为某学习小组设计的抛石机模型,其长臂的长度L = 2 m ,开始时处于静止状态,与水平面间的夹角α=37°;将质量为m =10.0㎏的石块装在长臂末端的口袋中,对短臂施力,当长臂转到竖直位置时立即停止转动,石块被水平抛出,其落地位置与抛出位置间的水平距离x =12 m 。
高考物理曲线运动真题汇编(含答案)含解析
mAvA
=(mA
M
)v
由能量关系:
1mA gL
1 2
mAvA2
1 2
mA
M
v2
解得 μ1=0.2
讨论:
(ⅰ)当满足 0.1≤μ<0.2 时,A 和小车不共速,A 将从小车左端滑落,产生的热量为
Q1 mAgL 10 (J)
(ⅱ)当满足 0.2≤μ≤0.3 时,A 和小车能共速,产生的热量为
Q1
1 2
Ep
m2 gxBC
1 2
m2vB
2
可得, xBC 2m
在这过程中摩擦力做功:
W1 m2 gxBC 1.6J
由动能定理,B 到 D 的过程中摩擦力做的功:
W2
1 2
m2vD2
1 2
m2v02
代入数据可得:W2=-1.1J
质量为 m2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功
即克服摩擦力做功为 2.7 J.
a 4m/s2
则物块和桌面的摩擦力: m2 g m2a 可得物块和桌面的摩擦系数: 0.4
质量 m1=0.4kg 的物块将弹簧缓慢压缩到 C 点,释放后弹簧恢复原长时物块恰停止在 B 点,由能量守恒可弹簧压缩到 C 点具有的弹性势能为:
Ep m1gxBC 0
质量为 m2=0.2kg 的物块将弹簧缓慢压缩到 C 点释放,物块过 B 点时,由动能定理可得:
W
1 2
m(3
2L
sin
60
)2 mg(2L cos 30
2L cos 60
)
代入数据得:
W (1 3)mgL 2
【点睛】
本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出
高考真题汇编05 曲线运动 (解析版)
专题 05 曲线运动1. (2020·新课标Ⅰ卷)如图,一同学表演荡秋千。
已知秋千的两根绳长均为 10 m ,该同学和秋千踏板的总质量约为50 kg 。
绳的质量忽略不计,当该同学荡到秋千支架的正下方时,速度大小为 8 m/s ,此时每根绳子平均承受的拉力约为()A. 200 NB. 400 NC. 600 ND. 800 N【答案】B【解析】在最低点由2T - mg =选 B 。
mv 2 r,知 T =410N ,即每根绳子拉力约为 410N ,故2. (2020·新课标Ⅱ卷)如图,在摩托车越野赛途中的水平路段前方有一个坑, 该坑沿摩托车前进方向的水平宽度为 3h ,其左边缘 a 点比右边缘 b 点高 0.5h 。
若摩托车经过 a 点时的动能为 E 1,它会落到坑内 c 点。
c 与 a 的水平距离和高度差均为h ;若经过a 点时的动能为E ,该摩托车恰能越过坑到达b 点。
E 2等于( )E 122A. 20B. 18C. 9.0D. 3.0【答案】B【解析】有题意可知当在 a 点动能为 E 时,有 E= 1 mv 2 ,根据平抛运动规律有 1 1 2 1h = 1 gt 2 , h = v t ,当在 a 点时动能为 E 时,有 E = 1mv 2 ,根据平抛运动规律2 1 1 1 2 22 2有 1 h = 1 gt 2,3h = v t ,联立以上各式可解得 E 2= 18 ,故选 B 。
2 2 22 2E3.(2020·江苏卷)如图所示,小球 A 、B 分别从2l 和 l 的高度水平抛出后落地, 上述过程中 A 、B 的水平位移分别为l 和2l 。
忽略空气阻力,则( )A. A 和 B 的位移大小相等B. A 的运动时间是 B 的 2 倍C. A 的初速度是 B 的 1D. A 的末速度比 B 的大【答案】AD12 ⨯ 2lg22lg2 ⨯lg2gl 2gl gl,xB tyAlt【解析】A.位移为初位置到末位置的有向线段,如图所示可得sA= =5l,s B = =5l ,A 和B 的位移大小相等,A 正确;B.平抛运动运动的时间由高度决定,即t A==⨯,tB== ,则A 的运动时间是B 的倍,B 错误;C.平抛运动,在水平方向上做匀速直线运动,则v xA ==A2v =2l=B,则 A 的初速度是B 的1,C 错误;D.小球A、B 在竖直方向上的速度分别为v = 2 ,2 2v =,所以可得v = 17gl v = 2=16gl,即v>v ,D 正确。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动 1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 一质量 M =0.8kg 的小物块,用长 l=0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m=0.2kg 的粘性小球以速度 v 0=10m/s 水平射向小物块,并与物块粘在一同,小球与小物 块互相作用时间极短能够忽视.不计空气阻力,重力加快度g 取 10m/s 2.求:( 1)小球粘在物块上的瞬时,小球和小物块共同速度的大小; ( 2)小球和小物块摇动过程中,细绳拉力的最大值;( 3)小球和小物块摇动过程中所能达到的最大高度.