桥下河床冲刷计算
第六章 桥下河床冲刷计算
3
4
h1
Qcp h p 1.04 A Q c
WUHEE
Bc 1 B 2
0.66
hmax
二、粘性土河床的桥下一般冲刷 平均粒径小于0.05mm的泥沙,称为粘性土。 土力学中反映粘土粘结力大小的指标为液性 指数IL和孔隙率e。 IL和e越小,粘土的粘结力越 大,抗冲能力越强,冲止流速也就越大。
Z jd Z s hp hb h c
WUHEE
第三节 小桥涵进出口沟床加固
小桥涵修建后造成水流集中,流速增加,为防止冲刷, 危及桥涵基础和路基安全,在小桥涵进出口均应作铺 砌加固。 从实际工程遭破坏的情况来看,小桥涵进出口加固不当 常是导致破坏的主要原因,并且出水口引起的问题又 较进水口多。 对于小桥,其孔径是根据河床铺砌类型的允许流速值决 定的,其进出口沟床要采用同类铺砌规格。小桥进出 口的铺砌范围以及深度等的计算可参照涵洞进出口的 计算方法进行。
1 23 Vs 0.23 h p I L
Qp h max L j h hp 1.3 1 0.23 I L
WUHEE
53 35
1.3
1 Vs 0.22 I e L
冲刷停止时桥下的垂线水深表示该垂线处 的一般冲刷深度。一般冲刷停止时桥下的垂线 平均流速,称为冲止流速。 《公路桥位勘测设计规范》(JTJ062-91): 64-1修正公式,64-2简化公式
WUHEE
1. 64-1修正公式 根据谢才公式,得桥下冲刷前最大单宽流量与平 均单宽流量的关系:
h qm q m ax h
n
三、粘性土河床的局部冲刷计算
桥梁设计之桥下河床冲刷过程预计算
桥梁设计之桥下河床冲刷过程预计算桥梁设计中,桥下河床冲刷是一个重要的考虑因素。
河床冲刷是指水流对河床表面的侵蚀和搬运作用,导致河床深度增加或者流速加剧,从而对桥梁结构的稳定性和安全性造成潜在威胁。
为了预计算桥下河床冲刷过程,需要考虑以下几个方面:1.水动力条件:水的流速是决定河床冲刷程度的关键因素之一、因此,需要测定或估算桥北河段的流速,并将其作为输入条件用于模拟计算。
2.河床形态:河床的形态特征对于决定河床冲刷的程度和机理有着重要影响。
河床形态包括河床横断面形状、纵向坡度、河床材料等。
需要进行对河床的调查测量,并将其作为模拟计算的输入条件。
3.底床材料:底床材料的物质性质,如粒径分布、比重等,对河床冲刷的程度和速率有着显著的影响。
需要对底床材料选择进行粒度分析和物理性质测试,并将其作为模拟计算的输入条件。
4.侵蚀机理分析:根据水动力条件、河床形态和底床材料特征,可以通过数学模型对河床冲刷机理进行分析和预测。
常用的数学模型包括稳态均衡模型、非稳态均衡模型、非稳态水沙模型等。
通过选择合适的模型,可以模拟桥下河床冲刷过程,预计算河床冲刷的程度和速率。
5.设计桥台和桥墩:根据预计算结果,需要合理设计桥台和桥墩的结构和布置。
桥梁设计中,通常会采用防冲刷措施,如设置防冲刷装置、铺设防冲砾石、加固岸坡等方式来减轻河床冲刷的影响。
根据预计算结果进行桥梁设计,可以提高桥梁的稳定性和安全性。
总之,预计算桥下河床冲刷过程需要综合考虑水动力条件、河床形态、底床材料和侵蚀机理等因素。
通过合理选择数学模型,预计算河床冲刷的程度和速率,并根据结果进行桥梁设计,可以提高桥梁的稳定性和安全性。
在实际工程中,需要结合具体情况综合考虑,确保桥梁的设计符合工程要求。
桥涵水文4
桥涵水文
第一节
桥位河段水流图式和桥孔布置原则
二、桥孔布臵的原则
(3)桥位下端—压缩区
③-③’之间,水深继续降低,由于有桥墩的阻水,水流速 度继续增大,继续造成冲刷。 有导流堤——桥孔断面 过水断面的最小断面: 无导流堤——桥孔下游
桥涵水文
第一节
桥位河段水流图式和桥孔布置原则
(4)桥位下游—扩散区
水流逐渐扩散至天然河宽,流速逐渐变小直至恢复天然 河道流速,水流的携沙能力由大变小,在河床上从冲刷变小 到出现淤积,又从淤积逐渐减小到恢复天然河道河流状态。
桥涵水文
第二节
桥孔长度计算
桥涵水文
第二节
桥孔长度计算
桥孔长度:
设计水位两桥台前缘之间(埋入式桥台则为两桥台护
坡坡面之间)的水面宽度。
桥涵水文
第二节
桥孔长度计算
桥涵分类有两个标准:单孔跨径和多孔跨径总长。
公路桥涵
多孔跨径总长L/m L≥1000 100≤ L ≤ 1000 30< L<100 单孔跨径l/m l≥150 40 ≤ l ≤ 150 20<l<40
桥涵水文
第一节
桥位河段水流图式和桥孔
布臵原则
桥涵水文
第一节
桥位河段水流图式和桥孔布置原则
从桥涵水文的角度看,孔径若小于河道天然宽度太多, 河道被桥大量压缩,过水断面减小,桥位断面流速相应增大, 将引起较大的冲刷。从而影响了桥墩基础的埋臵深度,增加 了施工难度,使造价提高。
冲刷计算
4.3 冲刷与淤积分析计算建桥后,由于桥墩的束水作用,桥位处河床底部将发生下切冲刷。
根据工程地质勘探报告,该桥桥址处,河床冲刷层为亚粘土。
河床的冲刷计算按粘性土河床处理。
