2019年广东省广州市天河区中考数学一模试卷(含答案解析)
2020年广东省广州市天河区中考数学一模试卷(含答案解析)-精品
2019年广东省广州市天河区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.9的平方根是()A.±3 B.﹣3 C.3 D.2.下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab63.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1 B.x>1 C.﹣3<x≤﹣1 D.x>﹣34.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30 B.x(x+1)=30 C.=30 D.=308.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD 为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.米9.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)10.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣1的绝对值是,倒数是.12.若代数式有意义,则m的取值范围是.13.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是.14.关于x的一元二次方程(m﹣3)x2+x+(m2﹣9)=0的一个根是0,则m的值是.15.已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则∁n的坐标是.三.解答题(共9小题,满分102分)17.(9分)解方程组(1)(2).18.(9分)已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.19.(10分)如图,在平面直角坐标系中有△ABC ,其中A (﹣3,4),B (﹣4,2),C (﹣2,1).把△ABC 绕原点顺时针旋转90°,得到△A 1B 1C 1.再把△A 1B 1C 1向左平移2个单位,向下平移5个单位得到△A 2B 2C 2.(1)画出△A 1B 1C 1和△A 2B 2C 2.(2)直接写出点B 1、B 2坐标.(3)P (a ,b )是△ABC 的AC 边上任意一点,△ABC 经旋转平移后P 对应的点分别为P 1、P 2,请直接写出点P 1、P 2的坐标.20.(10分)已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.21.(12分)2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.(1)第一批脐橙每件进价多少元?(2)陈老板以每件120元的价格销售第二批脐橙,售出60%后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价﹣进价)22.(12分)如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 边于点D ,E 是边BC 的中点,连接DE 、OD ,(1)求证:直线DE 是⊙O 的切线;(2)连接OC 交DE 于F ,若OF =FC ,试判断△ABC 的形状,并说明理由;(3)若,求⊙O 的半径.23.(12分)已知反比例函数y =的图象的一支位于第一象限,点A (x 1,y 1),B (x 2,y 2)都在该函数的图象上.(1)m 的取值范围是 ,函数图象的另一支位于第一象限,若x 1>x 2,y 1>y 2,则点B 在第 象限;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x 轴对称,若△OAC的面积为6,求m的值.24.(14分)如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F(1)求∠EDF的度数;(2)若AD=6,求△AEF的周长;(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.25.(14分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年广东省广州市天河区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.2.【分析】分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.【解答】解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选:B.【点评】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.3.【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】先过E作EG∥AB,根据平行线的性质即可得到∠ABE+∠BED+∠CDE=360°,再根据DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,即可得出∠FBE+∠FDE=135°,最后根据四边形内角和进行计算即可.【解答】解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.5.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD 中求出AD的长,据此即可求出AB的长.【解答】解:∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选:D.【点评】本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.9.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.10.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=或BH=(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴∴BH=BD,CD=BC+BD=a+.故选:B.【点评】本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值,乘积是1的两数互为倒数可得答案.