无线信道传播特性

合集下载

无线信号原理

无线信号原理

无线信号原理无线信号是通过无线电波传输信息的一种方式。

它广泛应用于无线通信系统中,如无线局域网、蜂窝网络、卫星通信等。

无线信号传输的基本原理是利用电磁波在空间中传播的特性,将信息转换为电磁波进行传输,然后再将电磁波转换回信息。

无线信号的传输所涉及的技术非常复杂,需要涉及无线电、调制解调、信道编解码、天线设计等多个领域的知识。

本文将从无线信号的基本原理、传播特性、调制解调技术、信道编解码等方面进行介绍。

一、无线信号的基本原理无线信号的传输基于电磁波的传播。

电磁波是通过振荡的电场和磁场传播的一种波动。

根据电磁波的频率范围不同,可以将其划分为不同的波段,如无线电波、微波、红外线、可见光等。

在无线通信中,我们主要关注的是无线电波的传播。

无线电波是一种由交变电流所激发的电磁波。

通过振荡的电场和磁场之间相互作用传播。

当电流通过天线时,会产生电磁波,这些电磁波会在空间中传播,并将携带的信息送达接收端。

接收端的天线接收到信号后,会将电磁波转换为电流信号,然后再经过解调等处理,转换为原始信息。

无线信号的传输有两种基本模式,即广播模式和点对点模式。

广播模式是将信息以向所有接收器发送的方式传输,如广播电台、电视台等。

而点对点模式则是将信息以对特定接收器发送的方式传输,如手机通信、互联网通信等。

在实际应用中,我们会根据具体的通信需求选择不同的传输模式。

二、无线信号的传播特性无线信号的传播特性受到很多因素的影响,如天线高度、发射功率、频率、大气条件等。

在传播距离较近的情况下,无线信号的传播主要受到自由空间传播损耗和绕射损耗的影响。

自由空间传播损耗是指无线信号在空间中传播时由于能量分散和传播距离增加而引起的信号衰减。

自由空间传播损耗与传播距离的平方成反比,即信号的功率损耗随传播距离的增加而成平方增长。

因此,信号的传输距离受到自由空间传播损耗的限制。

绕射损耗是指无线信号在传播过程中会受到地形、建筑等障碍物的影响而发生散射和绕射,从而引起信号的衰减。

无线传输信道的特性

无线传输信道的特性

通信工程专业研究方法论无线传输信道的特性学院:电子信息工程学院专业:通信工程班级:学号:学生:指导教师:毕红军2014年8月目录一、引言: (2)二、无线电波传播频段及途径 (3)2.1无线电波频段划分 (3)2.2无线电波的极化方式 (3)2.3传播途径 (4)三、无线信号的传播方式 (4)3.1直线传播及自由空间损耗 (5)3.2 反射和透射 (6)3.2.1斯涅尔(Snell)定律 (6)d 功率定律 (7)3.2.2 43.2.3断点模型 (8)3.3绕射 (9)3.3.1单屏或楔形绕射 (9)3.3.2多屏绕射 (10)3.4散射 (12)四、窄带信道的统计描述 (14)4.1不含主导分量的小尺度衰落 (14)4.2含主导分量的小尺度衰落 (16)4.3多普勒谱 (16)4.4大尺度衰落 (17)五、宽带信道的特性 (18)5.1多径效应对宽带信道的影响 (18)5.2多普勒频移对宽带信道的影响 (21)六、总结 (22)七、参考文献 (23)一、引言:各类无线信号从发射端发送出去以后,在到达接收端之前经历的所有路径统称为信道。

如果传输的无线信号,则电磁波所经历的路径,我们称之为无线信道。

信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机结合。

同时,电波在各种路径的传播过程中,有用信号会受到各种噪声的污染,因而会出现不同情形的损伤,严重时会使信号难以恢复。

无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到建筑物、地形等的阻挡而引起信号功率的衰减和相位的失真,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。

下面将讨论无线传输信道的主要特性。

二、无线电波传播频段及途径2.1无线电波频段划分现代的数字通信系统频谱主要集中在300KHz到5GHz之间,尤其是500KHz到2GHz之间的频段使用更密集,比如GSM系统使用的是900MHz和1800MHz,WCDMA系统使用的是1940MHz—1955MHz和2130MHz—2145MHz。