4.3.1一般冲刷计算采用《公路桥位勘测设计规范》中8.5.4-1式85135'233.0⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=L c mc c p I h h B Q A h μ(4-3式)式中, h p --桥下一般冲刷后的最大水深(m);Q 2--河槽部分通过的设计流量(m 3/s ); μ—桥墩水流侧向压缩系数,查《公路桥位勘测设计规范》中表8.5.3-1;h mc--桥下河槽最大水深(m ); c h --桥下河槽平均水深(m );A —单宽流量集中系数,5.0⎪⎪⎭⎫⎝⎛=H B A ,B 、H 为平滩水位时河槽宽度和河槽平均水深。
A=1.0~1.2'c B --桥下河槽部分桥孔过水净宽(m ) ,当桥下河槽扩宽至全桥时'c B 即为全桥桥下过水净宽;I L --冲刷坑范围内粘性土液性指数,在本公式中I L 的范围为0.16~1.19。
根据工程地质勘探报告,牧野桥I L =0.67。
经计算得:现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,最大冲坑深3.58m 。
按规划整治后的河道条件下,该桥100年一遇设计洪水位为71.30m 时,一般冲刷完成后,主槽最大水深h p 为6.42m ,最大冲坑深1.26m 。
4.3.2 局部冲刷计算牧野路卫河桥设计墩宽b=2.40m ,桥墩的走向与水流方向一致,墩形计算宽度B 1=2.40m ,查《公路桥位勘测设计规范》附录16,K ξ =0.98。
一、现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,H p /B 1=3.83>2.5,根据《公路桥位勘测设计规范》采用该规范中的8.5.4-3式V I B K h L b 25.16.0183.0ξ= (4-4式)式中,h b --桥墩局部冲刷深度(m);K ξ--墩形系数;B 1--桥墩计算宽度(m ); hp--一般冲刷后最大水深 (m);d -- 河床泥沙平均粒径, d =0.0145(mm );V-- 一般冲刷后墩前行进流速(m/s)3261ph d E V = =1.43E —与汛期含沙量有关的系数,查《公路桥位勘测设计规范》中表8.5.3-2,E=0.66。
Chapter06-桥梁墩台冲刷计算
4
g s1 11
4
1
Q1 B1 h 1
1-上游天然河道河槽流速,m / s;
B1-上游天然河道河槽河宽,m ;
h 1-上游天然河道河槽平均水深,m ;
故
Q 1 G1 1 Bh 1 1
B 1
4
64-2公式
桥下断面的排沙量
G2 g s 2 Q 2 4 B2 j= 2 2 B2 j= 2 B h 2j 2 Q 2 B B 2 2j 2j B2 j h 2
3 5
hm ax h
Qcp L j hp 1 0.22 I L e
1 z 0.22 I L 3e
1.3
5
1.15
hP
2 3
hm ax h
1.2 大中桥设计一般规定
2 桥下一般冲刷深度
一般冲刷深度hp:一般冲刷停止时的桥下铅直水深。(河 床在一般冲刷完成后从设计水位算起的 某一垂线水深。) 一般冲刷深度计算现主要按经验公式计算,常用 有64-1公式、64-2公式和包尔达可夫公式。 2.1 无粘性土河床 A) 河槽 当河槽断面流速等于冲止流速时,桥下一般冲 刷随即停止,且一般冲刷深度达到最大。
4
(1 ) B 2
4
2 hP 1
1 4
Q 2 Q 1
B1 (1 ) B 2
h 1
3 4
考虑单宽流量分布不均匀和集中趋势的影响。
Q 2 hP K Q 1
冲刷计算
4.4.1自然冲刷河床演变是一个非常复杂的自然过程,目前尚无可靠的定量分析计算方法,根据《公路工程水文勘测设计规范》(JTG C30—2002)中7.2条的要求,河床的自然冲刷是河床逐年自然下切的深度。
经深入调查,桥位处河段整体无明显自然下切现象,由于泥沙淤积,河床会逐年抬高,本次计算不考虑自然冲刷的情况。
4.4.2一般冲刷大桥建成后,由于受桥墩阻水影响,桥位断面过水断面减小,从而引起断面流速增大,水流挟沙能力也随之增大,会造成桥位断面河床冲刷。
根据地质勘察报告,桥位处河床为砂卵石层,河床泥沙平均粒径为40(mm )。
按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,非粘性土河床的一般冲刷可采用64—2简化公式计算:()max 66.029.02104.1h B B Q Q A h cc p ⎭⎬⎫⎩⎨⎧-⎪⎪⎭⎫ ⎝⎛=μλ公式中: h p ——桥下河槽一般冲刷后最大水深(m ); Q 2——桥下河槽部分通过的设计流量(m 3/s ); Q c ——天然状态下河槽流量(m 3/s );A ——单宽流量集中系数 15.0⎪⎪⎭⎫⎝⎛=H B A ;B C ——计算断面天然河床宽度(m );λ——设计水位下,桥墩阻水面积与桥下过水面积比值;μ——桥台前缘和桥墩两侧的漩涡区宽度与桥孔长度之比; B 2——桥下断面河床宽度(m ); h max ——桥下河槽最大水深(m )。
经计算:桥址处各设计频率一般冲刷深度成果见表4.4—1。
