柴油机电控共轨技术

合集下载

电控共轨技术培训

电控共轨技术培训

电控共轨技术培训随着汽车行业的不断发展,电控共轨技术已经成为了柴油发动机的主流技术之一。

电控共轨技术以其高效节能、低排放和动力强劲等优点,得到了广泛的应用和推广。

因此,了解和掌握电控共轨技术已经成为了柴油发动机维修技师的必备技能之一。

本文将就电控共轨技术进行详细介绍,为大家提供一次系统全面的培训。

一、电控共轨技术的基本原理电控共轨技术是指利用高压共轨燃油系统,通过电子控制单元对喷油器进行精确的控制,提高燃油喷射的压力和精准度,以实现更高效、更环保的燃油燃烧。

电控共轨技术将传统的机械喷油系统中的高压燃油泵和喷油器进行了分离,通过共轨来贮存高压燃油,再通过电子控制单元实现对喷油器的高精度控制。

这种技术可以使燃油喷射更加柔和,燃烧更加充分,从而达到更高的效率和更低的排放。

二、电控共轨技术的组成部分1.高压共轨燃油系统:包括高压燃油泵、电控共轨、压力传感器等。

2.喷油系统:包括喷油器、燃油喷射泵等。

3.电子控制单元(ECU):负责对高压共轨燃油系统和喷油系统进行精准的控制和管理。

4.传感器:包括高压传感器、温度传感器、压力传感器等,用于监测发动机工况和燃油系统运行状态。

5.燃油系统其他部件:包括燃油过滤器、燃油管路、燃油喷嘴等。

三、电控共轨技术的优点1.高效节能:电控共轨技术可以更加精准地控制燃油喷射的时机和量,减少燃油在进气过程中的浪费,提高了燃油利用率。

2.低排放:由于电控共轨技术可以使燃油燃烧更加充分,热效率更高,因此可以有效减少废气排放,降低对环境的影响。

3.动力强劲:电控共轨技术可以实现更高的燃油喷射压力和更精准的控制,因此可以使发动机具有更强的动力输出。

4.稳定性好:电控共轨技术可以实现对燃油喷射的高精度控制,使得发动机工作更加稳定,噪音更低。

四、电控共轨技术的维修与保养1.定期更换滤芯:高压共轨燃油系统对燃油的纯净度要求较高,因此需要定期更换燃油滤芯,保持燃油系统的清洁。

2.注意燃油的储存:燃油的品质会直接影响到电控共轨技术的工作效果,因此需要注意燃油的储存条件和周期,避免使用劣质燃油。

柴油机共轨技术杂谈

柴油机共轨技术杂谈

柴油机共轨技术杂谈共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。

大泵车为什么有劲儿?大泵车你只要踩油门,它就喷油,不管有没有完全燃烧,当然这个污染也比较厉害,再加上当时小油盛行,这就很呛眼睛了,再加上环保原因,所以现在的大泵车越来越少了。

其实大泵车对应的是国二排放,后来升级国三也就是优化了一下燃烧环境,毕竟国三标准很容易就达到了。

国三应该对应电喷,一是Bosch公司共轨式电控柴油喷射系统。

二是Perkins公司共轨式电控柴油喷射系统,它是在Bosch公司电喷系统基础上的改进,该系统无高压油泵,电喷系统主要由电子控制模块(ECM)、高压润滑油供应泵、喷注压力调节阀、喷油器等组成。

再后来的国四,加了个后处理系统,也打开了我们琢磨排气管的新世界。

你说电喷没有大泵有劲儿,为啥?电喷车电子油门了,有那么一点点的延迟,这点延迟跟油门线比起来还是有区别的,如果是上坡路起步,那这个延迟还是很难受的。

那么国五也没有国四有劲儿,为啥?排气管多东西了,燃烧更稀薄了。

国六没有国五有劲儿,排气管塞的东西更多了,排气背压更高了。

但是它并不是真的没劲儿,它就是提速慢点,踩油门感觉车子发闷,其实跑起来还是不错的,习惯了就好了,当然厂家也知道这个情况,所以马力做的一个比一个大。

所以说,在国三时代柴油机用上共轨电喷系统后,柴油机本身再没有比较大的改动了,一些调整都是用在了升级材料,一些部件的微调整,常规的更新等上面。

因为发动机技术的掣肘,再加上严峻的环保形势,车辆的另一个比较大的改动就是后处理系统了,这个尿素后处理系统全球污染严重的地区都在用,并不是大家认为的国外研究发动机只有我们研究排气管。

所以共轨技术一时半会儿还下不了岗。

共轨压力高,压力高的好处就是能使柴油更好的燃烧;坏处就是容易坏,那么高的燃油压力长期在针阀耦件等部位高速高压冲击,稍微有点杂质就容易损坏或锈蚀喷油嘴,然后车子没劲儿冒白烟甚至从排气管喷柴油.....容易坏大多不是产品本身问题,一个是燃油品质,一个是油箱杂质,一个是柴油滤芯品质,再就是空气滤芯。

Bosch电控共轨系统介绍(潍柴)

Bosch电控共轨系统介绍(潍柴)

CPN2.2(+)高压油泵
柴油进口(自滤器)
高压油出口 柴油出口(到油箱)
M-PROP 燃油计量阀
溢流阀
凸轮轴 润滑油进口(可选)
柴油出口(到滤器) 初始机油注油口阀盖 齿轮泵 ZP5 凸轮轴相位传感器: DG6 柴油进口(自油箱)
CPN2.2(+)高压油泵
共轨管
存储高压,抑止因油泵供油和喷油而产生的波动
机油压力传感器
功能:可同时检测机油 压力及温度
进气压力传感器
功能:可以检测进气压力和温度
加速踏板传感器
电控喷油器
回油管 插座
工作原理
1)电磁阀断电:球阀关闭 控制腔压力+针阀弹簧压力 > 针阀腔压力 针阀关闭,不喷射 2)电磁阀通电:球阀开启,泻油孔泻油 控制腔压力+针阀弹簧压力 < 针阀腔压力 针阀抬起,喷射
轨压传感器 限压阀
燃油粗滤器
带油水分离器,分离燃油中的水分
曲轴转速传感器
原理:电磁感应
功能:1、曲轴(发动机)转速 2、气缸上止点位置 1、永磁铁 2、传感器壳体 3、发动机外盖 4、软铁芯 5、线圈 6、传感线圈
凸轮轴转速传感器
• 原理:霍尔效应 • 相位确定:凸轮轴上安装着一个用铁磁性材料制成的齿,它 随着凸轮轴旋转。当这个齿经过凸轮轴传感器的半导体膜片 的时候,它的磁场就会使半导体膜片中的电子以垂直于流过 膜片的电流的方向发生偏转。产生一个短促的电压信号(霍 尔电压),这个电压信号告诉ECU,某1缸已经进入了压缩 阶段
水温传感器
原理: 高灵敏度NTC(负温度系数热敏电阻)电阻阻值随温度 下降而增大 1、电子接头 2、壳体 3、NTC电阻 4、冷却液
轨压传感器
1、电子接头 2、评估电路 3、带传感装置的皮膜 4、高压接头5、固定螺纹 原理: 传感器皮膜上的传感器元件将高压管道 内的压力变化转化成电压信号输送到ECU。 一旦损坏,压力控制阀就通过应急(备份) 功能,按设定值被“盲”触发

