等厚干涉牛顿环实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等厚干涉牛顿环实验报告Last revision on 21 December 2020
等厚干涉——牛顿环
等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。
一. 实验目的
(1)用牛顿环观察和分析等厚干涉现象;
(2)学习利用干涉现象测量透镜的曲率半径;
二. 实验仪器
读数显微镜钠光灯牛顿环仪
三. 实验原理
牛顿环装置是由一块曲率半径较大的平凸面放在一块光
学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻
璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的
一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。
图2 图3
由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为
由于r R >>,可以略去d 2得
R
r d 22
= (1)
光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为
2
2λ
+
=∆d (2)
所以暗环的条件是
2
)
12(λ
+=∆k (3)
其中 3,2,1,
0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为
λkR r k =2 (4)
由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何
中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为
两式相减可得
所以有 λ
)(2
2n m r r R n m --=
或 λ
)(422n m D D R n
m --=
由上式可知,只要测出m D 与n D (分别为第m 与第n 条暗纹的直径)的值,就能算出R 或λ。这样就可避免实验中条纹级数难以确定的困难,利用后以计算式还可克服确定条纹中心位置的困难。
四. 实验内容
1. 调整牛顿环
借助日光灯灯光,用眼睛直接观察,均匀调节仪器的3个螺丝直至干涉条纹为圆环形且位于透镜的中心。然后将干涉条纹放在显微镜镜筒的正下方。 2.观察牛顿环 (1)接通汞灯电源。
(2)将牛顿环装置放置在读数显微镜镜筒下,镜筒置于读数标尺中央月5cm 处。
(3)待汞灯正常发光后,调节读数显微镜下底座平台高度(底座可升降),使45°玻璃片正对汞灯窗口,并且同高。
(4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈汞光的兰紫色,如果看不到光斑,可适当调节45°玻璃片的倾斜度(一般实验室事先已调节好,不可随意调节)及平台高度,直至看到反射光斑,并均匀照亮视场。
(5)调节目镜,在目镜中看到清晰的十字准线的像。
(6)转动物镜调节手轮,调节显微镜镜筒与牛顿环装置之间的距离。先将镜筒下降,使45°玻璃片接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的十字准线和牛顿环像。
3.测量21~30环的直径
(1)粗调仪器,移动牛顿环装置,使十字准线的交点与牛顿环中心重合。
(2)放松目镜紧固螺丝(该螺丝应始终对准槽口),转动目镜使十字准线中的一条线与标尺平行,即与镜筒移动方向平行。
(3)转动读数显微镜读数鼓轮,镜筒将沿着标尺平行移动,检查十字准线中竖线与干涉环的切点是否与十字准线交点重合,若不重合,再按步骤(1)(2)仔细调节(检查左右两侧测量区域)。
(4)把十字准线移到测量区域中央(25环左右),仔细调节目镜及镜筒的焦距,使十字准线像与牛顿环像无视差。
(5)转动读数鼓轮,观察十字准线从中央缓慢向左(或向右)移至37环,然后反方向自37环向右移动,当十字准线竖线与30环外侧相切时,记录读数显微镜上的位置读数X30。然后继续转动鼓轮,使竖线依次与29,28,27,26,25,24,23,22,21环外侧相切,并记录读数。过了21环后继续转动
鼓轮,并注意读出环的顺序,直到十字准线回到牛顿环中心,核对该中心是否为k=0。
(6)继续按原方向转动鼓轮,越过干涉圆环中心,记录十字准线与右边第21,22,23,24,25,26,27,28,29,30环内外切时的读数。注意:从37环移到另一侧30环的过程中鼓轮不能倒转。然后反向转动鼓轮,并读出反向移动时各暗环次序,并核对十字准线回到牛顿环中心时k是否为0。
(7)按上述步骤重复测量三次,将牛顿环暗环位置的读数填入自拟表中。
五. 数据处理