表4.4—1 XX 大桥一般冲刷计算成果表4.4.3局部冲刷根据XX 大桥桥型布置图,按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,局部冲刷计算采用65—1修正式中的公式进行计算:当V >V 0时,10,00,'006.011,b )(K n V V V V v B K h v ⎭⎬⎫⎩⎨⎧---=ηξ h b —桥墩局部冲刷深度(m )从一般冲刷后床面算起; K ξ—墩形系数,K ξ=1.05; K η1—河床颗粒影响系数; B 1—桥墩计算宽度;V—一般冲刷后墩前行近流速(m/s);V0—河床泥沙起动流速(m/s);V,0—墩前泥沙起冲流速(m/s);n1—指数。
第六章 冲刷计算及导治建筑物的布设
第六章 冲刷计算及导治建筑物的布设
1940年,美国华盛顿州的塔科玛峡谷上花费640万美 元,建造了一座主跨度853.4米的悬索桥。建成4个月后,于 同年11月7日碰到了一场风速为19米/秒的风。虽风不算大, 但桥却发生了剧烈的扭曲振动,且振幅越来越大(接近9 米),直到桥面倾斜到45度左右,使吊杆逐根拉断导致桥 面钢梁折断而塌毁,坠落到峡谷之中。人们在调查这一事 故收集历史资料时,惊异地发现:从1818年到19世纪末, 由风引起的桥梁振动己至少毁坏了11座悬索桥。
局部冲刷坑的组成:
下部是河底向下反向旋涡淘刷形成的,边坡比较陡,坑的范围 也不大;
上部是当下部冲刷坑形成后,床沙下塌形成的,其边坡接近于 土壤水中的安息角α,其范围随着下部冲刷坑的下降而加大;
在墩后一对竖轴漩涡,使得墩后的泥沙发生淤积。
滞 流 区 C) ( 回 流 区 B) ( 主 流 区 A) (
平均水深。
第六章 冲刷计算及导治建筑物的布设
(2)河滩及人工渠道部分
桥下河滩冲刷后,只有当流速降低到土壤容许不冲
刷流速时,才逐渐停止,其冲止流速为河滩土壤容许不
冲刷流速。桥下河滩部分的一般冲刷深度为:
5
hp
At
Q t ( hmt Bt ht
v H1
5
)3
6
B t — 桥下河滩部分桥孔过水净宽; v H 1 — 水深1m时非黏性土的不冲刷流速;
桥下河槽的一般冲刷主要是通过推移质的运 动来完成的。可以根据河槽断面推移质输沙量的 平衡条件,导出一般冲刷计算公式。
第六章 冲刷计算及导治建筑物的布设
推移质输沙率:
单位时间内,在河槽单位宽度过水断面上通过的推移 质数量,称为推移质输沙率(kg/s.m)。
第六章_冲刷计算
称为一般冲刷。
随着一般冲刷的发
ZS
展,河床不断刷深,桥
下断面逐渐扩大,过水
断面面积不断增大。
随着桥下断面的扩大,流速相应降低,水流挟沙 能力也随之降低。当流速降低到不能继续冲刷河床时, 冲刷即趋于停止了。此时,桥下过水断面最大,一般 冲刷的深度也达到最大。
表示方法:
通常用一般冲刷 停止时桥下的垂线水
挟沙能力也随着降低。当断面扩大到使流速降到Qb2 ≈ Qb1 ,输沙平衡,桥下一般冲刷就停止了,此时,桥 下过水断面最大,水深也达到最大。
来沙: 单宽输沙率: 断面输沙率: 排沙:
qb1 1V14
Qb1
B1qb1
B11V14
B11
(
Q1 B1h1
)4
单宽输沙率:
qb2
V4
22
断面输沙率: Qb2
式中,VH1为河滩水深为1m时非粘性土容许不冲刷流 速,与河滩泥沙组成有关,可查表6-1。
5
hP
QtP
LtjVH
1
( hmt ht
)
5
3
6
(6 9)
式中,Ltj为桥下河滩部分桥孔净长; QtP为桥下河滩部分通过的设计流量;
QtP
Qt Qc Qt
QP
QtP
tCt
n
ht
QP
(iCi hi )
qs Aqmax
(6 3)
A称为单宽流量集中系数。
A 0.15 ( B )0.15
H
(6 4)
稳定河段:A=1.0~1.2;次稳定河段:A=1.3~1.4;不稳
定河段:A=1.5~1.7,最大不超过1.8。
冲止流速:
Vs
Ed h 1 6
浅析桥梁一般冲刷计算
浅析桥梁一般冲刷计算
跨河桥梁由于约束了河流的自然形态,占据了部分河道的行洪面积,引起桥墩附近水流和泥沙情势改变,从而会使该处河床产生冲刷变形。
影响冲刷的因素十分复杂,很难准确计算。
在一般情况下,影响冲刷的主要因素有流速、水深、泥沙粒径、泥沙颗粒级配以及桥墩形状、桥墩与水流方向夹角等。
在桥梁水文计算中,桥下冲刷一般分为三部分。
即河流造床期自然演变而引起的冲刷—自然冲刷;因桥孔压缩河床断面而引起冲刷—一般冲刷;在桥墩周围局部产生的冲刷—局部冲刷。
本文根据黑龙江省境内由笔者设计的五座大桥河床一般冲刷计算结果,简要论述一下两种常用桥梁一般冲刷公式“64-1公式”和“包尔达可夫公式”的适用范围和特点。
自己的冲刷公式