【解答】解:﹣1的绝对值是1,倒数是﹣,故答案为:1;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握倒数定义和绝对值定义.12.【分析】根据二次根式有意义的条件可得m+1≥0,根据分式有意义的条件可得m﹣1≠0,再解即可.【解答】解:由题意得:m+1≥0,且m﹣1≠0,解得:m≥﹣1,且m≠1,故答案为:m≥﹣1,且m≠1.【点评】此题主要考查了分式和二次根式有意义的条件,关键是掌握:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】先根据旋转的性质得∠AOC=∠BOD=40°,OA=OC,则根据等腰三角形的性质和三角形内角和定理可计算出∠A=(180°﹣∠A)=70°【解答】解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB 上,∴∠AOC=∠BOD=40°,OA=OC,∵OA=OC,∴∠A=∠OCA,∴∠A=(180°﹣40°)=70°,故答案为:70°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程(m﹣3)x2+x+(m2﹣9)=0,得m2﹣9=0,解得:m=±3,∵m﹣3≠0,∴m=﹣3,故答案是:﹣3.【点评】本题主要考查了一元二次方程的定义及其解,注意方程有意义,其二次项系数不能为0.15.【分析】根据题意画出图形,由于AB、CD的位置不能确定,故应分AB与CD在圆心O 的同侧及AB与CD在圆心O的异侧两种情况讨论,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE﹣OF即可求出答案;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE+OF即可求出答案.【解答】解:如图所示,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE﹣OF=4﹣3=1cm;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF =OE +OF =4+3=7cm .故答案为:1cm 或7cm .【点评】本题考查的是垂径定理及勾股定理,解答此题时要注意分类讨论,不要漏解.16.【分析】先求出直线l 的解析式为y =x ,设B 点坐标为(x ,1),根据直线l 经过点B ,求出B 点坐标为(,1),解Rt △A 1AB ,得出AA 1=3,OA 1=4,由平行四边形的性质得出A 1C 1=AB =,则C 1点的坐标为(﹣,4),即(﹣×40,41);根据直线l 经过点B 1,求出B 1点坐标为(4,4),解Rt △A 2A 1B 1,得出A 1A 2=12,OA 2=16,由平行四边形的性质得出A 2C 2=A 1B 1=4,则C 2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C 3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得∁n 的坐标是(﹣×4n ﹣1,4n ).【解答】解:∵直线l 经过原点,且与y 轴正半轴所夹的锐角为60°,∴直线l 的解析式为y =x .∵AB ⊥y 轴,点A (0,1),∴可设B 点坐标为(x ,1),将B (x ,1)代入y =x ,得1=x ,解得x =,∴B 点坐标为(,1),AB =.在Rt △A 1AB 中,∠AA 1B =90°﹣60°=30°,∠A 1AB =90°,∴AA 1=AB =3,OA 1=OA +AA 1=1+3=4,∵▱ABA 1C 1中,A 1C 1=AB =,∴C 1点的坐标为(﹣,4),即(﹣×40,41);由x =4,解得x =4,∴B 1点坐标为(4,4),A 1B 1=4.在Rt △A 2A 1B 1中,∠A 1A 2B 1=30°,∠A 2A 1B 1=90°,∴A 1A 2=A 1B 1=12,OA 2=OA 1+A 1A 2=4+12=16,∵▱A 1B 1A 2C 2中,A 2C 2=A 1B 1=4,∴C 2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C 3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则∁n 的坐标是(﹣×4n ﹣1,4n ).故答案为(﹣×4n ﹣1,4n ).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三.解答题(共9小题,满分102分)17.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】根据已知及矩形的性质利用AAS判定△ADF≌△DEC,从而得到AF=DC,因为DC=AB,所以AF=AB.【解答】证明:∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC.∴∠AFE=∠C=90°.∵AD=DE.∴△ADF≌△DEC.∴AF=DC.∵DC=AB.∴AF=AB.【点评】此题考查学生对矩形的性质及全等三角形的判定方法的理解及运用.19.【分析】(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求:(2)点B1坐标为(2,4)、B2坐标为(0,﹣1);(3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).【点评】本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.20.【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.【解答】解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:白白红红红红红白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为;(3)设有x个红球被换成了黄球.根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,再根据等量关系:第二批脐橙所购件数是第一批的2倍;(2)设剩余的脐橙每件售价打y折,由利润=售价﹣进价,根据第二批的销售利润不低于640元,可列不等式求解.【解答】解:(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,根据题意,得:×2=,解得x=80.经检验,x=80是原方程的解且符合题意.