电控柴油机共轨技术

电控柴油机共轨技术


电控 柴 油 机 应 用 现 状
过 程 彼 此 完 全 分 开 , 磁 阀 控 制 的喷 油 器 替 代 了 传 统 的 机 械 电
式 节 阀控 制 , 在 一 定 范 共 可 围 内 自由设 定 。
欧 洲 可 以 说 是 柴 油 车 的 天 堂 , 在 德 国 柴 油 轿 车 占 了 3 %。 柴 油 轿 车 已有 了 近 7 9 0年 的 历 史 , 最 近 1 而 0年 可 以 说
柴油机变化较大 。
速 改 变 , 决 了传 统 喷 射 系 统 ( 括 油 泵 喷嘴 ) 解 包 因低 速 时 喷 油 压力下降而导致的低速转矩差和低速烟度大的缺陷。 ( ) 射 压 力 高 。 由 于 系 统 紧 凑 、 度 大 , 实 现 较 高 的 2喷 刚 可
喷 射 压 力 . 上 可 独 立 柔 性 控 制 喷 油 定 时 和 喷 油 量 。 将 排 加 可 放 和 微 粒 控 制 在 较小 范 围 内 。
射 次 数 达 到 2 次之 多 。 2 电控 共 轨 柴 油 喷 射 系统 的 主 要 特 点 .
( ) 油 压 力 柔 性 可 调 。对 不 同工 况 可 采 用 最 佳 喷 射 压 1喷
力 . 而 可 以 优 化 柴 油 机 的综 合 性 能 。 由 于 喷 油 压 力 不 随转 从
能 量 和 最 少 的 污 染 排 放 。 轨 系统 将 喷 射 压 力 的产 生 和喷 射 共
了 柴油 机 。作 为 满 足 柴 油 机 排 放 、 能 和提 高 性 能 的 重 要 途 节
径 . 油 机 电子 控 制 技 术 已 成 为 当前 柴 油 机 技 术 的 重 要 发 展 柴 方 向。
二、 电控 柴 油 机 高压 共 轨 系统

浅谈柴油机电控高压共轨技术

浅谈柴油机电控高压共轨技术

浅谈柴油机电控高压共轨技术摘要:电控高压共轨技术是一种燃油喷射压力与发动机转速无关的供油系统,由高压泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷油压力的产生和喷射过程彼此完全分开。

关键词:柴油机共轨喷油压力控制提高柴油机动力性,实现低污染、低油耗的中心任务就是改善柴油机的燃烧过程。

也就是要保证组成燃烧过程的进气、喷油、燃烧三要素中的油、气良好混合和在不同工况下满足不同的燃烧和放热要求。

其中喷油是最重要的因素。

所谓电控高压共轨技术主要是对喷油过程进行控制,是指在高压泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷油压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,ECU控制喷油器的喷油量,喷油量大小取决于公共供油管压力和电磁阀开启时间的长短。

一、电控高压共轨柴油机的组成1、控制系统:包含了传感器、电脑和执行器。

电脑是电控共轨燃油系统的核心部分,它根据各传感器的信息进行综合计算,完成各种处理后,求出最佳喷油时间和最合适的喷油量,并且计算出在什么时刻、在多长的时间范围内向喷油器发出开启压电阀或关闭压电阀的指令,从而精确控制发动机的工作过程。

2、燃油供给系统:包含了高压供油泵、共轨和喷油器。

高压供油泵将燃油加压成高压,输入共轨内,储存在共轨内的燃油在适当的时刻通过喷油器喷入发动机汽缸内。

电控共轨系统中的喷油器是一种非常精密的压电阀,它的开启和关闭由电脑控制。

二、电控高压共轨技术工作原理:燃油从油箱被电动输油泵吸出后,经油水分离器滤清后,被送入VP分配式高压油泵,这时燃油压力为0.2Mpa。

进入VP分配泵的燃油一部分通过高压油泵上的安全阀进入油泵的润滑和冷却油路,流回油箱;一部分进入VP分配式油泵,在VP分配式高压泵中,燃油被加压到135Mpa后,被输送到蓄压器。