1、河滩部分一般冲刷注:非粘性土河床的一般冲刷(就一个公式)h p=[(h tm/h tq)5/3Q1/(μB tj)/(V H1)]5/6 Q1= Q P Q t1/(Q C +Q t1)h tm—桥下河滩最大水深;123.45-116.75=6.70mh tq—桥下河滩平均水深; 6.0mB tj—河滩部分桥孔净长;1240-362-38=840mV H1—河滩水深1m时非粘性土不冲刷流速;0.38m/s2、河槽部分一般冲刷计算注:64-2简化式 非粘性土河床的一般冲刷h p = 1.04(A d Q2/ Q C)0.90{B C/[(1-λ)μB cg ]}0.66h cm A d—单宽流量集中系A =(√B C/H C)0.15B C—天然状态下河槽宽度;362mH C—平滩水位时河槽平均水深;4.04mQ2—桥下河槽部分通过的设计流量;Q2= Q P Q C/(Q C +Q t1)3、河滩局部冲刷注:65-1按65-1式计算V=Ed1/6 h p2/3式中:V— 一般冲刷后墩前行进流速;V0=0.0246(h p/d)0.14√(332d+(10+ h p)/d0.72)E-含砂率,见P28式中:V0—河床泥沙起动流速;0.081748∵V > V0∴h b=KξKη1B10.6(V-V0’)/ [(V-V0’)/(V0-V0’)]n1式中:Kξ — 墩形系数; Kξ=1.10B1 — 桥墩计算宽度; B1=L-b=6-4=2mKη1 — 河床颗粒影响系数;Kη1 =0.8(1/d0.45+1/d0.15)V0’ — 墩前泥沙始冲流速;V0’=0.462(d/B1)0.06V0式中:d —河床泥沙平均粒径; 0.5mm (由地质资料可知)n1 —指数n1= (V0/V)**(0.25d-0.19)4、河槽桥墩局部冲刷按65—2式计算V0=0.28(d+0.7)0.5式中:V0—河床泥沙起动流速;V=(A d0.1/1.04)(Q2/ Q C)0.1{B C/[(1-λ)μB cg)]}0.34(h cm/h c)2/3V C式中:V— 一般冲刷后墩前行进流速;H C—平滩水位时河槽平均水深;4.04mQ2—桥下河槽部分通过的设计流量;Q2= Q P Q C/(Q C +Q t1)Q C—天然状态下河槽流量;6700 m3/sQ p —设计流量;13960 m3/s式中:V— 一般冲刷后墩前行进流速;V0’ — 墩前泥∵V > V0V0’=0.12(∴h b=KξKη2B10.6 h p0.15 [ (V-V0’)/V0]n2n2 —指式中:Kξ — 墩形系数; Kξ=1.10n2= (V0/V B1 — 桥墩计算宽度; B1=L-b=6-4=2mh p = 1.04(A d Q2/ Q C)0.90{B C/[(1-λ)μB cg)]}0.66h cmKη2 — 河床颗粒影响系数; Kη2 =0.375d0.24+0.0023/d2.2按6.2.1—1式计算,L j=K q(Q P/Q C)n3B c按6.2.1—2式计算, Lj=Q P/(βq C),β=1.19(Q c/Q t)0.10β—水流压缩系数q c —河槽平均单宽流量,q c=Q c/B c需要填充的数据床的一般冲刷—单宽流量集中系数d=(√B/H)0.15dA d—单宽流量集中系数A =(√B/H)0.15V0’ — 墩前泥沙始冲流速;V0’=0.12(d+0.5)0.55n2 —指数;n2= (V0/V)0.23+0.19lgd。
桥梁冲刷计算
与汛 期含 沙量 有关 的系 数, 可按 表
7.3.12选 用 因此 可 得:
(Ad×
Q2/(μ×
hp=
Bcj)× (hcm/hcq
)5/3/(E×
d1/6))3/5
= 4.550 m
2 、河 滩部 分
hp=(Q1/( μ×Btj) × (htm/htq) 5/3/VH1)5/
6
Q1=Qt1/(Q c+Qt1)× Qp
一、 桥下 (一 )、 非粘 性土 河床 的一 般冲 刷
1 、河 槽部 分
1) 64-2 简化 式
hp=1.04 ×(Ad×
Q2=Qc/(Qc +Qt1)×Qp
Ad=((Bz)0 .5/Hz)0.15
式 频率为 中: p%的设
桥下 河槽 部分 通过 的设 计流 量
XXX大桥
(K1+432)
Qp= 1305.99 m3/s Q2= 713.39 m3/s
造床 流量 下的 河槽 宽度 对复 式河 床可 取平 滩水 位时 河槽 宽度
设计 水位 下, 在Bcg 宽度 范围 内, 桥墩 阻水
桥墩 水流 侧向 压缩 系 数, 应按 表 7.3.11确 定
河槽 最大 水深
Bz= 140 m
λ= 0.068966 μ= 0.94
hcm=
4
m
单宽 流量 集中 系 数, 山前 变迁 、游 荡、 宽滩 河段
= 4.129 m
2) 64-1 修正 式
hp=(Ad× Q2/(μ× Bcj)× (hcm/hcq )5/3/(E × d1/6))3/5
河槽部分 桥孔过水 式 净宽,当 中: 桥下河槽 能扩宽至 全桥时 即为全桥 桥孔过水 净宽
冲刷计算
4.3 冲刷与淤积分析计算建桥后,由于桥墩的束水作用,桥位处河床底部将发生下切冲刷。
根据工程地质勘探报告,该桥桥址处,河床冲刷层为亚粘土。
河床的冲刷计算按粘性土河床处理。
4.3.1一般冲刷计算采用《公路桥位勘测设计规范》中8.5.4-1式85135'233.0⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=L c mc c p I h h B Q A h μ(4-3式)式中, h p --桥下一般冲刷后的最大水深(m);Q 2--河槽部分通过的设计流量(m 3/s ); μ—桥墩水流侧向压缩系数,查《公路桥位勘测设计规范》中表8.5.3-1;h m c--桥下河槽最大水深(m ); c h --桥下河槽平均水深(m );A —单宽流量集中系数,5.0⎪⎪⎭⎫⎝⎛=H B A ,B 、H 为平滩水位时河槽宽度和河槽平均水深。