无线射频通信中的信道建模与传播特性

无线射频通信中的信道建模与传播特性

无线射频通信中的信道建模与传播特性一、引言(100字左右)无线射频通信已经成为了现代通信的重要组成部分,从手机通话到无线局域网,都离不开无线射频通信。

在无线射频通信的过程中,信道建模与传播特性的研究对于提高通信系统的可靠性和性能至关重要。

二、信道建模的概念和意义(200字左右)1. 信道建模是指对信号在传输过程中所经历的各种影响进行建模和仿真的过程。

2. 信道建模可以帮助我们了解信道对信号的衰减、多径效应、干扰等影响,从而设计出更加鲁棒和可靠的通信系统。

三、信道建模的步骤(400字左右)1. 信道特性的收集:通过实地测量和实验获取信道的相关参数,如衰减、多径效应、干扰等。

2. 数据处理与分析:对收集到的数据进行处理和分析,提取出信道模型所需要的特征参数。

3. 信道建模方法选择:根据实际需求和数据分析结果,选择合适的信道建模方法,如统计模型、几何模型、时频模型等。

4. 信道建模参数估计:利用已选择的建模方法,使用收集到的数据进行参数的估计和拟合。

5. 信道建模验证与评估:通过与实际场景进行对比和验证,评估所建模型的准确性和适用性。

6. 信道建模应用:将所建模型应用于具体的通信系统设计和性能评估中,为系统的优化和改进提供基础。

四、无线信道传播特性(400字左右)1. 多径效应:信号在传播过程中会经历多条路径,导致多径传播现象。

多径效应会产生多普勒频移、时延扩展和幅度衰减等。

2. 大尺度衰减:信号在传播过程中会因为材料和障碍物的阻挡而遭受衰减。

通常使用路径损失指数(Path Loss Exponent)来描述衰减的程度。

3. 阴影衰落:信号在传播过程中,由于信号与建筑物、自然环境等的阻挡和干扰,会造成信号的强度突变现象。

4. 多普勒展宽:移动通信中,信号源和接收器之间的相对运动会导致多普勒频移,进而引起信号的频谱扩展。

5. 天气衰落:天气现象对信号的传播也会产生影响,如雨滴、雪花等大气中的微粒会散射和吸收信号。

无线通信信号的传输特性和衰减规律

无线通信信号的传输特性和衰减规律

无线通信信号的传输特性和衰减规律引言:无线通信已经成为现代社会中不可或缺的一部分,它提供了人们互相沟通、信息传递和数据传输的便利。

然而,了解无线通信信号的传输特性和衰减规律对于优化信号传输和提高通信质量非常重要。

本文将详细介绍无线通信信号的传输特性和衰减规律的内容和步骤。

一、无线通信信号的传输特性:1. 传输速率:无线通信信号的传输速率是指在单位时间内传输的信息量。

传输速率主要受到信道带宽和调制方式的影响。

例如,高带宽和高阶调制方式可以提高传输速率。

2. 传输距离:无线通信信号的传输距离是指一个信号从发送端到接收端所需的距离。

传输距离主要受到发射功率、接收器灵敏度和环境干扰等因素的影响。

3. 传输延迟:无线通信信号的传输延迟是指一个信号从发送端到接收端所需的时间。

传输延迟主要受到传输距离和信号处理时间等因素的影响。

二、无线通信信号的衰减规律:1. 自由空间衰减:自由空间衰减是指无线通信信号在自由空间中由于传输距离增加而衰减。

自由空间衰减的规律遵循反比关系,即信号功率与传输距离的平方成反比。

2. 多径衰落:多径衰落是指无线通信信号在传输过程中遇到多条路径的干扰而产生的衰减现象。

多径衰落的规律较为复杂,常见的有瑞利衰落和莱斯衰落等。

3. 阴影衰落:阴影衰落是指由于地形、建筑物或其他物体对信号传播的遮挡而产生的衰减现象。

阴影衰落的规律取决于遮挡物的位置和信号频率。

4. 天线增益和方向性:天线增益和方向性是指通过优化天线设计和调整天线方向来提高信号的传输距离和减小衰减。

天线增益和方向性可以根据具体需求进行调整。

步骤:1. 选择合适的频段和调制方式:根据通信需求和环境条件选择合适的频段和调制方式,以提供更高的传输速率和更好的通信质量。

2. 优化发射功率和天线设计:通过合理设置发射功率和优化天线设计,可以提高信号的传输距离和减小衰减现象,以增强通信性能。

3. 考虑多径衰落和阴影衰落:在通信系统设计中,应考虑多径衰落和阴影衰落对信号传输的影响,并采取相应的调整措施,如使用天线阵列、均衡器等。

TD原理

TD原理

– 同一时隙的不同用户将使用不同的训练序列位移。
– 训练序列的作用: 上下行信道估计; 功率测量; 上行同步保持。 – 传输时Midamble码不进行基带处理和扩频,直接与经基带处理和扩频的数 据一起发送,在信道解码时它被用作进行信道估计。
TPC/SS/TFCI
第1 部 分 数 据 T F C I M id am b le 第2 部 分 S S T P T F C C I
I调 调 调调调 调调调 调调调 调调调 调调调 I调 调 调 调 QPSK调 调 OVSF调 调调 调调 Q调 调 调 调 Q调 调 调调调 调调调调
调制和扩频的基本参数
码速率 载波间隔 数据调制方式 脉冲成型
1.28Mcps 1.6MHz QPSK 8PSK(可选项) 根升余弦 滚降系数 = 0.22
物理层结构
常规时隙-物理层信令TPC/SS/TFCI
第1 部 分 数 据 T F C I M idam ble 第2 部 分 S S T P T F C C I 数 据
子 帧# 2n
子 帧# 2n + 1
数 据
T F C I 第3 部 分
M idam ble
S S T P T F C C I 第4 部 分
物理信道帧结构
物理层结构
▪ TS0总是固定地用作下行时隙。用来 发送系统广播信息等公共信息。 ▪ TS1总是固定地用作上行时隙。 ▪ 其它的常规时隙可以根据需要灵活地 配置成上行或下行以实现不对称业务 的传输,上下行的转换由一个转换点 分开,目前可以根据需要将时隙配置成 3:3; 2:4;1:5.
▪ 阴影效应:由大型建筑物和其他物体的阻 挡而形成在传播接收区域上的半盲区。 ▪ 多普勒效应:它是由于接收的移动信号高 速运动而引起传播频率扩散而引起的,其 扩散程度与用户运动速度成正比。

无线传播原理

无线传播原理

无线传播原理无线传播技术是指通过无线电波或其他电磁波进行信息传输的技术。

在现代社会中,无线传播技术已经广泛应用于移动通信、卫星通信、无线局域网、无线传感器网络等领域。

无线传播原理是指无线电波在空间中传播的规律和特性,了解无线传播原理对于设计和优化无线通信系统至关重要。

首先,我们来了解一下无线传播的基本原理。

无线传播是指无线电波在空间中传播的过程,其传播路径可以是直射传播、反射传播、绕射传播和散射传播。

直射传播是指无线电波直接从发射天线到达接收天线,反射传播是指无线电波被地面、建筑物等物体反射后到达接收天线,绕射传播是指无线电波在物体的边缘发生绕射现象到达接收天线,散射传播是指无线电波在传播过程中被物体散射后到达接收天线。

这些传播路径的存在会导致无线信号的多径传播、多普勒效应等现象,对于无线通信系统的设计和优化具有重要影响。

其次,我们需要了解无线传播的衰减特性。

无线电波在传播过程中会受到自由空间传播损耗、多径衰减、大气衰减等影响,导致信号强度衰减。

自由空间传播损耗是指无线电波在自由空间中传播时由于能量扩散而引起的信号强度衰减,其衰减程度与传播距离的平方成反比。

多径衰减是指由于多条传播路径引起的信号相位叠加和干涉效应导致的信号强度衰减,其衰减程度与多径间的时间延迟和相位差有关。

大气衰减是指由于大气介质对无线电波的吸收、散射和折射等效应引起的信号强度衰减,其衰减程度与传播频率、大气湿度等因素有关。

了解无线传播的衰减特性对于合理规划无线通信系统的覆盖范围和容量具有重要意义。

最后,我们需要了解无线传播的信道特性。

无线信道是指无线电波在传播过程中所经历的传播媒介,其特性受到多种因素的影响,如多径传播、多普勒效应、信号衰减等。

了解无线信道的特性对于设计合适的调制解调方案、信道编解码方案具有重要意义。

此外,无线信道还存在时变性、时频选择性衰落等特性,这对于无线通信系统的抗干扰能力和传输性能提出了挑战。

总之,无线传播原理是无线通信领域的基础理论,了解无线传播原理对于设计和优化无线通信系统至关重要。

信道种类及其特点

信道种类及其特点

信道分类及其特点根据通信的概念,信号必须依靠传输介质传输,所以传输介质被定义为狭义信道。

另一方面,信号还必须经过很多设备(发送机、接收机、调制器、解调器、放大器等)进行各种处理,这些设备显然也是信号经过的途径,因此,把传输介质(狭义信道)和信号必须经过的各种通信设备统称为广义信道。