【答案】( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m 【分析】(1)因为小球与物块互相作用时间极短,因此小球和物块构成的系统动量守恒.mv 0 (Mm)v 共得: v 共 =2.0 m / s(2)小球和物块将以v共开始运动时,轻绳遇到的拉力最大,设最大拉力为F ,F (M m) g ( M m)v 共2L得: F 15N(3)小球和物块将以v 共 为初速度向右摇动,摇动过程中只有重力做功,因此机械能守恒,设它们所能达到的最大高度为h ,依据机械能守恒:( m+M ) gh 1( m M )v 共 22解得 : h 0.2m综上所述本题答案是 : ( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m点睛 :( 1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. ( 2)对小球和物块协力供给向心力,可求得轻绳遇到的拉力( 3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为 m、电量为 +q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速 v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mg(2)在物理最高点F:tan qE mg解得α=370;过 F 点的临界条件: v F=0从开始到 F 点:-1mgx qE (x R sin ) mg ( R R cos ) 01mv02 2解得 v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg 2R 01mv02 2s x R x1解得: s(44)R4.如下图,在竖直平面内有一倾角θ=37°的传递带BC.已知传递带沿顺时针方向运转的速度 v=4 m/s , B、 C两点的距离 L=6 m。
高考物理力学知识点之曲线运动专项训练及答案(5)
高考物理力学知识点之曲线运动专项训练及答案(5)一、选择题1.如图所示,固定在水平地面上的圆弧形容器,容器两端A、C在同一高度上,B为容器的最低点,圆弧上E、F两点也处在同一高度,容器的AB段粗糙,BC段光滑。
一个可以看成质点的小球,从容器内的A点由静止释放后沿容器内壁运动到F以上、C点以下的H 点(图中未画出)的过程中,则A.小球运动到H点时加速度为零B.小球运动到E点时的向心加速度和F点时大小相等C.小球运动到E点时的切向加速度和F点时的大小相等D.小球运动到E点时的切向加速度比F点时的小2.公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,如图,汽车通过凹形桥的最低点时()A.车的加速度为零,受力平衡B.车对桥的压力比汽车的重力大C.车对桥的压力比汽车的重力小D.车的速度越大,车对桥面的压力越小3.小船横渡一条两岸平行的河流,水流速度与河岸平行,船相对于水的速度大小不变,船头始终垂直指向河岸,小船的运动轨迹如图中虚线所示。
则小船在此过程中()A.无论水流速度是否变化,这种渡河耗时最短B.越接近河中心,水流速度越小C.各处的水流速度大小相同D.渡河的时间随水流速度的变化而改变4.质量为m的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的直径,如v 图所示.已知小球以速度v通过最高点时对圆管的外壁的压力恰好为mg,则小球以速度2通过圆管的最高点时().A.小球对圆管的内、外壁均无压力mgB.小球对圆管的内壁压力等于2mgC.小球对圆管的外壁压力等于2D.小球对圆管的内壁压力等于mg5.如图所示,在水平圆盘上,沿半径方向放置用细线相连的两物体A和B,它们与圆盘间的摩擦因数相同,当圆盘转速加大到两物体刚要发生滑动时烧断细线,则两个物体将要发生的运动情况是( )A.两物体仍随圆盘一起转动,不会发生滑动B.只有A仍随圆盘一起转动,不会发生滑动C.两物体均滑半径方向滑动,A靠近圆心、B远离圆心D.两物体均滑半径方向滑动,A、B都远离圆心6.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其他轨迹最高点,机械能的增量为A.2mgRB.4mgRC.5mgRD.6mgR7.小明玩飞镖游戏时,从同一位置先后以速度v A和v B将飞镖水平掷出,依次落在靶盘上的A、B两点,如图所示,飞镖在空中运动的时间分别t A和t B.不计空气阻力,则()A.v A<v B,t A<t BB.v A<v B,t A>t BC.v A>v B,t A>t BD.v A>v B,t A<t B8.一条小河宽100m,水流速度为8m/s,一艘快艇在静水中的速度为6m/s,用该快艇将人员送往对岸.关于该快艇的说法中正确的是()A.渡河的最短时间为10sB.渡河时间随河水流速加大而增长C.以最短位移渡河,位移大小为100mD.以最短时间渡河,沿水流方向位移大小为400m 39.如图所示,P是水平地面上的一点,A、B、C、D在同一条竖直线上,且AB=BC=CD.从A、B、C三点分别水平抛出一个物体,这三个物体都落在水平地面上的P点.则三个物体抛出时的速度大小之比为v A∶v B∶v C为()A.2:3:6B.1:2:3C.1∶2∶3D.1∶1∶110.如图所示,一质量为m的汽车保持恒定的速率运动,若通过凸形路面最高处时对路面的压力为F1 ,通过凹形路面最低处时对路面的压力为F2,则()A.F1= mg B.F1>mg C.F2= mg D.F2>mg11.乘坐如图所示游乐园的过山车时,质量为m的人随车在竖直平面内沿圆周轨道运动.下列说法正确的是()A.车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去B.人在最高点时对座位仍可能产生压力,但压力一定小于mgC.人在最高点和最低点时的向心加速度大小相等D.人在最低点时对座位的压力大于mg12.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则()A .A 球受绳的拉力较大B .它们做圆周运动的角速度不相等C .它们所需的向心力跟轨道半径成反比D .它们做圆周运动的线速度大小相等13.如图所示,一个内侧光滑、半径为R 的四分之三圆弧竖直固定放置,A 为最高点,一小球(可视为质点)与A 点水平等高,当小球以某一初速度竖直向下抛出,刚好从B 点内侧进入圆弧并恰好能过A 点。