A=1.0~1.2'c B --桥下河槽部分桥孔过水净宽(m ) ,当桥下河槽扩宽至全桥时'c B 即为全桥桥下过水净宽;I L --冲刷坑范围内粘性土液性指数,在本公式中I L 的范围为0.16~1.19。
根据工程地质勘探报告,牧野桥I L =0.67。
经计算得:现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,最大冲坑深3.58m 。
按规划整治后的河道条件下,该桥100年一遇设计洪水位为71.30m 时,一般冲刷完成后,主槽最大水深h p 为6.42m ,最大冲坑深1.26m 。
4.3.2 局部冲刷计算牧野路卫河桥设计墩宽b=2.40m ,桥墩的走向与水流方向一致,墩形计算宽度B 1=2.40m ,查《公路桥位勘测设计规范》附录16,K ξ =0.98。
一、现状河道条件下,该桥100年一遇设计洪水位为72.73m 时,一般冲刷完成后,主槽最大水深h p 为9.19m ,H p /B 1=3.83>2.5,根据《公路桥位勘测设计规范》采用该规范中的8.5.4-3式V I B K h L b 25.16.0183.0ξ= (4-4式)式中,h b --桥墩局部冲刷深度(m);K ξ --墩形系数; B 1--桥墩计算宽度(m );h p--一般冲刷后最大水深 (m);d -- 河床泥沙平均粒径, d =0.0145(mm );V-- 一般冲刷后墩前行进流速(m/s)3261p h d E V = =1.43E —与汛期含沙量有关的系数,查《公路桥位勘测设计规范》中表8.5.3-2,E=0.66。
冲刷计算
4.4.1自然冲刷河床演变是一个非常复杂的自然过程,目前尚无可靠的定量分析计算方法,根据《公路工程水文勘测设计规范》(JTG C30—2002)中7.2条的要求,河床的自然冲刷是河床逐年自然下切的深度。
经深入调查,桥位处河段整体无明显自然下切现象,由于泥沙淤积,河床会逐年抬高,本次计算不考虑自然冲刷的情况。
4.4.2一般冲刷大桥建成后,由于受桥墩阻水影响,桥位断面过水断面减小,从而引起断面流速增大,水流挟沙能力也随之增大,会造成桥位断面河床冲刷。
根据地质勘察报告,桥位处河床为砂卵石层,河床泥沙平均粒径为40(mm )。
按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,非粘性土河床的一般冲刷可采用64—2简化公式计算:()max 66.029.02104.1h B B Q Q A h cc p ⎭⎬⎫⎩⎨⎧-⎪⎪⎭⎫ ⎝⎛=μλ公式中: h p ——桥下河槽一般冲刷后最大水深(m ); Q 2——桥下河槽部分通过的设计流量(m 3/s ); Q c ——天然状态下河槽流量(m 3/s );A ——单宽流量集中系数 15.0⎪⎪⎭⎫⎝⎛=H B A ;B C ——计算断面天然河床宽度(m );λ——设计水位下,桥墩阻水面积与桥下过水面积比值;μ——桥台前缘和桥墩两侧的漩涡区宽度与桥孔长度之比; B 2——桥下断面河床宽度(m ); h max ——桥下河槽最大水深(m )。
经计算:桥址处各设计频率一般冲刷深度成果见表4.4—1。
表4.4—1 XX 大桥一般冲刷计算成果表4.4.3局部冲刷根据XX 大桥桥型布置图,按《公路工程水文勘测设计规范》(JTG C30—2002)的技术要求,局部冲刷计算采用65—1修正式中的公式进行计算:当V >V 0时,10,00,'006.011,b )(K n V V V V v B K h v ⎭⎬⎫⎩⎨⎧---=ηξ h b —桥墩局部冲刷深度(m )从一般冲刷后床面算起; K ξ—墩形系数,K ξ=1.05; K η1—河床颗粒影响系数; B 1—桥墩计算宽度;V —一般冲刷后墩前行近流速(m/s );V0—河床泥沙起动流速(m/s);V,0—墩前泥沙起冲流速(m/s);n1—指数。
一般冲刷计算公式
一般冲刷计算公式:cm cg cc d p h B B Q Q A h 66.090.02)1(04.1⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=μλ12t c cQ Q Q Q +=15.0⎪⎪⎭⎫⎝⎛=z z d H B A式中:h p ——桥下一般冲刷后的最大水深(m); Q p ——频率为P %的设计流量(m 3/s);Q 2——桥下河槽部分通过的设计流量(m 3/s),当河槽能扩宽至全桥时取用Q p ; Q c ——天然状态下河槽部分设计流量(m 3/s); Q t1——天然状态下桥下河滩部分设计流量(m 3/s);B cg ——桥长范围内的河槽宽度(m),当河槽能扩宽至全桥时取用桥孔总长度; B z ——造床流量下的河槽宽度(m),对复式河床可取平滩水位时河槽宽度; λ——设计水位下,在B cg 宽度范围内,桥墩阻水总面积与过水面积的比值; μ——桥墩水流侧向压缩系数; h cm ——河槽最大水深(m);A d ——单宽流量集中系数,山前变迁、游荡、宽滩河段当A d >1.8时,A d 值可采用1. 8;H z ——造床流量下的河槽平均水深(m),对复式河床可取平滩水位时河槽平均水深。
