第三章表面活性剂35两性表面活性剂
人卫版第七版药剂学第三章表面活性剂剖析
01
02
03
两亲性分子
由亲水基团和疏水基团组 成,使分子既具有亲水性 又具有疏水性。
多样性
表面活性剂种类繁多,亲 水基团和疏水基团的结构 和性质各异。
可设计性
通过改变亲水基团和疏水 基团的结构和种类,可以 设计出具有特定功能的表 面活性剂。
表面活性剂溶液性质剖析
溶解度
表面活性剂在水中的溶解 度受其分子结构和温度等 因素影响。
慢性毒性试验
评价表面活性剂对机体长期暴露后产生的慢 性毒性作用。
致畸、致癌、致突变试验
评价表面活性剂对生殖系统和遗传物质的毒 性作用。
提高表面活性剂安全性措施探讨
选择低毒性表面活性剂
在合成过程中选择低毒性原料,降低 产品毒性。
优化生产工艺
改进生产工艺,减少生产过程中有毒 物质的产生和残留。
加强产品质量控制
影响因素
增溶效果与表面活性剂种类、浓度、 温度及药物性质有关。
乳化作用在药物制剂中应用
乳化原理
表面活性剂能降低油水界面张力, 使乳滴分散得更细小,形成稳定
的乳剂。
应用实例
如鱼肝油乳剂、石蜡乳剂等,通 过添加适宜的表面活性剂,可制
得稳定的乳剂。
影响因素
乳化效果与表面活性剂种类、浓 度、乳滴大小及乳剂类型有关。
表面张力
表面活性剂能显著降低水 的表面张力,提高溶液的 润湿、乳化、分散等性能。
电导率
离子型表面活性剂在水中 解离后具有导电性,其电 导率与浓度、温度等因素 有关。
表面活性剂界面吸附现象解释
界面吸附
界面张力降低
表面活性剂分子在溶液表面或界面上 吸附,形成单分子层或多分子层。
表面活性剂分子的吸附使界面张力显 著降低,有利于润湿、乳化、分散等 过程的进行。
(完整word版)表面活性剂
第三章表面活性剂表面活性剂在药物制剂的制备中被广泛应用,其结构特征是具有亲水性与亲脂性两种基团,其作用是能显著降低分散系的表面(界面)张力,因此可用作乳化剂、助悬剂、增溶剂、促吸收剂、润湿剂、起泡剂与消泡剂、去污剂等,是药用乳剂、悬浊剂、脂质体等的重要辅料.本章重点讨论表面活性剂的基本性质(如CMC值、HLB值、Krafft点与昙点等)与测定方法等。
第一节表面活性剂分类一、表面活性剂(surfactant):具有很强表面活性,加入少量就能使液体表面张力显著下降的物质。
1.①纯液体在一定温度有一定的表面张力,是液体的物理常数.②当在水中加入无机盐或糖类物质时,则水的表面张力略有升高;③当在水中加入低级脂肪醇、脂肪酸时,则水的表面张力下降,称此类物质为水的表面活性物质。
④当在水中加入油酸钠、十二烷基硫酸钠(高级脂肪酸)时,则水的表面张力能够显著的降低,称此类物质为该溶剂的表面活性剂(surfactant)。
2.表面活性剂分子的结构特征:是由具有极性的亲水基和非极性的亲油基组成,而且两部分分处两端。
因此,表面活性剂具有既亲水又亲油的两亲性质,但具有两亲性的分子不一定都是表面活性剂。
3.表面活性剂的吸附性:表面活性剂由于其特殊结构可以在两相界面发生定向排列,来改变两相界面性质。
从而起到润湿、乳化、增溶、絮凝、反絮凝、起泡、消泡的作用。
(1)在溶液中的正吸附:表面活性剂在溶液表面层聚集的现象为正吸附,正吸附改变了溶液表面的性质。
最外层疏水,表现低表面张力,产生较好的润湿性、乳化性、增溶性、起泡性.(2)在固体表面的吸附:表面活性剂溶液与固体接触时,表面活性剂分子可能在固体表面发生吸附,使固体表面性质发生改变,易于润湿.二、表面活性剂的类型1。
表面活性剂分类方法有多种,根据来源可分为天然表面活性剂与合成表面活性剂;2。
根据溶解性质可分为水溶性表面活性剂与油溶性表面活性剂;3。
根据极性基团的解离性质分为离子型表面活性剂与非离子型表面活性剂两大类;再根据离子型表面活性剂所带电荷,又分为阳离子、阴离子、两性离子表面活性剂。
两性表面活性剂
6、2、5 甜菜碱型两性表面活性剂得临界 胶束浓度与碳链长度得关系
对于甜菜碱两性表面活性剂,其临界胶束浓度 与烷基R碳链长度得关系可用下式表示:
lgcmc=A-Bn 式中,n为烷基长碳链中碳原子得个数;
常数A=1、5-2;B=29。 此类表面活性剂得临界胶束浓度可由上式计 算外,也可以由实验测得。 随着烷基链碳数得增加,cmc明显降低。