高压柴油从蓄压器、流量限制阀往高压油管进入喷油器后,又分两路:一路直接进入燃烧室;一路在喷油期间针阀导向部分和控制套筒与柱塞缝隙泄漏的多余燃油一起流回油箱。

电控高压共轨直喷柴油机技术图文教程

电控高压共轨直喷柴油机技术图文教程

电控高压共轨直喷柴油机技术图文教程●Pizezo喷射器(压电式喷油器)Piezo 喷射器具有极快和精确的燃油量分配。

Piezo喷射器的响应时间是原系统的4倍,允许在预喷和主喷之间更短和更多可变距离的喷射。

图为Piezo喷射器由于通过能量恢复获得必需的触发能的可能,必需的触发能会相当地减少。

另外,通过简单的电控制,可达到忍受较大的电磁和基本减少感应错误。

Piezo喷射器安装在油轨上,将燃油喷入燃烧室。

每冲程的喷入量由预喷量和主喷量构成。

这种分层喷射使得柴油机燃烧过程变得柔和。

由于Piezo喷射器的配置,使其具有极快的响应速度(时间)。

因此,喷射的燃油量和剂量可以非常准确的控制,而且确保极好的循环。

喷射器由发动机控制单元控制(ECU)。

与以前的系统比较,Piezo喷射器需要相当小的触发能,它可通过可能的能量恢复得到。

注意:在发动机工作期间,连接线束连接器到发动机控制装置,喷射器必须连接可靠,否则有损坏发动机的危险。

在维修工作时,喷射器不应拆散。

每个件都不许被松动或没有拧紧,否则将引起喷射器的损坏。

●柴油共轨泵DCP柴油共轨泵由布置在一个单一壳体里的下列部件组成:内置传输泵ITP内置叶片泵的作用是将燃油从燃油箱经过燃油滤抽出,供给带有柴油的高压燃油泵。

除此之外,还有润滑高压油泵的目的。

柴油共轨泵DCP是需求控制中心,由凸轮盘驱动具有相差120°的三个排量装置的柱塞泵。

DCP提供体积流量以保证油轨正常的高压,同时也提供喷射器在发动机所所有工作条件下必需的燃油量和在DCP里的燃油压力。

油箱中的柴油完整的内置传输泵ITP(1)经燃油滤清器抽出。

燃油也被传送至润滑阀(6)和体积控制阀(2)。

平行位于燃油供应泵里的预压控制阀,当体积控制阀关闭时打开,使燃油再次到燃油泵的吸入端。

燃油经润滑阀(6)到泵里边,并从那到燃油回油管。

体积控制阀由发动机控制装置控制,计量输送到高压元件(3)的燃油量,同时到高压泵HPP。

解读柴油机高压共轨电控喷射系统

解读柴油机高压共轨电控喷射系统

柴油机高压共轨电控喷射系统一、柴油机基本知识柴油发动机与汽油发动机具有基本相同的结构,都有气缸体、气缸盖、活塞、气门、曲柄、曲轴、凸轮轴、飞轮等。

但前者用压燃柴油作功,后者用点燃汽油作功,一个"压燃"一个"点燃",就是两者的根本区别点。

汽油机的燃料是在进气行程中与空气混合后进入气缸,然后被火花塞点燃作功;柴油机的燃料则是在压缩行程接近终了时直接喷注入气缸,在压缩空气中被压燃作功。

这个区别造成了柴油机在燃料供给系统的结构有其自己的特点。

柴油机的燃料喷射系统是由喷油泵、喷油器、高压油管及一些附属辅助件组成。

柴油机燃料输送的简单过程是:输油泵将柴油送到滤清器,过滤后进入喷油泵(为了保证充足的燃料并保持一定的压力,要求输油泵的供油量比喷油泵的需要量要大得多,多余的柴油就经低压管回到油箱,其它部分柴油被喷油泵压缩至高压)经过高压油管进入喷油器直接喷入气缸燃烧室中压燃。

(示意图是柴油机燃料供给系统,4是高压输油管、1、2、3是低压输油管、5、6、7、8是回油管)。

二、高压共轨电控柴油喷射系统现代先进的汽车柴油机一般采用电控喷射、共轨、涡轮增压中冷等技术,在重量、噪音、烟度等方面已取得重大突破,达到了汽油机的水平,而且相比汽油机更环保。

目前国外轻型汽车用柴油机日益普遍,奔驰、大众、宝马、雷诺、沃尔沃等欧洲名牌车都有采用柴油发动机的车型。

在电控喷射方面柴油机与汽油机的主要差别是,汽油机的电控喷射系统只是控制空燃比,柴油机的电控喷射系统则是通过控制喷油时间来调节输出的大小,而柴油机喷油控制是由发动机的转速和加速踏板位置(油门拉杆位置)来决定的。

因此,基本工作原理是计算机根据转速传感器和油门位置传感器的输入信号,首先计算出基本喷油量,然后根据水温、进气温度、进气压力等传感器的信号进行修正,再与来自控制套位置传感器的信号进行反馈修正,确定最佳喷油量的。

电控柴油喷射系统由传感器、ECU(计算机)和执行机构三部分组成。

柴油电控共轨知识介绍

柴油电控共轨知识介绍

目录
1.柴油机电控技术的发展 2.柴油机电控燃油喷射系统的优点
3.共轨系统简介
4.燃油系统简介 5.电控系统简介
5、电控系统简介
水温传感器
凸轮轴位 置传感器
轨压传感器
电控EGR阀
空气控制阀 (节流阀体)
控制线束 曲轴位置传感器
5、电控系统简介
5.1 ECU
• ECU用于计算外部传感器接收到的信号,并将其限制在容 许的电压水平上。 • 根据这些输入的数据和已存的特性图谱,微处理器可以计算 出喷油的持续时间和开启点,并将其转化成时间信号曲线。 特定的精度要求和发动机较高的动态响应需要处理速度快的 计算能力。 • 借助输出信号触发驱动级,驱动级提供适当的功率给执行元 件,用于控制共轨压力、喷油器元件。此外还有其它控制功 能(空调、电热塞等)
4、燃油系统简介
4.1.2
燃油滤清器
• 燃油中的污染物、杂质和颗粒可导致泵元件、供油阀和喷嘴损坏,所 以使用能够满足喷油装置要求的燃油滤清器就成为发动机正常运行和 保证使用寿命的前提条件。柴油中含有的水份.可以以不游离形式 ( 乳化油)或自由基形式(如由于温度变化而产生的冷凝水)存在。 若这种水进入喷油系统,由于腐蚀作用可导致部件损坏。与其他喷油 系统类似,共轨也需要带集水腔的燃油滤清器,还要求自动对水含量 报警,当警告灯点亮时必须从集水腔中放水。 • 手动输油泵安装在燃油滤清器的上面,是向燃油滤清器内提供燃油的 设备,也是保证发动机首次起动必须使用设备。当发动机处于下列条 件时,起动发动机前要先按压手动输油泵直到按不动为止。
5、电控系统简介
5、电控系统简介
5.2.3
加速踏板位置传感器
功能及原理: 加速踏板位置传感器是带有冗余电位计线性结构,安装在驾驶 室内,其滑动端子由加速踏板轴带动; 加速踏板位置不同时, 该传感器所反应给ECU的电阻信号也不同, 系统根据它输出的信号值及其变化速率判定发动机的实时负载 和动态变化状况; 接线端子:1- +5V、 2- +5V、3 -信号1地、4- 信号1+ 、5 -信号2地、 6- 信号2+

电控共轨柴油机电控原理简介PPT课件

电控共轨柴油机电控原理简介PPT课件

04 进排气系统优化措施
进气歧管设计与优化
进气歧管长度与直径设计
01
根据柴油机工作特点,合理设计进气歧管长度和直径,以优化
气流速度和分布。
进气歧管形状优化
02
采用计算流体力学(CFD)技术,对进气歧管形状进行优化,
减少气流阻力和涡流损失。
进气歧管材料选择
03
选用耐高温、耐腐蚀、轻量化的材料,以提高进气歧管的耐用
涡轮增压器匹配策略
1 2 3
涡轮增压器类型选择
根据柴油机排量和功率需求,选用合适的涡轮增 压器类型(如定压涡轮增压器、脉冲涡轮增压器 等)。
涡轮增压器与柴油机匹配
通过调整涡轮增压器参数(如压比、流量等), 实现与柴油机的良好匹配,提高进气压力和空气 流量。
涡轮增压器控制系统
采用先进的控制算法和传感器技术,对涡轮增压 器进行精确控制,确保其在不同工况下均能保持 高效稳定的工作状态。
选择性催化还原(SCR)后处理系统
SCR系统组成
由尿素水溶液喷射系统、催化剂和反应器等组成。尿素水溶液在排气中分解为氨气,氨气与排气中的 NOx在催化剂作用下发生还原反应生成氮气和水。
SCR系统工作原理
当柴油机排气流经SCR反应器时,尿素水溶液喷射系统将尿素水溶液喷入排气中,尿素水溶液在高温 下分解为氨气和二氧化碳。氨气与排气中的NOx在催化剂表面发生化学反应,生成无害的氮气和水, 从而降低NOx排放。
接收传感器信号,进行运算处理,输 出控制信号给执行器,实现对发动机 的精确控制。
组成
微处理器、存储器、输入输出接口等 。
通讯接口与诊断功能
通讯接口
实现ECU与其他控制单元或诊断设备之间的数据交换。
诊断功能

