光电耦合器件的原理及应用
光电耦合器作用和原理
光电耦合器作用和原理光电耦合器(Optocoupler)是一种光学器件,具有隔离性、放大性、线性性、稳定性等特点,广泛应用于电子电路中。
它主要由光发射器、光接收器、隔离层和输出级组成。
光电耦合器的作用是将输入信号转换成光脉冲信号,并通过隔离层隔离与输出№级,同时光脉冲信号被接收器转换为输出信号,从而实现输入输出信号的隔离和传输。
光电耦合器可以起到电气隔离和信号转换的作用,为电子电路提供安全可靠的保护。
同时,光电耦合器还可以提高电路的抗干扰能力和共模抑制比。
光电耦合器的原理是光电效应。
当有光照射到半导体材料上时,根据光电效应,半导体中一部分电子被激发,从而电子从价带跃迁至导带,形成空穴和电子对,从而产生光生载流子。
当半导体中有足够的轻子和空穴,光生载流子迅速扩散和漂移,并在光电接收器结构内的pn结区域结合产生电流。
光电接收器的输出信号与输入光发射器的输入信号一致。
光电耦合器的使用步骤如下:1.根据电路的需求选择合适的光电耦合器,包括光电器件类型、隔离电压等参数。
2.接线时应注意输入端和输出端的电极连接,一般采用直插式或SOP引脚式连接。
3.在电路中正确接入光电耦合器,将输入端连接到输入信号源,输出端连接到需要控制的电路中。
4.在电路通电前,应先检查光电器件的极性和隔离性能是否正确,以免引起损坏。
5.对于高频信号输入,需注意进行匹配和阻抗调节,以保证输入和输出信号传输的准确和稳定。
总之,光电耦合器是一种重要的光学器件,在现代电子电路中广泛应用。
它通过光电效应将输入电信号转换为光信号,隔离并放大信号,提高电路的抗干扰能力和共模抑制比,保证了电路的稳定性和可靠性。
同时,使用光电耦合器还可以避免电路中的接地问题和供电噪音问题。
什么是光电耦合器-其原理作用是什么
什么是光电耦合器?其原理作用是什么光电产品是我们现代生活中必不可少的一种设备,它为我们的生活带来了诸多的便利。
光电产品能够正常的使用,是离不开光电器件的。
光电耦合器就是这样一种非常重要的光电器件。
但是,小编相信绝大多数读者朋友都不是很了解光电耦合器的原理和作用,下面小编就为大家详细介绍光电耦合器的相关知识,希望带领大家了解这种器件的原理和作用。
光电耦合器简介什么是光电耦合器呢?它是一种以光为主要媒介的光电转换元件,它能够实现由光到电、再由电到光的转化。
光电耦合器又叫光电隔离器。
它能够对电路中的电信号产生很好的隔离作用,特别是在照明的电路中,它更是能够有效地保护电路和导线,使光信号和电信号互不干扰,各自进行工作,确保了电源和光源各自的正常有序工作,具有较好的电绝缘能力和防干扰能力。
生活中常见的光电耦合器有很多种类,如光电二极管、三极管,光敏电阻、光控型晶闸管,这些都属于很不错的光电耦合器。
光电耦合器原理那么光电耦合器的工作原理是什么呢?要了解光电耦合器的原理,首先就要了解它的组成部分。
光电耦合器主要是由两部分组成,分别是发光源和受光器,这两部分的元件都同时处于一个密闭的空间中,而且彼此之间都是用绝缘的透明壳体隔离。
电流工作的方式是以发光源的接线口为输入端,电流从这里进入。
以受光器的接线口为输出端,电流从这里输出。
当电流进入到发光源中,发光的元件受到电流作用发光,而且光的亮度会因为输入电流的大小而改变。
当光照到受光器上,受光器发生反应,电流从这里输出就会成为光电流。
那么什么是光电流呢?它是同时具有光电特性的信号,当这种信号传播到受光器上,受光器就会根据光电流的光照强度输出对应大小的电流,这些电流再回到电路中,就会形成一。
光电耦合器原理及使用
光电耦合器,又称光耦,万联芯城销售原装现货光耦元件,品牌囊括TOSHIBA,LITEON,EVERLIGHT,VISHAY等。
型号种类繁多,万联芯城为终端生产企业提供电子元器件一站式配套服务,节省了客户的采购成本。
点击进入万联芯城点击进入万联芯城光耦使用技巧光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。
光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。
目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。
光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。
对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。
但是,使用光耦隔离需要考虑以下几个问题:①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;②光耦隔离传输数字量时,要考虑光耦的响应速度问题;③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。
1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。
由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。
图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。
如果T 1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。
由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。
光电耦合器的工作原理以及应用
光电耦合器的工作原理以及应用1. 工作原理光电耦合器(Optocoupler)是一种能够将输入端和输出端电气信号进行隔离的装置。