答:第一批脐橙每件进价为80元.(2)设剩余的脐橙每件售价打y折,根据题意,得:(120﹣100)××60%+(120×﹣100)××(1﹣60%)≥480,解得:y≥7.5.答:剩余的脐橙每件售价最少打7.5折.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.【分析】(1)求出∠CDB=90°,推出DE=BE,得到∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE=90°即可;(2)连接OE,证正方形DEBO,推出OB=BE,推出∠EOB=45°,根据平行线的性质推出∠A=45°即可;(3)设AD=x,CD=2x,证△CDB∽△CBA,得到比例式,代入求出AB即可.【解答】解:如右图所示,连接BD,(1)∵AB是直径,∴∠ADB=90°,∵O是AB的中点,∴OA=OB=OD,∴∠OAD=∠ODA,∠ODB=∠OBD,同理在Rt△BDC中,E是BC的中点,∴∠EDB=∠EBD,∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°,∴∠OAD=∠CBD,∴∠ODA=∠EBD,又∵∠ODA+∠ODB=90°,∴∠EBD+∠ODB=90°,即∠ODE=90°,∴DE是⊙O的切线.(2)答:△ABC的形状是等腰直角三角形.理由是:∵E、F分别是BC、OC的中点,∴EF是三角形OBC的中位线,∴EF∥AB,DE⊥BC,OB=OD,四边形OBED是正方形,连接OE,OE是△ABC的中位线,OE∥AC,∠A=∠EOB=45度,∴∠A=∠ACB=45°,∵∠ABC=90°,∴△ACB是等腰直角三角形.(3)设AD=x,CD=2x,∵∠CDB=∠CBA=90°,∠C=∠C,∴△CDB∽△CBA,∴=,∴=,x=2,AC=6,由勾股定理得:AB==6,∴圆的半径是3.答:⊙O的半径是3.【点评】本题主要考查对等腰三角形的性质和判定,切线的判定,相似三角形的性质和判定,平行线的性质,等腰直角三角形,三角形的内角和定理,勾股定理,直角三角形斜边上的中线,正方形的性质和判定的连接和掌握,综合运用这些性质进行推理是解此题的关键.23.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;故答案是:m>3,三;(2)∵点A在第一象限,且与点C关于x轴对称∴AC⊥x轴,AC=2y=2×,=AC•x=×2וx=m﹣3,∴S△OAC∵△OAC的面积为6,∴m﹣3=6,解得m=9.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.24.【分析】(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.想办法求出∠EOF 的度数即可解决问题;(2)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.利用全等三角形的性质证明EK=EM,FM=FL,即可推出△AEF的周长=2AL.即可解决问题;(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.想办法求出AD,AN即可解决问题;【解答】解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴Rt△OIE≌△Rt△OJF(HL),∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GFD=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK⊥EB,DM⊥EF,∴∠EKD=∠EMD=90°,DK=DM,∴Rt△DEK≌Rt△DEM(HL),∴∴EK=EM,同法可证:DK=DL,∴DM=CL,∵DM⊥FE,DL⊥FC,∴∠FMD=∠FLD=90°,∴Rt△DFM≌Rt△DFL(HL),∴FM=FL,∵AD=AD,DK=DF,∴Rt△ADK≌Rt△ADL(HL),∴AK=AL,∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,∵AD=6,∴AL=AD•cos30°=9,∴△AEF的周长=18.(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.在Rt△AEM中,∵AE=3,∠EAM=60°,∴AM=AE=,EM=,在Rt△EFM中,EF===,∴AF=AM+MF=8,∵△AEF的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD=30°,∴AQ=√3NQ,设EQ=x,则QN=4x,AQ=12x,∴AE=11x=3,∴x=,∴AN=2NQ=,∴DN=AD﹣AN=.【点评】本题属于圆综合题,考查了等边三角形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,角平分线的性质定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD =2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =,当t =时,﹣t 2+2t +3=,当t =时,﹣t 2+2t +3=,∴Q 点坐标为(,)或(,);综上可知Q 点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2019年广州市天河区初中毕业生学业考试数学试题含答案
2019年天河区初中毕业生学业考试数 学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.9的平方根是( )A .±3B .﹣3C .3D .31±2.下列各式计算正确的是( )A .623523a a a =+B .32a a a =+C .824a a a =⋅D .632)(ab ab =3.已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .x ≥﹣1B .x >1C .﹣3<x ≤﹣1D .x >﹣34.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )A .B .C .D .6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( ) A .18分,17分 B .20分,17分C .20分,19分D .20分,20分7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x 个球队参加比赛,根据题意可列方程为( ) A .30)1(=-x xB .30)1(=+x xC .302)1(=-x x D .302)1(=+x x8.