电控高压共轨柴油机的喷油量与喷油规律

电控高压共轨柴油机的喷油量与喷油规律

电控高压共轨柴油机的喷油量与喷油规律电控高压共轨柴油机是一种燃油喷射系统,采用电子控制单元(ECU)来控制柴油机的喷油量和喷油规律。

它是进一步提高柴油机性能、降低排放和燃油消耗的重要技术之一。

电控高压共轨柴油机的喷油量电控高压共轨柴油机的喷油量受到多种因素的影响,包括引入量、燃油压力和燃油喷射油嘴的开启时间等。

其中,燃油压力是最主要的因素之一,它可以直接影响喷油量。

在电控高压共轨柴油机中,燃油高压泵产生的高压燃油通过共轨供应到每个喷嘴,从而实现对喷雾的控制。

电控高压共轨柴油机的读取能力和数量都要比传统机械燃油喷射系统更高,因此它可以实现更精准的喷油量控制。

电控高压共轨柴油机的喷油规律电控高压共轨柴油机的喷油规律也很重要,它包括喷嘴开启时间和喷射时长等。

其中,喷嘴开启时间通常由ECU来控制,可以通过传感器读取预计的内部发动机参数,例如发动机速度、负载和温度等,在此基础上计算喷油量和喷嘴开启时间。

此外,还可以通过预测未来的成形空间和喷油压力等因素来进一步优化喷油时间和喷射方向。

电控高压共轨柴油机的喷油规律不仅可以改善发动机的性能、降低排放和燃油消耗,还可以提高燃油碳氢化合物的完燃率,从而减少有害物质的排放。

另外,在柴油机的喷油过程中,燃油经过喷嘴后会迅速喷雾,形成一定的雾化分布,因此通过精细控制喷油规律,可以实现更精准的喷油控制,从而达到更好的燃油经济性。

综上所述,电控高压共轨柴油机的喷油量和喷油规律对于本身性能的提高以及其环保效率的进一步优化都有着非常重要的作用,因此需要我们加强技术研发,完善控制方式,争取更好的燃油效率和更低的排放水平。

相关数据可以包括电控高压共轨柴油机的燃油喷射压力、喷油量、喷嘴开启时间、喷油规律等参数,以及它们的变化趋势和对发动机性能的影响,以进行分析。

首先,燃油喷射压力是影响电控高压共轨柴油机喷油量的重要因素之一。

现代电控高压共轨柴油机的燃油喷射压力可达到几千巴(KPa),高于传统机械喷油的压力。

柴油机共轨系统介绍

柴油机共轨系统介绍
21
电控高压共轨系统 凸轮轴速度传感器
作用: 随高压油泵总成供货, 通过测量高压油泵凸轮 轴转速,来确定柴油机 喷油正时的时间。(凸 轮轴转速为曲轴转速的 一半)
22
电控高压共轨系统
进气温度、压力传感器总成
作用: 安装于进气歧管上,测
量增压中冷后的进气温度 和进气压力,将信号传递 给ECU,ECU通过计算空气 量,用来控制“空燃比”, 从而指导喷油正时和喷油 量。
19
电控高压共轨系统
5、ECU及传感器
ECU是整个电控系统信息处理与指 令发出的中心,发动机及整车上的 传感器将进气压力、进气温度、水 温、机油压力、燃油压力、凸轮轴 信号、转速信号、油门信号、大气 压力信号及车速信号等参数传给 ECU,ECU根据以上参数来向喷油器 等执行器发出相应指令
柴油机线束接口×2
输油泵(4叶片)
输油压力调节阀
7
电控高压共轨系统
高压泵为对压式的柱塞泵,由转子、进油阀、出油阀和两个带滚子的对置式柱 塞等组成,两柱塞之间为压力腔,从进油阀泵进压力腔的燃油经过柱塞加压后 从出油阀流出,此时压力能被提升到1400bar以上,从高压油泵出来的高压油 被打到轨管中
转子
进油阀
滚轮
柱塞
出油阀
整车线束接口
ECU冷却 油出油口
20
电控高压共轨系统
曲轴转速传感器
作用: 该传感器可以确定活塞上止点位置,
同时测量曲轴的转速。 信号产生: 飞 轮 外 端 面 360 范 围 内 按 6 度 间 隔 打
58个孔,剩下2孔未打形成间隙, 作为判断活塞上止点的依据。传 感器中的磁通量随着通过的孔与 间隙而变化,产生正弦交流电压, 其波幅随着发动机转速而变化。 设定间隙到传感器位置的角度, 可确定一缸上止点。结合凸轮轴 传感器正时凸轮,确定一缸发火 上止点。