②非粘性土河床桥墩局部冲刷计算桥渡冲刷的产生是由于桥墩阻碍了水流,使水流形态发生变化,一般在墩前两侧发生集中现象,引起动能增加;另一方面水流受阻后部分动能转化为位能,由于水流形态变化,桥墩附近水流冲刷能力加大,在桥墩处产生冲刷坑。
局部冲刷计算公式当V ≤V 0时,⎪⎪⎭⎫ ⎝⎛-=0015.06.012'V V V h B K K h pb ηε当V >V 0时,20015.06.012'n pb V V V h B K K h ⎪⎪⎭⎫ ⎝⎛-=ηε24.02.22375.00023.0d dK +=η5.00)7.0(28.0+=d V 55.00)5.0(12.0'+=d Vd V Vn lg 19.023.002)(+=式中:h b ——桥墩局部冲刷深度(m): K ξ——墩形系数; B1——桥墩计算宽度(m); h p ——一般冲刷后的最大水深(m); d ——河床泥沙平均粒径(mm); K η2——河床颗粒影响系数;V ——一般冲刷后墩前行近流速(m/s), V o ——河床泥沙起动流速(m/s); V ,0——墩前泥沙起冲流速(m/s); n 2 ——指数。
冲刷计算
φ Kζ ' Bm Kh2 hp B1 ' B2 ' h2 hφ B1 Kη v v0 v0 ' n
1 1 3.5 0.16 3.19 6.19 10.18 2.00 0.30 8.95 0.97 0.67 1.0E+00 4.5E-01 1.2E+00 0.67 0.16 1.41 0.9981 模式10 0.22 3.41
轴夹角(°) 局部冲刷下非黏性土粒径(mm) 一般冲刷下河槽黏性土液性指数 墩形系数 墩形系数 桩的排数 b1 L1 b2 L2 h1 BH d IL Kζ Kζ m
1 2
符号 Qp Qc Qt ωc ωd Bd hmc ωt Bt hmt At dc E IL VH1 IL
数值 93.05 93.05 0.0 115.28 115.28 28.01 3.10 1.0E+08 1.0E+08 1.0E+08 0.00 6.0E+00 6.0E-01 0.26 1.0E+08 1.00E-50 0.00 0.00 28.01 1.0E+00 4.12 4.12 100000000.00 1.04 6.75E-01 #DIV/0! 3.19 0.00
河床的桥下一般冲刷计算 指标 设计流量(m³/s) 河槽流量(m³/s) 河滩流量(m³/s) 河槽过流面积(m²) 平滩水位时河槽过流面积(m²) 河槽宽(m) 河槽最大水深(m) 河滩过流面积(m²) 河滩宽 河滩最大水深(m) 河滩流量非均匀分配系数 一般冲刷下河槽非黏性土粒径(mm) 河槽非黏性土汛期含沙量系数 一般冲刷下河槽黏性土液性指数 河滩水深1米非黏性土不冲刷流速 一般冲刷下河滩黏性土液性指数 河槽桥墩阻水宽度 河滩桥墩阻水宽度 河槽净宽(m) 河滩净宽(m) 平滩水位时河槽平均水深(m) 河槽平均水深hc(m) 河滩平均水深ht(m) 河槽单宽流量集中系数 河槽非黏性土一般冲刷后墩前行进流速度(m/s) 河滩非黏性土一般冲刷后墩前行进流速度(m/s) 河槽一般冲刷后最大水深(m) 河滩一般冲刷后最大水深(m) 局部冲刷计算 桥墩位于河槽或河滩 墩身纵向宽(m) 墩身横向长(m) 承台纵向宽(m) 承台横向长(m) 承台顶距设计水位深度(m) 承台厚度(m) 水流与Y
一般冲刷计算公式
一般冲刷计算公式:cm cg cc d p h B B Q Q A h 66.090.02)1(04.1⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=μλ12t c cQ Q Q Q +=15.0⎪⎪⎭⎫⎝⎛=z z d H B A式中:h p ——桥下一般冲刷后的最大水深(m); Q p ——频率为P %的设计流量(m 3/s);Q 2——桥下河槽部分通过的设计流量(m 3/s),当河槽能扩宽至全桥时取用Q p ; Q c ——天然状态下河槽部分设计流量(m 3/s); Q t1——天然状态下桥下河滩部分设计流量(m 3/s);B cg ——桥长范围内的河槽宽度(m),当河槽能扩宽至全桥时取用桥孔总长度; B z ——造床流量下的河槽宽度(m),对复式河床可取平滩水位时河槽宽度; λ——设计水位下,在B cg 宽度范围内,桥墩阻水总面积与过水面积的比值; μ——桥墩水流侧向压缩系数; h cm ——河槽最大水深(m);A d ——单宽流量集中系数,山前变迁、游荡、宽滩河段当A d >时,A d 值可采用1. 8;H z ——造床流量下的河槽平均水深(m),对复式河床可取平滩水位时河槽平均水深。
②非粘性土河床桥墩局部冲刷计算桥渡冲刷的产生是由于桥墩阻碍了水流,使水流形态发生变化,一般在墩前两侧发生集中现象,引起动能增加;另一方面水流受阻后部分动能转化为位能,由于水流形态变化,桥墩附近水流冲刷能力加大,在桥墩处产生冲刷坑。