高考物理曲线运动题20套(带答案)及解析
高考物理曲线运动题20 套( 带答案 ) 及分析一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径 R=0.6m, 平台上静止搁置着两个滑块 A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药 ,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高 ,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的 ,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v =6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,A炸药的质量忽视不计 ,爆炸的时间极短 ,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上(2)E P0.22 J (3)0.675m<L<1.35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离 L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,质量为M4kg 的平板车P的上表面离地面高h 0.2m,质量为 m 1kg 的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于Q正上方高为R处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。
高考物理一轮复习《曲线运动》练习题(含答案)
高考物理一轮复习《曲线运动》练习题(含答案)一、单选题1.在弯道上高速行驶的汽车,后轮突然脱离赛车,关于脱离了的后轮的运动情况,以下说法正确的是()A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能2.“旋转纽扣”是一种传统游戏。
如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。
拉动多次后,纽扣绕其中心的转速可达50r/s,此时纽扣上距离中心1cm处的点向心加速度大小约为()A.10m/s2B.100m/s2C.1000m/s2D.10000m/s23.如图所示,A、B两篮球从相同高度同时抛出后直接落入篮筐,落入篮筐时的速度方向相同,下列判断正确的是()A.A比B先落入篮筐B.A、B运动的最大高度相同C.A在最高点的速度比B在最高点的速度小D.A、B上升到某一相同高度时的速度方向相同4.无人配送小车某次性能测试路径如图所示,半径为3m的半圆弧BC与长8m的直线路径AB相切于B点,与半径为4m的半圆弧CD相切于C点。
小车以最大速度从A点驶入路径,到适当位置调整速率运动到B点,然后保持速率不变依次经过BC和CD。
为保证安全,小车速率最大为4m/s。
在ABC段的加速度最大为21m/s。
小车2m/s,CD段的加速度最大为2视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .7π2s,8m 4t l ⎛⎫=+= ⎪⎝⎭B .97πs,5m 42⎛⎫=+= ⎪⎝⎭t lC .576π26s, 5.5m 126⎛⎫=++= ⎪⎝⎭t lD .5(64)π26s, 5.5m 122⎡⎤+=++=⎢⎥⎣⎦t l 5.如图所示,某同学用一个小球在O 点对准前方的一块竖直放置的挡板,O 与A 在同一高度,小球的水平初速度分别是123v v v 、、,不计空气阻力。
高考物理曲线运动题20套(带答案)
高考物理曲线运动题20套(带答案)一、高中物理精讲专题测试曲线运动1.如图所示,一箱子高为H.底边长为L,一小球从一壁上沿口A垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。
设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。
(1)若小球与箱壁一次碰撞后落到箱底处离C点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的B点,求初速度的可能值。
【答案】(1)(2)【解析】【分析】(1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B点,则水平位移应该是2L的整数倍,通过平抛运动公式列式求解初速度可能值。
【详解】(1)此题可以看成是无反弹的完整平抛运动,则水平位移为:x==v0t竖直位移为:H=gt2解得:v0=;(2)若小球正好落在箱子的B点,则小球的水平位移为:x′=2nL(n=1.2.3……)同理:x′=2nL=v′0t,H=gt′2解得:(n=1.2.3……)2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R=0.6m,平台上静止放置着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M=0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q点,小车的上表面左端点P与Q点之间是粗糙的,PQ间距离为L滑块B与PQ之间的动摩擦因数为μ=0.2,Q点右侧表面是光滑的.点燃炸药后,A、B分离瞬间A滑块获得向左的速度v A=6m/s,而滑块B则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v m s h ===⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.4.