信息光学与激光实验讲义最新版

合集下载

光信息专业基础实验2讲义(09级使用)_1

光信息专业基础实验2讲义(09级使用)_1

光信息专业基础实验讲义09光信息科学与技术专业佛山科学技术学院光电信息与技术实验室编写实验一 全息光栅的制作全息光栅作为一种重要的分光元件, 近年来在光全息、光通信、光互连、光交换、光计算等方面获得了广泛的应用。

与刻划光栅相比,全息光栅具有没有鬼线、杂散光少、分辨率高、适用光谱范围宽、有效孔径大、生产效率高、衍射效率高、成本低廉和易于制作等突出优点。

另外,全息法制作光栅的特点主要体现在以下几点:1) 光路的排布灵活,适合制作不同空间频率的光栅;2) 光栅尺寸可做得很大;3) 制作效率高;4) 若制作正交正弦光栅,全息法则更显优越。

正是因为这些优点使全息光栅在光栅的研制中独领风骚[1]。

光栅质量的好坏取决于栅条的平行性和等周期性。

单色均匀平面波是制作全息光栅的理想用光[2]。

全息光栅中使用较多的有黑白光栅和正弦光栅,亮度按矩形函数变化的光栅称为黑白光栅;亮度按正弦函数变化的周期图形叫做正弦光栅,见图2-1(a)和(b)。

【实验目的】1. 掌握空间频率较低的全息平面光栅的制作原理与方法;2. 学会在全息台上光学元件的共轴调节技术、扩束与准直的基本方法,熟练地获得和检验平行光;3. 学会测定全息光栅的空间频率。

【预备问题】1.什么是光栅常数?什么是空间频率?2.什么是线性曝光?什么曝光情况下获得正弦光栅?什么情况下获得黑白光栅?了解正弦光栅和黑白光栅的衍射图样有何不同。

【实验仪器】光学防震平台,He---Ne 激光器,定时器,50%分束镜,平面镜,全息干板,像屏,底片夹,透镜,显影、定影用具,读数显微镜等。

图2-1 (a)黑白光栅 (b)正弦光栅(a) (b)【实验原理】两列同频率的相干平面光波以一定夹角相交时,在两光束重叠区域将产生干涉现象。

如图2-2(a) 所示,在z=0的(x y )平面(该平面垂直于纸面)上将接收到一组平行于y 轴的明暗相间的直条纹,其光强分布和条纹间距分别为(2-1)(2-2)式中:θ1、θ2 分别为两束相干光与(x y )平面的法线夹角,θ1+θ2= θ 为两束光的会聚角。

信息光学专题知识讲座

信息光学专题知识讲座
(1)傅立叶变换。
(2)成像。
透镜一般由光密介质玻璃(n=1.5)做成。
1. 薄透镜旳位相调制作用 薄透镜:就是厚度和透镜表面曲率半径相比很小旳透镜。
对于薄透镜,能够近似
以为光线进入透镜旳位
O
I
置(x,y)与光线射出透
镜旳位置相同。
所以,一种薄透镜旳作用只是使入射波前受到延迟,延迟旳 多少正比于透镜各点旳厚度。
fy)
其中
fx
x0
f
,
fy
y0
f
与2-4-13式比较后不难发觉,这正是f(x,y)旳夫琅和费衍射 成果!正是因为这个原因,实践中夫琅和费衍射试验往往 都是经过一种正透镜来实现旳。
g( x0, y0 ) 还不是 f ( x, y) 旳傅立叶变换,它多了一种相位因子;
exp if ( fx2 f y2 )
3-1 透镜旳傅立叶变换性质
对于透镜,我们并不陌生,透镜是光学成像系统最主要旳 器件,我们这里讲透镜不是从几何光学旳角度去讨论它,而是 从波动光学旳角度去研究它,同学们会随即旳讨论中发觉讨论 旳成果和几何光学旳成果完全一致。当然,衍射旳效果是不能 用几何光学旳措施去讨论旳。 透镜有两个非常主要旳性质:
磨镜者公式:
1 f
(n
1)
1 R1
1 R2
假如用单位振幅旳平面波入射到透镜上,这时入射波复振幅,
U1(x, y) 1
出射光波复振幅,
U2(x, y)
U1( x, y)PL ( x, y)
exp i
k 2f
(x2
y2 )
2. 透镜旳傅立叶变换性质
会聚透镜最突出旳旳性质之一就是它固有旳进行二维傅立叶变换 旳本事。 假定光源是单色旳,也就是说我们所研究旳系统是相干系统。

激光 课件(人教版)

激光   课件(人教版)

很大的能量
刀”;激发核反应等
2.全息照相 (1)与普通照相技术的比较:普通照相技术所记录的只是光 波的能量强弱信息,而全息照相技术还记录了光波的_相__位__信息. (2)原理:全息照相的拍摄利用了光的_干__涉__原理,使_参__考__光__ 和物光在底片上相遇,发生干涉,形成复杂的干涉条纹.这要 求参考光和物光必须具有很高的_相__干__性. (3)观察全息照片时要用_激__光__照射照片,从另一侧面观察.
一般取最小厚度d满足2d= (此波长为光在该种介质中的波长)
2
由于白光中含有多种波长的光,所以增透膜只能使其中一定波 长的光相消.因为人对绿光最敏感,一般选择对绿光起增透作 用的膜,所以在反射光中绿光强度几乎为零,而其他波长的光 并没有完全抵消,所以增透膜呈现淡紫色. 【特别提醒】增透膜的“增透”应理解为:两束反射光相互抵 消,反射光的能量减少,由于总的能量是守恒的,反射光的能 量被削弱了,透射光的能量就必然得到增强.增透膜是通过“消 反”来确保“增透”的.
(注:“提前”与“延后”不是指在时间上,而是指由左到右 的位置顺序上)
2.增透膜 为了减少光学装置中的反射光的损失, 可在元件表面涂一层透明薄膜,一般 是氟化镁. 如图所示,在增透膜的前后表面反射 的两列光波形成相干波,相互叠加,当路程差为半波长的奇数 倍时,在两个表面反射的光产生相消干涉,反射光的能量几乎 等于零.
薄膜干涉及其应用 【探究导引】
如图所示是带有增透膜的眼镜,请思考下列问题: (1)增透膜的厚度应该有多厚? (2)薄膜干涉是哪两束光干涉得到的? (3)用干涉法检查平面的平整度时,若出现干涉条纹不是直 条纹,如何判断平面的凹凸情况?
【要点整合】 1.用干涉法检查平面平整度 如图甲所示,两板之间形成一层空气膜,用单色光从上向下照 射,如果被检测平面是光滑的,得到的干涉图样必是等间距的. 如果被测表面某处凹下,则对应亮条纹(或暗条纹)提前出现, 如图乙中P条纹所示;如果某处凸起来,则对应条纹延后出现, 如图乙中Q所示.