它由发光二极管(LED)和光敏三极管(Phototransistor)构成。
当输入端加上电压时,LED发出光信号,该光信号被光敏三极管接收后产生电流。
这种光电耦合的原理实质上是一种光控转换和能量传递的过程。
具体工作原理如下: 1. 输入端的电流通过限流电阻(Rx)流过发光二极管,使其发出一定功率的光信号。
2. 光信号经传输介质到达光敏元件,并激发出光敏元件的电子。
3. 光敏元件将光信号转换为电流信号,并通过输出端引出。
2. 主要构成部分光电耦合器的主要构成部分包括以下几个方面: - 发光二极管(LED):将输入电流转换为光信号。
- 光敏三极管(Phototransistor):将接收到的光信号转换为电流信号。
- 传输介质:用于将光信号从发光二极管传递到光敏三极管。
- 封装结构:提供外部环境下的物理保护和隔离。
3. 应用领域光电耦合器具有隔离、调制和数传等特点,广泛应用于以下领域:3.1 工业自动化控制系统光电耦合器在工业自动化控制系统中起到隔离和信号调制的作用。
它能够将电气信号转换为光信号并进行隔离,防止输入端的噪声、干扰等影响输出端的稳定性。
常见的应用包括: - PLC(可编程逻辑控制器)输入/输出模块 - 隔离式继电器输出模块 - 工业通信接口隔离3.2 通信设备光电耦合器在通信设备中用于隔离输入和输出信号,避免信号干扰和电气故障。
通信设备中常用到的应用包括: - 光纤调制解调器(光猫) - 光电耦合器串并转换器 - 光电耦合器隔离阵列模块3.3 医疗设备光电耦合器在医疗设备中起到信号隔离和电气保护的作用。
它能够将信号从控制电路隔离,确保患者和医护人员的安全。
常见的应用有: - 医疗设备输入/输出模块 - 医疗设备控制系统 - 医疗器械接口隔离3.4 电力电子设备光电耦合器在电力电子设备中用于信号隔离、电气保护和触发控制。
光电耦合器的原理及应用
光电耦合器原理及应用随着半导体技术和光电子学的发展,一种能有效地隔离噪音和抑制干扰的新型半导体器件——光电耦合器于1966年问世了。
光电耦合器的优点是体积小、寿命长、无触点、抗干扰能力强、能隔离噪音、工作温度宽,输入输出之间电绝缘,单向传输信号及逻辑电路易连接等。
光电耦合器按光接收器件可分为有硅光敏器件(光敏二极管、雪崩型光敏二极管、PIN光敏二极管、光敏三极管等)、光敏可控硅和光敏集成电路。
把不同的发光器件和各种光接收器组合起来,就可构成几百个品种系列的光电耦合器,因而,该器件已成为一类独特的半导体器件。
其中光敏二极管加放大器类的光电耦合器随着近年来信息处理的数字化、高速化以及仪器的系统化和网络化的发展,其需求量不断增加。
工作原理在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。
基本工作特性(以光敏三极管为例)A、共模抑制比很高在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。
B、输出特性光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。
当IF>0时,在一定的IF作用下,所对应的IC基本上与VCE无关。
IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。
C、光电耦合器可作为线性耦合器使用。
在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。
光电耦合器也可工作于开关状态,传输脉冲信号。
光电耦合器工作原理
光电耦合器工作原理光电耦合器(Optocoupler)是一种能够实现电-光转换和光-电转换的电子器件。
它由一个发光二极管(LED)和一个光敏二极管(光控电阻)组成,通过光线的传输来实现电信号的隔离和传输。
光电耦合器广泛应用于电气隔离、信号传输、噪声抑制等领域。
光电耦合器的工作原理如下:1. 发光二极管(LED)发光:当外部电流通过发光二极管时,LED会发出光线。
发光二极管内部的材料被激发,产生光子能量。
2. 光子传输:发光二极管发出的光线经过一个透明的隔离区域,传输到光敏二极管的光敏区域。
这个透明的隔离区域通常由空气或透明的塑料材料构成。
3. 光敏二极管(光控电阻)光电转换:光线到达光敏二极管后,光敏二极管中的光敏材料会吸收光子能量,并产生电子-空穴对。
这些电子-空穴对会在二极管中产生电流。
4. 电流转换:光敏二极管中产生的电流会通过外部电路进行放大和处理。
光敏二极管的电流可以用来控制另一个电路或设备的工作状态。
通过以上的工作原理,光电耦合器实现了电信号和光信号之间的隔离和转换。
它可以将输入电路与输出电路完全隔离,从而实现电气隔离和信号传输的目的。
光电耦合器在工业控制、通信设备、医疗设备等领域得到广泛应用。
光电耦合器的特点和优势包括:1. 高隔离性能:光电耦合器能够实现高达数千伏的电气隔离,有效地防止电流、电压和信号的干扰和传递。
2. 宽工作温度范围:光电耦合器能够在较宽的温度范围内正常工作,适应各种环境条件。
3. 快速响应速度:光电耦合器的光电转换速度快,能够实现高速信号传输和响应。
4. 低功耗:光电耦合器的功耗较低,能够节省能源和减少发热。
5. 可靠性高:光电耦合器采用固态器件,没有机械部件,寿命长,可靠性高。
总结起来,光电耦合器通过光信号的转换和隔离,实现了电气隔离和信号传输的功能。
它在电子设备中起到了重要的作用,广泛应用于各个领域。
随着技术的不断发展,光电耦合器的性能和应用领域将会得到进一步的拓展和提升。
光电耦合器的作用和工作原理
光电耦合器的作用和工作原理光电耦合器用于数模之间的转换。
光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。