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力. 【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2B M r Mv = 解得:v B =2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有221122C F Mv MgR Mv =+ 得v F =2m/s在F 处由牛顿第二定律2g FN v M F M R+=得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.5.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.6.如图所示,轻绳绕过定滑轮,一端连接物块A,另一端连接在滑环C上,物块A的下端用弹簧与放在地面上的物块B连接,A、B两物块的质量均为m,滑环C的质量为M,开始时绳连接滑环C部分处于水平,绳刚好拉直且无弹力,滑轮到杆的距离为L,控制滑块C,使其沿杆缓慢下滑,当C下滑43L时,释放滑环C,结果滑环C刚好处于静止,此时B刚好要离开地面,不计一切摩擦,重力加速度为g.(1)求弹簧的劲度系数;(2)若由静止释放滑环C ,求当物块B 刚好要离开地面时,滑环C 的速度大小.【答案】(1)3mg L (2) 【解析】 【详解】(1)设开始时弹簧的压缩量为x ,则 kx=mg设B 物块刚好要离开地面,弹簧的伸长量为x′,则 kx′=mg 因此x ′=x =mg k由几何关系得 2x L =2 3L求得 x=3L得 k=3mgL(2)弹簧的劲度系数为k ,开始时弹簧的压缩量为x 1=3mg Lk = 当B 刚好要离开地面时,弹簧的伸长量 x 2=3mg Lk = 因此A 上升的距离为 h =x 1+x 2=23LC 下滑的距离 43L H == 根据机械能守恒 MgH −mgh =221122m Mv +求得 v =7.如图所示,P 为弹射器,PA 、BC 为光滑水平面分别与传送带AB 水平相连,CD 为光滑半圆轨道,其半径R =2m ,传送带AB 长为L =6m ,并沿逆时针方向匀速转动.现有一质量m =1kg 的物体(可视为质点)由弹射器P 弹出后滑向传送带经BC 紧贴圆弧面到达D 点,已知弹射器的弹性势能全部转化为物体的动能,物体与传送带的动摩擦因数为μ=0.2.取g =10m/s 2,现要使物体刚好能经过D 点,求: (1)物体到达D 点速度大小;(2)则弹射器初始时具有的弹性势能至少为多少.【答案】(1)25m/s ;(2)62J 【解析】 【分析】 【详解】(1)由题知,物体刚好能经过D 点,则有:2Dv mg m R=解得:25D v gR ==m/s(2)物体从弹射到D 点,由动能定理得:21202D W mgL mgR mv μ--=-p W E =解得:p E =62J8.如图所示,一质量为m =1kg 的小球从A 点沿光滑斜面轨道由静止滑下,不计通过B 点时的能量损失,然后依次滑入两个相同的圆形轨道内侧,其轨道半径R =10cm ,小球恰能通过第二个圆形轨道的最高点,小球离开圆形轨道后可继续向E 点运动,E 点右侧有一壕沟,E 、F 两点的竖直高度d =0.8m ,水平距离x =1.2m ,水平轨道CD 长为L 1=1m ,DE 长为L 2=3m .轨道除CD 和DE 部分粗糙外,其余均光滑,小球与CD 和DE 间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:(1)小球通过第二个圆形轨道的最高点时的速度; (2)小球通过第一个圆轨道最高点时对轨道的压力的大小;(3)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球从A 点释放时的高度的范围是多少?【答案】(1)1m/s (2)40N (3)0.450.8m h m ≤≤或 1.25h m ≥ 【解析】⑴小球恰能通过第二个圆形轨道最高点,有:22v mg m R=求得:υ2 ①⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: −μmgL 1=12mv 22−12mv 12 ②求得:υ1在最高点时,合力提供向心力,即F N +mg=21m Rυ ③ 求得:F N = m(21Rυ−g)= 40N根据牛顿第三定律知,小球对轨道的压力为:F N ′=F N =40N ④⑵若小球恰好通过第二轨道最高点,小球从斜面上释放的高度为h1,在这一过程中应用动能定理有:mgh 1 −μmgL 1 −mg 2R =12mv 22 ⑤ 求得:h 1=2R+μL 1+222gυ=0.45m 若小球恰好能运动到E 点,小球从斜面上释放的高度为h 1,在这一过程中应用动能定理有:mgh 2−μmg(L 1+L 2)=0−0 ⑥ 求得: h 2=μ(L 1+L 2)=0.8m使小球停在BC 段,应有h 1≤h≤h 2,即:0.45m≤h≤0.8m 若小球能通过E 点,并恰好越过壕沟时,则有d =12gt 2 ⑦ x=v E t →υE =xt=3m/s ⑧ 设小球释放高度为h 3,从释放到运动E 点过程中应用动能定理有: mgh 3 −μmg(L 1+L 2)=212E mv −0 ⑨ 求得:h 3=μ(L 1+L 2)+22Egυ=1.25m 即小球要越过壕沟释放的高度应满足:h≥1.25m综上可知,释放小球的高度应满足:0.45m≤h≤0.8m 或 h≥1.25m ⑩9.