我们这里研究的是狭义上的信道,即信号的传输介质。

信道可分为两大类:一类是电磁波的空间传播渠道,如短波信道、超短波信道、微波信道、光波信道等;它们具有各种传播特性的自由空间,习惯上称为无线信道;另一类是电磁波的导引传播渠道。

如明线信道、电缆信道、波导信道、光纤信道等。

它们具有各种传输能力的导引体,习惯上就称为有线信道。

一、有线信道:1、架空明线,即在电线杆上架设的互相平行而绝缘的裸线,它是一种在20世纪初就已经大量使用的通信介质。

架空明线安装简单,传输损耗比电缆低,但通信质量差,受气候环境等影响较大并且对外界噪声干扰比较敏感,因此,在发达国家中早已被淘汰,在许多发展中国家中也已基本停止了架设,但目前在我国一些农村和边远地区受条件限制的地方仍有不少架空明线在工作着2、双绞线电缆(TP):将一对以上的双绞线封装在一个绝缘外套中,为了降低信号的干扰程度,电缆中的每一对双绞线一般是由两根绝缘铜导线相互扭绕而成,也因此把它称为双绞线。

双绞线分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)。

目前市面上出售的UTP分为3类,4类,5类和超5类四种:3类:传输速率支持10Mbps,外层保护胶皮较薄,皮上注有“cat3”4类:网络中不常用5类(超5类):传输速率支持100Mbps或10Mbps,外层保护胶皮较厚,皮上注有“cat5”超5类双绞线在传送信号时比普通5类双绞线的衰减更小,抗干扰能力更强,在100M网络中,受干扰程度只有普通5类线的1/4,目前较少应用。

STP分为3类和5类两种,STP的内部与UTP相同,外包铝箔,抗干扰能力强、传输速率高但价格昂贵。

无线信道

无线信道

论文题目:物联网中无线信道模型的分析专业:学生:签名:指导老师:签名:摘要物联网为了实现在任何时间和任何地点都可以连接到任何人和物品的目标,就必须确保信息在任何环境下的可靠传输。

然而信息传输主要是通过无线传输和有线传输。

相对而言,无线传输的成本廉价、适应性好、扩展性好、设备维护更容易实现。

但无线信道是动态变化的,它的随机性和时变性很强,而天气、地型等很多因素都会影响信号的传输,致使信号发生衰落或者失真,因此要保证物联网无线信道中信息的可靠传输,我们必须对无线信道的特性进行研究。

一般而言,根据不同的无线环境,接收信号服从瑞利分布和莱斯分布。

本文对物联网中的无线信道特性进行了系统的介绍,并对基于物联网市区环境中的Rayleigh分布和远郊条件下的Rician分布进行了理论分析,并对服从Rayleigh分布的Clarke模型、改进型Clarke模型以及服从Rician分布的改进型Rician模型进行了分析,最后利用仿真图验证了不同模型算法的性能。

【关键词】物联网瑞利信道莱斯信道【论文类型】论文型Title: Analysis on Channel Model of the Internet of ThingsMajor:Name: Signature:Supervisor: Signature:ABSTRACTTo achieve the target that the Internet of Things can connect to any people and goods at any time and any place, we must ensure reliable data transmission in any environent. However, the method of information transmission is mainly through the wireless transmission and cable transmission. Relatively speaking, the cost of wireless transmission is cheap,good adaptability, scalability, and it is easier to implement equipment maintenance. Compared with the cable channel, wireless channel is dynamic, which has strong variability and randomness. However, the weather, and many other factors will affect the signal transmission, resulting in the signal fading or distortion. Therefore, we must study the characteristics of the wireless channel to ensure the realiable transmission of information in the wireless channel of the Internet of things.. In general, according to the different wireless environment, the received signal will obey Rayleigh distribution and Rician distribution.In this thesis,the characteristics which exist in the wireless channel of the Internet of things were systematically introduced, Based on the Internet of Things, Rayleigh distribution under the urban environment and Rician distribution under the suburban conditions are analyzed in theory. The Clarke model and the improved Clarke model which obey the distribution of Rayleigh are analyzed theoretically and the improved Rician model of Rician distribution also did. finally, The performance is verified by simulation of different model algorithm.【Key words】: Internet of Things Rayleigh Channel Rician Channel【Type of Thesis】: Thesis type目录1绪论 (1)1.1 物联网的概况及现状 (1)1.1.1 物联网的概念 (1)1.1.2 物联网研究现状 (1)1.2 物联网的体系结构 (2)1.3 论文结构安排 (3)2无线信道传播模型 (5)2.1 无线信道基本特性 (5)2.1.1 无线信道概论 (5)2.1.2 无线电波传播机制 (5)2.1.3 无线信道的类型 (6)2.1.4 无线信道的研究方法 (7)2.2 自由空间的电波传播 (8)2.3 大尺度衰落模型 (9)2.3.1 路径损耗 (9)2.3.2 阴影衰落 (10)2.4 小尺度衰落模型 (11)2.4.1 影响小尺度衰落的因素 (11)2.4.2 无线信道参数 (11)2.4.3 多径效应及其引起的衰落 (16)2.4.4 多普勒效应及其引起的衰落 (19)2.4.5 多径信道建模 (21)2.5 噪声和干扰 (22)2.5.1 无线信道中的噪声 (22)2.5.2 无线信道中的干扰 (22)2.6小结 (23)3物联网市区环境中的衰落信道模型 (24)3.1 Reyleigh衰落分布 (24)3.2 Clarke模型 (26)3.2.1 信道模型 (26)3.2.2 仿真结果分析 (28)3.3 改进型Clarke (30)3.3.1 信道模型 (30)3.3.2 仿真结果分析 (31)3.4 其他模型 (32)3.4.1 Jakes模型 (32)3.4.2 改进型Jakes模型 (33)3.5 小结 (33)4物联网远郊环境中衰落信道模型 (34)4.1 Rician信道模型 (34)4.1.1 信道模型 (34)4.1.2 仿真结果分析 (35)4.2 改进型Rician模型 (37)4.2.1 信道模型 (37)4.2.2 仿真结果分析 (37)4.3 小结 (38)5结论 (39)致谢 (40)参考文献 (41)1绪论1.1 物联网的概况及现状1.1.1 物联网的概念物联网(Internet of Things,IOT)概念最早于1999年由麻省理工学院提出,后来不同国家和行业的专业人士都从不同角度重新进行了诠释,目前研究业界及产业界仍没有形成明确统一的定义,总体来说,主要包括狭义和广义两种。