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .3200米C .3220米D .)13(100+米9.如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后,点B 落在平面内点B ′处,则B ′点的坐标为( )A .(2,32)B .(23,32-) C .(2,324-) D .(23,324-)10.如图,△ABC 是等腰直角三角形,AC =BC =a ,以斜边AB 上的点O 为圆心的圆分别与AC 、BC 相切于点E 、F ,与AB 分别相交于点G 、H ,且EH 的延长线与CB 的延长线交于点D ,则CD 的长为( )A .a 2122-B .a 2122+C .a 2D .a)412(-第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分。
2019学年广东省中考一模数学试卷【含答案及解析】
2019学年广东省中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 如下图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()2. 下列运算正确的是()A.2x+6x=8x2 B.a6÷a2=a3 C.(-4x3)2=16x6 D.(x+3)2=x2+93. 下列说法正确的是()A.为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B.甲组数据的方差S甲2=0.03,乙组数据的方差是S乙2=0.2,则乙组数据比甲组数据稳定C.广州市明天一定会下雨D.某班学生数学成绩统计如下,则该班学生数学成绩的众数和中位数分别是80分,80分4. 成绩(分)60708090100人数4812115td5. 若不等式组有解,则实数a的取值范围是()A.a<-30 B.a≤-30 C.a>-30 D.a≥-306. 如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n) B.(m,n) C.(m,) D.(,)7. 将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C. D.8. 如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A. B. C. D.9. 二次函数y=mx2+x-2m(m是非0常数)的图象与x轴的交点个数为()A.0个 B.1个 C.2个 D.1个或2个10. 已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.-5≤s≤- B.-6<s≤- C.-6≤s≤- D.-7<s≤-11. 如图,一个半径为r的圆形纸片在边长为a的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题12. 环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.13. 分解因式:a4-4a2+4= .14. 一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)15. 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:16. x…-10123…y…105212…td17. )在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(-,0),则直线a的函数关系式为.18. 如图,反比例函数y=(x<0)的图象经过点A(-1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是.三、计算题19. 解方程(组)(1).(2).四、解答题20. 先化简,再求值:,其中x满足x2-x-1=0.21. 已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).22. 学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.请你回答:(1)本次活动共有件作品参赛;各组作品件数的众数是件;(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.23. 某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24. 如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.(1)尺规作图:作点C到直线AB的垂线段CE(不写作法,保留作图痕迹);(2)求海底C点处距离海面DF的深度.(结果精确到1米)25. 如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;(3)在满足(2)的条件下,AB=10,ED=4,求BG的长.26. 如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.27. 如图1,抛物线y=-x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB于点D,过点B作直线l∥AC,与抛物线和⊙M的另一个交点分别是E,F.(1)求该抛物线的函数表达式;(2)求点C的坐标和线段EF的长;(3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB上的两个动点(点P 在点Q的右侧,且不与N重合),线段PQ与EF的长度相等,连接DP,CQ,四边形CDPQ 的周长是否有最小值?若有,请求出此时点P的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
2019年广东省广州市天河区中考数学一诊试卷(解析版)