如图所示,倾角θ=30°的光滑斜面上,一轻质弹簧一端固定在挡板上,另一端连接质量m B =0.5kg 的物块B ,B 通过轻质细绳跨过光滑定滑轮与质量m A =4kg 的物块A 连接,细绳平行于斜面,A 在外力作用下静止在圆心角为α=60°、半径R=lm 的光滑圆弧轨道的顶端a 处,此时绳子恰好拉直且无张力;圆弧轨道最低端b 与粗糙水平轨道bc 相切,bc 与一个半径r=0.12m 的光滑圆轨道平滑连接,静止释放A ,当A 滑至b 时,弹簧的弹力与物块A 在顶端d 处时相等,此时绳子断裂,已知bc 长度为d=0.8m ,求:(g 取l0m/s 2) (1)轻质弹簧的劲度系数k ;(2)物块A 滑至b 处,绳子断后瞬间,圆轨道对物块A 的支持力大小;(3)为了让物块A 能进入圆轨道且不脱轨,则物体与水平轨道bc 间的动摩擦因数μ应满足什么条件?【答案】(1)5/k N m = (2)72N (3)0.350.5μ≤≤或0.125μ≤ 【解析】(1)A 位于a 处时,绳无张力弹簧处于压缩状态,设压缩量为x 对B 由平衡条件可以得到:sin B kx m g θ=当A 滑至b 时,弹簧处于拉伸状态,弹力与物块A 在顶端a 处时相等,则伸长量也为x ,由几何关系可知:2R x =,代入数据解得:5/k N m =; (2)物块A 在a 处和在b 处时,弹簧的形变量相同,弹性势能相同 由机械能守恒有:()22111sin 22A B A A B B m gR cos m gR m v m v αθ-=++ 将A 在b 处,由速度分解关系有:sin B A v v α= 代入数据解得:22/A v m s =在b 处,对A 由牛顿定律有:2Ab A A v N m g m R-= 代入数据解得支持力:72b N N =. (3)物块A 不脱离圆形轨道有两种情况: ①不超过圆轨道上与圆心的等高点由动能定理,恰能进入圆轨道时需要满足:21102A A A m gd m v μ-=-恰能到圆心等高处时需要满足条件:22102A A A A m gr m gd m v μ--=-代入数据解得:10.5μ=,20.35μ= ②过圆轨道最高点,则恰好过最高点时:2A A v mg m r= 由动能定理有:22311222A A A A A m gr m gd m v m v μ--=- 代入数据解得:30.125μ=为使物块A 能进入圆轨道且不脱轨,有:0.350.5μ≤≤或0.125μ≤.10.某高中物理课程基地拟采购一种能帮助学生对电偏转和磁偏转理解的实验器材.该器材的核心结构原理可简化为如图所示.一匀强电场方向竖直向下,以竖直线ab 、cd 为边界,其宽度为L ,电场强度的大小为203.mv E =在cd 的左侧有一与cd 相切于N 点的圆形有界匀强磁场,磁场的方向垂直纸面、水平向外.现有一质量为m ,电荷量为q 的带正电粒子自O 点以水平初速度0v 正对M 点进入该电场后,从N 点飞离cd 边界,再经磁场偏转后又从P 点垂直于cd 边界回到电场区域,并恰能返回O 点.粒子重力不计.试求:()1粒子从N 点飞离cd 边界时的速度大小和方向;()2P 、N 两点间的距离;()3圆形有界匀强磁场的半径以及磁感应强度大小;()4该粒子从O 点出发至再次回到O 点的总时间.【答案】()012v ,方向与边界cd 成30o 角斜向下;(532L , ;(3)54L , 0835mv qL;()0035342L L v π 【解析】【分析】(1)利用运动的合成和分解,结合牛顿第二定律,联立即可求出粒子从N 点飞离cd 边界时的速度大小,利用速度偏向角公式即可确定其方向;(2)利用类平抛规律结合几何关系,即可求出P 、N 两点间的距离;(3)利用洛伦兹力提供向心力结合几何关系,联立即可求出圆形有界匀强磁场的半径以及磁感应强度大小;(4)利用类平抛规律求解粒子在电场中运动的时间,利用周期公式,结合粒子在磁场中转过的圆心角求解粒子在磁场中运动的时间,联立即可求出该粒子从O 点出发至再次回到O 点的总时间.【详解】(1)画出粒子轨迹过程图,如图所示:粒子从O 到N 点时间:t 1=0L v 粒子在电场中加速度:a=qE m 203v 粒子在N 点时竖直方向的速度:v y =at 130粒子从N 点飞离cd 边界时的速度:v=2v 0速度偏转角的正切:tan θ=y0v v 3故θ=600,即速度与边界cd 成300角斜向下.(2)粒子从P 到O 点时间:t 2=0L 2v 粒子从P 到O 点过程的竖直方向位移:y 2=221at 23 粒子从O 到N 点过程的竖直方向位移:y 1=211at 23 故P 、N 两点间的距离为:Y PN =y 1+y 2=53L 8(3)设粒子做匀速圆周运动的半径为r ,根据几何关系可得:r 0cos 60+r=53L 8 解得粒子做匀速圆周运动的半径:53 根据洛伦兹力提供向心力可得:qvB=m 2v r解得圆形有界匀强磁场的磁感应强度:B=mv qr 083mv根据几何关系可以确定磁场区域的半径:R=2r 0cos30即圆形有界匀强磁场的半径:R=5L 4(4)粒子在磁场中运动的周期:T=2πr v 粒子在匀强磁场中运动的时间:t 3=23粒子从O 点出发至再次回到O 点的总时间:t=t 1+t 2+t 3=03L 2v+0L 18v 【点睛】本题考查带电粒子在复合场中运动,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,还要分析好从电场射入磁场衔接点的速度大小和方向;运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.。
《精品》2017-2019三年高考真题专题05曲线运动-物理分项汇编(原卷版)
1专题 05曲线运动1.(2019· 新课标全国Ⅱ卷)如图(a ),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。
某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v 表示他在竖直方向的速度,其 v –t图像如图(b )所示,t 和 t 12是他落在倾斜雪道上的时刻。