氧化胺得化学性质与两性表面活性剂 相似,既与阴离子表面活性剂相容,也 与阳离子表面活性剂、非离子表面活性 剂相容;
在中性和碱性溶液中显示非离子特 性,在酸性溶液中显示弱阳离子特性。
6、2 两性表面活性剂得性质
6、2、1 两性表面活性剂得等 电点
pH < 4 阳离子表面活性剂
pH = 4
pH > 4 阴离子表面活性剂
在非离子表面活性剂中影响不十分 明显,会使活性剂得溶解度略有降低, Krafft点略有提高。
在两性表面活性剂溶液中,加入电 解质使溶解度提高,Krafft点降低。
6、2、7 表面活性剂结构对钙皂分散力得影响
钙皂分散力 (lime soap disporsing rate , LSDR) 钙皂分散分散指数
1 具有等电点
2 可以和所有其他类型的表面活性剂复配
3 毒性低、对皮肤眼睛刺激性小
4 耐水硬性和耐高浓度电解质性
特性
5 对织物优异的柔软平滑性和抗静电性
6 具有良好的乳化性和分散性
7 好的润湿性和发泡性
8 有一定的杀菌性和抑霉性
9 良好的生物降解性
1、两性表面活性剂具有等电点 两性表面活性剂通常总含有酸性基团和碱
两性表面活性剂
第三章表面活性剂-PPT
45
六 表面活性剂得生物学性质
1、对药物吸收得影响 表面活性剂得存在可能增加药物吸收,也可能降低药物
得吸收。 (1)若药物系被增溶在胶束内,且能顺利从胶束内扩散或胶
束本身迅速与胃肠粘膜融合,则可增加吸收,如吐温80 促进螺内酯口服吸收。 (2)表面活性剂得浓度亦有重要影响,如0、01%吐温80可 增加司可巴妥吸收,而1%吐温80反而降低了司可巴妥 吸收。
图解表面张力
三、表面活性剂得种类
根据极性基团得解离性质进行分类: ①离子型表面活性剂(阴离子型活性剂;阳离子
型活性剂,两性离子型); ②非离子型表面活性剂。
混合型得
11
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交
12
根据分子量大小进行分类: ①低分子表面活性剂; ②高分子表面活性剂[如海藻酸钠、聚乙烯醇(PVA)、
酸碱酶得作用下易水解。
23
24
第二节 表面活性剂得基本特性
一、胶束(micelles)
溶液得表面正吸附达到饱与后,当溶液内表面活性剂 分子数目不断增加时,分子转入溶液中,其疏水部分 相互吸引,缔合在一起。
表面活性剂分子自身依靠范德华力相互聚集,形成亲 油基向内,亲水基向外,在水相中温度分散,大小在胶 体粒子范围得缔合体,称为胶束。
表面活性剂浓度变大
C < CMC
分子在溶液表面 定向排列,表面张 力迅速降低
C = CMC
溶液表面定向排 列已经饱与,表面 张力达到最小值。 开始形成小胶束
C > CMC
溶液中得分子得憎水 基相互吸引,分子自 发聚集,形成球状、 层状胶束,将憎水基 埋在胶束内部
表面活性剂化学复习
33
复习要点:1非离子表面活性剂的吸附量计算。 2表面活性剂的吸附固体表面的影响
第四章
表面活性剂溶液体相性质
35
4.2表面活性剂在溶液中的胶团化作用
(a)极稀溶液;(b)稀溶液;(c)临界胶团浓度的溶液;(d)大于临界胶团浓度的溶液
胶团:表面活性剂分子中的亲油基通过分子间的吸引力
相互缔合在一齐,而亲水基朝向水中的胶态聚集物。 临界胶团浓度:形成胶团时的浓度 (cmc)。
44
4.7临界胶束浓度性质特点
cmc愈小,表面活性愈高; cmc愈低,改变界面状态起到润湿、乳化、加溶、起 泡、洗涤等作用所需的表面活性剂浓度愈低; cmc是表面活性剂的—个重要物理化学参数
45
4.8加溶作用
加溶作用:在水溶液中表面活性剂的存在能使难溶 于水的有机物的表观溶解度高于纯水中的溶解度,此
3.1Gibbs公式
C 2
Γ2
(1 )
C2 RT
(
)T
若 γ 单 位 是 dyn.cm-1(erg.cm-2) , R 的 单 位 是 8.31×107erg.mol-1.K-1,Γ单位是mol.cm-2;若γ单 位是mN.m-1(mJ.m-2),R的单位是8.31J.mol-1.K-1 , Γ单位是mol.m-2 22
HLB
W A HLB
A
W B HLB
.B
....
W A W B ...