简述电控共轨柴油燃料系统柴油的流程

简述电控共轨柴油燃料系统柴油的流程

简述电控共轨柴油燃料系统柴油的流程
电控共轨柴油燃料系统是一种高压喷射燃油系统,用于柴油发动机。

其流程可以简述如下:
1. 蓄能常压供油:燃油泵将燃油从燃油箱中吸入,并通过过滤系统进行过滤,然后供给给高压泵。

2. 高压供油:高压泵将燃油加压到非常高压,通常可以达到几百到几千巴的压力。

高压泵通常采用柱塞式泵或柱塞式泵加驱动装置。

3. 共轨:在高压泵后面有一个共轨管,它是连接到喷油嘴的高压燃油管道。

共轨的作用是保持燃油的高压稳定,以确保高压喷油器能够准确、快速地喷射燃油。

4. 高压喷射:高压喷油器通过固定的喷油嘴将燃油快速、精确地喷射到柴油发动机的燃烧室中。

喷油量和喷油时刻由发动机控制单元(ECU)根据发动机工况和负载需求来控制。

5. 喷油控制:发动机控制单元(ECU)通过对高压喷油器的电磁控制来控制燃油的喷射量和喷射时刻。

ECU将根据传感器反馈的数据来判断发动机的工作状态,并采取相应的控制策略来实现燃油喷射的精确控制。

整个流程中,燃油经过蓄能供油、高压供油、共轨控制和高压喷射等步骤,最终实现了燃油的高压喷射和精确控制。

这种电
控共轨柴油燃料系统具有喷射压力高、喷射量准确、燃烧效率高等优点,能够提高柴油发动机的性能和经济性。

很好的柴油机共轨技术资料

很好的柴油机共轨技术资料

二、共轨喷油技术介绍
高压共轨
高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油蓄积起来,并消除 燃油中的压力波动,然后再输送给每个喷油器,通过控制喷油器上的电磁阀实 现喷射的开始和终止。其主要特点可以概括如下:
共轨腔内的高压直接用于喷射,可以省去喷油 器内的增压机构;而且共轨腔内是持续高压,高 压油泵所需的驱动力矩比传统油泵小得多。
高压油管是连接共轨管和电控喷 油器的通道,它应有足够的燃油 流量减小燃油流动时的压降,并 使高压管路系统中的压力波动较 小,能承受高压燃油的冲击作用, 且起动时共轨中的压力能很快建 立。各缸高压油管的长度应尽量 相等,使柴油机每一个喷油器有 相同的喷油压力,从而减少发动 机各缸之间喷油量的偏差。各高 压油管应尽可能短,使从共轨到 喷油嘴的压力损失最小。
高压 共轨
预喷射在主喷射之前,将小部分燃油喷入气缸,在缸内发生预混合或者部分 系统
燃烧,缩短主喷射的着火延迟期。这样缸内压力升高率和峰值压力都会下降, 对柴
发动机工作比较缓和,同时缸内温度降低使得NOX排放减小。预喷射还可以 油机
降低失火的可能性,改善高压共轨系期降低喷射速率,也可以减少着火延迟期内喷入气缸内的油量。提 放污
二、共轨喷油技术介绍
高压共轨系统的组成、结构与工作原理
电控喷油器是共轨式燃油系统中最关键和最复杂的部件,它的作用根据 ECU 发出的控制信号,通过控制电磁阀的开启和关闭,将高压油轨中的 燃油以最佳的喷油定时、喷油量和喷油率喷入柴油机的燃烧室。
二、共轨喷油技术介绍
高压共轨系统的组成、结构与工作原理
二、共轨喷油技术介绍
共轨喷油技术概况 高压共轨系统的组成、结构与工作原理 喷油器的种类 高压喷油的种类和功效 高压共轨喷射系统目前和将来的发展趋势

电子控制共轨式柴油喷射系统

电子控制共轨式柴油喷射系统

电子控制共轨式柴油喷射系统电控共轨喷油系统是高压柴油喷射系统的一种,20世纪90年代中期才开始推向市场的第3代电控喷射技术,它摒弃了传统使用的直列泵系统,而代之以用一供油泵建立一定油压后将柴油送到各缸共用的高压油管(简称共轨)内,再由共轨把柴油送入各缸的喷油器。

共轨式柴油喷射系统喷油压力与喷油量无关,也不受发动机负荷和转速的影响,能根据要求任意改变压力水平,使NOX和颗粒排放都大大降低。

由于采用了独立的高压油泵,可提供很高的喷油压力,最高可达200~ 220MPa,即使联结各喷油器的高压油管很短也不会出现不可控制的异常喷射情况。

系统采用的是压力—时间计量原理,ECU根据工况、油温、空气温度等信号,由油压传感器测出压力值并输送给ECU,并使所测得的压力与发动机工况所给定的油压脉谱图(所设的最佳压力值)比较,ECU给出信号控制电磁式柴油泵控制阀(PCV)的启闭,来调整高压油泵的供油量,以改变共轨油道中的油压,使油压为最佳值。

因此,油压与发动机的转速和负荷无关。

与传统喷射系统相比,电控共轨柴油喷射系统的主要特点有:1)喷油压力柔性可调。

对不同工况可采用最佳喷射压力,从而可以优化柴油机的综合性能,由于喷油压力不随转速改变,解决了传统喷射系统(包括泵—喷嘴系统)因低速时喷油压力下降而导致的低速转矩差和低速烟度大的缺陷。

2)喷射压力高。

由于系统紧凑、刚度大,可实现较高的喷射压力(120 MPa ~170MPa),NO排放和微粒比普通的柱塞泵高出一倍。

加上可独立柔性控制喷油定时和喷油量,可将x控制在较小范围内。

3)可柔性控制喷油规律。

可实现灵活多样的喷油规律,喷油速率柔性化。

如预喷射、多段喷射、“靴形”喷射等,以及配合排气后处理使用的排气行程中的喷射,从而既保证优NO排放和dφ/dp。

良的动力性、经济性,又可降低x4)控制精度高。

电磁阀控制喷油,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,喷油量变动小,各缸的不均匀可得以改善,并减小柴油机的振动与有害排放,对于车用柴油机来说还可改善驱动性能。

船用柴油机电控高压共轨系统技术特点及管理

船用柴油机电控高压共轨系统技术特点及管理

船用柴油机电控高压共轨系统技术特点及管理
船用柴油机电控高压共轨系统技术特点及管理
阐述了电控共轨柴油机的工作过程和特点,并与传统柴油机在性能和结构上进行了比较,在介绍电控柴油机优点的同时,对当前主流机型Sulzet RT-flex和MAN-B&W ME-C的电控技术进行了对比和分析;探讨了船用柴油机电子喷射燃油系统的运行管理措施,指出电控共轨燃油喷射系统可改善船舶柴油机的经济性、可靠性和排放性,是船用柴油机的发展方向.
作者:崔荣健 CUI Rong-jian 作者单位:江苏海事职业技术学院,江苏,南京,211170 刊名:装备制造技术英文刊名:EQUIPMENT MANUFACTURING TECHNOLOGY 年,卷(期):2010 ""(1) 分类号:U664.121 关键词:船舶柴油机高压共轨电控喷射维护管理。

电控共轨柴油机的控制技术及故障诊断

电控共轨柴油机的控制技术及故障诊断

摘要面对日益严重的能源危机和环境污染,寻找内燃机在汽车工业可持续发展的途径越来越必要。

柴油机日新月异的发展中,燃油喷射系统研究与应用是一个关键。

目前柴油机燃油喷射系统的发展已经进入到电子控制的第三代——电控共轨式燃油喷射系统。

现在,国外在柴油机方面已普遍采用电子控制技术,而且电子控制共轨喷射技术也进入实用阶段,并取得了显著的经济效益。

本文主要讲解了高压共轨的概念,以及高压共轨的结构组成和工作原理,重点分析了电控高压共轨柴油机的使用维护方法、故障诊断思路、检测维修工艺,并结合典型故障维修实例进行分析。

关键词:电控柴油机高压共轨结构组成工作原理使用维修目录摘要 (I)第一章引言 (1)第二章柴油机高压共轨技术 (2)2.1高压共轨的概念 (2)2.2高压共轨系统的结构组成 (2)2.2.1高压共轨燃油系统介绍 (2)2.2.2高压共轨燃油喷射系统油路部分 (2)2.2.3高压共轨系统的电路介绍 (5)2.3高压共轨系统的工作原理 (6)2.4电控高压共轨的优点 (8)第三章电控共轨柴油机的使用与维护 (10)3.1机电控制单元(ECU)的使用注意事项 (10)3.2基本操作要求 (10)3.3ECU的日常维护 (10)第四章电控共轨系统的维修简述 (12)4.1ECU故障自诊断功能 (12)4.2失效策略 (12)4.3常见电喷系统故障处理 (13)第五章博世电控共轨发动机维修实例 (15)5.1发动机无法起动 (15)5.2有时候踩油门没有反映 (17)5.3增压压力传感器损坏。