则A .第二次滑翔过程中在竖直方向上的位移比第一次的小B .第二次滑翔过程中在水平方向上的位移比第一次的大C .第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D .竖直方向速度大小为 v 时,第二次滑翔在竖直方向上所受阻力比第一次的大12.(2019· 江苏卷)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半 径为R ,角速度大小为ω,重力加速度为g ,则座舱A .运动周期为2 πRB .线速度的大小为ωRC .受摩天轮作用力的大小始终为m gD .所受合力的大小始终为m ω R3.(2019· 浙江选考)一质量为 2.0×10 kg 的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×10N ,当汽车经过半径为 80 m 的弯道时,下列判断正确的是 2 342A .汽车转弯时所受的力有重力、弹力、摩擦力和向心力B .汽车转弯的速度为 20 m/s 时所需的向心力为 1.4×10 NC .汽车转弯的速度为 20 m/s 时汽车会发生侧滑D .汽车能安全转弯的向心加速度不超过 7.0 m/s4.(2018· 江苏卷)某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持 水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同5.(2018· 北京卷)根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,在竖直平面内有一倾角θ=37°的传送带BC .已知传送带沿顺时针方向运行的速度v =4 m/s ,B 、C 两点的距离L =6 m 。
一质量m =0.2kg 的滑块(可视为质点)从传送带上端B点的右上方比B点高h=0. 45 m处的A点水平抛出,恰好从B点沿BC方向滑人传送带,滑块与传送带间的动摩擦因数μ=0.5,取重力加速度g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。
高考物理专题力学知识点之曲线运动真题汇编及答案解析
高考物理专题力学知识点之曲线运动真题汇编及答案解析一、选择题1.如图所示,人在岸上用轻绳拉船,若要使船匀速行进,则人拉的绳端将做( )A .减速运动B .匀加速运动C .变加速运动D .匀速运动2.光滑水平面上,小球m 的拉力F 作用下做匀速圆周运动,若小球运动到P 点时,拉力F 发生变化,下列关于小球运动情况的说法正确的是( )A .若拉力突然消失,小球将沿轨迹Pb 做离心运动B .若拉力突然变小,小球将沿轨迹Pa 做离心运动C .若拉力突然变大,小球将可能沿半径朝圆心运动D .若拉力突然变大,小球将可能沿轨迹Pc 做近心运动3.如图所示,“跳一跳”游戏需要操作者控制棋子离开平台时的速度,使其能跳到旁边等高平台上。
棋子在某次跳跃过程中的轨迹为抛物线,经最高点时速度为v 0,此时离平台的高度为h 。
棋子质量为m ,空气阻力不计,重力加速度为g 。
则此跳跃过程( )A .所用时间2h t g =B .水平位移大小22h x v g=C .初速度的竖直分量大小为2gh D 20v gh +4.如图所示的皮带传动装置中,轮A 和B 固定在同一轴上,A 、B 、C 分别是三个轮边缘的质点,且R A =R C =2R B ,则三质点的向心加速度之比a A ∶a B ∶a C 等于()A.1∶2∶4B.2∶1∶2C.4∶2∶1D.4∶1∶45.如图所示为一条河流.河水流速为v.—只船从A点先后两次渡河到对岸.船在静水中行驶的速度为u.第一次船头朝着AB方向行驶.渡河时间为t1,船的位移为s1,第二次船头朝着AC方向行驶.渡河时间为t2,船的位移为s2.若AB、AC与河岸的垂线方向的夹角相等.则有A.t1>t2 s1<s2B.t1<t2 s1>s2C.t1=t2 s1<s2D.t1=t2 s1>s26.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其他轨迹最高点,机械能的增量为A.2mgRB.4mgRC.5mgRD.6mgR7.关于曲线运动,以下说法中正确的是()A.做匀速圆周运动的物体,所受合力是恒定的B.物体在恒力作用下不可能做曲线运动C.平抛运动是一种匀变速运动D.物体只有受到方向时刻变化的力的作用才可能做曲线运动8.一条小河宽100m,水流速度为8m/s,一艘快艇在静水中的速度为6m/s,用该快艇将人员送往对岸.关于该快艇的说法中正确的是()A.渡河的最短时间为10sB.渡河时间随河水流速加大而增长C.以最短位移渡河,位移大小为100mD .以最短时间渡河,沿水流方向位移大小为400m 39.如图所示,质量为05kg .的小球在距离小车底部20m 高处以一定的初速度向左平抛,落在以75/m s .的速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4kg .设小球在落到车底前瞬间速度是25/m s ,重力加速度取210/m s .则当小球与小车相对静止时,小车的速度是( )A .4/m sB .5/m sC .8.5/m sD .9.5/m s10.如图所示,一块可升降白板沿墙壁竖直向上做匀速运动,某同学用画笔在白板上画线,画笔相对于墙壁从静止开始水平向右先匀加速,后匀减速直到停止.取水平向右为x 轴正方向,竖直向下为y 轴正方向,则画笔在白板上画出的轨迹可能为( )A .B .C .D .11.如图所示,从某高处水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g .下列说法正确的是( )A .小球水平抛出时的初速度大小为tan gt θB .小球在t 时间内的位移方向与水平方向的夹角为2θ C .若小球初速度增大,则θ减小D .若小球初速度增大,则平抛运动的时间变长12.如图为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国大市名校高三期末一模物理试题全解全析汇编(第七期)曲线运动1、(2020·百师联盟高三停课不停学山东卷五)将小球从某点斜向上抛出初速度的大小为0v ,方向与竖直方向成30°。