Example:
含30%Span80(HLB=4.3)和70%Tween80(HLB=15) 的混合乳化剂的HLB值:
HLB=0.30×4.3十0.70×15.0=1.8
9
第二章表面活性剂分类 2.1阴离子表面活性剂
35种常用表面活性剂
6135 种常用表面活性剂1,低泡洗涤剂用表面活性剂 XP\XL 系列一、产品组成:异构十碳醇的聚氧乙烯醚结构为:RO(CH2CH2O)xHR = C10H21x = 3, 5, 7, 8, 9, 10, 14二、用途 该系列产品为低泡洗涤剂产品用单体,泡沫低、具有良好的洗净性能。
用户可根据产品浊点不同来选择,满足配制需要。
洗涤性好;浊点低,消泡、抑泡性好。
三、 包装及储运 铁桶包装,每桶净重200kg 。
运输时注意轻装、轻卸、防淋,储存于阴凉、通风干燥处,储存期1年,一年后复检合格仍可使用。
供应商:巴斯夫化学2,13碳异构醇醚TO 系列一、TO 类型是非离子表面活性剂,由饱和的十三碳异构醇加工而成。
用于清洗、去污的非离子表面活性剂,也可用于相关的化学及工业领域,对环境无毒害。
结构式:RO(CH 2 CH 2 O)x HR = iso-C 13 H 27x = 3, 5, 6, 6.5, 7, 8, 10, 12, 15 或20 数字代号指示乙氧化程度。
二、Lutensol TO 类型属于非离子表面活性剂, 主要应用于清洁,清洗行业,也适用于其它相关的化学及工业领域,具有优秀的表面活性。
在清洁、净洗领域的应用涉及家庭、工业及公共设施。
由于是非离子表面活性剂,Lutensol TO 类型产品能够和其它非离子、阴离子和阳离子活性剂及助剂复配使用,并与烷基磺酸盐等产品有良好的兼容性。
三、包装及储运 镀锌铁桶或塑料桶包装,每桶净重200kg 。
运输时注意轻装、轻卸,储存于阴凉、通风干燥处,储存期1年。
一年后,复检合格仍可使用。
供应商:巴斯夫、陶氏化学、沙索表面活性剂3,蓖麻油聚氧乙烯醚系列一、 产品组份 蓖麻油与环氧乙烷的加成缩和物。
二、结构式:RO —(CH2CH2O )m —OH ,R=蓖麻油三、质量指标项 目 EL-10 EL-20 EL-30 EL-40外 观 淡黄色液体 淡黄色液体 淡黄色粘稠液体 淡黄色液体至膏状物 羟值(mgKOH/g ) 55—60 90—100 70—80 58—68酸值(mgKOH/g) ≤2 ≤2 ≤1.0 ≤1.062浊点(1%水溶液) -- -- -- ≥85PH(1%水溶液) 5—7 5—7 5—7 5—7水份(%) ≤0.5 ≤0.5 ≤0.5 ≤0.5四、用途 本品为淡黄色透明油状液体,溶于乙醇、油酸、矿物油、甲乙酮、三氯乙烯,部分溶于硬脂酸丁酯、花生油,可分散于水中,耐硬水、酸和无机盐,具有优良的乳化、抗静电性能。
第三章表面活性剂驱油
目前,表面活性剂有数干种之多。按其极性部分的基团 不同(通常以表面活性别在水溶液中离解出的表面活性离子 的类型)来进行分类,可分为四种类型。
一、表面活性剂的类型及性质: 1、阴离子型表面活性剂: 阴离子表面活性剂是发展最早、应用最广的一 类极其重要的产品。其产量占表面活性剂总量的60% 一70%,尤其在我国,阴离子表面活性剂占总量的 90%左右。此类表面活性剂在水溶液中可离解出表 面活性阴离子。这种表面活性阴离子是由亲油基和亲 水基两部分构成,所以它具有表面活性剂两亲的结构 特点。
表面活性剂胶束增溶情况示意图
增溶是表面活性剂浓溶液(浓度大于2%)的特有属性,所以胶束、胶束溶液、 微乳液都具有增溶作用,而表面活性剂的稀溶液根本不具有此性质。 增溶与乳化有所不同,增溶过程是被增溶物以整团的形式溶入胶束区域内, 它仅仅是被增溶物在胶束中“溶解”,不增加体系的界面面积,所以是一个热 力学稳定体系;而乳化作用是增加相界面的分散过程,从而使体系的界面能大 为增加,是热力学不稳定体系。
1)石油磺酸盐
石油磺酸盐具有低界面张力、最佳相态、较 高的增溶能力,而且价格低,货源广。 人们在微乳液驱油配方的研究中发现,石油磺 酿盐平均当量增加时,其对油的增溶作用也随之 增加。反之,对水的增溶作用增强。
增溶参数: 单位体积活性别增溶的油体积或水体积
右图表明:石油磺酸盐的平均当 量为400—500时,有较高的增溶 参数。
例如:十二烷基苯磺酸钠在水溶液中按下式离解:
阴离子表面活性剂可细分为如下 几类 亲油基 阴离子表面活性剂可细分为如下几类:
亲水基
2、阳离子型表面活性剂: 这类物质通常是那些具有表面活性的合氮化合 物。即有机胺衍生出来的盐类,它们在水溶液中 能离解出表面活性阳离子。所以称之为阳离子表 面活性剂。 这类表面活性剂主要有胺盐类、季胺化合物、 含N碱类、不含N碱类等。比较常见的阳离子表面 活性剂为脂肪胺盐酸盐、烷基苯甲基吡啶氯化物、 咪唑酮的衍生物等。
中药化妆品学第三章 化妆品原料二
5. pH值
霉菌能够在较宽的范围内生长,但最 好在4-6,细菌易在中性范围6-8,酵母菌在 4-4.5。强酸及强碱不适合微生物的生长, 常见的果酸产品的防腐效果通常高于中性产 品;