(18)5.4加速时冒黑烟 (19)5.5最高转速只能达到1500转 (19)第六章总结 (21)致谢 (22)参考文献 (23)第一章引言柴油机电子控制技术始于20世纪70年代,20世纪80年代以来,英国卢卡斯公司、德国博世公司、奔驰汽车公司、美国通用的底特律柴油机公司、康明斯公司、卡特鼻勒公司、五十铃木公司等竞相开发新产品并投放市场,以满足日严格的排放法规要求。

柴油机电控共轨技术

柴油机电控共轨技术

第二节柴油机电控共轨技术一、柴油机电控共轨系统简介图8-44是博世公司生产的第一代高压电控共轨燃油系统。

图8-4 BOSCH 第一代高压电控共轨燃油系统该系统的主要特点:共轨压力为135 MPa;2、可实现预喷射;3、可实现闭环控制;4、可用于3-8缸轿车柴油机;5、排放可达欧3排放标准。

图8-45是日本电装公司开发的适用于轿车柴油机的高压电控共轨系统。

第一代电控共轨系统基本上是采用高速电磁阀作为执行器,承受的最高油压及系统的效率受到了限制,为了解决这一难题,许多公司正在开发采用压电晶体的电控共轨燃油系统。

图8-46是ECD-U2共轨系统在汽车上的实际布置图电控共轨系统的特点可以概括如下:(1)自由调节喷油压力(共轨压力):利用共轨压力传感器测量共轨内的燃油压力,从而调整供油泵的供油量。

(2)自由调节喷油量:以发动机的转速及油门开度信息等为基础,由计算机计算出最佳喷油量,通过控制喷油器电磁阀的通电、断电时刻及通电时间长短,直接控制喷油参数。

(3)自由调节喷油率形状:根据发动机用途的需要,设置并控制喷油率形状:预喷射、后喷射、多段喷射等。

(4)自由调节喷油时间:根据发动机的转速和负荷等参数,计算出最佳喷油时间,并控制电控喷油器在适当的时刻开启,在适当的时刻关闭等,从而准确控制喷油时间。

在电控共轨系统中,由各种传感器——发动机转速传感器、油门开度传感器、温度传感器等,实时检测出发动机的实际运行状态,由ECU根据预先设计的计算程序进行计算后,定出适合于该运行状态的喷油量、喷油时间、喷油率等参数,使发动机始终都能在最佳状态下工作。

德国博世公司和日本电装公司的研究结果均表明:在直喷式柴油机中,采用电控共轨式燃油系统与采用普通凸轮驱动的泵管嘴系统相比,电控共轨系统与发动机匹配时更加方便灵活。

其突出优点可以归纳如下:(1)广阔的应用领域(用于轿车和轻型载货车,每缸功率可达30kW,用于重型载货车以及机车和船舶用柴油机,每缸功率约可达200kW左右)。

Bosch电控共轨系统介绍——【潍柴动力】

Bosch电控共轨系统介绍——【潍柴动力】

ECU(电子控制单元)
CPN2.2(+)高压油泵
柴油进口(自滤器)
M-PROP 燃油计量阀
高压油出口 柴油出口(到油箱)
溢流阀
凸轮轴 润滑油进口(可选)
柴油出口(到滤器)
齿轮泵 ZP5
初始机油注油口阀盖
凸轮轴相位传感器: DG6 柴油进口(自油箱)
CPN2.2(+)高压油泵
输油泵
共轨管
存储高压,抑止因油泵供油和喷油而产生的波动
共轨式电控燃Leabharlann 系统构成• 燃油系统: 高压油泵、共轨管、喷油器、柴滤器、高压油管、
低压油管、燃油箱等 • 电控系统:
传感器、执行器、线束、ECU
三、 BOSCH电控共轨系统介绍
1、BOSCH电控高压共轨系统构成
CPN2.2高压油泵,提 供1600bar燃油压力
EDC7电控单元 整车控制中心
CRIN2第二代 喷油器,喷油压 力达1600bar
柴油机喷油技术的发展
现代电控喷油技术的崛起,则应归功于计算机技 术和传感检测技术的迅猛发展。目前电控喷油技术已 从初期的位置控制型发展到时间控制型。
现代电控喷油技术实现的手段主要有电控泵喷 嘴、电控单体泵以及电控共轨系统。
二、电控喷油系统的介绍
电控喷油系统的介绍
1、泵喷嘴(UIS)
¾ 在泵喷嘴系统中喷油泵和喷油嘴组成 一个单元。每个发动机气缸都在其缸盖 上装有这样一个单元,它直接通过摇臂 或者间接的由发动机凸轮轴通过推杆来 驱动
LWRN2高压共轨管激 光焊接、性能稳定
2、BOSCH电控高压共轨结构示意图
BOSCH电控高压共轨结构示意图
3、BOSCH电控高压共轨系统的优点
¾ ECU安装在发动机上,线束短,布线方便 ¾ ECU抗电磁干扰、振动、耐腐蚀能力强 ¾ 零喷油策略 ¾ 跛行回家功能 ¾ 完善的诊断系统 ¾ 安全控制策略--双模量油门、双刹车制动 ¾ 喷油始点和燃油喷射量的控制各自独立,通过电磁阀控制可