它由发光源和受光器两部分组成。
把发光源和受光器组装在同一密闭的壳体内,彼此间用透亮绝缘体隔离。
发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管其工作原理时:在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照耀到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就可以实现电一光一电的转换。
光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰力量强,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年月进展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调整掌握端电流来转变占空比,达到精密稳压目的。
在光耦电路设计中,有两个参数经常被人忽视,需要非常留意,一个是反向电压Vr(Reverse Voltage ),是指原边发光二极管所能承受的最大反向电压,超过此反向电压,可能会损坏LED。
而一般光耦中,这个参数只有5V左右,在存在反压或振荡的条件下使用时,要特殊留意不要超过反向电压。
如,在使用沟通脉冲驱动LED时,需要增加爱护电路。
另外一个参数是光耦的电流传输比(current transfer ratio,简称CTR),是指在直流工作条件下,光耦的输出电流与输入电流之间的比值。
光耦的CTR类似于三极管的电流放大倍数,是光耦的一个极为重要的参数,它取决于光耦的输入电流和输出电流值及电耦的电源电压值,这几个参数共同打算了光耦工作在放大状态还是开关状态,其计算方法与三极管工作状态计算方法类似。
光耦的作用及工作原理输入电压和输出电压
光耦的作用及工作原理输入电压和输出电压光耦,也称为光电耦合器,是一种利用光学和电学相结合的器件,用于实现光和电信号之间的隔离和转换。
光耦常用于电路的隔离、抑制噪声、电气绝缘等应用中。
其工作原理基于光伏效应和光导效应,能够将输入端的光信号转换为输出端的电信号,实现信号的隔离传递。
在光耦的内部结构中,通常包含一个发光二极管和一个光敏三极管。
当输入电压施加在发光二极管上时,发光二极管会发出一束光线,照射到光敏三极管上。
光敏三极管在光照射下会发生电导率变化,从而产生输出电压。
这种通过光信号控制电信号的转换方式,实现了输入与输出之间的电气隔离。
光耦在电子电路中广泛应用,特别是在需要进行隔离传递信号的场合。
通过光耦器件可以实现输入端与输出端的电气隔离,有效地防止信号传递过程中的干扰和噪声,提高了系统的稳定性和可靠性。
此外,光耦还可以在不同电压级别之间传递信号,将高压电路和低压电路有效隔离,确保电路的安全性。
在工业控制系统、通信设备、电源管理等领域,光耦器件被广泛应用。
它能够有效地传递信号,保证各部分之间的隔离,防止电气干扰和电路损坏,为整个系统的运行提供保障。
光耦器件不仅能够实现电气隔离,还能够传递各种类型的信号,包括模拟信号和数字信号。
总的来说,光耦作为一种重要的光电器件,在现代电子电路中发挥着关键作用。
它通过光学和电学的结合,实现了输入信号到输出信号的转换,保证了信号的传递稳定性和可靠性。
同时,光耦还能够隔离各部分之间的电气连接,防止电路间的相互干扰,提高了系统的整体性能。
在未来的发展中,光耦器件将继续扮演重要角色,为各种电子设备和系统的运行提供支持和保障。
1。
光电耦合器的工作原理及作用
光电耦合器的工作原理及作用光电耦合器,这名字听起来挺高大上的,但其实它的工作原理和作用可简单多了。
想象一下,如果电子设备是一个大家庭,光电耦合器就是家庭中的调解员。
它的任务是让不同的“成员”之间能够顺畅交流,同时又不让它们“打架”。
这可不是小事,尤其是在电压和电流的“性格”不合的时候。
光电耦合器到底是怎么做到这一点的呢?简单来说,它利用光信号来传递信息。
你可以把它想象成一个小小的灯泡,发出光来代替电流。
电流通过发光二极管(LED)变成光信号,再通过光敏元件(通常是光电晶体管)把光信号重新变回电流。
就像一个双语翻译员,把不同语言的对话翻译得流畅无比。
这样一来,无论是高电压的设备还是低电压的设备,都可以放心地“交流”,互不干扰。
而且光电耦合器可不止是在电气工程领域好使,它在很多地方都大展拳脚,比如家电、自动化设备、甚至医疗仪器。
想想那些让人眼花缭乱的电子产品,光电耦合器在背后默默地支持着,真的是个“隐形英雄”。
如果没有它们,很多设备可能就没法正常工作,真是让人想想就心惊胆战。
说到作用,它最重要的一点就是隔离。
这个隔离可不是说要把人和人隔开,而是电流之间的隔离。
你知道的,有些设备在工作时电压很高,万一不小心“放电”了,其他设备可就惨了。
所以,光电耦合器就像个保护罩,能有效防止高电压对低电压设备造成损害。
想象一下,如果你有一个调皮的小孩在家里,光电耦合器就像一个温柔的看护者,既保护了小孩,也让大人能安心工作,真是一举两得。
在实际应用中,光电耦合器的种类也不少。
比如,有些是用于信号传输,有些则用于开关控制。
不同的用途就像不同的工具,各有各的妙用。
如果把光电耦合器比作一个厨师,那么信号传输就是它的“主菜”,开关控制则是“配菜”,每道菜都有自己的特色,但又能相互搭配,给人一种美妙的味觉享受。
不过,光电耦合器也不是没有缺点。
虽然它的隔离效果好,但在高速信号传输时,可能会出现延迟。
这就像你跟朋友聊天,如果对方总是慢半拍,那交流可就不那么顺畅了。
光电耦合器工作原理
光电耦合器工作原理光电耦合器是一种能够将光信号和电信号进行转换的器件。