通信系统中的信号传输与传播特性

通信系统中的信号传输与传播特性

通信系统中的信号传输与传播特性随着科技的发展和互联网的普及,通信系统在我们日常生活中扮演着越来越重要的角色。

而在通信系统中,信号的传输和传播特性起着至关重要的作用。

本文将介绍通信系统中信号传输的基本概念和传播特性,并探讨其对通信质量的影响。

一、信号传输的基本概念在通信系统中,信号是信息的载体,其传输是指将信号从发送端通过信道传输到接收端的过程。

信号传输的基本概念包括以下几个方面:1.1 发送端与接收端发送端是指信号的发出地,也就是信息的来源;接收端是指信号的接收地,也就是信息的目的地。

在信号传输过程中,发送端将信息编码成信号后发送到信道,而接收端则从信道接收信号并将其解码成原始信息。

1.2 信号编码和解码信号编码是指将原始信息转换为可传输的信号的过程,常用的编码方式包括模拟信号与数字信号。

模拟信号是连续的信号,而数字信号是离散的信号。

在信号传输过程中,模拟信号常通过调制的方式转换为数字信号进行传输。

1.3 信道和噪声信道是指信号从发送端到接收端的传输媒介,可以是导线、光纤、无线电波等不同的媒介。

而噪声是指信号传输过程中产生的干扰信号,会对信号的质量产生影响。

为了保证信号传输的质量,需要采取一定的信号处理技术来降低噪声的影响。

二、信号传播特性信号在传输过程中会受到各种因素的影响,从而导致信号的失真和衰减。

因此,了解信号的传播特性对于优化通信系统的设计和性能提升具有重要意义。

以下是常见的信号传播特性:2.1 衰减信号在传输过程中会遇到各种衰减现象,如传输媒介的阻抗、传输距离和信号频率等因素会导致信号的衰减。

衰减会使信号的幅度减小,影响信号的可靠性和传输距离。

2.2 延迟信号在传输过程中会产生一定的传播延迟,即信号从发送端到接收端的时间间隔。

延迟会导致时序失真,影响信号的准确性和实时性。

在某些应用场景中,如实时语音通话和视频传输中,需要控制延迟在可接受的范围内。

2.3 多径效应多径效应是指信号在传播过程中由于经过不同路径导致的多次反射、散射和干涉等现象。

5G网络中的无线信道分析与传输技术研究

5G网络中的无线信道分析与传输技术研究

5G网络中的无线信道分析与传输技术研究无线信道分析与传输技术在5G网络中起着重要的作用。

5G网络是第五代移动通信技术,具有更高的数据传输速度、更低的延迟和更大的网络容量。

无线信道是5G网络中实现高速数据传输的关键环节,因此对无线信道的分析和传输技术进行研究具有重要的意义。

无线信道分析是研究无线信道中传输过程的行为和特性的过程。

5G 网络中广泛应用的无线信道分析技术包括信道特性分析、信道建模和信道容量评估等方面。

首先,信道特性分析是指研究无线信号传输过程中的衰落和传播效应。

在5G网络中,无线信号受到多径传播、衰落、干扰和噪声等因素的影响,因此了解信道特性对于优化信号传输非常重要。

通过分析信道的衰落过程,可以得到信道的时域和频域特性,从而为信号传输中涉及到的功率控制、编码和调制等技术提供依据。

其次,信道建模是将实际的无线信道抽象成数学模型的过程。

在5G网络中,信道建模技术可以将复杂的无线信道抽象成更简化的数学模型,从而方便系统设计和性能评估。

常用的信道建模方法包括统计建模、几何建模和物理建模等。

通过建立准确的信道模型,可以进行系统性能分析、资源分配以及干扰消除等方面的研究。

最后,信道容量评估是评估无线信道的传输能力的过程。

5G网络中,信道容量评估技术可以评估系统在给定频率带宽、功率和传输模式下的最大传输速率。

通过评估信道容量,可以为5G网络设计提供参考,确定网络的容量需求和资源分配策略。

除了无线信道分析外,传输技术也是5G网络中的重要研究方向。

5G网络具有更高的数据传输速度和更低的延迟要求,因此传输技术需要不断的创新和优化。

传输技术中的一个重要方面是多天线技术。

在5G网络中,多天线技术如MIMO(Multiple-Input Multiple-Output)被广泛应用。

MIMO技术可以通过同时使用多个发射天线和接收天线来提高信号的传输速率和质量。

通过对无线信道进行深入分析,可以确定最优的传输天线配置,从而提高系统的吞吐量和可靠性。

信道的名词解释

信道的名词解释

信道的名词解释信道是指信息传递的通道或媒介,是信息传输系统中至关重要的部分。

它可以是物理通信线路、电磁波传播的媒介,也可以是无线电、光纤、卫星等传输方式。

信道在现代通信技术中扮演着桥梁的角色,使得信息能够被准确、高效地传递。

一、信道的定义信道是指信息从发送者到接收者的传输媒介。

在通信系统中,信息通过信号的形式进行传输。

信道的任务就是承载这些信号并保证它们的准确传递。

这意味着信道必须具备一定的带宽和传输能力,能够在发送和接收之间传输信号。

信道的好坏直接影响到信息传输的质量和速度。

二、信道的分类信道可以根据传输媒介的不同分为有线信道和无线信道。

1. 有线信道有线信道是指通过电缆、光纤等有线媒介进行信号传输的通道。

它的传输速度和质量较高,可以同步传输多路信号。

有线信道可以实现长距离或高速率的信号传输,被广泛应用于有线电视、互联网、电话等领域。