2019年广东省广州市天河区中考数学一诊试卷一、选择题(本大题共10小题,共30.0分) 1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. √93D. 2272. 下列立体图形的正视图不是中心对称图形的一项是( )A.圆锥B.正方体C.长方体D.球3. 下列各式计算正确的是( )A. a 2×a 3=a 6B. √32÷√2=√32C. x−11−x 2=1x+1D. (x +y)2=x 2+y 24. 一个不透明的盒子里装有除颜色外其他都相同的红球6个和白球若干个,每次随机摸出一个球,记下颜色后放回,摇匀后再摸,通过多次试验发现摸到红球的频率稳定在0.3 左右,则盒子中白球可能有( ) A. 12个 B. 14个 C. 18个 D. 20个 5. 已知直线y =ax +b (a ≠0)经过第一,二,四象限那么,直线y =bx -a 一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( )A. 120x+6=180xB.120x=180x−6C.120x=180x+6D. 120x−6=180x7. 如图,在正方形网格中,△ABC 的位置如图,其中点A 、B 、C 分别在格点上,则sin A 的值是( )A. √1010 B. 13 C. √55 D. √5108. 菱形不具备的性质是( )A. 四条边都相等B. 对角线一定相等C. 是轴对称图形D. 是中心对称图形9. 下列关于函数y =x 2-6x +10的四个命题:当x =0时,y 有最小值10;②n 为任意实数,x =3+n 时的函数值大于x =3-n 时的函数值;③若n >3,且n 是整数,当n ≤x ≤n +1时,y 的整数值有(2n -4)个;④若函数图象过点(x 0,m )和(x 0-1,n ),则m <n ,其中真命题的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个 10. 如图,将边长为3的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH ,点B 的对应点为M ,点A 的对应点为N ,那么折痕GH 的长为( ) A. √10B. 103C. 72 D. √15二、填空题(本大题共6小题,共18.0分)11. 已知一组数据-1,4,2,-2,x 的众数是2,那么这组数据的中位数是______. 12. 如图,六边形ABCDEF 是⊙O 的内接正六边形,若正六边形的面积等于3√3,则⊙O 的面积等于______.13. 如图,点A 的坐标为(-1,0),AB ⊥x 轴,∠AOB =60°,点B 在双曲线l 上,将△AOB 绕点B 顺时针旋转90°得到△CDB ,则点D ______双曲线l 上(填“在”或“不在”).14. 如图,AB 与⊙O 相切于点B ,弦BC ∥OA .若⊙O 的半径为3,∠A =50°,则BC⏜的长为______.15. 如图,已知▱ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,AB =5,则△OCD 的周长为______.16. 如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是______.三、计算题(本大题共3小题,共30.0分) 17. 解不等式组{x +1>4(x −2)2x+1≥−118.先化简,再求值:a2−2ab+b23a−3b ÷(1b−1a),其中a、b是方程x2-5x-6=0的两根.19.某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求该文具店购进A、B两种钢笔每支各多少元?(2)经统计,B种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将少卖12支,求该文具店B种钢笔销售单价定为多少元时,每月获利最大?最大利润是多少元?四、解答题(本大题共6小题,共72.0分)20.分别在图①,图②中按要求作图(保留作图痕迹,不写作法)(1)如图①,已知四边形ABCD为平行四边形,BD为对角线,点P为AB上任意一点,请你用无刻度的直尺在CD上找出另一点Q,使AP=CQ;(2)如图②,已知四边形ABCD为平行四边形,BD为对角线,点P为BD上任意一点,请你用无刻度的直尺在BD上找出一点Q,使BP=DQ.21.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数为______;运动员乙测试成绩的中位数为______;运动员丙测试成绩的平均数为______;(2)经计算三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8,请综合分析,在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.如图,一次函数y=kx+b与反比例函数y=mx的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<mx的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.23.如图,已知P是正△ABC外接圆的BC⏜上的任一点,AP交BC于D.求证:PA2=AC2+PB•PC.24.将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1(1)当点A1落在AC上时①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.25.在平面直角坐标系xOy中抛物线y=-x2+bx+c经过点A、B、C,已知A(-1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.答案和解析1.【答案】C【解析】解:无理数是,故选:C.根据无理数的三种形式,结合选项找出无理数的选项.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.【答案】A【解析】解:A.圆锥的主视图是等腰三角形,不是中心对称图形;B.正方体的主视图是正方形,是中心对称图形;C.长方体的主视图是长方形,是中心对称图形;D.球的主视图是圆,是中心对称图形;故选:A.找到从正面看所得到的图形,再依据中心对称图形的概念判断即可.本题考查了三视图的知识,正视图是从物体的正面看得到的视图.3.【答案】B【解析】解:A、a2×a3=a5,故此选项错误;B 、÷=,故此选项正确;C 、==-,故此选项错误;D、(x+y)2=x2+2xy+y2,故此选项错误;故选:B.直接利用同底数幂的乘法运算法则、二次根式除法运算法则、约分化简、完全平方公式分别化简求出答案.此题主要考查了同底数幂的乘法运算、二次根式除法运算、约分、完全平方公式等知识,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:∵通过大量重复摸球实验后发现,摸到红球的频率稳定在0.3左右,∴根据题意任意摸出1个,摸到红球的概率是:0.3,设袋中白球的个数为a个,则0.3=.