它由一个光源和一个光敏元件组成,通过光的照射和光电效应来实现光信号到电信号的转换。
光电耦合器在电子设备中广泛应用,例如隔离电路、光电转换器、光电耦合继电器等。
光电耦合器的工作原理如下:1. 光源发出光信号:光电耦合器的光源通常是一颗发光二极管(LED),它能够将电能转化为光能。
当电流通过LED时,LED会发出一定波长的光信号。
2. 光信号照射到光敏元件上:光敏元件通常是一个光敏二极管(Photodiode)或者光敏三极管(Phototransistor),它能够将光能转化为电能。
当光信号照射到光敏元件上时,光敏元件会产生电流。
3. 电流转换为电信号:光敏元件产生的电流经过放大电路进行放大,然后经过滤波电路进行滤波处理,最后转换为电信号输出。
光电耦合器的工作原理基于光电效应和电流放大原理。
光电效应是指当光照射到某些物质上时,会产生电子与空穴的对应数量。
光敏元件利用光电效应将光信号转化为电信号。
而电流放大原理是指通过放大电路对光敏元件产生的微弱电流进行放大,以便输出一个较大的电信号。
光电耦合器的特点包括:1. 隔离性能:光电耦合器能够实现电气隔离,将输入端和输出端彻底隔离开,从而避免了电流、电压等干扰信号的传递。
2. 响应速度:光电耦合器的响应速度较快,通常在纳秒或者微秒级别,适合于高速信号传输和开关控制等应用。
3. 工作稳定性:光电耦合器具有较高的工作稳定性和可靠性,能够在不同温度、湿度等环境条件下正常工作。
4. 电气隔离:光电耦合器能够实现输入端和输出端的电气隔离,有效地防止电流、电压等干扰信号的传递,提高系统的安全性。
5. 节能环保:光电耦合器采用LED作为光源,相比传统的电磁继电器等器件,具有更低的功耗和更长的使用寿命,具有节能环保的优势。
光电耦合器在各种电子设备中有广泛的应用,例如:1. 隔离电路:光电耦合器能够实现输入端和输出端的电气隔离,用于隔离高压和低压电路,提高系统的安全性。
光电耦合器工作原理
光电耦合器工作原理光电耦合器是一种能够将光信号转换为电信号,或者将电信号转换为光信号的器件。
它由光电二极管和光敏三极管组成,通过光敏元件的光电效应,实现光信号和电信号之间的转换。
光电耦合器的工作原理如下:1. 光电二极管:光电二极管是一种能够将光信号转换为电信号的半导体器件。
当光照射到光电二极管的PN结上时,光子能量被吸收,产生电子-空穴对。
光电二极管的PN结上有一个电场,使得电子和空穴分别朝着不同的方向运动。
这样,就产生了一个电流,即光电流。
2. 光敏三极管:光敏三极管是一种能够将电信号转换为光信号的半导体器件。
它由一个发射区和一个接收区组成。
当电流通过发射区时,发射区会发射出光子。
这些光子经过空气或者光纤传输到接收区,然后被接收区吸收,产生电子-空穴对。
这样,就产生了一个电流,即光电流。
3. 光电耦合:光电耦合器利用光电二极管和光敏三极管之间的光电效应,实现光信号和电信号之间的转换。
当光照射到光电二极管上时,光电二极管产生光电流。
这个光电流通过电路传输到光敏三极管的发射区,激发发射区发射出光子。
这些光子经过传输介质传输到光敏三极管的接收区,被接收区吸收,产生光电流。
这样,光电耦合器就实现了光信号到电信号的转换。
4. 应用:光电耦合器广泛应用于光通信、光电隔离、光电检测等领域。
在光通信中,光电耦合器可以将光纤中的光信号转换为电信号,然后通过电路进行处理和传输。
在光电隔离中,光电耦合器可以实现电路之间的隔离,避免电流和电压的相互干扰。
在光电检测中,光电耦合器可以将光信号转换为电信号,然后通过电路进行分析和判断。
总结:光电耦合器是一种能够将光信号和电信号之间进行转换的器件。
它通过光电效应实现光电流的产生和转换,从而实现光信号和电信号之间的转换。
光电耦合器在光通信、光电隔离、光电检测等领域具有重要的应用价值。
光电耦合器工作原理
光电耦合器工作原理光电耦合器(Optocoupler)是一种能够将电气信号与光信号进行隔离、耦合、转换的光电器件,它通常由发光二极管、光敏三极管及驱动电路组成。
在工业自动化控制系统中,光电耦合器广泛应用于数字程控系统、微电子线路、电测量和改善系统隔离等领域。
本文将从光电耦合器的结构、工作原理、分类和性能等方面进行介绍。
一、光电耦合器的结构光电耦合器的结构大致可以分为两种类型:输出型光电耦合器和输入型光电耦合器。
输出型光电耦合器由发光二极管、光敏三极管和输出端组成。
输入型光电耦合器则由输入端、发光二极管和光敏三极管组成。
输出型光电耦合器:发光二极管通过正向偏置一定电压,使其在正向电压下发出光信号。
而光敏三极管则是在其基底注入正电荷后,即在其发射极和基极之间增加一个反向电压与光电流流经相对应的集电电流。
输出端则是将光敏三极管的集电极输出作为信号,进行信号隔离和转换。
输入型光电耦合器:输入段的照明器(发光二极管)处于正偏压下,由外界电源向发光二极管注入电流,从而使其发射出一定的光信号。
而光敏三极管则处于反向偏置下,当其光电流增加时,通过反向放大作用,将电流的放大器收集,并将其分配到输出端。
二、光电耦合器的工作原理光电耦合器的原理是通过光信号的转换,将输入信号和输出信号进行隔离。
它包含两个部分:发光二极管和光敏三极管。
光敏三极管通过接收到的光信号将其转换为电信号,然后经过输出端向外输出。
在输出时,通过封闭驱动电路至光敏三极管的输入端,可以有效地保证电信号不会进入输出端,从而实现信号与环境之间的隔离联系。
三、光电耦合器的分类光电耦合器不仅按照结构分类,还可以按照其工作方式进行分类。
按照工作方式,光电耦合器可以分为直流型、交流型和数码型三种。
直流型光电耦合器:它能正常工作于直流信号的传输,但在传输过程中会产生一些相关噪声。
直流型光电耦合器还有一个优点就是其具有隔离性能,能够对系统外界的电磁干扰提供较好的保护。