2. 无线信道无线信道是指通过电磁波进行信号传播的媒介,如无线电、微波、红外线和可见光等。

无线信道具有灵活性高、覆盖范围广的特点,适用于移动通信、无线网络等场景。

然而,无线信道容易受到干扰和衰减,传输速率和可靠性相对较低。

三、信道的特性1. 带宽信道的带宽是指信道能够传输的频率范围。

它决定了信道能够传输的最高频率和信号的带宽。

带宽越大,信道传输的数据量就越大,传输速度也就越快。

2. 容量信道的容量是指信道能够传输的最高数据速率。

容量受到信道带宽和信噪比的影响,理论上,信道容量与带宽成正比。

3. 信噪比信号与噪声的比值被称为信噪比。

信道中存在的噪声会干扰信号的传输,降低信号的质量和可靠性。

信噪比越大,信号质量就越好,信道传输的误码率就越低。

4. 延迟信道传输数据时,由于信号的传播速度有限,会产生传输延迟。

延迟取决于信道的物理长度和传播速度,特别是光纤信道的延迟较低。

五、信道的应用信道在现代通信系统中广泛应用于各个领域。

无论是有线通信还是无线通信,都需要可靠且高效的信道。

无线通信原理课程介绍

无线通信原理课程介绍

无线通信原理课程介绍无线通信原理是现代通信领域的核心内容之一。

它是电子信息技术、通信技术和计算机技术等多个领域的交叉学科,旨在研究各种无线信号在空气中的传播规律、传输媒介和传输方式等各个方面的原理。

本文将从以下几个方面介绍无线通信原理课程的内容、特点及其在实际应用中的意义。

一、课程内容1. 无线信道的特性干扰信号、抗干扰能力、频谱效率、误码率、信道容量、多路复用和波束成形等相关知识。

2. 调制与解调技术频率、相位和振幅调制技术,以及相关调制解调器的原理和实现方法。

3. 天线技术天线类型、增益、方向性、阻抗匹配等基础概念,以及MIMO(多天线技术)的原理与实现方法。

4. 信道编码技术纠错编码、卷积编码、均匀编码等信道编码技术,以及Viterbi算法、译码器等实现方法。

5. 多址接入技术TDMA、FDMA、CDMA、OFDMA等多地址接入技术,以及其实现原理和特点。

6. 系统架构与标准无线通信系统的体系结构、标准和协议等相关知识,如GSM、LTE、5G 等。

二、课程特点1. 理论和实践结合无线通信原理课程涉及到多个学科,需要理论和实践相结合。

学习者需要通过实验和案例分析等方式将理论知识与实际应用相结合。

2. 先进性和实用性随着无线通信技术的不断发展,无线通信原理课程也必须随之更新和完善。

课程内容应紧跟技术的发展,具有先进性和实用性。

3. 与工程实践紧密结合无线通信原理课程与工程实践的联系非常紧密。

学习者应能够将理论知识应用到实际的无线通信系统设计和优化中。

三、实际意义无线通信原理课程对工程师的培养具有重要的意义。

在现代通信工程中,许多无线通信技术和应用都依赖于无线通信原理的基础。

因此,学习者能够掌握无线通信原理,将会极大地增强他们的解决问题的能力。

同时,在未来的工程开发过程中,需要具备相关的技能,这些技能可以通过学习无线通信原理来获得。

综上所述,无线通信原理是一门重要的跨学科课程。

学习者需要在理论和实践的结合中,掌握无线信道的特性、调制解调技术、天线技术、信道编码技术、多址接入技术等相关知识。

无线信道测量与建模方法研究

无线信道测量与建模方法研究

摘要下一代移动通信系统网络融合加快,移动互联网应用高速发展,使得有关的新技术和新应用成为移动通信系统研究的重大内容。

在新的应用场景下,由于存在多径传播和时变性,作为传播媒介的无线信道,对无线通信系统的性能有着巨大的影响。

因此,无线信道的测量与建模对于其传输技术的研究有着重要的指导意义。

本文基于无线信道的传播特性,对无线信道的测量与建模方法进行研究。

主要研究内容如下:首先,简单回顾了无线信道的传播特性,包括大尺度传播特性和小尺度传播特性。

介绍了无线信道测量与建模的基本原理,对现有的测量方法和建模方法进行了归纳和总结。

最后以信道模型在无线电导航频率规划中的应用,说明信道建模的工程实践意义,通过仿真计算,指配结果与美国联邦航空局标准吻合,提供了一种简单有效的频率指配方法。

然后,本文研究了大尺度衰落信道建模方法,对采用最小二乘法的经典大尺度衰落建模作了说明。

基于确定性的环境地形,重点对基于射线跟踪的信道建模方法做了介绍,并采用WinProp的传播估计模型,对典型场景进行了传播预测。

预测结果显示,基于射线跟踪的建模方法能够适应性地跟踪具体传播环境,对场景信道实现更精准地建模。

类似地,研究了小尺度衰落信道建模方法。

首先介绍了小尺度衰落信道的特性描述和抽头延迟线模型,为了建立小尺度衰落信道模型,重点对基于解相关算法、扩频滑动相关法、压缩感知的信道估计方法进行了研究,对其原理分别做了介绍,并在一定条件下作了仿真分析。

结果表明:解相关算法不依赖于探测波形,都能够实现原始信道的估计,但其估计性能的优劣与探测脉冲的形状有关,更符合理想冲激脉冲的波形有着更高的估计性能;扩频滑动相关法抗噪声性能良好,能够很好地估计出多径信道。

在多种伪噪声序列中,m序列实现简单,有着优良的自相关性能,是最为常用的伪噪声序列;压缩感知算法充分利用无线信道的稀疏性,可以在一定条件下实现信道的精确估计,其中正交匹配追踪算法实现简单,重构效果良好,应用较为广泛。