信息光学课件

信息光学课件

电磁场与麦克斯韦方程
电磁场的基本概念
电磁场是由电场和磁场组成的, 它们之间存在相互作用。
麦克斯韦方程
描述了电磁场变化的四个基本方程 ,包括电场的散射方程、磁场的散 射方程、电场的波动方程和磁场的 波动方程。
电磁场的能量守恒
电磁场在空间中传播时,其能量不 会消失也不会凭空产生,即电磁场 的能量守恒。
将光学传感技术应用于物联网领域,实现智能化 、远程化和自动化的监测和控制。
3
光学传感器的集成与小型化
通过集成和优化光学器件,实现光学传感器的微 型化和便携化,满足不同应用场景的需求。
05 信息光学实验与实践教学 环节设计
实验内容与目标设定
实验内容
信息光学实验包括干涉、衍射、光学 信息处理等基本实验,以及一些综合 性和创新性实验。
信息光学课件
目录
CONTENTS
• 信息光学概述 • 信息光学基础理论 • 信息光学器件与系统 • 信息光学前沿技术与发展趋势 • 信息光学实验与实践教学环节设计 • 信息光学课程评价与总结反思环节设计
01 信息光学概述
信息光学定义与特点
信息光学定义
信息光学是一门研究光学信息的 获取、传输、处理、存储和显示 的科学。
傅里叶变换与信息光学
傅里叶变换
是一种将时域信号转换为频域信号的数学工具,常用于信号处理 和图像处理等领域。
信息光学的基本概念
信息光学是一门研究光波在空间和时间上传递、处理和存储信息的 科学。
信息光学的应用
信息光学在通信、生物医学成像、军事等领域有着广泛的应用,如 光纤通信、光学显微镜、光学雷达等。
03 信息光学器件与系统
光学器件分类与特点
主动光学器件

最新光学与激光实验讲义

最新光学与激光实验讲义

光学与激光实验讲义光学与激光实验实验讲义华南师范大学信息光电子科技学院仅供学习与交流,如有侵权请联系网站删除谢谢46光学与激光实验目录光学与激光实验 (2)目录 (2)实验二腔内选频单纵模He-Ne激光器 (14)实验三 He-Ne激光器谐振腔调整及外参数测量 (21)实验四声光调制锁模激光器 (35)仅供学习与交流,如有侵权请联系网站删除谢谢46实验一氦氖多谱线激光器在增益管长为1m的外腔式He-Ne激光器中,用腔内插入色散棱镜选择谱线的方法,在可见光区分别使氖原子的九条谱线产生激光振荡。

实验要求掌握He-Ne多谱线激光线器的工作原理及腔型结构的特点;学习外腔式激光器及腔内带棱镜激光器的调节方法;测量各条激光谱线的波长;找出各条谱线的最佳放电电流及测量最大输出功率。

一、实验原理一台激光器除激励电流外主要由两部分组成,一是增益介质;二是谐振腔。

对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。

介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。

对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。

总之腔的损耗必须小于介质的增益,才能建立激光振荡。

由于介质的增益具有饱和特性,增益随激光强度增加而减小。

初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。

稳定振荡时的增益叫阈值增益,初始的增益叫小信号增益。

小信号增益与阈值增仅供学习与交流,如有侵权请联系网站删除谢谢46益之差越大,腔内的激光强度越强,对小信号增益很低的激光谱线是否能获得激光振荡,关键在于谐振腔的损耗能降低到什么程度。

1、在可见光区激光谱线的小信号增益系数在氦氖混合气体的增益管中氖原子的3S2能级对2P i(2P i是2P1,2P2,…,2P8,2P10九个能级的简称,3S2-2P9的跃迁是违禁的)九个能级之间能够产生粒子数反转,使介质具有增益,九条谱线的小信号增益系数G0如表1所示。

激光技术实验讲义

激光技术实验讲义

激光技术实验讲义激光原理与技术实验讲义赵江编审激光安全⼗项基本事项1. 除⾮在特殊情况下,使⽤激光器⼀般都必须在密闭室内空间。

2. 不要直视激光光束,对⼤功率红外或紫外的不可见光尤其要注意。

3. 操作激光时不要戴⼿表、⼿饰等反射较强的饰物。

4. 任何时候都不要忘记戴防护镜。

5. 对不可见的激光关闭后应⽤ IR 或 UV 卡检查⼀下是否真的关闭。

6. 激光器⼯作时要将不⽤的光导⼊到光束垃圾桶。

7. 对⾃制的光路部分最好⽤⼀个防护罩罩起来。

8. 保持光路⾼度在⼈的视线以下,⼯作时弯腰、低头、或拣地上的东西都是⾮常危险的。

9. 在激光⼯作地点的门⼝和室内贴上警⽰标签。

10. 所有激光器操作⼈员必须经过培训。

⽬录实验⼀激光谐振腔的调试 (1)实验⼆氦氖激光束光斑⼤⼩和发散⾓测量 (7)实验三共焦球⾯扫描⼲涉仪与氦氖激光束的模式分析 (12)实验四脉冲固体激光器的调试与参数测量 (25)实验五电光调Q和倍频实验 (35)实验六半导体激光器系列实验 (47)实验七半导体激光器端⾯泵浦和腔内倍频实验 (54)实验⼀激光谐振腔的调试⼀、实验⽬的1.掌握激光谐振腔结构,并学会稳定激光谐振腔的设计2.掌握谐振腔调试⽅法及技术⼆、实验仪器Las —Ⅲ型调腔实验仪三、实验原理1.激光的⾃激振荡和光学谐振腔激光的原意是受激辐射的光放⼤(Light Amplification by Stimulated Emission of Radiation )。