局部冲刷计算公式当V ≤V 0时,⎪⎪⎭⎫ ⎝⎛-=0015.06.012'V V V h B K K h pb ηε当V >V 0时,20015.06.012'n p b V V V h B K K h ⎪⎪⎭⎫ ⎝⎛-=ηε 24.02.22375.00023.0d dK +=η 5.00)7.0(28.0+=d V 55.00)5.0(12.0'+=d VdVV n lg 19.023.002)(+= 式中:h b ——桥墩局部冲刷深度(m): K ξ——墩形系数; B1——桥墩计算宽度(m); h p ——一般冲刷后的最大水深(m); d ——河床泥沙平均粒径(mm); K η2——河床颗粒影响系数;V ——一般冲刷后墩前行近流速(m/s), V o ——河床泥沙起动流速(m/s); V ,0——墩前泥沙起冲流速(m/s); n 2 ——指数。
一般冲刷计算
非黏性土河床的桥下一般冲刷
1.河槽部分 hmc= 5.72 hc= 3.42 ht= 2.3 Bc= 103.51 ω c= 2230 Cc= 50 ω t= 451.6 Ct= 25 Qp= 6150 A= 1 IL= 1 qimc= 129.2804 Qc= 5678.478 hp= 41.74811 2.河滩部分 hmt= 3 Bt= 140.6 Qt= 471.5219 qimt= 5.222025 hp= 桥下河槽部分最大水深(m) 桥下河槽部分平均水深(m) 桥下河滩部分平均水深(m) 桥下河槽部分桥孔过水净宽(m) 桥下河槽部分过水断面积(m2) 谢才流速系数 桥下河滩部分过水断面积(m2) 谢才流速系数 设计流量 单宽流量集中系数(1.0~1.2)
冲刷范围内黏性土的液性指数(0.16~1.19)
河槽冲刷停止时的最大单宽流量(m /s·m) 桥下河槽部分通过的设计流量(m3/s) 河槽部分桥下一般冲刷后的最大水深(m) 桥下河滩部分最大水深(m) 桥下河滩部分桥孔过水净宽(m) 桥下河滩部分通过的设计流量(m3/s)
3
河槽冲刷停止时的最大单宽流量(m3/s·m) 10.66579 河滩部分桥下一般冲刷后的最大水深(m)
一般冲刷计算公式
一般冲刷计算公式:cm cg c c d p h BB Q Q A h 66.090.02)1(04.1⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=μλ12t c cQ Q Q Q +=15.0⎪⎪⎭⎫⎝⎛=z z d H B A式中:h p ——桥下一般冲刷后的最大水深(m); Q p ——频率为P %的设计流量(m 3/s);Q 2——桥下河槽部分通过的设计流量(m 3/s),当河槽能扩宽至全桥时取用Q p ; Q c ——天然状态下河槽部分设计流量(m 3/s); Q t1——天然状态下桥下河滩部分设计流量(m 3/s);B cg ——桥长范围内的河槽宽度(m),当河槽能扩宽至全桥时取用桥孔总长度; B z ——造床流量下的河槽宽度(m),对复式河床可取平滩水位时河槽宽度; λ——设计水位下,在B cg 宽度范围内,桥墩阻水总面积与过水面积的比值; μ——桥墩水流侧向压缩系数; h cm ——河槽最大水深(m);A d ——单宽流量集中系数,山前变迁、游荡、宽滩河段当A d >1.8时,A d 值可采用1. 8;H z ——造床流量下的河槽平均水深(m),对复式河床可取平滩水位时河槽平均水深。
②非粘性土河床桥墩局部冲刷计算桥渡冲刷的产生是由于桥墩阻碍了水流,使水流形态发生变化,一般在墩前两侧发生集中现象,引起动能增加;另一方面水流受阻后部分动能转化为位能,由于水流形态变化,桥墩附近水流冲刷能力加大,在桥墩处产生冲刷坑。
局部冲刷计算公式当V ≤V 0时,⎪⎪⎭⎫ ⎝⎛-=0015.06.012'V V V h B K K h pb ηε当V >V 0时,20015.06.012'n pb V V V h B K K h ⎪⎪⎭⎫ ⎝⎛-=ηε24.02.22375.00023.0d dK +=η5.00)7.0(28.0+=d V 55.00)5.0(12.0'+=d Vd V Vn lg 19.023.002)(+=式中:h b ——桥墩局部冲刷深度(m): K ξ——墩形系数; B1——桥墩计算宽度(m); h p ——一般冲刷后的最大水深(m); d ——河床泥沙平均粒径(mm); K η2——河床颗粒影响系数;V ——一般冲刷后墩前行近流速(m/s), V o ——河床泥沙起动流速(m/s); V ,0——墩前泥沙起冲流速(m/s); n 2 ——指数。
第6章 桥下河床冲刷计算1
3 m /sm qm,q——桥下冲刷前 最大单宽流量 与 平均单宽流量;
hmax , h ——桥下冲刷前 最大水深 与 断面平均水深;
Qp——设计流量; Lj——桥孔净长度; μ ——侧收缩系数:μ =1—0.375Vs/lj Vs为通过设计流量Qp时,河槽的天然流速,
QCP 0.9 BC h p 1.04( A ) ( ) 0.66 hmax QC (1 )B2
(6-11)
QCP 0.9 BC h p 1.04( A ) ( ) 0.66 hmax QC (1 )B2