移动通信中无线信道的传播特性分析

移动通信中无线信道的传播特性分析


Chi w ch l g e n o uc s na Ne Te no o i s a d Pr d t
信 息 技 术
移 动通 信 中无线 信道 的传 播特性 分析
刘 海 斌
( 中国联 通 延 安 分 公 司 , 西 延 安 7 6 0 ) 陕 10 0
摘 要 : 绍 了无线信 道 的概念 和无 线信 道 的传播 特性 , 析 了无 线信道 中影 响 移动 无线 通信 信 号传 输质 量的 原 因 , 介 分 对提 高移 动通 信质 量的 可行性 提供 了理 论参 考 。
含 了所有 用于 模拟 和分 析信 道无 线传 播 的信 息, 移动通 信 的信 道是 时变 的 , 这种 时间变 化
是 由接 收 机在 空 间 的相对 运 动引 起 的, 变 时 信 道可 以用具 有时 变 冲激 响应 的线性 滤波 器 描述。 信道 的滤 波特 性是 在任 意 时刻 多个到 达 波 的幅值 和相 位 的叠加 产 生 的。冲激 响应 是 种非 常有用 的信道 特征 ,可用 它来 预测 和 比较不 同移 动通信 系统 的性能 ,以及 对一 个
。0 s ‘
因 , 于提 高移 动通 信信 号 的传输 质量 , 有助 可 为 提 高 移 动 通 信 质 量 的可 行 性 提 供 理 论 参 考。
参 考文献
『 王 鹏, 吉余 , 1 】 陈 李栋 . 线信 道 特 性 及仿 真 无 【_ I 中国传 煤 大学 学报 自然 科 学 版 , 0 6 1 1 20 ,3
f( f4 J) J
式 () a , f分 别 是 在 t 刻 第 z 4中 , J f , j 时 个 多径 分量 的 幅度 和时 延 ; 7 J , r是 2 r£ f J f+ £ , 2 多径 分量 在 自由空 间传 播造 成 的相移 , 个 再 加上 在信 道 中的附 加相移 。

通信原理第4章信道

通信原理第4章信道
按噪声来源分类
人为噪声 - 例:开关火花、电台辐射 自然噪声 - 例:闪电、大气噪声、宇宙噪声、热
噪声
30
信道中的噪声
热噪声
来源:来自一切电阻性元器件中电子的热运动。 频率范围:均匀分布在大约 0 ~ 1012 Hz。 热噪声电压有效值:
V 4kTRB(V)
式中 k = 1.38 10-23(J/K) - 波兹曼常数; T - 热力学温度(ºK); R - 阻值(); B - 带宽(Hz)。
8
有线信道
4.2 有线信道
明线
9
有线信道
对称电缆:由许多对双绞线组成
导体 绝缘层
同轴电缆
图4-9 双绞线
实心介质 导体
金属编织网
保护层
图4-10 同轴线
10
有线信道
n2 n1 折射率
光纤
结构
(a)
纤芯 包层
n2 n1 折射率
按折射率分类 (b) 阶跃型
梯度型 按模式分类
噪声等效带宽:
Bn
Pn(f)d
f
2Pn(f0)
0 Pn(f)df Pn(f0)
式中 Pn(f0) - 原噪声功率谱密度曲线的最大值
噪声等效带宽的物理概念:
以此带宽作一矩形
滤波特性,则通过此
接收滤波器特性
特性滤波器的噪声功率,
等于通过实际滤波器的
Pn(f)
噪声功率。
Pn (f0)
噪声等效 带宽
利用噪声等效带宽的概念,
32
信道中的噪声
窄带高斯噪声
带限白噪声:经过接收机带通滤波器过滤的热噪 声
窄带高斯噪声:由于滤波器是一种线性电路,高 斯过程通过线性电路后,仍为一高斯过程,故此 窄带噪声又称窄带高斯噪声。