由爱因斯坦关系式:3213218A h n h B c νπνν== (1.1)121212B f B f =及⿊体辐射普朗克公式:1-=KT h eh E νν(1.2)可得光⼦简并度n 为:21212121338A W A B c h n ===ννρνπρ(1.3)其中νρ为单⾊能量密度。

由于受激辐射产⽣相⼲光⼦,⽽⾃发辐射产⽣⾮相⼲光⼦。

从(1.3)式出发,要产⽣激光就需要提⾼光⼦简并度,使受激辐射远远强于⾃发辐射。

2024年激光原理与技术课件课件

2024年激光原理与技术课件课件

激光原理与技术课件课件激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。

激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。

本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。

二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。

在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。

而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。

2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。

这个过程是激光产生的核心原理。

3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。

当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。

同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。

三、激光的特性1.单色性激光具有极高的单色性,即频率单一。

这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。

2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。

相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。

3.方向性激光具有极高的方向性,即光束的发散角很小。

这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。

4.高亮度激光具有高亮度,即单位面积上的光功率较高。

这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。

四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。

激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。

激光原理与应用讲 课件

激光原理与应用讲 课件
光的相干性可以通过干涉现象进行检验,当两束相干光波相遇时,它们会相互叠 加,形成明暗相间的干涉条纹。
光的干涉与衍射
光的干涉是指两束或多束相干光波在空间某一点相遇时,由 于光波的相位关系不同,导致光强分布发生变化的现象。干 涉现象是双缝实验中明暗条纹形成的原因。
光的衍射是指光波在传播过程中遇到障碍物时,光波发生弯 曲的现象。衍射现象使得光波能够绕过障碍物,继续向前传 播。
光的受激辐射
光的受激辐射是指处于激发态的原子在特定频率的光照射 下,会释放出与照射光频率相同的光子的现象。受激辐射 是产生激光的重要机制之一。
当一个光子与一个处于基态的原子相互作用时,该原子会 吸收光子的能量并跃迁到激发态。随后,该原子会释放出 一个与原先照射光频率相同的光子,同时自身回到基态。
激光的特性
国家安全规范
各国政府和相关机构也制定了相 应的激光安全规范,规定了激光 产品的生产和销售要求、使用限 制等,以确保公众的安全。
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
激光去痘
利用激光能量杀死引起 痘痘的细菌,量破坏毛囊 的生长能力,从而达到
永久脱毛的效果。
军事领域
01
02
03
激光制导
利用激光束对导弹进行精 确制导,提高导弹的命中 精度和作战效果。
激光雷达
利用激光束对目标进行探 测和定位,具有高精度、 高分辨率、抗干扰能力强 等优点。
PART 05
激光的安全与防护
激光的生物效应
光热效应
激光照射生物组织后,组织吸收光能 转化为热能,引起局部温度升高,可 能导致组织损伤。
光化学效应
电磁场效应
激光产生的电磁场能够影响生物组织 的电磁特性,对细胞和分子产生影响 。

《信息光学》课件

《信息光学》课件

信息光学的发展历程
19世纪末至20世纪初
光学显微镜和望远镜等光学仪器的发明和应用,为信息光学的发展 奠定了基础。
20世纪中叶
随着激光技术的出现和发展,信息光学开始进入快速发展阶段。
20世纪末至今
随着计算机技术和光电子技术的不断进步,信息光学在通信、数据 存储、生物医学等领域得到了广泛应用。
信息光学的基本原理
02
信息光学的基本技术
光学全息技术
光学全息技术是一种利用光的干涉和衍射原理来记录和再现 三维物体的技术。通过将物体发出的光波与参考光波干涉, 将干涉图样记录在全息介质上,然后使用合适的照明光波进 行再现,即可得到物体的三维图像。
全息技术可以用于制作全息图、全息显示、全息干涉计量和 全息光学元件等。在科学研究、工业检测、医疗诊断和军事 领域等方面有广泛应用。
光学信息处理技术
光学信息处理技术是指利用光的干涉、衍射和折射等光学现象来进行信息处理的 技术。这种技术具有高速、大容量、并行处理等优点,可以用于图像处理、信号 处理、模式识别和计算机科学等领域。
常见的光学信息处理技术包括傅里叶变换光学、光学图像处理、光学计算和光学 神经网络等。
光学计算技术
光学计算技术是指利用光学方法来实现计算的技术。这种 技术利用了光的并行性和快速性,可以实现高速、高精度 和大容量的计算。
运行,为人工智能领域的发展提供新的动力。
信息光学在未来的应用前景
下一代光通信网络
随着5G、6G等通信技术的发展,信息光学将在构建下一代光通信 网络中发挥关键作用,实现超高速、超大规模的数据传输。
智能感知与物联网
光学传感器和光通信技术将在智能感知和物联网领域发挥重要作用 ,实现更高效、更智能的物联网应用。

《信息光学》课件

《信息光学》课件

第二章:光学矩阵理论
光学矩阵是描述光学元件的传输特性的数学工具。学习光学矩阵的定义、表示方法、性质和计算方法,以及如 何通过光学矩阵推导光学元件的传输特性。
第三章:信息光学器件
光波导器件
光波导器件是利用光波导的特性来传输和处理信息的器件,包括光纤和光波导芯片。
光栅器件
光栅器件利用光栅结构的衍射特性来处理信息,例如光栅衍射和光栅激光器。
结束语
感谢大家的聆听与支持!在未来,信息光学将在通信、计算、存储等领域有 更广泛的应用,让我们Байду номын сангаас起探索信息光学的无限可能。
闪烁光记录器
闪烁光记录器是一种使用光固体材料记录和存储信息的高密度光存储设备。
第四章:信息光学应用
光学通信
光学通信是利用光信 号传输信息的通信方 式,具有高速、大容 量和低损耗的优势。
光存储
光存储技术利用光的 特性进行信息的高密 度存储,如光盘和固 态存储器。
光量子计算
光量子计算利用光的 量子特性进行高速并 行计算,被认为是未 来计算科学的重要方 向。
《信息光学》PPT课件
欢迎大家来到《信息光学》PPT课件!本课程将带领您探索信息光学的世界, 学习信息光学的概念、原理和应用,为您展示信息光学的魅力。
第一章:信息光学概述
信息光学是研究光与信息传输、处理和存储的学科,涉及广泛的应用领域。了解信息光学的定义、研究内容以 及与其他学科的关系,将打开信息光学的大门。
光晶体管
光晶体管是一种利用 光调控电流和电压的 器件,具有高速、低 功耗和可重构性。
第五章:信息光学前沿研究
1
研究热点
了解当前信息光学领域的研究热点,如全息影像、量子信息和高速光通信等。