解析柴油机高压共轨电控喷射系统工作原理

解析柴油机高压共轨电控喷射系统工作原理

解析柴油机高压共轨电控喷射系统工作原理柴油机高压共轨电控喷射系统是一种现代技术,可以使柴油机更加高效能,经济和环保。

该系统利用高压泵将柴油压缩送入共轨,经过高压电容器的电压信号控制,由喷油器根据需要将柴油以高压喷射到缸内,从而实现燃烧过程的控制。

柴油机高压共轨电控喷射系统由高压泵、共轨、喷油器、高压电容器、ECU等几个基本部分组成。

其工作原理主要分为加压、喷射和控制三个阶段。

1. 加压阶段在加压阶段,高压泵向共轨中注入柴油,并将其压力提高到高压状态,以保证柴油在喷射时能够达到足够的喷射压力。

高压泵是系统的“心脏”,由曲轴驱动泵柱相对转动,从而压送柴油到共轨。

高压泵的高压输出能力较稳定,而且可根据燃油需要的不同而进行调整。

共轨是系统中储存柴油的地方,用于存储高压泵通过测压阀注入的柴油。

共轨的结构设计、直径和长度等都可以根据燃油需要定制。

2. 喷射阶段在喷射阶段,高压电容器通过发射电流的方式,将柴油喷出喷油嘴,在指定的时间内在缸内进行燃烧反应。

喷油嘴是系统中喷射柴油的地方,通过高压电容器控制其喷射时间和喷射量。

由于高压共轨系统可以根据各缸的排气中心角度进行电脉冲调节,因此可以减少漏喷,增加每个喷嘴的精度,同时还可以提高柴油的燃烧效率和功率输出。

高压电容器是控制喷油时间和喷油量的重要部分,由电脉冲进行控制,并能够自适应调节,以适应不同的工作条件。

3. 控制阶段在控制阶段,ECU实时监测车辆运行状态,并根据其反馈信息来调整各部件的工作状态,以保证柴油机在任何工作条件下都能够获得最佳的燃烧效率和性能。

ECU是系统中的中央控制单元,它能够实时监测各个传感器的反馈信息,并根据实时要求来改变喷油时间和量。

此外,它还可以根据车速、负载和环境条件等因素进行自适应调节,以获得更佳的驾驶体验和性能输出。

总之,柴油机高压共轨电控喷射系统是因为其高效、节能、环保和可靠性而受到广泛欢迎的先进技术。

通过高压泵、共轨、喷油器、高压电容器、ECU等几个部分的协同工作,它可以实现喷油量、喷射时间和喷油方式的自适应调整,提高柴油机的性能、可靠性和经济性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节柴油机电控共轨技术一、柴油机电控共轨系统简介图8-44是博世公司生产的第一代高压电控共轨燃油系统。

图8-4 BOSCH 第一代高压电控共轨燃油系统该系统的主要特点:共轨压力为135 MPa;2、可实现预喷射;3、可实现闭环控制;4、可用于3-8缸轿车柴油机;5、排放可达欧3排放标准。

图8-45是日本电装公司开发的适用于轿车柴油机的高压电控共轨系统。

第一代电控共轨系统基本上是采用高速电磁阀作为执行器,承受的最高油压及系统的效率受到了限制,为了解决这一难题,许多公司正在开发采用压电晶体的电控共轨燃油系统。

图8-46是ECD-U2共轨系统在汽车上的实际布置图电控共轨系统的特点可以概括如下:(1)自由调节喷油压力(共轨压力):利用共轨压力传感器测量共轨内的燃油压力,从而调整供油泵的供油量。

(2)自由调节喷油量:以发动机的转速及油门开度信息等为基础,由计算机计算出最佳喷油量,通过控制喷油器电磁阀的通电、断电时刻及通电时间长短,直接控制喷油参数。

(3)自由调节喷油率形状:根据发动机用途的需要,设置并控制喷油率形状:预喷射、后喷射、多段喷射等。

(4)自由调节喷油时间:根据发动机的转速和负荷等参数,计算出最佳喷油时间,并控制电控喷油器在适当的时刻开启,在适当的时刻关闭等,从而准确控制喷油时间。

在电控共轨系统中,由各种传感器——发动机转速传感器、油门开度传感器、温度传感器等,实时检测出发动机的实际运行状态,由ECU根据预先设计的计算程序进行计算后,定出适合于该运行状态的喷油量、喷油时间、喷油率等参数,使发动机始终都能在最佳状态下工作。

德国博世公司和日本电装公司的研究结果均表明:在直喷式柴油机中,采用电控共轨式燃油系统与采用普通凸轮驱动的泵管嘴系统相比,电控共轨系统与发动机匹配时更加方便灵活。

其突出优点可以归纳如下:(1)广阔的应用领域(用于轿车和轻型载货车,每缸功率可达30kW,用于重型载货车以及机车和船舶用柴油机,每缸功率约可达200kW左右)。

(2)更高的喷油压力,目前可达140 MPa,不久的将来计划达到180Mpa。

(3)喷油始点、喷油终点可以方便地改变。

(4)可以实现预喷射、主喷射和后喷射,可以根据排放等要求实现多段喷射。

(5)喷油压力与实际使用工况相适应。

在电控共轨式燃油系统中,喷油压力的建立与燃油喷射之间无相互依存关系,喷油压力不取决于发动机转速和喷油量。

在高压燃油存储器即“共轨”中,始终充满喷射用的具有一定压力的燃油。

喷油量由计算机通过计算决定,受到的其他制约条件很少。

(6)喷油正时和喷油压力在ECU中由存储的特性曲线谱(MAP)算出。

然后,电磁阀控制装在每个发动机气缸上的喷油器(喷油单元)予以实现。

ECU借助于传感器得知驾驶员的要求(加速踏板位置)以及发动机和车辆的实时工作状态。

ECU处理由传感器检测到的信号并对车辆,特别是对发动机进行控制和调节。

曲轴转速传感器测定发动机转速,凸轮轴转速传感器确定发火顺序(相位)。

加速踏板传感器是一种电位计,它通过电信号通知ECU关于驾驶员对转矩的要求。

空气质量流量计检测空气质量流量。

在涡轮增压并带增压压力调节的发动机中,增压压力传感器检测增压压力。

在低温和发动机处于冷态时,ECU可根据冷却水温度传感器和空气温度传感器的数值对喷油始点、预喷油及其他参数进行最佳匹配。

根据车辆的不同,还可将其他传感器和数据传输线接到ECU上,以适应日益增长的安全性和舒适性要求。

计算机具有自我诊断功能,对系统的主要零部件进行技术诊断,如果某个零件产生了故障,诊断系统会向驾驶员发出警报,并根据故障情况自动作出处理;或使发动机停止运行——即所谓故障应急功能,或切换控制方法,使车辆继续行驶到安全的地方。