解得:a=14,∴盒子中白球可能有14个.故选:B.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可.此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.5.【答案】D【解析】解:∵直线y=ax+b(a≠0)经过第一,二,四象限,∴a<0,b>0,∴直线y=bx-a经过第一、二、三象限,不经过第四象限,故选:D.根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a 经过哪几个象限,不经过哪个象限,本题得以解决.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.【答案】C【解析】解:小明打字速度为x个/分钟,那么小明打120个字所需要的时间为:;易得小张打字速度为(x+6)个/分钟,小张打180个字所需要的时间为:;∴可列方程为:,故选:C.有工作总量180或120,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“小明打120个字所用的时间和小张打180个字所用的时间相等”.等量关系为:小明打120个字所用的时间=小张打180个字所用的时间.解决本题的关键是根据不同的工作量用的时间相等得到相应的等量关系.7.【答案】A【解析】解:过点C作CD⊥AB于点D,∵BC=2,∴S△ABC =BC×4=4,∵AB==4,∴CD==,∵AC==2,∴sinA===,故选:A.根据勾股定理,可得AC的长,根据正弦等于对边比斜边,可得答案.本题考查了勾股定理的运用以及锐角三角函数的定义,构造∠A所在的直角三角形是解题的关键.8.【答案】B【解析】解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.根据菱形的性质即可判断;本题考查菱形的性质,解题的关键是熟练掌握菱形的性质,属于中考基础题.9.【答案】B【解析】解:∵y=x2-6x+10=(x-3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2-6(3+n)+10,当x=3-n时,y=(n-3)2-6(n-3)+10,∵(3+n)2-6(3+n)+10-[(n-3)2-6(n-3)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3-n时的函数值,故②错误;∵抛物线y=x2-6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2-6(n+1)+10,当x=n时,y=n2-6n+10,(n+1)2-6(n+1)+10-[n2-6n+10]=2n-5,2n-5+1=2n-4.∵n是整数,∴若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n-4)个,故③正确.若函数图象过点(x0,m)和(x0-1,n),则m<n,错误,也有可能m≥n,故④错误.故选:B.分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各命题进行逐一分析.本题主要考查了二次函数的性质,图象,能够根据二次函数的性质数形结合是解决问题的关键.10.【答案】A【解析】解:设CM=x,设HC=y,则BH=HM=3-y,故y2+x2=(3-y)2,整理得:y=-x2+,即CH=-x2+,∵四边形ABCD为正方形,∴∠B=∠C=∠D=90°,由题意可得:ED=1.5,DM=3-x,∠EMH=∠B=90°,故∠HMC+∠EMD=90°,∵∠HMC+∠MHC=90°,∴∠EMD=∠MHC,∴△EDM∽△MCH,∴=,即=,解得:x1=1,x2=3(不合题意),∴CM=1,如图,连接BM,过点G作GP⊥BC,垂足为P,则BM⊥GH,∴∠PGH=∠HBM,在△GPH和△BCM中,∴△GPH≌△BCM(SAS),∴GH=BM,∴GH=BM==.故选:A.利用翻折变换的性质结合勾股定理表示出CH的长,得出△EDM∽△MCH,进而求出MC的长,依据△GPH≌△BCM,可得GH=BM,再利用勾股定理得出BM,即可得到GH的长.此题主要考查了翻折变换的性质以及正方形的性质、相似三角形的判定与性质和勾股定理的综合运用,作辅助线构造全等三角形,正确应用相似三角形的判定与性质是解题关键.11.【答案】2【解析】解:∵数据-1,4,2,-2,x的众数是2,∴x=2,则数据为-2、-1、2、2、4,所以中位数为2;故答案为:2.先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.本题考查了众数、中位数,解题的关键是理解众数、中位数的概念,并根据概念求出一组数据的众数、中位数.12.【答案】2π【解析】解:连接OE、OD,∵六边形ABCDEF是正六边形,∴∠DEF=120°,∴∠OED=60°,∵OE=OD,∴△ODE是等边三角形,∴DE=OE,设OE=DE=r,作OH⊥ED交ED于点H,则sin∠OED=,∴OH=,∵正六边形的面积等于,∴正六边形的面积=וr×6=3,解得:r=,∴⊙O的面积等于2π,故答案为:2π.连接OE、OD,由正六边形的特点求出判断出△ODE的形状,作OH⊥ED,由特殊角的三角函数值求出OH的长,利用三角形的面积公式即可表示出△ODE的面积,进而根据正六边形ABCDEF的面积求得圆的半径,从而求得圆的面积.本题考查了正多边形的性质,掌握正六边形的边长等于半径的特点是解题的关键.13.【答案】不在【解析】解:在Rt△AOB中,∵OA=1,∠AOB=60°,∴AB=,∴B(-1,),D(-1-,-1),∵点B在y=上,k=-,∵(-1-)(-1)=-2≠-,∴点D不在y=-上,故答案为不在.求出点B、D的坐标即可判断;本题考查反比例函数图象上的点的特征、坐标与图形的变化、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.【答案】53π【解析】解:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,∠A=50°,⊙O的半径为3,∴OB=3,∠AOB=40°,∵BC∥OA,∴∠OBC=∠AOB=40°,又OB=OC,∴∠BOC=100°,则==π,故答案为:π.连接OB ,OC,由AB为圆的切线,利用切线的性质得到△AOB为直角三角形,且∠AOB=40°,再由BC与OA平行,利用两直线平行内错角相等得到∠OBC=40°,又OB=OC,得到△BOC为等边三角形,确定出∠BOC=100°,利用弧长公式即可求出劣弧BC的长.