《2024年无线通信系统的信道建模与仿真研究》范文

《2024年无线通信系统的信道建模与仿真研究》范文

《无线通信系统的信道建模与仿真研究》篇一一、引言随着科技的进步,无线通信系统已经成为现代社会信息交流的基石。

在无线通信系统中,信道建模与仿真研究起着至关重要的作用。

它不仅有助于提升无线通信系统的性能,而且对于无线网络的优化和设计具有重大意义。

本文旨在深入探讨无线通信系统的信道建模与仿真研究,分析其原理、方法及实践应用。

二、无线通信系统信道建模1. 信道特性无线通信系统的信道特性主要包括多径传播、衰落、干扰等。

多径传播是由于电磁波在传播过程中遇到各种障碍物而发生反射、折射和散射等现象,导致信号在接收端产生多径效应。

衰落则是由信号在传输过程中受到各种因素的影响而产生的信号强度变化。

干扰则是指由于其他无线通信系统或电磁干扰源对当前通信系统产生的干扰。

2. 信道建模方法针对上述信道特性,无线通信系统的信道建模方法主要包括统计性建模和确定性建模。

统计性建模主要是通过收集实际信道的数据,分析其统计特性,建立信道的统计模型。

确定性建模则是基于电磁场理论,通过计算电磁波在传播过程中的传播特性和多径效应,建立信道的物理模型。

三、无线通信系统仿真研究仿真研究是无线通信系统信道建模的重要手段。

通过仿真,可以模拟实际信道环境,验证信道模型的准确性,并评估无线通信系统的性能。

常用的仿真方法包括基于统计的仿真和基于物理层的仿真。

1. 基于统计的仿真基于统计的仿真主要是通过使用统计模型来模拟信道环境。

这种方法可以快速地评估无线通信系统的性能,并分析各种因素对系统性能的影响。

然而,由于统计模型只能反映信道的统计特性,无法反映信道的物理特性,因此其准确性受到一定限制。

2. 基于物理层的仿真基于物理层的仿真则是通过建立无线通信系统的物理层模型来模拟实际信道环境。

这种方法可以更准确地反映信道的物理特性,如多径传播、衰落和干扰等。

然而,由于需要考虑电磁场理论和信号处理等方面的知识,其仿真过程相对复杂。

四、实践应用无线通信系统的信道建模与仿真研究在实践应用中具有广泛的应用场景。

无线信道传播特性分析总结

无线信道传播特性分析总结

无线信道传播特性分析总结无线信道传播特性是指信号在无线通信中传播过程中受到的传播环境和传播介质的影响,包括传播损耗、多径效应、衰落效应等。

对于无线通信系统的设计与性能分析来说,了解和分析无线信道传播特性非常重要。

下面是对无线信道传播特性的分析总结。

1.传播损耗传播损耗是指电磁波在传播过程中由于衰减、散射和阻塞等原因而导致信号强度减弱的现象。

传播损耗和距离的关系一般符合简单的自由空间传播模型,即传播损耗随着距离的增加而呈指数衰减。

但在实际的无线通信中,信号还会受到多种因素的干扰,如建筑物、障碍物、电子设备等影响,导致传播损耗不仅与距离有关,还与环境有关。

2.多径效应多径效应是指信号在传播过程中由于经过多条路径传播而导致相位差和时间延迟的现象。

多径效应是无线通信中的主要问题之一,会导致信号的多普勒频移、传播路径的时延扩展,从而对信号的接收造成干扰。

多径效应对于室内环境而言尤为明显,因为信号在室内会经过多次反射和散射,导致接收信号的时延扩展和衰落增强。

3.衰落效应衰落效应是指信号在传播过程中由于多径衰弱、干扰和噪声等原因而导致信号强度的瞬时变化。

衰落效应分为快衰落和慢衰落两种,快衰落主要由于多径效应引起,时间尺度在微秒级别;慢衰落主要由于大尺度的传播环境变化引起,时间尺度在毫秒级别。

衰落效应对于无线通信系统的性能有很大影响,会导致信号的误码率增加和传输速率下降。

4.多普勒效应多普勒效应是指信号源或接收器移动引起的频率偏移。

当信号源或接收器相对于介质移动时,由于多路径传播,信号在传播过程中会发生频率偏移。

多普勒效应对于高速移动的通信系统尤为重要,因为当通信节点间的相对速度较大时,多普勒频移会对信号的相干性和传输性能产生显著影响。

5.阴影效应阴影效应是指传播路径上的一些障碍物对信号的遮挡和衰弱所引起的信号强度不均匀的现象。

阴影效应是由于介质的不均匀性或者障碍物造成的,会导致接收信号的强度产生明显的空间变化。

无线信道传播特性分析总结

无线信道传播特性分析总结

无线信道传播特性分析总结(共8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--无线信道传播特性分析总结班级学号姓名随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。

在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。

1、无线信道的概念要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。

信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。

信道具有一定的频率带宽,正如公路有一定的宽度一样。

与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。

不同的环境,其传播特性也不尽相同。

无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。

在无线信道中,信号衰落是经常发生的,衰落深度可达30。

对于数字传输来说,衰落使比特误码率大大增加。

这种衰落现象严重恶化接收信号的质量,影响通信可靠性。

移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。

另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。

所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。

2、无线信道的特性信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。

接收信号幅度波动大的原因

接收信号幅度波动大的原因

接收信号幅度波动大的原因:无线信道的传播特性引起,即多径效应,这样就会产生多径衰落或快衰落。

由于无线信道的这种传播特性,使得在接收端收到的信号场强就产生了波动。

小区重叠覆盖区引起的小区重选或切换。

此时若一些相关的小区参数设置的不当——如小区选择参数、切换参数等,当这些参数设置的使手机很容易进行小区重选或切换时,手机就会在两个信号大小交替变化的频点上不断进行重选或切换,这是容易造成接收信号的波动其中一个原因。

外界存在干扰。

如果设备性能不够稳定,也可能会对信号波动带来一些影响。

例如TRX输出功率本身就存在波动,下行功控、DTX(不连续发射)功能的开启也会对信号的波动带来一些影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线信道传播特性分析总结无线信道传播特性分析总结班级学号姓名随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。

在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。

1、无线信道的概念要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。

信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。

信道具有一定的频率带宽,正如公路有一定的宽度一样。

与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。

不同的环境,其传播特性也不尽相同。

无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。

在无线信道中,信号衰落是经常发生的,衰落深度可达30 ⅆB。

对于数字传输来说,衰落使比特误码率大大增加。

这种衰落现象严重恶化接收信号的质量,影响通信可靠性。

移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。

另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。

所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。

2、无线信道的特性信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。

同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声(如高斯白噪声)、乘性噪声的污染,因而会出现不同情形的损伤,严重时,会使有用信号难以恢复。

无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到由于建筑物、地形等的阻挡而引起信号功率的衰减,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。

下面将对无线信道的一些特性来进行分析。

2.1 大尺度衰落通常情况下,当接收机和发射机之间的相对位置在1-lOm的范围内变化时,接收信号功率的平均值基本保持不变。

但当它们的相对位置的改变远超过上述范围时,接收信号的平均功率将会有几个数量级的变化。

大尺度衰落正是用来描述接收机和发射机之间的距离有大尺度变化时,接收信号平均功率值的变化规律。

在自由空间传播条件下,接收机接收的平均功率P̅r可由下式给出:P̅r=P t(λ4πd)g t g r (2−1)其中:P t是发射功率;g t是发射天线增益;g r是接收天线增益;λ是电波波长;d是发射机与接收机之间的距离。

将式(2-1)代入以ⅆB为单位的路径损耗公式。

可得出:.PL̅̅̅̅(ⅆB)=−10log P̅rP t=32.45+20log f+20log d−G t−G r (2−2)其中:f为电磁波频率;G t和G r分别为发射和接收天线增益(dB)。

由式(2-1)可以看出。

自由空间中,接收信号的功率与距离的平方成反比,即:P̅r∝12(2−3)在实际的移动环境中,传输损耗要比自由空间中的大许多,接收信号的功率与距离的关系通常用下式表示:P̅r∝1d a(2−4)其中:a≥2,称为路径损耗系数,一般可取为3-4。

除了路径损耗,大尺度衰落还包括阴影衰落。

阴影衰落使得实际的损耗成为一个随机变量,由式(2-1)求出的是与发射机的距离为班的平均路径损耗,一般认为实际的损耗服从对数正态分布。

综合考虑路径损耗和阴影衰落,大尺度衰落下路径损耗可以表示为:PL (dB )=常量+10αlog d +βdB (2−5)其中中:βdB 表示由阴影衰落引起的路径损耗(dB ),是一个正态分布的随 机变量,均值为0,方差为σβdB 2,在大多数的经验公式中,标准差σβdB 可以取4.12 dB 。

大尺度衰落对于业务覆盖区域有一定的影响。

2.2 小尺度衰落无线信道的小尺度衰落是无线通信环境的重要衰落特征,包括因多径效应而引起的衰落和信道时变性引起的衰落。

其中。

由于反射、散射等影响,使得实际到达接收机的信号是发射信号经过多条传播路径后信号分量叠加而成,被称之为多径效应;信道的时变性是指信道的传递函数是随时间而变化的,即在不同的时刻发送相同的信号,在接收端收到的信号是不相同的。

多径时变信道根据无线移动环境的统计,信道可以划分为几种典型的信道,其划分依据主要从两个角度出发:(1)多径时延扩展特性(信号包络的随机衰落);(2)时变特性(信号相位的随机衰落)。

多径效应会引起信号的时域弥散性,与多径时延扩展有关的一个重要概念就是多径信道的相干带宽(Coherent Bandwidth )B c ,它反映了不同频率分量所经历衰落的相互关系(即其包络的相关性)。

信道的相干带宽与均方根时延扩展σt 成反比,如果将相关函数大于0.5认为相关,一般有下面的关系:B c ∝15σt(2−6) 相干带宽反映了无线移动信道对信号包络的衰落具有频率选择性。