在传统的泵管嘴嫌油系统中,喷油压力与发动机的转速、负荷有关,不是独立变量。

在高压电控共轨系统中,供油压力与发动机的转速、负荷无关,是可以独立控制的。

由共轨压力传感器测出燃油压力,并与设定的目标喷油压力进行比较后进行反馈控制。

表8-2为轿车柴油机用三种燃油系统的比较二、电控共轨系统的组成电控共轨嫩油系统的主要组成部分是:电控喷油器、供油泵、各种传感器和电控单元ECU 等。

1、电控喷油器在电控共轨系统中,设计、工艺难度最大的部件首推电控喷油器。

到目前为为止,电控共轨系统中品种最多的部件也是电控喷油器。

各种电控喷油器的基本原理相同,结构相似,但外形相差较大。

(一)电控喷油器概述表8-3是电装公司和博世公司电控喷油器喷油量的试验数据。

各种喷油器性能差不多仅有徽小的差别.表8-4是根据一些资料整理的,当今世界上具有一定规模的柴油机燃油系统公司的电控喷油器的基本数据。

表8-4 电控喷油器基本资料各种电控喷油器的基本资料表8-4(二)电装公司的电控喷油器电装公司在电控喷油器开发方面从80年代中期开始就一直走在世界前列。

表8-5是电装公司关于电控喷油器的产品开发规划图。

1.电控喷油器的规划表8-5是电装公司关于电控喷油器的产品开发规划图。

1997年之前是基本产品开发阶段。

从1998年开始到2001年是新型电控喷油器开发的第一阶段,主要是X1和X2型电控喷油器,2002年之后是断一代电控喷油器G2的开发阶段。

关于G2型电控喷油器的具体资料还不多见。

2.三通阀结构和二通阀结构电装公司最初开发的电控喷油器采用三通阀结构。

在设计初期阶段,从理论上分析,三通阀结构具有很多优越性,但是实际试验和使用过程中发现,该三通阅结构并不如想像的好,因为燃油泄漏量较大。

但是,燃油从何处泄漏,如何减少燃油泄漏等又没有有效的技术措施。

因此,使用后不久就废止了,改成了二通阀结构。

电装公司三通阀喷油器和二通阀喷油器的结构对比如图8-47所示。

三通阀式喷油器的工作原理如图8-48 (b)所示。

当二通阀开启(通电,图8-48 (a))时,控制腔内的高压燃油经量孔2流人低压腔中,控制腔中的燃油压力降低,但是,喷油嘴压力室中的燃油压力仍是高压。

压力室中的高压使针阀开启,向气缸内喷射燃油。

当二通阀关闭(不通电)时,通过量孔1,控制腔中的然油压力升高,使针阀下降,喷油结束。

这里有一个重要条件:量孔2的直径必须小于其左下方的量孔1的直径。

否则不能进行上述工作。

二通阀的通电时刻确定了喷油始点,二通阀的通电时间长短确定喷油量。

这些基本喷油参数都是电子脉冲控制的。

TWv(二通阀)通过控制喷油器控制腔内的压力来控制喷油的开始和喷油终了。

量孔大小既控制喷油嘴针阀的开启速度,也控制喷油率形状。

控制活塞的作用是将控制腔内的油压作用力传递到喷油嘴针阀上。

三通阀的工作原理如图8-48(2)所示。

在三通阀式喷油器的共轨系统中,共轨中总是高压,压力范围是15-130Mpa。

三通阀有两个阀体:内阀(固定)和外阀(可动)。

二阀同轴地、密密地配合在一起。

内阀和外阀分别具有各自的密封座面。

三通阀电控喷油器的工作过程如下:(1)不喷油状态:电磁线圈处于不通电的状态,外阀在弹簧力和高压油压力的作用下压向下方而关闭。

控制腔内是共轨的高压燃油的压力,所以,喷油嘴的针阀关闭.不喷油。

(2)喷油开始状态:电磁阀开始通电,由于电磁力的作用,外阀被向上拉起,外阀开启,但是,这时内阀是关闭的;通过固定的节流孔燃油流出,针阀尾部的压力降低,针阀开始上升,喷射开始。

如果持续通电,则针阀上升到最大升程,达到最大喷油率的状态。

(3)喷油结束状态:通向三通阀的电流一旦切断,在弹赞力和姗油压力的作用下,外阀下降而关闭。

这时,共轨内的高压燃油一下子就流人喷油器的控制腔内,针阀快速关闭,喷油迅速结束。

喷油始点和喷油延续时间由指令脉冲决定,与转速及负荷无关;因此,可以自由控制喷油时间。

在主脉冲之前,有一个脉宽相当小的预喷射脉冲。

在ECD-U2系统中,可以方便地实现预喷射。

根据发动机的实际需要,预喷射形状可以有多种形式。

决定预喷射形状的参数有:预喷油量大小及预喷油与主喷油之间的时间间隔。

但是,实现该理想的喷油速率图形的具体方法主要是准确而细致地调节脉冲始点、脉冲宽度和脉冲间隔。

图8-49为喷油器的控制电路。

ECD-U2高压共轨燃油系统是完全的“时间一压力调节系统”。

喷油量是由共轨压力和喷油器电磁阀通电脉冲宽度决定的。

以共轨压力为参数,改变脉冲宽度,可以得到一条线性的喷油器的喷油量特性。

利用这一特性,在发动机全部工作范围内,可以方便地得到如目标设定的调速特性。

近来,电控燃油系统的喷油率控制方面取得了新的进展,在一次喷油循环中可以实现5段,甚至7段喷抽(理论上可以实现更多段喷油)。

但其中只有一次是主喷油,其余均为辅助喷射,目的在于改善燃烧质量,改善排放等。

在电控共轨燃油系统中,原则上都已经解决了。

根据ECU送来的电子控制信号,喷油器将共轨内的高压燃油以最佳的喷油时刻、最适当的喷油量、最合适的喷油率和喷雾状态喷入发动机燃烧室中。

电装公司电控喷油器的整体结构如图8-49所示。

喷油器的主要零件是:喷油嘴,控制喷油率的量孔,控制活塞和二通阀。

电控喷油器中由电磁阀直接控制喷油始点、喷油始点、喷油间隔和喷油终点,从而直接控制喷油量、喷油时间和喷油率。

电控喷油器实际上完成了传统喷油装置中的喷油器、调速器和提前器的功能。

与直喷式柴油机中的机械式喷油器体相似,喷油器可用压板等安装在气缸盖内。

设计良好的电控喷油器和传统的机械式喷油器结构相近。

因此,共轨式喷油器在直喷式柴油机中的安装不需要显著改变气缸盖结构。

对于三通阀式电控喷油器和二通阀式电控喷油器曾进行过认真的对比分析。

相对于三通阀喷油器来说,二通阀式电控喷油器具有两项重要改进:(1)电磁阀密封部分减少:由原来的2处减少到1处。

(2)电磁线圈的结构:采用螺旋形磁铁。

磁铁直径减小:由原来的φ30mm减小到φ25mm。

驱动能量减少:从原来的120mj减小到70mJ。

相对于三通阀来说,二通阀式电控喷油器具有独特的优点:(1)漏油量减少,燃油耗降低(燃油泄漏量减少:在1000r/min,120MPa下,燃油泄漏量从220mm3/行程减少到120mm3/行程)。

(2)结构紧凑,体积小,安装自由度大,在发动机上布置比较方便。

(3)排放改善,可满足高压化要求。

(4)ECU-EDU一体化。

(5)控制阀和针阀座面的耐磨性提高,密封面的密封性提高,重要零件的强度增加,工作可靠性提高,共轨压力明显提高等。

表8-6是二通阀式喷油器的喷油量特性曲线。

图中表明脉宽和每循环喷油量的关系;在不同的喷油压力下,脉宽相同,喷油量不同;喷油压力越高,喷油量越大。

但是,左图和右图相比,带补偿电阻的喷油器和不带补偿电阻的喷油器的喷油量也有一定的区别。

显然,带补偿电阻的电控喷油器喷油量特性的线性度提高了,分散度降低了。

表8-63.X2型和G2型电控喷油器电装公司X2型电控喷油器的模型图可参见图8-50。

相关文档
最新文档