此题考查了切线的性质,直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解本题的关键.15.【答案】14【解析】解:∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为14.根据平行四边形的性质即可解决问题;本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟练掌握平行四边形的性质,属于中考基础题.16.【答案】54【解析】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.如图,取AB的中点E,连接CE,PE.由△QBC≌△PBE(SAS),推出QC=PE,推出当EP⊥AC时,QC的值最小;本题考查全等三角形的判定和性质,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.17.【答案】解:解不等式2x+1≥-1,得:x≥-1,解不等式x+1>4(x-2),得:x<3,则不等式组的解集为-1≤x<3.【解析】分别求出两个不等式的解集,再求其公共解集.本题考查一元一次不等式组的解法,求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【答案】解;a2−2ab+b23a−3b ÷(1b−1a)=(a−b)2 3(a−b)÷a−bab=(a−b)2 3(a−b)⋅ab a−b=ab3,∵a、b是方程x2-5x-6=0的两根,∴ab=−61=-6,∴原式=−63=-2.【解析】根据分式的除法和减法可以化简题目中的式子,然后将ab的值代入化简后的式子即可解答本题.本题考查分式的化简求值、根与系数的关系,解答本题的关键是明确分式化简求值的方法.19.【答案】解:(1)设文具店购进A种钢笔每支m元,购进B种钢笔每支n元,根据题意,得:{3m+5n=1452m+3n=90,解得:{n=20m=15,答:文具店购进A种钢笔每支15元,购进B种钢笔每支20元;(2)设B种钢笔每支售价为x元,每月获取的总利润为W,则W=(x-20)(64-12×x−303)=-4x2+264x-3680=-4(x-33)2+676,∵a=-4<0,∴当x=33时,W取得最大值,最大值为676,答:该文具店B种钢笔销售单价定为33元时,每月获利最大,最大利润是676元.【解析】(1)设文具店购进A种钢笔每支m元,购进B种钢笔每支n元,根据“购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元”列二元一次方程组求解可得;(2)设B种钢笔每支售价为x元,根据“总利润=每支钢笔的利润×销售量”列出函数解析式,将其配方成顶点式,再利用二次函数的性质求解可得.本题主要考查二次函数的应用与二元一次方程组的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并据此列出方程和函数解析式及二次函数的性质.20.【答案】解:(1)如图①,点Q即为所求;(2)如图②,点Q即为所求.【解析】(1)连接AC交BD于O,连接PO并延长交CD于点Q;(2)连接AC交BD于点O,连接AP并延长交BC于点E,连接EO并延长交AD于点F,连接CF交BD于点Q.本题主要考查作图-基本作图,解题的关键是熟练掌握平行四边形的性质是解题的关键.21.【答案】7 7 6【解析】解:(1)甲运动员测试成绩的众数和中位数都是7分.运动员丙测试成绩的平均数为:=6(分)故答案是:7;7;6;(2)∵甲、乙、丙三人的众数为7;7;6甲、乙、丙三人的中位数为7;7;6甲、乙、丙三人的平均数为7;7;6.3∴甲、乙较丙优秀一些,∵S甲2>S乙2∴选乙运动员更合适.(3)树状图如图所示,第三轮结束时球回到甲手中的概率是p==.(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;(2)易知S甲2=0.8、S乙2=0.4、S丙2=0.8,根据题意不难判断;(3)画出树状图,即可解决问题;本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.22.【答案】解:(1)把A(1,4)代入y=mx,得:m=4,∴反比例函数的解析式为y=4x;把B(4,n)代入y=4x,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:{4k+b=1k+b=4,解得:{b=5k=−1,∴一次函数的解析式为y=-x+5;(2)根据图象得当0<x<1或x>4,一次函数y=-x+5的图象在反比例函数y=4x的下方;∴当x>0时,kx+b<mx的解集为0<x<1或x>4;(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,-1),设直线AB′的解析式为y=px+q,∴{4p+q=−1p+q=4,解得{p=−53q=173,∴直线AB′的解析式为y=-53x+173,令y=0,得-53x+173=0,解得x=175,∴点P的坐标为(175,0).【解析】(1)将点A(1,4)代入y=可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)根据图象得出不等式kx+b<的解集即可;(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.本题主要考查反比例函数和一次函数的交点及待定系数法求函数解析式、轴对称-最短路线问题,掌握图象的交点的坐标满足两个函数解析式是解题的关键.23.【答案】证明:∵△ABC是等边三角形,∴∠ACB=∠ABC=60°,AC=AB,由圆周角定理得,∠APC=∠ABC,∴∠APC=∠ACD,又∠CAD=∠PAC,∴△CAD∽△PAC,∴CACP=ADAC,即AC2=AD•AP,∵∠APB=∠ACB,∴∠APD=∠APB,又∠BCP=∠BAP,∴△APB∽△CPD,∴APCP=PBPD,即PB•PC=PA•PD,∴AC2+PB•PC=AD•AP+PA•PD=AP2.【解析】分别证明△CAD∽△PAC、△APB∽△CPD,根据相似三角形的性质列出比例式,计算得到答案.本题考查的是三角形的外接圆与外心、相似三角形的判定和性质、等边三角形的性质,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.24.【答案】(1)证明:①如图1中,∵∠BAC=60°,BA=BA1,∴△ABA1是等边三角形,∴∠AA1B=60°,∵∠A1BD1=60°,∴∠AA1B=∠A1BD1,∴AC∥BD1,∵AC=BD1,∴四边形ABD1C是平行四边形.