小尺度衰落主要对于信号传输质量有一定的影响。

图1 大、小尺度衰落对信号平均功率的影响2.3 快衰落和慢衰落根据时变信道条件下信号的符号周期和时变信道的相关时间的关系,可以将时变信道分为快衰落信道和慢衰落信道。

2.3.1 快衰落若时变信道的相干时间小于信号的符号周期,这时的时变信道称为快衰落信道。

类似于频率选择性衰落,快衰落信道也称为时间选择性衰落。

快衰落原因(1)多径效应。

1、时延扩展:多径效应(同一信号的不同分量到达的时间不同)引起的接受信号脉冲宽度扩展的现象称为时延扩展。

时延扩展(多径信号最快和最慢的时间差)小于码元周期可以避免码间串扰,超过一个码元周期(WCDMA中一个码片)需要用分集接受,均衡算法来接受。

2、相关带宽:相关带宽内各频率分量的衰落时一致的也叫相关的,不会失真。

载波宽度大于相关带宽就会引起频率选择性衰了使接收信号失真。

(2)多普勒效应。

f频移 = V相对速度/(C光速/f电磁波频率)×cosα(入射电磁波与移动方向夹角)。

多普勒效应引起时间选择性衰落,是由于相对速度的变化引起频移度也随之变化。

这时即使没有多径信号,接收到的同一路信号的载频范围随时间不断变化引起时间选择性衰落。

范围随时间不断变化引起时间选择性衰落。

交织编码可以克服时间选择性衰落。

大范围衰落主要会导致整体信号的电平衰落。

路径衰减极其依赖于距离。

它对设备的影响是,由于降低了接收的信号功率,从而降低了信噪比(SNR)。

阴影效应和大范围反射表现为在这种平均路径衰减上的偏差。

2.3.2 慢衰落由于移动台的不断运动,电波传播路径地形地貌是不断变化的,因而局部中值也是不断变化的.这种变化所造成的衰落比多径效应引起的快衰落要慢得多,称为慢衰落。

慢衰落是由大气折射、大气湍流、大气层结等平均大气条件的变化而引起的,通常与频率的关系不大,而主要与气象条件、电路长度、地形等因素有关。

慢衰落一般服从对数正态分布。

慢衰落产生的原因:(1)路径损耗,这是慢衰落的主要原因。

(2)障碍物阻挡电磁波产生的阴影区,因此慢衰落也被称为阴影衰落。

(3)天气变化、障碍物和移动台的相对速度、电磁波的工作频率等有关。

慢衰落的影响在于会产生阴影效应。

移动台在运动中,由于大型建筑物和其他物体对电波的传输路径的阻挡而在传播接收区域上形成半盲区,从而形成电磁场阴影,这种随移动台位置的不断变化而引起的接收点场强中值的起伏变化叫做阴影效应。

2.4 频率选择性衰落和平坦衰落信号通过移动信道时,会引起多径衰落,根据衰落与频率的关系,可将衰落分成两类:即频率选择性衰落和非频率选择性衰落(平坦衰落)假设信号码元长度为T,第i条传输路径的信号时延与信号平均时延之差为△t,则二者的不同组合可产生三种不同的衰落现象。

(1)当信号码元长度 T 较小,且 △t≪T 时,将引起“平坦衰落”;(2)当信号码元长度 T 较长,且 △t≪T 时,将引起“时间选择性衰落”;(3)当信号码元长度 T 比较小,而 △t 比较大,且不满足 △t≪T ,将引起“频率选择性衰落”(这是时间扩散在频域中的反映)。

2.4.1 频率选择性衰落频率选择性衰落是指在不同的频率衰落特性不同的现象,引发频率选择性衰落的原因多是时延扩展,时域的时延扩展导致的不同频率的信号经过频率选择性衰落信道的时候具有不同的响应,如图2所示。

图2 频率选择性衰落产生频率选择性衰落的因素:由信号和信道两方面因素决定。

对频率选择性衰落,传输信道对信号中不同频率成分有不同的随机响应。

由于信号中不同频率分量衰落不一致,所以衰落信号波形将产生失真。

对于非频率选择性衰落,各频率分量所遭受的衰落具有一致性(即相关性),因而衰落信号的波形不失真。

2.4.2 平坦衰落若多径信道的相干带宽大于信号的带宽,这时,由于多径信号的时域弥散性而造成的衰落为平坦衰落。

在这种条件下。

发射信号的频谱特性通过多径信道后,在接收端信号的频谱仍然可以得到保持。

下图是衰落信道类型和信号、信道参数的关系图3 衰落信道类型和信号、信道参数的关系2.5 相干时间和相干带宽相干带宽是描述时延扩展的:相干带宽是表征多径信道特性的一个重要参数,它是指某一特定的频率范围,在该频率范围内的任意两个频率分量都具有很强的幅度相关性,即在相干带宽范围内,多径信道具有恒定的增益和线性相位。

通常,相干带宽近似等于最大多径时延的倒数。

从频域看,如果相干带宽小于发送信道的带宽,则该信道特性会导致接收信号波形产生频率选择性衰落,即某些频率成分信号的幅值可以增强,而另外一些频率成分信号的幅值会被削弱。

而相干时间是描述多谱勒扩展的:相干时间在时域描述信道的频率色散的时变特性。

相干时间与多普勒扩展成反比,是信道冲激响应维持不变的时间间隔的统计平均值。

如果基带信号的符号周期大于信道的相干时间,则在基带信号的传输过程中信道可能会发生改变,导致接收信号发生失真,产生时间选择性衰落,也称快衰落;如果基带信号的符号周期小于信道的相干时间,则在基带信号的传输过程中信道不会发生改变,也不会产生时间选择性衰落,也称慢衰落。

定义相干带宽一般是用来划分平坦衰落信道和频率选择性衰落信道的量化参数。

如果信道的最大多径时延扩展为Tm,那么信道的相干带宽B c=1/Tm;若发射信号的射频带宽BBc,那么认为接收信号经历的是频率选择性衰落,此时除了接收信号的包络起伏变化,一般还存在码间串扰,其信号模型为r(t)=ℎ(t−tao0)s(t−tao0)+ℎ(t− tao1)s(t−tao1)+...+n(t),其中tao0、tao1、...等为可分辨多径的时延,每个ℎ(t−tao)一般为瑞利分布的随机变量。

相关文档
最新文档