信息光学讲义目录02

信息光学讲义目录02

目录第一章信息光学的数学基础1.1 光学中常用的非初等函数 (1)1.1.1 矩形函数 (1)1.1.2 阶跃函数 (5)1.1.3 符号函数 (8)1.1.4 三角形函数 (10)1.1.5 斜坡函数 (13)1.1.6 圆域函数 (14)1.1.7 非初等函数的运算和复合 (15)1.2 光学中常用的初等函数 (17)1.2.1 sinc 函数 (17)1.2.2 高斯函数 (19)1.2.3 贝塞尔函数 (24)1.2.4 宽边帽函数 (27)1.3 函数的变换 (28)1.3.1 一维函数的变换 (28)1.3.2 可分离变量的二维函数的特性 (31)1.3.3 几何变换 (33)1.4 δ函数和梳状函数 (38)1.4.1 广义函数的含义 (38)1.4.2 δ函数的定义 (40)1.4.3 δ函数的性质 (49)1.4.4 δ函数的导数 (54)1.4.5 复合δ函数 (56)1.4.6 用δ函数描述光学过程的一个例子 (57)1.4.7 梳状函数 (59)1.5 周期函数 (64)1.5.1 周期函数的含义 (64)1.5.2 正弦函数 (66)1.5.3 周期脉冲序列 (67)1.6 离散函数 (70)1.6.1 单位脉冲序列 (70)1.6.2 单位阶跃序列 (72)1.6.3 矩形序列 (73)1.6.4 正弦型序列 (74)1.6.5 斜变序列 (75)1.6.6 实指数序列 (76)1.6.7 复指数序列 (76)1.6.8 随机序列 (77)1.7 复值函数 (77)1.7.1 复数 (77)1.7.2 复值函数 (79)1.7.3 几个常数的关系式和恒等式 (82)习题 1 (83)第二章傅里叶变换和系统的频域分析2.1 一维函数的傅里叶变换 (86)2.1.1 傅里叶级数 (86)2.1.2 傅里叶积分定理 (96)2.1.3 傅里叶变换 (97)2.1.4 极限情况下的傅里叶变换 (104)2.1.5 δ函数的傅里叶变换 (105)2.1.6 常用一维函数傅里叶变换对 (114)2.2 二维函数的傅里叶变换 (116)2.2.1 二维函数傅里叶变换的定义 (116)2.2.2 极坐标系中的二维傅里叶变换 (118)2.2.3 常用二维函数傅里叶变换对 (121)2.3 傅里叶变换的性质 (121)2.3.1 傅里叶变换的基本性质 (121)2.3.2 虚、实、奇和偶函数的傅里叶变换 (124)2.4 傅里叶变换的MATLAB 实现 (126)2.4.1 符号傅里叶变换 (126)2.4.2 离散傅立叶变换 (127)2.4.3 快速傅里叶变换 (130)2.5 卷积和卷积定理 (137)2.5.1 卷积的定义 (137)2.5.2 卷积的计算 (138)2.5.3 函数f (x, y)与δ函数的卷积 (148)2.5.4 卷积的效应 (150)2.5.5 卷积运算的基本性质 (152)2.5.6 卷积的MATLAB 实现 (154)2.6 相关和相关定理 (157)2.6.1 互相关 (157)2.6.2 自相关 (159)2.6.3 归一化互相关函数和自相关函数 (161)2.6.4 有限功率函数的相关 (162)2.6.5 相关的计算方法 (162)2.6.6 相关的MATLAB 实现 (167)2.7 傅里叶变换的基本定理 (170)2.7.1 卷积定理 (170)2.7.2 互相关定理 (171)2.7.3 互相关定理 (173)2.7.4 自相关定理 (174)2.7.5 巴塞伐定理 (174)2.7.6 广义巴塞伐定理 (175)2.7.7 导数定理或微分变换定理 (differential transform theorem) 1752.7.8 积分变换定理 (176)2.7.9 转动定理 (176)2.7.10 矩定理 (176)习题2 (178)第三章线性系统和光场的傅里叶分析3.1 线性系统的概念 (180)3.1.1 信号和信息 (180)3.1.2 系统的概念 (180)3.1.3 线性系统 (182)3.1.4 线性平移不变系统 (183)3.2 线性系统的分析方法 (184)3.2.1 正交函数系 (184)3.2.2 基元函数的响应 (188)3.2.3 线性平移不变系统的传递函数 (193)3.2.4 线性平移不变系统的传递函数 (195)3.3 光场解析信号表示 (199)3.3.1 单色光场的数学形式和复数表示 (199)3.3.2 准单色光场的复数表示 (201)3.3.3 多色光场的复数表示 (203)3.4 光场的复振幅空间描述 (206)3.4.1 球面波的复振幅 (206)3.4.2 球面波的近轴近似 (207)3.4.3 平面波的复振幅 (212)3.5 二维光场的傅里叶分析 (216)3.5.1 平面波的空间频率 (216)3.5.2 球面波的空间频率 (222)3.5.3 复振幅分布的空间频谱和角谱 (222)3.5.4 局域空间频率 (224)3.5.5 复杂光波的分解 (225)3.6 函数抽样与函数复原 (228)3.6.1 一维抽样定理 (228)3.6.3 空间-带宽积 (239)3.6.4 线性光学系统的分辨率 (242)习题3 (242)第四章标量衍射理论 (248)4.1 从矢量电场到标量电场 (251)4.1.1 波动方程 (251)4.1.2 亥姆霍兹方程 (253)4.2 基尔霍夫衍射理论 (254)4.2.1 惠更斯-菲涅耳原理 (254)4.2.2 格林定理 (256)4.2.3 基尔霍夫积分定理 (257)4.2.4 基尔霍夫衍射公式 (260)4.2.5 菲涅耳-基尔霍夫衍射公式 (263)4.2.6 球面波的衍射理论 (265)4.3 衍射在空间频域的描述 (268)4.3.1 从空间域到空间频域 (268)4.3.2 谱频的传播效应 (269)4.3.3 角谱的传播 (272)4.3.4 孔径对角谱的效应 (273)4.3.5 传播现象作为一种线性空间滤波器 (276)4.4 衍射的菲涅耳近似和夫琅禾费近似 (277)4.4.1 菲涅耳近似 (277)4.4.2 夫琅禾费近似 (280)4.4.3 夫琅禾费衍射与菲涅耳衍射的关系 (280)4.4.4 衍射屏被会聚球面波照射时的菲涅耳衍射 (281)4.4.5 衍射的巴俾涅原理 (283)4.5 菲涅耳衍射的计算 (285)4.5.1 周期性物体的菲涅耳衍射 (285)4.5.2 矩形孔的菲涅耳衍射 (291)4.5.3 特殊矩形孔的菲涅耳衍射 (300)4.5.4 圆孔的菲涅耳衍射 (303)4.6 夫琅禾费衍射的计算 (306)4.6.1 矩形孔和狭缝 (307)4.6.3 衍射光栅 (313)4.6.4 圆形孔径 (324)习题 4 (329)第五章光学成像系统的空域描述及傅里叶分析 (336)5.1 成像系统和透镜的结构及变换作用 (336)5.1.2 透镜的结构及变换作用 (337)5.2 透镜作为相位变换器 (341)5.2.1 