B 0.15 A( ) H
K=1.04,或按经验公式计算; λ ——设计水位下,河槽部分的桥墩阻水面积与桥下过水毛面积的 比值。
hp qs / Vs
将式qs,Vs代入求hp的公式 ,得64—1修正式:
hp [
AQCP
LC j E d
1/ 6
(
hcm hc
) 5 / 3 ]3 / 5
(6-6)
Lcj——桥下 河槽部分 桥孔过水净宽,当桥下河槽扩至全
桥时,为全桥桥孔过水净宽;
h cm,
hc——冲刷前桥下 河槽的最大水深和平均水深;
Q1 B1 h1
Q2
)
4
(1 ) B2 h2
]4
α :与多种因数有关的综合系数
令
Qb1 Qb 2
h2 hp
整理得:
2 1/4 Q2 B1 h p ( ) ( )[ ]3/4 h1 1 Q1 (1 ) B2
公式中各物理量的指数和系数需根据实测资料确定。 考虑推移质单宽输沙率沿河槽宽度的不均匀分布及河床的特征 ,引入了综合素数 K 和 单宽流量集中系数 A,得河槽部分一般冲刷 计算的64—2简化公式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于小桥,其孔径是根据河床铺砌类型的允许流速值决 定的,其进出口沟床要采用同类铺砌规格。小桥进出 口的铺砌范围以及深度等的计算可参照涵洞进出口的 计算方法进行。
WUHEE
一、进口沟床加固
WUHEE
WUHEE
Vs
0.23
1 IL
1.3
h
2 p
3
Qp
hmax
5
3
3
5
hp
L j
0.23
h
1 IL
1.3
Vs
0.22
1 IL
e
1.15
h
2 p
3
Qp
hmax
5
8
3
5
hp
L j
0.22
h
1 IL
1.15
《公路桥位勘测设计规范》(JTJ062-91)
WUHEE
四、墩台底面埋设高程计算 依据:自建桥前天然河床床面算起的河床自然演
变冲刷、一般冲刷和局部冲刷三者最不利组合 所得的总冲刷深度。墩台底面最低埋设高程就 是设计水位减去总冲刷深度和安全埋入深度。
Z jd Zs hp hb h c
WUHEE
第三节 小桥涵进出口沟床加固
小桥涵修建后造成水流集中,流速增加,为防止冲刷, 危及桥涵基础和路基安全,在小桥涵进出口均应作铺 砌加固。
hmax
h h
hmax
WUHEE
第二节 桥墩旁局部冲刷
一、局部冲刷现象
WUHEE
二、非粘性土河床的局部冲刷计算
《公路桥位勘测设计规范》(JTJ062-91): 65-1修正公式,65-2修正公式
1. 65-1修正公式
V V0
hb K K B0.6 V V0'
V V0
hb
K K B0.6
的一般冲刷深度。一般冲刷停止时桥下的垂线 平均流速,称为冲止流速。 《公路桥位勘测设计规范》(JTJ062-91):
64-1修正公式,64-2简化公式
WUHEE
1. 64-1修正公式
根据谢才公式,得桥下冲刷前最大单宽流量与平 均单宽流量的关系:
qm
q hmax h
5
3
Qp
L j
hmax h
5
1
3
hp
2 1
4
Q2 Q1
1
B1
B2
4
h1
hp
1.04
A Qcp Qc
0.90
1
Bc
B2
0.66 hmax
WUHEE
二、粘性土河床的桥下一般冲刷
平均粒径小于0.05mm的泥沙,称为粘性土。
土力学中反映粘土粘结力大小的指标为液性 指数IL和孔隙率e。 IL和e越小,粘土的粘结力越 大,抗冲能力越强,冲止流速也就越大。
WUHEE
WUHEE
2. 出口沟床加固
WUHEE
l kqn
h2
s
hk
h
WUHEE
WUHEE
很高兴与大家共同度过36 个学时的美好时光!
祝各位:学习进步! 事业有成!
WUHEE
第一节 桥下一般冲刷
桥下河床冲刷计算,是确定墩台基础埋深的重要 依据。
桥渡附近河床变形分为三类: 1. 河道自然变化引起; 2. 桥渡束狭水流,增加单宽流量所引起,称一般
冲刷; 3. 由桥墩阻水使水流结构变化,在桥墩周围发生
的,称局部冲刷。
WUHEE
一、非粘性土河床的一般冲刷 冲刷停止时桥下的垂线水深表示该垂线处
V
V0'
V V0
V0' V0'
n
WUHEE
2. 65-2修正公式法
hb
0.46K
B
0.6
h
0.15 p
d
0.068
V V0
V0' V0'
n
三、粘性土河床的局部冲刷计算
hp 2.5 B
hb 0.83K B0.6I 1L.25V
hp 2.5 B
hb 0.55K B0.6hp0.1I LV
3
(1)河槽B H
0.15
Vs E d 1 6 hp2 3
hp
qs Vs
AQcp
Lc Ed1
6
hmax hc
5
3
3
5
WUHEE
(2)河滩部分
hp
qs Vs
Qtp
LtVH
1
hmt ht
5 3 5 6
2. 64-2简化公式 根据输沙平衡原理,有Qb1=Qb2,h2=hp,可得:
(1)河槽部分
A
Qcp
hmax
5
3 5 8
hp
Lc hc
0.33
1 IL
(2)河滩部分
Qtp
hmt
5
3 6
7
hp
Lt ht
0.33
1 IL
WUHEE
三、桥台偏斜水流的一般冲刷
当桥前无导流堤,而河滩被压缩较多时,河 滩水流在桥台附近集中,形成偏斜冲刷。
h
' p
Ph