光耦合器的作用及工作原理
光耦合器的作用及工作原理一、引言光耦合器是光电器件中的一种重要元件,广泛应用于光纤通信、光电子器件和光学传感等领域。
本文将从光耦合器的作用和工作原理两个方面进行详细介绍。
二、光耦合器的作用光耦合器是将光信号从一个光纤耦合到另一个光纤的器件,其主要作用包括:1. 光信号传输:光耦合器能够将光信号从一个光纤传输到另一个光纤中,实现光信号的传输和接收。
这在光纤通信系统中非常重要,可以实现长距离、高速率的光信号传输。
2. 光电转换:光耦合器可以将光信号转换为电信号,从而实现光电转换。
这在光电子器件中起到关键作用,例如光电探测器和光电开关等。
3. 光学传感:光耦合器可以实现光学传感,通过对光信号的传输和接收,实现对环境中光学参数的测量和监测。
例如,在光纤传感系统中,光耦合器可以将光信号从光纤中传输到传感器中,实现对温度、压力、位移等物理量的测量。
三、光耦合器的工作原理光耦合器的工作原理基于光的全反射和干涉效应。
典型的光耦合器由两个光纤相互靠近并部分重叠组成,其中一个光纤称为输入端,另一个光纤称为输出端。
光耦合器的工作原理可以分为两种类型:直耦合和间接耦合。
1. 直耦合直耦合光耦合器是指将两个光纤直接对接并部分重叠的光耦合器。
当光信号从输入端的光纤中传入时,由于两个光纤的折射率不同,会发生光的全反射和折射现象。
部分光信号会从输入端的光纤中射出,并进入输出端的光纤中进行传输。
这种方式下的光耦合器结构简单,耦合效率高。
2. 间接耦合间接耦合光耦合器是指通过光波导、光栅或光纤阵列等结构实现光信号的耦合。
光波导是一种具有特殊折射率分布的介质,可以将光信号从一个光纤传输到另一个光纤。
光栅是一种具有周期性折射率分布的结构,可以通过光栅耦合将光信号从一个光纤传输到另一个光纤。
光纤阵列是由多根光纤排列组成的结构,可以实现多个光纤之间的耦合和分离。
间接耦合光耦合器可以实现更加复杂的光信号耦合和分离操作,具有更高的灵活性和可调性。
光耦合器的作用及工作原理
光耦合器:解密其作用与工作原理光耦合器是一种将光信号与电信号相互转换的装置,应用于光电耦合、隔离、调制、放大等方面。
其工作原理基于半导体材料的光电效应和光波导的传输特性。
下面详细介绍光耦合器的作用与工作原理。
一、光耦合器的作用1. 光电隔离:光耦合器使用光电隔离技术,将输入和输出之间的电隔离,避免环路干扰和电气干扰,提高系统的稳定性和可靠性。
2. 光电转换:光耦合器采用半导体材料的光电效应,将光信号转换成电信号或将电信号转换成光信号,从而实现信号的传输和处理。
3. 光电调制:光耦合器通过改变光信号的强度,使其对应的电信号变化,实现光电调制,如光通信中的调制解调和光纤陀螺仪中的励磁电流的调制。
4. 光电放大:光耦合器通过光电转换和电放大,实现光信号的放大,提高光信号的灵敏度和增益。
二、光耦合器的工作原理光耦合器是由发光二极管(LED)和光敏转换器(OPT)两部分组成的,其工作原理基于半导体材料的光电效应和光波导的传输特性。
1. 半导体材料的光电效应发光二极管(LED)和光敏转换器(OPT)都是由半导体材料制成的,当通过LED的正向电流时,半导体中能带发生变化,使空穴和电子在P 区和N区结合时释放出光子。
OPT的半导体材料具有光致电流效应,当光照射在其表面时,将会带动电子从内部转移到外部。
2. 光波导的传输特性光波通过光纤传输时,会被光耦合器接收并通过光波导进行传输,光波导是一种采用光纤附加介质,利用全反射原理将光信号沿着光管轴线进行传输的器件。
通过控制光波的传输速度、强度和频谱等特性,实现对光信号的调制、放大和传输。
3. 具体工作原理LED发出的光经过透镜进入光波导,再通过光波导到达OPT表面,当光照射射到OPT表面时,会带动电子从内部转移到外部,产生光致电流,最终输入电路会将光信号转化为电信号输出。
反之,当输入电路输送电流给OPT时,产生光致电流驱动光波的传输,最终输出光信号。
三、光耦合器的应用光耦合器被广泛应用在光电通信、工业自动化、医疗领域、传感器等领域,如光电隔离、光纤陀螺仪、光通信、光电数字显示、光电隧道效应传感、波形发生、隔离开关等。
开关电源中光耦的作用及工作原理是什么
开关电源中光耦的作用及工作原理是什么在开关电源电路中,光耦(光电耦合器件)扮演着至关重要的角色,它起到了隔离信号、传递信号、调节电压等多种功能。
光耦由发光二极管和光敏三极管(光控晶体管)组成,通过光的转换来实现输入电路和输出电路之间的隔离。
光耦的作用1.信号隔离:在开关电源中,输入端和输出端处于不同的电位,而光耦能够有效地隔离两端的电气信号,防止噪音干扰和信号失真,提高电路的可靠性和稳定性。
2.信号传递:光耦能够将输入端的电信号转换成光信号,并通过光敏三极管将光信号再转换回电信号输出,起到信号传递的作用,实现输入输出端的信号交互。
3.电压调节:通过控制光耦输入端的电流,可以实现准确地调节输出端的电压,达到电路中电压稳定的目的,保护后续电路元件不受电压波动的影响。
4.电流传输:在开关电源中,光耦还可以作为电流传输的介质,通过光的能量传递来实现输入输出端的电流控制,确保电路的正常运行。
工作原理光耦的工作原理主要分为发光二极管和光敏三极管两个部分。
1.发光二极管:当输入端给发光二极管施加电压时,发光二极管内部的P-N结会发生电场效应,使得P区域的载流子和N区域的载流子重新组合,释放出光子,产生光线。
这些光线会穿过光耦内部的隔离层,照射到光敏三极管上。
2.光敏三极管:光敏三极管接受到发光二极管发出的光信号后,光敏三极管内部的PNP结会发生反向饱和,导通电流。
这个过程可以看作是光信号到达时,改变了光敏三极管的工作状态,导通了输出端的电流信号。