6. 氧
绝多数霉菌是需氧性的,化妆品包装 的密闭性很重要。
30
常见化妆品原料的微生物敏感性
一、水 化妆品的主要污染源 革兰氏阴性菌 肠杆菌
特点
兼具阴离子性和阳离子性 温和、毒性低、配伍性好 抗静电、柔软剂 结构特征:
阳离子部分:胺盐、季铵盐、咪唑啉类; 阴离子:羧酸盐、硫酸盐、磺酸盐、磷酸盐
12
咪唑啉型
N
R HOH2CH2C
N+
-
CH2COO
调理剂、杀菌和抗静电剂(皮肤、头发、 细菌带有负电荷,正负电荷相互作用)
无毒、刺激性很小,用于婴儿沐浴露、 香波、洗发香波、护发素等。
42
常见的防腐剂
尼泊金酯类(甲酯、乙酯、丙酯等)
广谱抗菌性
适用于酸性体系
pH=5:77%抑菌性
R
pH=7.0:63%
pH=8.5:50%
抗菌活性随着烷基(R)链的延长而增加,
水溶性降低。
与非离子、阳离子表面活性剂不兼容 43
醇类
1、乙醇
使用浓度一般要大于15%;当使用浓度低于 15%,可降低细胞的水分活度,从而改变细胞膜的 通透性,促使其他防腐剂通过细胞来完成防腐作用。
35
常见化妆品原料的微生物敏感性
五、滑石粉、粘土 来自于土壤,非无菌 加工过程中引入水分,可造成微生物污染
36
常见化妆品原料的微生物敏感性
六、蛋白质、淀粉、动植物药材
七、保湿剂 95%甘油、83%山梨醇、纯丙二醇中
第三章 表面活性剂(精简版)
• 硬脂酸钠的制备方法主要有两种: • ① 油脂水解皂化法 • 该法以含硬脂酸较多的牛羊油等为原料,通过与氢
氧化钠水解皂化,制备硬脂酸钠与其他脂肪酸钠的 混合物,直接使用或经精制分离制得纯品。
• ② 硬脂酸直接中和法 • 以硬脂酸为原料,用氢氧化钠或碳酸钠直接中和即
可制得硬脂酸钠。其反应方程式为:
发展前途的洗涤助剂。
2、阳离子表面活性剂
• 所有工业上的阳离子表面活性剂都是有机氮化合物的衍 生物。它们大致可分为两类:一类是胺盐型阳离子表面 活性剂;另一类则是季铵盐型阳离子表面活性剂,在化 合物本身的分子中带有正电荷。
• 阳离子表面活性剂很少作清洗用。主要用作抗静电剂, 织物的柔软剂。此外,阳离子表面活性剂也可用于防霉 和杀菌。
当表面活性剂浓度较低时界面上吸附的分子较少界面强度较差所形成的乳状液稳定性也差当表面活性剂溶液增高至一定浓度后表面活性剂分子在界面上的排列形成一个紧密的界面膜其强度相应增大乳状液珠之间的凝聚所受到的阻力较大因此形成的乳状液稳定性较好
3.1 概 述
20世纪50年代开始随着石油化学工业飞速发展起来的, 与合成塑料、合成纤维一并兴起的一种新型化学品, 素有“工业味精”之称。其用量虽小,但收效甚大, 往往起到意想不到的效果。广泛应用于纺织、化妆品、 制药、食品、船舶、土建、采矿及洗涤剂等各个领域, 许多工业部门必要化学助剂。
• 不能只从降低表面张力的角度来定义表面活性剂, 应该认为,凡是加入少量能使其溶液体系的界面状 态发生明显变化的物质,称为表面活性物质。
表面活性剂一般都是线型分子,其分子中同时含有亲 水(憎油)性的极性基团和亲油(憎水)性的非极性基团, 从而使表面活性剂既具有亲水又具有亲油的双亲性。 例如,在表面活性剂硬脂酸钠C17H35COONa的分子中 ,C17H35-为亲油基,COO-为亲水基,从分子结构上 看,它是两亲分子。
第三章表面活性剂
a M
2RTA d ln aA
(1) 2
1 2RT
(d
d
ln
a)T
2RT形式
0.059 z z
I
1 2
式中a f c;lg f
1
1 0.33I 2
z :离子强度 :离子间距离
若在溶液中加入过量的,与表面活性离子具有共 同反离子的中性无机盐。如:Na+A-中加入NaCl, 并使其浓度远远大于SAa浓度
形成浊点的原因: 非离子型表面活性剂的 极性基团易与水形成氢键而提高其溶解能 力。温度升高至一定程度时,SAa与水间 的氢键作用削弱而不足以维持其溶解状态。
④在cmc以上表现出可以溶油的特性(加溶作用)
上述特性可归结为表面活性剂的两大特点: 即易在表面发生吸附和在一定浓度形成胶团 等分子有序组合体有关。
(3)聚氧乙烯烷基酰胺 O
CR
H(OC2H4)x O
O(C2H4O)zH
OH
OH
R-CONH(C2H4O)nH
常用作起泡剂、增粘剂
O(C2H4O)yH
OH
(4)多元醇型 主要是失水山梨醇的脂肪酸酯及其聚氧乙烯加成物
Span类 及 Tween类表面活性剂即属此类
具有低毒的特点,广泛用于医药工业、食品工业以及生化实验
极性基团:大的基团γcmc也大(一般) ②决定降低表面张力的因素是最外层基团(吸附层) 的结构、组成
-CF3>-CF2>-CH3>-CH2->-CH=CH- ③链长对γcmc影响不大,一般CH链增长,γcmc↓ ④具有分枝结构的γcmc小(CH3变多,CH2减少)
C:表面活性剂溶液表面吸附之效用
第三章表面活性剂35两性表面活性剂
N R