薄透镜的厚度函数 (341)5.2.2 薄透镜的相位变换及其物理意义 (343)5.3 透镜的傅里叶变换性质 (345)5.3.1 透镜的一般变换特性 (345)5.3.2 物在透镜之前 (349)5.3.3 物在透镜后方 (353)5.4 透镜的空间滤波特性 (355)5.4.1 透镜的截止频率、空间带宽积和视场 (356)5.4.2 透镜孔径引起的渐晕效应 (359)5.5 光学系统的一般模型 (363)5.5.1 光阑 (363)5.5.2 入射光瞳和出射光瞳 (366)5.5.3 黑箱模型 (368)5.6 衍射受限光学系统成像的空域分析 (370)5.6.1 衍射受限系统的点扩散函数及成像 (370)5.6.2 正薄透镜的点扩散函数 (374)5.6.3 相干照射下衍射受限系统的成像规律 (375)5.6.4 成像系统的线性特性 (377)习题 5 (378)第六章光学成像系统的频谱分析和传递函数 (384)6.1 光成像系统像质评价概述 (384)6.1.1 星点检验法 (385)6.1.2 图像分辨率板法 (388)6.2 光学传递函数的基本概念 (394)6.2.1 以点扩散函数为基础的定义 (397)6.2.2 以正弦光栅成像为基础的定义 (401)6.2.3 以光瞳函数表示的光学传递函数 (404)6.2.4 组合成像系统的光学传递函数 (405)6.3 衍射受限相干成像系统的相干传递函数 (406)6.3.1 相干传递函数 (406)6.3.2 相干传递函数的角谱解释 (415)6.4 衍射受限系统非相干成像的频域分析—非相干传递函数 (416)6.4.1 非相干成像系统的光学传递函数(OTF) (417)6.4.2 OTF 和CTF 的关系 (421)6.4.3 衍射受限的OTF (421)6.4.4 有像差系统的传递函数 (426)6.5 线扩散函数和刃边扩散函数 (429)6.5.1 线扩散函数和刃边扩散函数的概念 (429)6.5.2 相干线扩散函数和相干刃边扩散函数 (431)6.5.3 非相干线扩散函数和刃边扩散函数 (433)6.6 相干与非相干成像系统的比较 (434)6.7 光学传递函数的测量 (436)6.7.1 光学传递函数测量装置 (436)6.7.2 光学传递函数测量步骤 (439)6.7.3 光学传递函数测量准确度 (440)6.7.4 光学传递函数的测量环境 (445)6.7.5 光学传递函数的测量数据的修正和表示 (447)6.7.6 光学传递函数的测量方法 (448)6.7.7 光学传递测量装置的检定 (450)6.7.8 光学传递标准装置 (450)6.7.9 离散采样系统光学传递测量 (451)习题 6 (452)第七章部分相干理论 (457)7.1 光的干涉理论 (457)7.1.1 叠加原理 (458)7.1.2 光波的干涉 (458)7.1.3 相干和非相干叠加 (460)7.1.4 干涉条纹的可见度 (462)7.2 互相干函数和相干度 (463)7.2.1 互相干函数的定义 (464)7.2.2 杨氏干涉条纹的几何结构 (468)7.2.3 互相干函数的谱表示 (470)7.3 时间相干性和相干时间 (471)7.3.1 时间相干性 (471)7.3.2 相干时间的定义 (476)7.3.3 傅里叶变换光谱技术 (477)7.4 空间相干性 (479)7.5 准单色条件下的干涉和互强度 (480)7.6 范西泰特-策尼克定理 (483)7.6.1 范西泰特-策尼克定理 (484)7.6.2 相干面积 (486)7.6.3 均匀圆形光源 (486)7.7 互相干函数的传播和广义惠更斯原理 (488)习题 7 (491)第八章光学全息 (496)8.1 光学全息概述 (496)8.1.1 全息术的发展简史 (496)8.1.2 全息照相的基本特点 (498)8.1.3 全息图的类型 (500)8.2 全息照相的基本原理 (501)8.2.1 全息照相的基本过程 (501)8.2.2 波前记录 (502)8.2.3 记录过程的线性条件 (503)8.2.4 波前再现 (504)8.3 同轴全息图和离轴全息图 (507)8.3.1 同轴全息图 (507)8.3.2 离轴全息图 (510)8.4 基元全息图 (514)8.4.1 基元全息图 (514)8.4.2 基元光栅 (515)8.5 菲涅耳全息图 (517)8.5.1 点源全息图和基元波带片 (517)8.5.2 几种特殊情况的讨论 (521)8.6 像全息图 (524)8.6.1 再现光源宽度的影响 (524)8.6.2 再现光源光谱宽度的影响 (525)8.6.3 色模糊 (527)8.6.4 像全息图的制作 (528)8.7 傅里叶变换全息图 (529)8.7.1 傅里叶变换全息图的原理 (530)8.7.2 准傅里叶变换全息图 (532)8.7.3 无透镜傅里叶变换全息图 (533)8.8 彩虹全息 (535)8.8.1 二步彩虹全息 (535)8.8.2 一步彩虹全息 (536)8.8.3 彩虹全息的色模糊 (537)8.9 相位全息图 (540)8.10 模压全息图 (541)8.10.1 模压全息图的制作 (542)8.10.2 全息烫印箔 (542)8.10.3 动态点阵全息图 (543)8.11 体积全息 (543)8.11.1 透射体积全息图 (544)8.11.2 反射全息图 (546)8.12 平面全息图的衍射效率 (546)8.12.1 振幅全息图的衍射效率 (547)8.12.2 相位全息图的衍射效率 (548)8.13 全息记录介质 (549)8.13.1 基本术语 (549)8.13.2 E-D曲线和特性曲线 (551)V8.13.3 全息记录介质的分类 (554)习题 8 (558)第九章光学信息处理技术 (562)9.1 引言 (562)9.2 早期研究成果 (563)9.2.1 阿贝成像理论 (563)9.2.2 阿贝-波特(Abbe-Porter)实验 (564)9.2.3 泽尼克相衬显微镜 (568)9.2.4 改善的照片质量 (570)9.3 空间频率滤波系统 (571)9.3.1 空间滤波系统 (571)9.3.2 空间滤波的傅里叶分析 (572)9.3.3 滤波器的种类及应用举例 (576)9.4 相干光学信息处理 (580)9.4.1 相干光学信息处理系统 (580)9.4.2 多重像的产生 (581)9.4.3 图像的相加和相减 (581)9.4.4 光学微分—像边缘增强 (584)9.4.5 综合孔径雷达 (586)9.5 非相干光学信息处理 (588)9.5.1 相干光与非相干光处理的比较 (588)9.5.2 非相干空间滤波 (589)9.5.3 基于几何光学的非相干处理 (593)9.6 白光信息处理 (594)9.7 光计算 (595)9.7.1 光学矩阵运算 (596)9.7.2 光学互连 (597)9.7.3 光学神经网络 (598)习题 9 (598)。