总的来说,光耦实现了输入端信号到输出端信号的转换,光信号的作用不仅是一种隔离和传输,更是一种控制和调节。
通过细致地控制光耦内部的元件和参数,可以在开关电源中实现各种功能的需求,提高电路的性能和效率。
在实际应用中,设计工程师需要根据具体的电路要求选择合适的光耦型号和参数,保证其在开关电源中起到稳定可靠的作用。
同时,合理布局光耦的位置和连接方式,避免因误差和干扰导致光耦功能失效,确保开关电源的正常工作。
光耦的工作原理及应用
光耦的工作原理及应用
光耦是一种常用于隔离和传输电信号的光电器件,它由发光二极管(LED)和光敏晶体管(光电二极管)组成。
光耦通过光学和电学相互作用来实现输入和输出信号之间的电气隔离,从而提高电路系统的安全性和稳定性。
光耦的工作原理基于发光二极管发射光信号,并被光敏晶体管转换成相应的电信号。
当输入端施加电压,LED发光,发射的光穿过内部隔离层作用于光敏晶体管,使其导通并输出电信号。
这种光学隔离的设计使得输入端和输出端完全电气隔离,有效防止了干扰和噪声的传播,提高了电路的抗干扰能力。
在实际应用中,光耦有着广泛的用途。
一方面,光耦常用于电力电子设备中,如开关电源、逆变器等,用于隔离控制信号和功率信号,防止电流反馈和高压击穿等问题。
另一方面,光耦也被广泛应用于通信领域,如串口通信、光纤通信等,用于隔离不同系统之间的信号传输,提高通信稳定性和安全性。
此外,光耦还常用于医疗设备、汽车电子、工业控制等领域。
在医疗设备上,光耦可以用于隔离敏感信号,防止电气噪声对患者造成影响;在汽车电子上,光耦可以实现车内控制系统和驱动系统之间的隔离,提高汽车电子系统的可靠性;在工业控制方面,光耦可以用于PLC控制、传感器信号隔离等,确保工业自动化系统的稳定性和安全性。
总的来说,光耦作为一种重要的光电器件,在电子领域有着广泛的应用前景。
它通过光学隔离的方式,实现了电路系统的信号隔离和传输,在提高系统稳定性、可靠性和安全性方面发挥着关键作用。
随着科技的不断进步,相信光耦将在更多领域展现其价值,为电子设备的发展和应用带来更多新的可能性。
1。
光耦的工作原理及应用
光耦合器的压力及应用光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。
工作原理耦合器以光为媒介传输电信号。
它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得1553b耦合器线缆接头到广泛的应用。
目前它已成为种类最多、用途最广的光电器件之一。
光耦合器一般由三部分组成:光的发射、光的接收及信号放大。
输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。
这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。
由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。
又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。
所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。
在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大提高计算机工作的可靠性。
优点光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无光耦影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
光电耦合的作用
光电耦合的作用
光电耦合的作用主要是通过光-电-机械转换元件,将输入的电信号转换为光信号输出。
其作用原理是当光源发出光线照射到光电传感器的表面时,受到内部半导体材料吸收、散射和透射的影响,形成强弱不同的反射光线。
通过测量这些反射光线强度的大小可以计算出发光源发出的光的强度大小(即电流的大小)。
光电耦合器在电路中有着广泛的应用,例如它可以用来检测微弱的光线,在工业生产过程中经常需要检测一些弱小的灯光等辐射的亮度及有无异常情况发生等。
此外,光电耦合器也可以应用于光纤通信系统、自动控制系统、电子对抗,例如用于太阳能电池板的跟踪等。
同时,光电耦合器还可以作为固体开关应用,在开关电路中对于控制电路和开关之间要求要有很好的电隔离,光电耦合器可以很好地实现这一目标。
总之,光电耦合器的作用主要是通过将输入的电信号转换为光信号输出,实现电信号与光信号之间的转换,以达到特定的电路功能和目的。
举例说明光电耦合器的作用与应用案例
光电耦合器是一种能够将光信号和电信号相互转换的器件,其作用与应用案例十分广泛。
在工业控制、通信设备、医疗设备和汽车电子等领域都有着重要的应用。
让我们来看一下光电耦合器的基本工作原理。
光电耦合器由一个发光二极管和一个光敏电阻器组成,当外界光线照射到发光二极管时,发光二极管会发出光信号,光信号被光敏电阻器转换为电信号,从而实现光信号和电信号的相互转换。
这种原理使得光电耦合器能够在不同领域中发挥重要的作用。
在工业控制领域,光电耦合器常常用于隔离控制信号,保护电路和设备。
当需要将低电平逻辑信号转换为高电平逻辑信号时,光电耦合器可以实现信号隔离和逻辑电平转换的功能,从而确保信号传输的稳定性和可靠性。
在通信设备中,光电耦合器常常用于光纤通信系统中的信号隔离和光电转换。
由于光电耦合器能够实现高速、高精度的光电转换,因此在光通信系统中有着重要的应用。
在光纤通信系统中,光电耦合器可以用于光纤收发模块中的光电转换,实现光信号和电信号的相互转换。
在医疗设备领域,光电耦合器常常用于医疗设备中的信号隔离和光电转换。