N CH2CHCH2SO3Na OH
N R
N CH2CHCH2SO3Na OSO3Na
RCONHCH2CH2NCH2CH2OH CH2CHCH2SO3Na OH
合成:
CH2Cl
O
+ NaHSO3
ClCH2CHCH2SO3Na OH
RCOOH + NH2CH2CH2NH2
N
R
NH
N R
N CH2CHCH2SO3Na OH
水解过程:
H+ δ-
N
NaOH
R δ+ N CH2CH2OH
HO-
HN
R O
N
H
CH2CH2OH
1,2断裂 RC NCH2CH2NHCH2CH2OH
OH
仲酰胺
2,3断裂
CH2CH2NH2 RC N CH2CH2OH 叔酰胺
O 水解首先生成不稳定的叔酰胺,再重排成热稳定性
好的仲酰胺,所以主要以仲酰胺为主。
2-十七烷基-1-羟乙基-1-羧甲基-2-咪唑啉
2-heptadecyl-1-hydroxyethyl-1-carboxymethyl-2-imidazoline
制备
咪唑啉型两性表面活性剂的合成一般分两步进行: 首先,脂肪酸与多胺(如β-羟乙基乙二胺)反应 失水生成咪唑啉环:
其次,咪唑啉环在碱性条件下与氯乙酸钠反应而得 到最终产品:
C12H25
CH3
N+
CH3
CH2=CHCOOH
CH3
C12H25+N CH2CH2COO-
CH3
• 磺基甜菜碱
以羧基为特征的羧基甜菜碱性能温和,但化学稳定 性、钙皂分散性不强,而磺基甜菜碱在这些性能上有所 改进。
3.5两性表面活性剂
⑴ 氨基酸型两性表面活性剂
十二烷基氨基丙酸的制备反应:
CH2=CHCOOCH 3 C12 H25 NH2 C12 H25 NHCH 2CH2COOCH 3 H2 O C12 H25 NHCH 2CH2COOH
⑵ 甜菜碱型两性表面活性剂
阴离子:羧酸盐;阳离子:季铵盐
CH3 CH3 + H 2O RN + ClCH 2COONa RN-CH 2COO - + NaCl o CH 3 60-80 C CH3
NHCH 2CH2NH2 CH2CH2OH
RCOOH
N CH2 Cl CH2COOH R-C N CH2 CH2CH2OH
R= C11H23—、C9H19—
结束
结束
• 主要产品: • 氨基酸型 • 甜菜碱型 • 咪唑啉型
R
CH COOH NH 2
+
C12H25
N(CH 3)2CH 2COO - Na + 甜菜碱型
N
+
a
C11H23-C HOCH 2CH2
N CH2COO -Na+结束+咪唑啉型
以氨基酸型为例:
R CH COOH
+ NH 3 (Ⅰ) 正离子
+ NH 3 (Ⅰ) 正离子
-
H2O
R CH COO
+ NH 3
-
H2O
R CH COO + H3O NH 2 (Ⅱ) 负离子
-
+
两性离子
当溶液调节至一定的pH值时,氨基酸可以两性离子的形 式存在,将此溶液置于电场中,氨基酸不向电场的任何 一极移动,即处于电中性状态,这时溶液的pH值称为氨 基酸的等电点,通常以pl表示。 pH<pI 氨基酸以正离子形式存在; pH>pI氨基酸以负离子形式存在。
药剂学课件第三章表面活性剂
五. 平平加O(Perogol O)为15单位氧乙烯与油醇的缩合物。
六. 埃莫尔弗(Emlphor)为一类聚氧乙烯蓖麻油化合物,由 20个单位以上的氧乙烯与油醇缩合而成。
即泊洛沙姆(poloxamer),商品名普朗尼克 (Pluronic)。
六角束状:浓度再增加。
层状:浓度再大,呈液晶状。
亲水亲油平衡值(HLB)
表面活性剂分子中亲水和亲油基对油或水的综合亲和力。
HLB值限定为0-40。
点击此处添加正文,请言简意赅的阐述观点。
非离子表面活性剂HLB值范围0-20。
点击此处添加正文,请言简意赅的阐述观点。
全由疏水碳氢石蜡分子的HLB值为0。
化剂。
Span
-20
-40
-60
-65
-80
-85
脂肪酸
单月桂 单棕榈 单硬脂 三硬脂
单油
三油
(二)多元醇型
三. 聚山梨酯(polysorbate):吐温[Tweens] 即聚氧乙烯脱水山梨醇脂肪酸酯
○ 脱水山梨醇脂肪酸酯+环氧乙烷→Tweens(亲水性化合物)。因也有一次和二次脱水,故为混合物。 ○ 脂肪酸品种和数量不同分为: ○ 应用:亲水性大大增加,为水溶性表面活性剂,用作增溶剂、乳化剂、分散剂和润湿剂。
首页 上一页 下一页
四、起泡和消泡 其它应用
——HLB值较高的表面活性 剂溶液,剧烈搅拌或蒸发浓 缩时产生泡沫,液体的表面 张力降低而使产生的泡沫稳 定,称为“起泡剂”。
——HLB值为1-3的亲油性 较强的表面活性剂,可与泡 沫液层争夺液膜,使泡沫破 坏,称“消泡剂”。
课堂练习
两性表面活性剂
R1 OHR2 N R3 (CH2)n COO
-
6
咪唑啉型SAa
含强碱性N原子
氧化胺型SAa 极性大;熔点高;易溶于水和低碳醇; 吸水性强;具微弱氧化性; R1 在高温下发生热分解; R2 N O 具有对抗沉淀作用
R3
R1 H R2 N R3