在小球运动的速度大小减小到初速度大小一半的过程中,不计空气阻力,重力加速度为g ,则小球( )A .运动的时间为02v gB .上升的高度为2038v gC.速率的变化量大小为2D .速度变化量的方向为竖直向上2、(2020·百师联盟高三停课不停学山东卷五)骑行是一种健康自然的出行、运动、旅游方式,简单又环保。
骑行者和自行车的总质量为m ,重力加速度为g ,自行车大齿轮的半径为1r ,小齿轮的半径为2r ,后轮的半径为R ,如图所示。
当骑行者恰能沿平行于跨度很大的拱形桥中心线行驶到桥项时,大齿轮的转速为n ,若拱形桥桥顶处所对应圆周的半径为L ,则自行车此时对拱形桥的压力大小为( )A .22221224π'=-m n r R N mg r LB .22221224π'=-m n r R N mg r LC .2224π'=-m n R N mg LD .2224π'=-m n R N mg L3、(2020·福建省泉州市高三单科质检)如图,两弹性轻绳一端系在天花板的O 点,另一端分别系着质量均为m 的小球a 、b ,并让两小球都以O'为圆心在同水平面上做匀速圆周运动。
已知两弹性绳的弹力都与其伸长量成正比,且原长恰好都等于OO ',则( )A.小球a、b的运动周期相同B.小球a的向心力大于小球b的向心力C.小球a、b的线速度大小相同D.弹性绳1的劲度系数大于弹性绳2的劲度系数4、(2020·黑龙省实验中学高三下学期开学考试)如图所示,小球从斜面的顶端A处以大小为v0的初速度水平抛出,恰好落到斜面底部的B点,且此时的速度大小v B0,空气阻力不计,该斜面的倾角为()A.60°B.45°C.37°D.30°5、(2020·河北省沧州市一中高三12月月考)A、B是竖直墙壁,现从A墙某处以垂直于墙面的初速度v抛出一质量为m的小球,小球下落过程中与A、B进行了多次碰撞,不计碰撞过程中的能量损失.下面四个选项中能正确反映下落过程中小球的水平速度v x和竖直速度v y随时间变化关系的是()A. B. C. D.6、(2020·河北省沧州市一中高三12月月考)如图所示,一条小船位于200 m 宽的河的正中央A 处,从这里向下游m 处有一危险区.当时水流的速度为4 m/s ,为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少是sheA.3m/sB.3m/s C. 2 m/s D. 4 m/s7、(2020·河北省沧州市一中高三12月月考)火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )①当以速度v 通过此弯路时,火车重力与轨道面支持力合力提供向心力;②当以速度v 通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力;③当速度大于v 时,轮缘挤压外轨; ④当速度小于v 时,轮缘挤压外轨.A. ②④B. ①④C. ②③D. ①③8、(2020·河北省沧州市一中高三12月月考)长度为0.5 m 的轻质细杆OA ,A 端有一质量为3 kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2 m /s ,取g =10 m /s 2,则此时轻杆OA 将( )A. 受到6 N 的拉力B. 受到6 N 的压力的的C. 受到24 N的拉力D. 受到24 N的压力9、(2020·河北省沧州市一中高三12月月考)如图所示,在同一竖直平面内有两个正对着的半圆形光滑轨道,轨道的半径都是R。
轨道端点所在的水平线相隔一定的距离x。
一质量为m的小球能在其间运动而不脱离轨道,经过最低点B时的速度为v。
小球在最低点B与最高点A对轨道的压力之差为ΔF(ΔF>0)。
不计空气阻力。
则()A. m、x一定时,R越大,ΔF一定越大B. m、x一定时,v越大,ΔF一定越大C. m、R一定时,x越大,ΔF一定越大D. m、R一定时,v越大,ΔF一定越大10、(2020·湖南省长沙市高三期末统考)如图甲所示,用不可伸长的轻绳连接的小球绕定点O在竖直面内做圆周运动。
小球经过最高点时绳子拉力的大小F T与此时速度的平方v2的关系如图乙所示。
图像中的数据a和b以及重力加速度g都为已知量,不计摩擦力和空气阻力。
以下说法正确的是()A. 数据a与小球的质量有关B. 数据b与小球的质量无关C. 利用数据a、b和g能够求出小球的质量和圆周轨道半径D. 数据b 对应的状态,当小球运动到最低点时,绳子的拉力为7b11、(2020·天一皖豫联盟体高三第二次联考)从同一竖直线上的不同高度处以大小不同的初速度水平抛出一个质量为m 的小球,并且使小球都能落在水平地面上的同一点。
已知落点到竖直线的水平距离为0L ,重力速度为g ,若不计空气阻力,则小球落地时的最小动能为( )A.012mgL B. 0mgl C. 02mgL D. 04mgl12、(2020·浙江省浙大附中高三元月选考模拟一水平放置的圆盘绕竖直固定轴转动,在圆盘上沿半径开有一条宽度为2mm 的均匀狭缝,将激光器与传感器上下对准,使二者间连线与转轴平行,分别置于圆盘的上下两侧, 且可以同步地沿圆盘半径方向匀速移动,激光器连续向下发射激光束,在圆盘转动过程中,当狭缝经过激光器与传感器之间时,传感器接收到一个激光信号,并将其输入计算机,经处理后画出相应图线。