在医疗诊断仪器中,光电耦合器可以用于隔离传感器信号和控制信号,保护设备和患者的安全。
在汽车电子领域,光电耦合器常常用于车载电子系统中的信号隔离和光电转换。
在汽车车载娱乐系统中,光电耦合器可以用于隔离音频信号和控制信号,避免干扰和噪音。
光电耦合器在工业控制、通信设备、医疗设备和汽车电子等领域都有着重要的应用。
它的作用不仅体现在信号隔离和光电转换方面,还体现在提高系统稳定性、可靠性和安全性方面。
相信随着技术的不断发展,光电耦合器在更多领域将会有着更广泛的应用。
光电耦合器是一种能够将光信号和电信号相互转换的器件,其工作原理和应用案例已经在上文中进行了详细介绍。
接下来,我们将进一步探讨光电耦合器的发展趋势和未来应用可能性。
随着信息技术的不断发展和进步,光电耦合器的应用领域将会继续扩大。
随着5G通信技术的广泛应用,光电耦合器将会在光纤通信系统中发挥更加重要的作用。
光电耦合器应用
光电耦合器应用一、光电耦合器的基本概念光电耦合器是一种将光信号转换为电信号或将电信号转换为光信号的设备,它由发光二极管、光敏二极管和隔离元件组成,可实现输入和输出之间的隔离。
二、光电耦合器的分类1.按照工作原理分:有直接耦合型和变阻型两种。
2.按照输出方式分:有单通道输出和多通道输出两种。
3.按照封装形式分:有DIP封装、SOP封装、SMT封装等多种形式。
三、光电耦合器的应用领域1.计算机领域:在计算机主板上,使用光电耦合器来隔离输入输出端口,保护计算机系统不受外界干扰。
2.仪器仪表领域:在各类测试仪器中,使用光电耦合器实现输入和输出之间的隔离,并提高测试精度。
3.工业自动化领域:在PLC控制系统中,使用光电耦合器实现输入和输出之间的隔离,保护PLC控制系统不受外界干扰。
4.医疗设备领域:在各类医疗设备中,使用光电耦合器实现输入和输出之间的隔离,保护患者和医护人员的安全。
5.通信领域:在各类通信设备中,使用光电耦合器实现输入和输出之间的隔离,提高通信质量。
四、光电耦合器的具体应用案例1.计算机主板上的应用在计算机主板上,使用光电耦合器来隔离输入输出端口。
例如,在USB接口处,将USB控制芯片与主板隔离开来,防止外界干扰导致计算机系统崩溃。
此外,在音频接口处也可以使用光电耦合器来隔离音频芯片与主板之间的连接。
2.仪器仪表中的应用在各类测试仪器中,使用光电耦合器实现输入和输出之间的隔离,并提高测试精度。
例如,在数字万用表中,将测量端子与数字显示部分隔离开来,防止外界干扰导致测量误差。
此外,在示波器等测试仪器中也广泛应用了光电耦合器。
3.PLC控制系统中的应用在PLC控制系统中,使用光电耦合器实现输入和输出之间的隔离,保护PLC控制系统不受外界干扰。
例如,在PLC的输入端口处,将传感器与PLC隔离开来,防止外界电磁干扰导致PLC控制系统失灵。
此外,在PLC的输出端口处也可以使用光电耦合器来隔离执行器与PLC之间的连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电耦合器件的原理及应用
摘要
本文就国内外光电耦合器的封装结构及其关键技术展开评述,介绍这类器件的性能。
特点、封装结构类型、关键技术、发展趋势,从实际应用出发,注重器件本身的物理结构和生产制造技术。
关键词:封装;光电耦合器;光电器件;应用
光电耦合器是一种光电结合的新型器件。
光电祸合器件制作工艺发展很快, 新的光电耦合器件不断出现。
因为光电耦合器件有其它电子器件不具备的性能, 因此它被广泛地应用于计量仪器、精密仪器、过程控制、计算机系统、通信设备、医疗设备及家用电器中。
随着工艺技术的不断提高, 可望将有更高集成水平、更大工作电流、更高工作速度、原副边耐压更高的光电耦合器件出现。
光电耦合器件有更广泛的应用前景, 它将会替代一些与之相比性能较差的电子器件。
光电耦合器的结构特点和特点
光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内, 然后利用发光器件的管脚作输入端, 而把光接收器的管脚作为输出端。
当在输入端加电信号时,发光器件发光。
这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。
从而实现了以“光”为媒介的电信号传输, 而器件的输入和输出两端在电气上是绝缘的。
这样就构成了一种中间通过光传输信号的新型半导体光电子器件。
光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型4脚封装图二光电耦合器之内部结构图三极管接收型6脚封装
图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封图四光电耦合器之内部结构图可控硅接收型6脚封装
图五光电耦合器之内部结构图双二极管接收型6脚封装
光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:
(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。
因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。
(4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。
光耦的主要性能特点如下:
①隔离性能好,输入端与输出端完全实现了电隔离,其绝缘电阻一般均能达到1010Ω以上,绝缘耐压在低压时都可满足使用要求,高耐压一般能超过lkV,有的可达10kV以上。
②光信号单向传输,输出信号对输入端无反馈,可有效阻断电路或系统之间的电联系,但并不切断他们之间的信号传递。
③光信号不受电磁干扰,工作稳定可靠。