7
OH
氨基酸型SAa
含弱碱性N原子,两性特征依赖于体系的pH值。在等电点附 近,出现最低溶解度。
<pI
pI
9
>pI
DDAPS :N-十二烷基-N,N- 二甲基氨基丙磺酸盐
随着温度增加 随着盐浓度的增加 聚集数逐渐减小; 聚集数逐渐增加; I1/I3减小,即微环境的极性减小;I1/I3增加,即微环境的极性增加; Rh减小,即水化半径减小; Rh增加,即水化半径增加; cmc增加 cmc减小;
李芳等,高等学校化学学报,Vol.19,1998,1117-1120
5
甜菜碱型 SAa
Scheilbler1869年发现并从甜菜汁中 分离出来一种天然产物(如右式), 将它俗称为甜菜碱 含强碱性N原子,因此,两性特征在很宽的范围内与pH无关。 在等电点处不会出现溶解度下降的现象。在不同的pH范围内, 只以两性离子或阳离子SAa的形式存在
R1 R2 N R3 (CH2)nCOOH OHR2 R1 N R3 (CH2)n COO
只在等电点区才是真正意义上的两性离子
8
两性表面活性剂中一个重要的概念 ——等电点
pI
pK a +pK b 2
两性SAa含有不可分离的正、负电荷中心,在溶液中显现独特 的等电点性质,是与其他SAa的最大和最根本的区别; 含弱碱性N原子的两性SAa由于受离子基团间的相互作用(正、 负电荷中和)出现最低溶解度; 等电点处,由于正、负中心电荷强度相等,分子排列最紧密, 低于或大于等电点pH,正电荷中心强度或负电荷中心强度相对 较大,排列不紧密;
第三章 表面活性剂.
(3)溶液呈中性,不损织物,广泛用作家庭及工业洗涤剂; (4)分子中含酯键,热稳定性差,在强酸或强碱中易水解。
精细化工工艺
三、磺酸盐型SAA
(一)烷基苯磺酸盐(ABS)
1. 工艺路线
①煤油 分子筛法
尿素络合法
正构烷烃 正构烯烃 烷基化
②石蜡 ③乙烯 ④丙烯
α-烯烃 四聚丙烯
烷
烷 基 磺化剂
碱
基
苯
苯
②温度: 30-40℃左右 ③加水量:一般为磺酸产率的2-2.5倍。
精细化工工艺
2. 磺氧化法
(3)工艺路线 石蜡
SO2+O2
SO2+O2
反应器
水相
分离器1
分离器2
下层
蒸发器2
中和釜
上层
分离器4
上层
SAS
NaOH
油 分离器5
水
蒸发器1 分离器3
精细化工工艺
(二)烷基磺酸盐(SAS)
3. 性能 与烷基苯磺酸钠性质相似,在OH-、H+及硬水中稳定
磺
酸
中和
精细化工工艺
(1)正构烷烃的提取 ①尿素络合法:
尿
素 正构烷烃
(四面体)
②分子筛提蜡法:
1. 工艺路线
尿素 (六方晶格)
尿素
加热
正构烷烃
加合物 纯加合物
选用高选择性的多孔吸附剂,通过吸附、 脱附过程,提纯正构烷烃。
精细化工工艺
(2)烷基苯的制备
1. 工艺路线
氯化法
正构烷烃
卤代烃
AlCl3
NaOH
C12H25NHCH2CH2COONa
NaOH
C12H25NHCH2CH2CN
表面活性剂
因副反应随T的升高而加快,可通过降低反应温度或快速移 取反应生成的HCl来抑制。
雾化法连续硫酸化流程:
原料高级醇和氯 磺酸配比1:1.02,循 环比1:100,反应生 成的HCL由水流泵抽 出,反应热由石墨冷 却器移走。
(3)氨基磺酸硫酸化工艺 氨基磺酸是一种温和的硫酸化剂,副反应少,由于价格较贵, 其应用受到限制。其反应:
3、两性表面活性剂 在水溶液中呈两性状态,随介质不同显示不同活性,主要有: 氨基酸型: R-NHCH2CH2COOH
甜菜碱型 : RN+(CH3)2CH2COO4、非离子表面活性剂 在水中不会离解成离子,因分子中的氧与水形成氢键而溶 于水中。主要有:
聚乙二醇型: R-O(CH2CH2O)nH 多元醇型: R-COOCH2C(CH2OH)3
乙烯不断插入到三乙基铝的烷基-铝键中得到高分子烷基铝。 C、高级三烷基铝氧化得醇化铝
(C2H4)nC2H5 Al (C2H4)nC2H5 (C2H4)nC2H5 + 1.5O2 O(C2H4)nC2H5 Al O(C2H4)nC2H5 O(C2H4)nC2H5
D、醇化铝水解得高碳醇
O(C2H4)nC2H5 Al O(C2H4)nC2H5 O(C2H4)nC2H5
二、多羧酸皂
C3-C24的烯烃与顺丁烯二酸酐加热——烷基琥珀酸酐。可 用作润滑油添加剂、除锈剂; 因分子中含有两个亲水基,其表面活性不好,将其中一个 羧基用丁醇或戊醇酯化生成单羧酸钠盐,即变为性能良好的活
性剂。
CH CO O CH CO R CH2 CH CH CH2 R CH2 CH CH H2O CH CO CO CO O OH CH2 CH CO OH
二、表面活性剂分类 阴离子型 如:RCOO-Na+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概述
氨基酸:RNHCH2CH2COOH 氨基酸兼有羧基和氨基,本身就是两性化合物。当 氨基上氢被长链烷基取代就是氨基酸型两性S.