信息光学实验讲义二

信息光学实验讲义二

信息光学实验讲义(二)指导教师:刘厚通安徽工业大学数理学院实验三全息光栅的制作引言光栅是一种重要的分光元件,在实际中被广泛应用。

许多光学元件, 例如单色仪、摄谱仪、光谱仪等都用光栅作分光元件;与刻划光栅相比, 全息光栅具有杂散光少、分辨率高、适用光谱范围宽、有效孔径大、生产效率高, 成本低廉等突出优点。

实验目的1、了解全息光栅的原理;2、掌握制作全息光栅的常用光路和调整方法;3、掌握制作全息光栅的方法。

基本原理(1)全息光栅当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。

采用线性曝光可以得到正弦振幅型全息光栅。

从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅,这是本节的内容。

(2)光栅制作原理与光栅频率的控制用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片,当波长为λ的两束平行光以夹角 交迭时, 在其干涉场中放置一块全息干版, 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。

相邻干涉条纹之间的距离即为光栅的空间周期d (实验中常称为光栅常数) 。

如图2-1所示:图2-1全息光栅制作原理示意图有多种光路可以制作全息光栅。

其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。

如图2-2和图2-3所示。

Ⅰ图 2-2 全息光栅制作实验光路图MSPL1L2L1234567891011121314151617SPML350150100270200150L1L2图 2-3 全息光栅制作实验光路图图2-2采用马赫-曾德干涉仪光路,它是由两块分束镜(半反半透镜)和两块全反射镜组成,四个反射面接近互相平行,中心光路构成一个平行四边形。

从激光器出射的光束经过扩束镜及准直镜,形成一束宽度合适的平行光束。

这束平行光射入分束板之后分为两束。

一束由分束板反射后达反射镜,经过其再次反射并透过另一个分束镜,这是第一束光;另一束透过分束镜,经反射镜及分束镜两次反射后射出,这是第二束光。

[理学]《信息光学》课程实验讲义与教案09级

[理学]《信息光学》课程实验讲义与教案09级

《信息光学》课程实验讲义与教案编写者:翁嘉文参考教材:自编《信息光学讲义》华南农业大学应用物理系2009年5月目录实验一阿贝成像原理与空间滤波 (2)实验二θ调制 (8)实验三利用光栅滤波实现图像相加减 (13)实验四利用复合光栅实现光学微分处理 (18)实验五马赫-曾德尔干涉仪 (23)实验六三维形貌测量 (26)实验七数字全息 (32)实验教案 (36)阿贝成像原理与空间滤波一个光信号与它的频谱是同一事物在两个空间的表现,光信号分布于坐标空间(x , y ),而它的频谱存在于频率空间(f x , f y )。

由信号到频谱可以通过透镜来实现。

1873年阿贝(E.Abbe ,1840-1905)在显微镜成像原理的研究中,首次提出了在相干光照明下显微镜两次成像的概念。

阿贝成像理论以及阿贝—波特实验告诉人类:可以通过对信号的频谱进行处理(滤波)来达到对信号本身作相应处理的目的。

这正是现代光学信息处理最基本的思想和内容。

本实验对加深傅里叶光学空间频率、空间频谱和空间滤波等概念的理解,熟悉阿贝成像原理,了解透镜孔径对成像分辨率的影响以及对研究现代光学信息处理均有十分重要的意义。

一、实验目的1. 了解信号与频谱的关系以及透镜的傅里叶变换功能。

2. 掌握现代成像原理和空间滤波的基本原理,理解成像过程中“分频”和“合成”的作用。

3. 掌握光学滤波技术,观察各种光学滤波器产生的滤波效果,加深对光学信息处理基本思想的认识。

二、实验原理1、光学傅里叶变换一个光学信号是空间变量),(y x g y x ,的二维函数,其傅里叶变换被定义为:= (1)∫∫+∞∞−•+•−=dxdy ey x g f f G y f x f j y x y x )(2),(),(π)},({y x g FT 符号FT 表示傅里叶变换。