④抗共模干扰能力强,能很好地抑制干扰并消除噪音。
⑤光发射和光敏器件的光谱匹配十分理想,响应速度快,传输效率高。
⑥易与逻辑电路连接。
⑦无触点。
寿命大。
体积校耐冲击。
⑧工作温度范围宽,符合工业和军用温度标准。
光电耦合器的应用
1、用作固体继电器
光电耦合器是一种将发光二极管和光敏三极管组装在一起的新颖光电器件, 它采用光信号来传递信息, 从而使电路的输入与输出在电气上处于完全隔离的状态, 这种信息传递方式是所有采用变压器和继电器作隔离来进行信号传递的一般解决方案所不能相比的。
由于光电耦合器具有可单向传递信息、通频带宽、寄生反馈小、消噪能力强、抗电磁干扰性能好等特点, 因而无论在数字电路还是在模拟电路中均得到了越来越广泛的应用。
2、用光电耦合器代替音频变压器
在线性电路中, 两级放大器之间常用音频变压器作耦合。
这种耦合的缺点是会在变压器铁芯中损耗掉一部分功率, 并可能造成某些失真。
而如果选用光电耦合器来代替音频变压器就可以克服上述这些缺点。
3、微机介面电路中的光电隔离
微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。
在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。
因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。
典型的光电耦合电路如图6所示。
该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号与类比电路的介面处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将类比电路和数位电路相互隔离,起到抑制交叉串扰的作用。
图六光电耦合器接线原理
对于线性类比电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/F变换后再用数位光耦进行隔离。
4、功率驱动电路中的光电隔离
在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的
I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动介面电路,为避免微机受到干扰,须采取隔离措施。
如可控硅所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与可控硅触发电路进行隔离。
电路实例如图7所示。
图七双向可控硅(晶闸管)
在马达控制电路中,也可采用光耦来把控制电路和马达高压电路隔离开。
马达靠MOSFET或IGBT功率管提供驱动电流,功率管的开关控制信号和大功率管之间需隔离放大级。
在光耦隔离级—放大器级—大功率管的连接形式中,要求光耦具有高输出电压、高速和高共模抑制。
5、远距离的隔离传送
在电脑应用系统中,由于测控系统与被测和被控设备之间不可避免地要进行长线传输,信号在传输过程中很易受到干扰,导致传输信号发生畸变或失真;另外,在通过较长电缆连接的相距较远的设备之间,常因设备间的地线电位差,导致地
环路电流,对电路形成差模干扰电压。
为确保长线传输的可靠性,可采用光电耦合隔离措施,将2个电路的电气连接隔开,切断可能形成的环路,使他们相互独立,提高电路系统的抗干扰性能。
若传输线较长,现场干扰严重,可通过两级光电耦合器将长线完全“浮置”起来,如图8所示。
图八传输长线的光耦浮置处理
长线的“浮置”去掉了长线两端间的公共地线,不但有效消除了各电路的电流经公共地线时所产生杂讯电压形成相互窜扰,而且也有效地解决了长线驱动和阻抗匹配问题;同时,受控设备短路时,还能保护系统不受损害。
6、过零检测电路中的光电隔离
零交叉,即过零检测,指交流电压过零点被自动检测进而产生驱动信号,使电子开关在此时刻开始开通。
现代的零交叉技术已与光电耦合技术相结合。
图9为一种单片机数控交流调压器中可使用的过零检测电路。
图九过零检测
220V交流电压经电阻R1限流后直接加到2个反向并联的光电耦合器GD1,GD2的输入端。
在交流电源的正负半周,GD1和GD2分别导通,U0输出低电平,在交流电源正弦波过零的瞬间,GD1和GD2均不导通,U0输出高电平。
该脉冲信号经反闸整形后作为单片机的中断请求信号和可控矽的过零同步信号。
另外, 利用光电耦合器还可以构成与门、或门、与非门等逻辑电路,以及隔离固体开关电路、双稳态电路,斩波器和差分放大电路等多种电路。
注意事项
(1)在光电耦合器的输入部分和输出部分必须分别采用独立的电源,若两端共用一个电源,则光电耦合器的隔离作用将失去意义。
(2)当用光电耦合器来隔离输入输出通道时,必须对所有的信号(包括数位量信号、控制量信号、状态信号)全部隔离,使得被隔离的两边没有任何电气上的联系,否则这种隔离是没有意义的。
结论
光电耦合器在多种电子设备中的应用非常广泛。
随着数字通信技术的迅速发展以及光隔离器和固体继电器等自动控制部件在机械工业中应用的不断扩大,特别是微处理机在各个领域中的应用推广(有时一台微机上的用量可达十几个甚至上百个)和产品性能的逐步提高,光电耦合器的应用市场将日益扩大,同时,其社会交流和经济交流也一定会十分显著。
今后,光电耦合器将向高速化、高性能,小体积,轻重量的方向发展。
参考文献
1、张跟保.光电藕合器件特性分析及其应用[J].现代电子,1996(01)
2、程开福.光电耦合器的发展及应用[J].国外电子元器件,2002(01)
3、曲维本, 刘铁墉.光电耦合器的原理及其在电子线路中的应用[M].北京:北京国防工业出版社,1981
4、屠汉超.GD系列光电耦合器件的特性及应用介绍[J].仪器制造,1978-12-27。