图(a )为该装置示意图,图(b )为所接收的光信号随时间变化的图线,横坐标表示时间,纵坐标表示接收到的激光信号强度,图中31 1.010s t -∆=⨯,320.810s t -∆=⨯,则( )A. t =1s 时圆盘转动的角速度为2.5rad/s πB. 激光器和探测器沿半径由中心向边缘移动C. 激光器和探测器的移动速度为14πm/s D. 由已知条件无法求出3t ∆ 13、(2020·重庆市巴蜀中学高三月考一)如图所示,斜面倾角为37θ=°,小球从斜面顶端P 点以初速度0v 水平抛出,刚好落在斜面中点处。
现将小球以初速度02v 水平抛出,不计空气阻力,小球下落后均不弹起,sin370.6︒=,cos370.8︒=,重力加速度为g ,则小球两次在空中运动过程中( )A. 时间之比为1:2B. 时间之比为C. 水平位移之比为1:4D. 当初速度为0v 时,小球在空中离斜面的最远距离为20940v g14、(2020·重庆市巴蜀中学高三月考一)如图所示,水平圆盘可绕竖直轴转动,圆盘上放有小物体A 、B 、C ,质量分别为m 、2m 、3m ,A 叠放在B 上,C 、B 离圆心O 距离分别为2r 、3r 。
C 、B 之间用细线相连,圆盘静止时细线刚好伸直无张力。
已知C 、B 与圆盘间动摩擦因数为μ,A 、B 间摩擦因数为3μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g ,现让圆盘从静止缓慢加速,则( )A. 当ω=时,A 、B 即将开始滑动B. 当ω=32mgμC. 当ω=C 受到圆盘的摩擦力为0D. 当ω=C 将做离心运动 15、(2020·重庆市巴蜀中学高三月考一)如图所示,用跨过光滑滑轮的轻质细绳将小船沿直线拖向岸边,已知拖动细绳的电动机功率恒为P ,电动机卷绕绳子的轮子的半径25cm R =,轮子边缘的向心加速度与时间满足2[2(2]a t =+,小船的质量3kg m =,小船受到阻力大小恒为101)N f =⨯,小船经过A 点时速度大小0/s v =,滑轮与水面竖直高度 1.5m h =,则( )A. 小船过B 点时速度为4m/sB. 小船从A 点到B 点的时间为1)sC. 电动机功率50W P =D. 小船过B 2/s16、(2020·福建省莆田第二十五中高三上学期期末)如图,两小球P 、Q 从同一高度分别以l v 和2v 的初速度水平抛出,都落在了倾角37θ=︒的斜面上的A 点,其中小球P 垂直打到斜面上,则2l v v 、大小之比为A. 9:8B. 8:9C. 3:2D. 2:317、(2020·福建省莆田第二十五中高三上学期期末)如图所示,可视为质点的小球以初速度v 0从光滑斜面底端向上滑,恰能到达高度为h 的斜面顶端。
下图中有四种运动:A 图中小球滑入轨道半径等于12h 的光滑管道;B 图中小球系在半径大于12h 而小于h 的轻绳下端;C 图中小球滑入半径大于h 的光滑轨道;D 图中小球固定在长为12h 的轻杆下端。
在这四种情况中,小球在最低点的水平初速度都为v 0不计空气阻力,小球不能到达高度h 的是A. AB. BC. CD. D18、(2020·福建省莆田第二十五中高三上学期期末)如图所示,人在岸上拉船,已知船的质量为m ,水的阻力恒为f ,当轻绳与水平面的夹角为θ时,人的速度为v ,人的拉力为F (不计滑轮与绳之间的摩擦),则以下说法正确的是( )A. 船的速度为cos vθ B. 船的速度为v sin θC. 船的加速度为cos F fmθ- D. 船的加速度为F fm- 19、(2020·山东省微山县二中十二月月考).如图所示,河水流动的速度为v 且处处相同,河宽度为a .在船下水点A 的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去),则( )A. 小船船头垂直河岸渡河时间最短,最短时间为t =bvB. 小船轨迹垂直河岸渡河位移最小,渡河速度最大,最大速度为v maxC. 当小船沿轨迹AB渡河时,船在静水中的最小速度为v min=av bD. 当小船沿轨迹AB渡河时,船在静水中的最小速度为vmin20、(2020·山东省微山县二中十二月月考)如图所示,小球A质量为m,固定在长为L的轻细直杆一端,绕杆的另一端O点在竖直平面内做圆周运动.计一切阻力,杆对球的作用力为()A. 推力,大小为mgB. 拉力,大小为mgC. 拉力,大小为0.5mgD. 推力,大小为0.5mg21、(2020·山东省微山县二中十二月月考).如图所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度v a和v b沿水平方向抛出,经过时间t a和t b后落到与两抛出点水平距离相等的P点.若不计空气阻力,下列关系式正确的是()A. t a>t b, v a<v bB. t a>t b, v a>v bC. t a<t b, v a<v bD. t a>t b, v a>v b22、(2020·山东省微山县二中十二月月考)一物体受到两个外力的作用,沿某方向做匀速直线运动.若将其中一个力的方向旋转90°,保持这个力的大小和另一个力不变,则物体可能做()A. 匀速直线运动B. 匀加速直线运动C. 匀减速直线运动D. 轨迹为曲线的运动23、(2020·山东省微山县二中十二月月考).如图所示光滑管形圆轨道半径为R(管径远小于R),小球a、b 大小相同,质量均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是()A. 当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mgB. 当v b在轨道最高点对轨道无压力C. 速度vD. 只要v a对轨道最低点的压力比小球b对轨道最高点的压力都大6mg24、(2020·天津市静海一中等七校高三期中联考)如图所示,一根细线下端拴一个金属小球A,细线的上端固定在金属块B上,B放在带小孔的水平桌面上,小球A在某一水平面内做匀速圆周运动。