本身也是两个自变量的函数。

分别是与),(y x f f G y x f f ,y x f f ,y x ,方向对应的空间频率变量。

《信息光学》第九章激光散斑及其应用

《信息光学》第九章激光散斑及其应用

于是通过测量干涉条纹的间距,就可以测量底片或慢射物体横向移动的距离。
2、散斑照相术
3) 曝光期间底片连续移动记录的散斑图 若曝光器件底片以恒定速度沿y方向连续位移距离y0,记录的强度为
y I x, y g x, y * rect y0 经过与1)、2)完全的显影处理后放置在相同的衍射装置中,在后焦面上得 到的光强为(如下图): y y xf yf 2 2 2 2 f 0 I , y G sin c 0 f f f
2 2 I I 0 cos I 0 cos zd 2
其中,是H上点到中心的距离,d是底片H到小孔D的距离,z是记录时 M到底片H的距离。 观察屏上得到了被斑纹调制的符合牛顿环规律的圆形条纹,通过它可测定纵 向移动距离。
2、散斑照相术
如果漫射体上各点有不同的形变或位移,可采用逐点滤波或分析法。如 下图所示,在H后放置一个可以平移的圆孔,进行逐点观测。
2、散斑照相术
2.4 散斑照相术用于图像的光学处理 如下图,激光照射毛玻璃M,在底片H上产生的散斑图的强度为g(x,y)。若 紧靠H前插入透明片A,其强度透过率为(x,y),则透射到H上的强度就应 该为
2、散斑照相术
2.2 底片或物体纵向移动时记录的散斑图 如下图所示,用底片记录毛玻璃M产生的散斑图,在第一次曝光后,底 片沿纵向移动,再作第二次曝光。假定远小于散斑的平均纵向尺寸, 在H上记录了两个散斑图,区别仅在于径向比例大小不同。
2、散斑照相术
显影处理后,负片的复振幅透过率正比于曝光强度,观察光路如下图所 示。相干平面波垂直照明负片,用小孔D限制细光束通过。在小孔后的观 察屏上得到干涉条纹,其强度为

《光信息专业认识实习》课件

《光信息专业认识实习》课件

激光技术领域
激光产生原理
通过受激辐射,使光子数在特定频率上急 剧增加,形成高强度、单色性好的光束。
激光器类型
包括固体激光器、气体激光器、半导体激 光器等,具有不同的工作物质和激励方式。
激光技术应用
应用于材料加工、医疗、科研等领域,如 激光切割、激光焊接、激光治疗等。
光电显示领域
显示技术原理
利用光电效应或液晶效应,将 电信号转换为可见的图像或文
学生应具备认真负责的工作态度、 良好的团队合作精神和创新能力。
实习安排与时间
实习单位
选择与专业相关的企事业单位或科研机构作为实习单位,如光通信公司、光学研究所等。
实习内容
根据实习单位的具体情况和学生的专业背景,安排合适的实习项目,如光通信系统的设计与测试 、光学元件的研制与性能测试等。
实习时间
一般安排在暑假或寒假进行,实习时间长度可根据实际情况进行调整,建议不少于一个月。
通过参与实际项目,提高学生的 实验技能、分析能力和解决问题 的能力。
了解行业现状
通过实习,让学生接触和了解光 信息领域的最新技术、行业动态 和发展趋势。
实习要求
01
知识储备
学生应具备光信息专业的基本理 论知识,包括光学、光电子学、 光通信等方面的知识。
技能要求
02
03
态度与素养
学生应掌握基本的实验技能,如 光学仪器的使用、光路搭建、光 信号检测等。
光信息专业基础知识
02
光学基础知识
光的本质和特性
光是一种电磁波,具有波动性和粒子性;光的传播速 度、波长、频率等基本概念。
几何光学
光的直线传播、反射、折射定律,成像原理,光学仪 器的基本原理。
物理光学

信息光学实验讲义一

信息光学实验讲义一

信息光学实验讲义(一)指导教师:刘厚通安徽工业大学数理学院实验三阿贝成像原理和空间滤波(天津拓扑)一、实验目的了解付里叶光学基本原理的物理意义,加深对光学中的空间频谱和空间滤波等概念的理解。

二、实验原理1、傅立叶变换在光学成像系统中的应用。

在信息光学中、常用傅立叶变换来表达和处理光的成像过程。

设一个xy平面上的光场的振幅分布为g(x,y),可以将这样一个空间分布展开为一系列基元函数exp[iz二(f x x f y y)]的线性叠加。

即□0g(x, y) = G( f x f y)exp[2 二(f x X f y y)]df x df y-oO(1)f x,f y为x,y方向的空间频率,量纲为L ;G(f x f y)是相应于空间频率为f x,f y的基元函数的权重,也称为光场的空间频率,G(f x f y)可由下式求得:Q0G(x, y)= g(x, y)exp[ -2i 二"x f y y)]dxdy⑵g(x,y)和G( f x f y)实际上是对同一光场的两种本质上等效的描述。