在等电点时,溶解度最小,润湿力最小,泡沫性亦
最低,随pH值的改变转为阴离子型或阳离子型。
酸性(阳离子型): 等电点范围:
+
RRN+NHH22CCHH22CCHH22CCOOOOH-
2-十七烷基-1-羟乙基-1-羧甲基-2-咪唑啉
2-heptadecyl-1-hydroxyethyl-1-carboxymethyl-2-imidazoline
制备
咪唑啉型两性表面活性剂的合成一般分两步进行: 首先,脂肪酸与多胺(如β-羟乙基乙二胺)反应 失水生成咪唑啉环:
其次,咪唑啉环在碱性条件下与氯乙酸钠反应而得 到最终产品:
• 咪唑啉环的生成
缩合反应在不锈钢反应器中进行。操作时先将脂肪 酸和胺放入反应器中,减压加热,共沸带水,并通氮气 吹去系统内空气。然后加热至180~200℃,压力维持 在6.7KPa,务必使2mol水除尽(可通过红外在线检测, 酰胺峰:1560cm-1和1638cm-1;咪唑啉环:1600cm-1)。 然后在真空下冷却,得到产物为黑褐色液体,其含量在 65%~97%。
3.5两性表面活性剂 ( Amphoteric S. )
定义
溶于水后,在同一分子中同时存在阳离子基团和阴 离子基团的表面活性剂。
这里的阳离子基团又称为碱性基,主要有胺基、氨 基和季铵基。
这里的阴离子基团又称为酸性基,主要有羧基、磺 酸基和磷酸基。
两性表面活性剂的性质
两性离子呈现的离子性视溶液的pH值而定:
N R
N CH2CHCH2SO3Na OH
N R
N CH2CHCH2SO3Na OSO3Na
RCONHCH2CH2NCH2CH2OH CH2CHCH2SO3Na OH
合成:
CH2Cl
O
+ NaHSO3
ClCH2CHCH2SO3Na OH
RCOOH + NH2CH2CH2NH2
N
R
NH
N R
N CH2CHCH2SO3Na OH
两性表面活性剂发展迅速,但其产量不大,主要是 制备有一定难度,成本较高。
分类
根据亲水基上阳离子和阴离子组分的相对强度和位 置,可分为以下4种基本类型:
阴影部分是等电点区, 与阴、阳离子的强弱有关。
按照分子结构,可以分成以下几大类:
• 咪唑啉型 • 甜菜碱型 • 氨基酸型 • 卵磷脂型 • 淀粉、蛋白质衍生物等
制备
• 羧基甜菜碱 叔胺与氯乙酸钠反应:
R3N + ClCH2COO-Na+ 70N~aO8H0℃R3N+CH2COO- + NaCl
反应分两步进行:首先叔胺与按计量的氯乙酸在含 水有机溶剂中及碱存在下反应,再加入过量5%~10% 的氯乙酸继续反应。反应生成的盐需冷却除去。为了除 盐有时可不加水而仅用乙醇,或用电渗透法除盐效果更 佳。
水解过程:
H+ δ-
N
NaOH
R δ+ N CH2CH2OH
HO-
HN
R O
N
H
CH2CH2OH
1,2断裂 RC NCH2CH2NHCH2CH2OH
OH
仲酰胺
2,3断裂
CH2CH2NH2 RC N CH2CH2OH 叔酰胺
O 水解首先生成不稳定的叔酰胺,再重排成热稳定性
好的仲酰胺,所以主要以仲酰胺为主。
• 羧基化反应
羧基化反应所用阴离子羧基化试剂有:氯乙酸钠、 甲基丙烯酸酯、丙烯酸、1,3丙磺内酯、2-羟基-1,3-丙 磺内酯等。常用的是氯乙酸钠 (ClCH2COONa)。
用氯乙酸钠羧基化时可用氢氧化钠为催化剂,在 60~100℃下进行反应,但这时易水解,得到直链仲酰 胺化合物。同时用氯乙酸钠羧基化的产物含盐(NaCl) 量很高。
①H2SO4 ②NaOH
N R
N CH2CHCH2SO3Na OSO3Na
咪唑啉型的性能和应用
由于咪唑啉型两性表面活性剂无毒、性能柔和无 刺激,常用于香波、浴液及其他化妆品、调理剂中。
调制柔和香波时一般用两性、阴离子、非离子表 面活性剂复配以满足高粘度、高泡、低刺激。
抗菌性香波主要含有单羧基甲基化的咪唑啉衍生 物及氧化胺表面活性剂。可抗革兰氏阳性、阴性细菌、 真菌等。
碱性(阴离子型): RNHCH2CH2COO-M+ 工业上主要有羧酸型和磺酸型氨基酸S.两大类。
羧酸型氨基酸表面活性剂
• 脂肪胺与一氯乙酸反应:
此产物在酸、碱介质内均有表面活性,并具钙皂分散力。 • 脂肪胺与甲醛、氰化物反应:
• Henkel公司的Deriphat系列产品:
然后加入NaOH皂化,再中和至等电点即得产品。 若丙烯酸甲酯过量2倍,则生成双加成取代物:
当pH值低于等电点时,多呈阳离子性; 当pH值高于等电点时,多呈阴离子性; 在等电点时,以内盐形式存在,在水中的溶解度最 小,多呈两性活性。
两性表面活性剂以其独特的多功能著称,除具有良 好的表面活性、去污、乳化、分散、润湿作用外,还具 有下列共同的性能:
• 耐硬水、能与电解质共存。 • 可与阴、阳、非离子表面活性剂混配。 • 毒性小、对皮肤的刺激性小。 • 有抗菌性。 • 对硬表面和织物的去污力较好。 • 具有抗静电及织物柔软性能。 • 有等电点。
所用胺大都是椰子油胺、十二胺、十四胺及 其混合物。
磺酸型氨基酸表面活性剂
磺酸型氨基酸S.常用于特种场合,实际上是一种含 有氨基的磺酸。 • 脂肪胺与卤代烷基磺酸或磺内酯反应:
• 脂肪胺与羟乙磺酸钠反应制N-烷基牛磺酸钠:
• 也可通过羧酸型转为磺酸型:
• 硫酸型
脂肪胺与表氯醇作用,再在羟基上进行硫酸化:
叔胺与丙烯氯反应,并用NaHSO3进行加成: 含羟基的磺基甜菜碱合成:
表氯醇先与NaHSO3作用的氯羟基丙磺酸钠,再与 叔胺反应得产品,能得到单一产品,但常压下收率低。
磺基甜菜碱水溶性差,将其结构改进后,各种性能 都有所改善,尤其引入酰胺基后,水溶性和钙皂分散力 都有较大提高,CMC下降。
酰胺磺基甜菜碱的合成: 首先合成氯羟基丙磺酸钠:
无氯化钠杂质的咪唑啉型两性表面活性剂可用无 水丙烯酸或丙烯酸甲酯与2-咪唑啉反应制取:
N C11H23
N CH2CH2OH + CH2 CHCOOCH3
N C11H23
N CH2CH2OCH2CH2COOCH3
此反应产物经皂化后生成两性表面活性剂,甲醇可 从溶液中蒸馏出来。
• 磺化咪唑啉型
一般有以下几种结构:
结构如下:
CH3 +NCH3CH2COO- CH3
天然甜菜碱本身不具有表面活性,只有当其中一个 CH3被长链烷基取代后才具有表面活性,才是甜菜碱型 表面活性剂。常见的是其中一个甲基被C12H25取代。
分类
• 羧基甜菜碱 • 磺基甜菜碱 • 硫酸基甜菜碱 • 锍基甜菜碱 • 含磷甜菜碱
工业上以羧基甜菜碱生产为主。
羧基咪唑啉广泛使用于硬表面及软物料的清洁剂
咪唑啉型也常用作织物柔软剂及纺织纤维加工助 剂,此时2-位上的烷基链要长一些,以增强对纤维的 亲合能力。其它也用于抗静电剂、除草剂、杀虫剂等
甜菜碱型(Betaine)两性表面活性剂
概述
甜菜碱早期是从甜菜中提前出来的天然含氮化合物,
其化学名称为三甲基乙酸铵或三甲基铵代乙酸酯(盐),
性能及应用
在正常pH值下有些氨基酸型表面活性剂具有很低 的表面张力和界面张力。
刺激性小;
良好的水溶性;
润湿性好;
具有杀菌作用。
氨基酸型表面活性剂可用于洗涤剂、香波的配方。 还可用于杀菌剂、去臭剂、锅炉除锈剂、纺织匀染剂 及其它工业用途。
性能
甜菜碱型两性表面活性剂属内盐,等电点范围较 宽,受pH值的影响小。
羧基甜菜碱易形成水合物。
CMC与烷基链长成反比。 磺基甜菜碱有较强的钙皂分散性能,尤其是带酰 胺结构的更佳。
磺基甜菜碱与肥皂等阴离子表面活性剂复配使用 时,具有良好的协同效应。可大大降低刺激性。
应用
羧基甜菜碱广泛应用于化妆品、乳化剂、皮革及 低刺激香波制品中。
叔胺与氯乙酸甲酯反应:
R3N -
NaOH R3N+CH2COO- + CH3OH + NaCl 反应先在甲醇中回流,反应结束后冷却,缓慢加入
95%的NaOH,控制温度在45~50℃,反应1h,再回流 皂化3h,冷却除NaCl。
叔胺直接与α 、β 不饱和酸亲电加成:
咪唑啉型(Imidazoline)两性表面活性剂
命名与结构
含脂肪烃咪唑啉的羧基两性表面活性剂已占其中的一大类
咪唑结构: N
2-咪唑啉:
4 3N
5
N
3-咪唑啉:3N 4 5
2
NH 1
NH
21
4-咪唑啉:3 4
HN
5
NH 21
其命名主要看双键的位置。
代表产品结构及名称:
N
C17H35
N CH2CH2OH CH2COOH
C12H25
CH3
N+
CH3
CH2=CHCOOH
CH3
C12H25+N CH2CH2COO-
CH3
• 磺基甜菜碱
以羧基为特征的羧基甜菜碱性能温和,但化学稳定 性、钙皂分散性不强,而磺基甜菜碱在这些性能上有所 改进。
磺基甜菜碱的合成有多种途径,但工业上应用不多 叔胺与1,3-丙磺内酯反应:
此法从产率、纯度与反应难易来说,都比较好,但 丙磺内酯易爆、致癌、价格贵,难以工业化。