当g(x,y)是一个空间的周期性函数时,其空间频率就是不连续的。

例如空间频率为f o的一维光栅,其光振幅分布展开成级数:Q0g(x) G n exp[i2二nf°x]n =•:::相应的空间频率为f=0,f o,f o。

2、阿贝成像原理傅立叶变换在光学成像中的重要性,首先在显微镜的研究中显示出来。

E.阿贝在1873年提出了显微镜的成像原理,并进行了相应的实验研究。

阿贝认为,在相干光照明下,显微镜的成像可分为两个步骤,第一个步骤是通过物的衍射光在物镜后焦面上形成一个初级衍射(频谱图)图。

第二个步骤则为物镜后焦面上的初级衍射图向前发出球面波,干涉叠加为位于目镜焦面上的像,这个像可以通过目镜观察到。

成像的这两步骤本质上就是两次傅立叶变换,如果物的振幅分布是g(x,y),可以证明在物镜后面焦面x' , y'上的光强分布正好是g(x,y)的傅立叶变换I IG(f x f y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在实验指导书编写的过程中,编者得到理学院领导的热情鼓励和大力支持,物电系各位老师的热情帮助,同时,其他院校的教材也为本指导书的编写提供了很好的借鉴,对此表示衷心感谢。由于编者水平有限,加之编写时间仓促,书中难免有不足甚至错误之处,恳请老师和同学们提出宝贵意见,以便不断更新和完善。
物理电子实验中心
2013. 06
【实验步骤】
1.光路调节
本实验基本光路图1-3所示,其中透镜L1(焦距F1)、L2(焦距F2)组成倒装置望远系统。将激光扩展成具有较大截面的平行光束,L(焦距为F)则为成像透镜,调节步骤如下:
(1)调节激光管的仰角及转角,使光束平行于光学平台水平面。
(2)放上L1和L2使产生一扩束的平行光并调节它们共轴。
图1-2显示了成像的这两个步骤,为了方便起见,我们假设是一个一维光栅,单色平行光照在光栅上,经衍射分解成为不同的很多束平行光相应于一定的空间频率),经过物镜分别聚焦在后焦面上形成点阵,然后代表不同空间频率的光束又重新在像平面上复合而成像。
如果这两傅氏变换完全是理想的,即信息没有任何损失,则像的物应完全相似(可能有放大或缩小),但一般说来像和物不可完全相似,这是由于透镜的孔径是有限的,总有一部分衍射角度较大的高次成分(高频信息),不能进入到芜菁而被丢失了,所以像的信息总是比物的信息要少一些,高频信息主要反映了物的细节,如果高频信息受到了孔径的限制而不能到达像平面,则无论显微镜有多大的放大倍数,也不可能在像平面上显示出这些高频信息所反映的细节,这是下痿竟分辨率受到限制的根本原因,特别当物的结构非常精细(如很密的光栅)或物镜孔非常小时,有可能只有0级衍射(空间频率为0)能通过,则在像平面上就完全不能形成像,为加深对上述内容的理解,可参阅 “光学成像系统的分辨本领”。
本实验指导书分成两个模块,即信息光学综合实验和激光原理综合实验,每个实验模块四个实验项目,共计八个实验项目。在编写过程中力求做到:实验目的具体突出,使学生明确实验基本要求和需要掌握的内容;实验原理叙述清楚,使学生在实验中深入掌握理论依据;实验内容和步骤详略得当,使学生能够在实验中逐步提高实验技能和动手能力;实验后思考题便于进一步分析、讨论、巩固和提高。
实验二、低通与高通滤波相关实验6
实验三、 调制空间假彩色编码实验与光学图象的卷积ﻩ9
实验四、联合傅立叶变换相关图像识别实验ﻩ13
激光原理综合实验
实验五、He-Ne激光器的调整与工艺测量16
实验六、He-Ne激光器的模式分析19
实验八、激光的相位测距28
ﻩ前言ﻩ
本实验指导书是合我电子科学与技术专业设置的特点,针对我院物理与电子实验中心仪器设备的实际情况编写而成。
【实验原理】
1.二维傅里叶变换
设有一个空间二维函数 ,其二维傅里叶变换为
F (1.1)
式中 分别为x,y方向的空间频率,其量纲为L-1,而 又是 的逆傅里叶变换,即
F-1 (1.2)
式(1.2)表示任意一个空金函数 ,可以表示为无穷多个基元函数 的线性叠加, 是相应于空间频率为 的基元函数的权重, 称为 的空间频率。
怎样检验L2出来的光是否平行光?如L1的焦距为12mm,L2焦距72mm,则扩束多少倍?
(3) 放上物(带光栅的“光”字)及透镜L,调节它们共轴,调节L位置,使大于4m距离的屏上得到清晰的图象,固定物及透镜L位置。(调节成像时,可在物面前暂放一毛玻璃,以便在扩展光照明下,找到成像的精确位置。
(4)确定频谱面位置,去掉物,用毛玻璃在L后焦面附近移动,当毛玻璃散射产生的散斑达到最大线度时,毛玻璃上光点最小,此毛玻璃所在平面就是频谱面,将滤波器支架放在此平面上。
二级衍射
三级衍射
(2)在傅氏面上放上可调狭缝及其他附加光阑,按图1-4中A,B,C,D,E分别通过一定的空间频率成分,按下表依次记录像面上的特点及条纹间距,特别注意观察D和E两条件下图像的差异,并对图象变化出适当的解释。
2.阿贝成像原理实验
(1)在物平面放上一维光栅,像平面哂纳感看到沿垂方向的光栅条纹,频谱面上出现0,±1,±2,±3,…一排清晰衍射光点,如图1-4中A所示,测量1,2,3,级衍射点与光轴(0级衍射)的距离x’,由式(1-3)求出相应空间频率fx并求光栅的基频。
位置x’/ຫໍສະໝຸດ m空间频率fx/mm-1
一级衍射
第一部分信息光学相关实验
实验一、阿贝成像光路调节与观测
【实验目的】
1.通过实验,加深对傅里叶光学中空间频率、空间频谱等概念的理解;
2.了解阿贝成像远离和透镜孔径对透镜成像分辨率的影响。
【实验器材】
光学平台或导轨及附件,He-Ne激光器,会聚透镜三块(L1:12mm,L2:70mm;L:250mm),作为物的样品四个,可调狭缝光阑,各种形状模板,屏板和毛玻璃。
信息光学与激光实验讲义最新版
———————————————————————————————— 作者:
———————————————————————————————— 日期:

安徽科技学院
信息光学与激光原理
综合实验讲义
理学院物理电子系
主编:刘念
2013年9月
前言II
信息光学综合实验
实验一、阿贝成像光路调节与观测ﻩ1
当 是一个空间周期性函数时,其空间频率是不连续的离散函数。
2.光学傅里叶变换
理论证明,如果在焦距为F的会聚透镜的前焦面上放一振幅透过率为 的图象作为物,并以波长为λ的单色平面波垂直照明图象,则在透镜后焦面(x’,y’)上的振幅分布就是 的傅里叶变换 ,其中 与坐标x’,y’的关系为
(1.3)
故x’-y’面称为频谱面(或傅氏面),见图1-1,由此可见,复杂的二维傅里叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布则为 ,称为频谱,也就是物的夫琅禾费衍射图。
3.阿贝成像原理
阿贝在1873年提出了相干光照明下显微镜的阿贝成像原理,他认为,在相干的光照明下,显微镜的成像可分为两个步骤:第一步是通过物的衍射光在物镜后焦面上形成一个衍射图,第二步则为物镜后面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。
成像的这两个步骤本质上就是两次傅里叶变换,第一步把物面光场的空间分布 变为频谱面上空家频率分布 ,第二步则是再作一次变换,又将 还原到空间分布 。
相关文档
最新文档