②如图2中,连接BD1.∵四边形ABD1C是平行四边形,∴CD1∥AB,CD1=AB,∠OCD1=∠ABO,∵∠COD1=∠AOB,∴△OCD1≌△OBA(AAS),∴OC=OB,∵CD=BA,∠DCO=∠ABO,∴△DCO≌△ABO(SAS),∴DO=OA.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.在Rt△A1BC中,∵∠CA1B=90°,BC =5.AB=3,∴CA1=√52−32=4,∵12•A1C•A1B=12•BC•A1F,∴A1F=125,∵∠A1FB=∠A1EB=∠EBF=90°,∴四边形A1EBF是矩形,∴EB=A1F=125,A1E=BF=95,∴AE=3-125=35,在Rt△AA1E中,AA1=√(95)2+(35)2=3√105.【解析】(1)①首先证明△A1B是等边三角形,可得∠AA1B=∠A1BD1=60°,即可解决问题.②首先证明△OCD1≌△OBA(AAS),推出OC=OB,再证明△DCO≌△ABO(SAS)即可解决问题.(2)如图3中,作A1E⊥AB于E,A1F⊥BC于F.利用勾股定理求出AE,A1E即可解决问题.本题属于四边形综合题,考查了矩形的性质,全等三角形的判断和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.25.【答案】解:(1)由题意得:{c=3−1−b+c=0,解得:{c=3b=2,∴抛物线解析式为y=-x2+2x+3;(2)令-x2+2x+3=0,∴x1=-1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,∴{3k+b′=0b′=3,第11页,共11页 解得:{b′=3k=−1,∴直线BC 的解析式为y =-x +3,设P (a ,3-a ),则D (a ,-a 2+2a +3),∴PD =(-a 2+2a +3)-(3-a )=-a 2+3a ,∴S △BDC =S △PDC +S △PDB =12PD •a +12PD •(3-a ) =12PD •3=32(-a 2+3a )=-32(a -32)2+278, ∴当a =32时,△BDC 的面积最大,此时P (32,32);(3)由(1),y =-x 2+2x +3=-(x -1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (m 2,32),∵∠MNC =90°,∴NQ =12CM ,∴4NQ 2=CM 2,∵NQ 2=(1-m 2)2+(n -32)2,∴4[=(1-m 2)2+(n -32)2]=m 2+9,整理得,m =n 2-3n +1,即m =(n -32)2-54,∵0≤n ≤4,当n =32上,m 最小值=-54,n =4时,m =5,综上,m 的取值范围为:-54≤m ≤5.【解析】(1)由y=-x 2+bx+c 经过点A 、B 、C ,A (-1,0),C (0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令-x 2+2x+3=0,求得点B 的坐标,然后设直线BC 的解析式为y=kx+b′,由待定系数法即可求得直线BC 的解析式,再设P (a ,3-a ),即可得D (a ,-a 2+2a+3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =-(a-)2+,利用二次函数的性质,即可求得当△BDC 的面积最大时,求点P 的坐标; (3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n-)2-,然后根据n 的取值得到最小值. 此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。
广东省广州市天河区华南师大附中2019届九年级(下)第一次段测数学试卷(解析版)
2019届广东省广州市天河区华南师大附中九年级(下)第一次段测数学试卷1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,共30.0分)1.在将式子(m>0)化简时,小明的方法是:===;小亮的方法是:;小丽的方法是:.则下列说法正确的是()A. 小明、小亮的方法正确,小丽的方法不正确B. 小明、小丽的方法正确,小亮的方法不正确C. 小明、小亮、小丽的方法都正确D. 小明、小丽、小亮的方法都不正确【答案】C【解析】【分析】小明的方法为原式分子分母乘以有理化因式,化简得到结果;小亮的方法为将分子利用二次根式性质化简,约分即可得到结果;小丽的方法为分子利用二次根式性质化简,再利用二次根式除法法则逆运算变形,计算即可得到结果.【详解】再将式子(m>0)化简时,小明的方法是:===,正确;小亮的方法是:==,正确;小丽的方法是:===,正确;则小明、小亮、小丽的方法都正确,故答案选C.【点睛】此题考查了分母有理化,根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.2.如图,丝带重叠的部分一定是()A. 正方形B. 矩形C. 菱形D. 都有可能【答案】C【解析】如图,作AE⊥BC交BC于点E,作AF⊥CD交CD于点F,则AE=AF,∠AEB=∠AFD=90°,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠ABE=∠ADF,∵在△AEB和△AFD中,,∴△AEB≌△AFD,∴AB=AD,∴四边形ABCD是菱形.故选C.点睛:一组邻边相等的平行四边形是菱形.3.若关于x的不等式组有实数解,则a的取值范围是()A. a<4B. a≤4C. a>4D. a≥4【答案】A【解析】分析:分别求出各不等式的解集,再根据不等式组有实数解即可得到关于a的不等式,求出a的取值范围即可.详解:解不等式2x>3x﹣3,得:x<3,解不等式3x﹣a>5,得:∵不等式组有实数解,∴解得:a<4.故选A.点睛:本题考查的是解一元一次不等式组,根据不等式组有实数解得出关于a的不等式是解答此题的关键.4.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师:“我班的学生考得还不错,有一半的学生考79分以上,一半的学生考不到79分.”王老师:“我班大部分的学生都考在80分到85分之间喔.”依照上面两位老师所叙述的话你认为林、王老师所说的话分别针对()A. 平均数、众数B. 平均数、极差C. 中位数、方差D. 中位数、众数【答案】D【解析】试题分析:∵有一半的学生考79分以上,一半的学生考不到79分,∴79分是这组数据的中位数,∵大部分的学生都考在80分到85分之间,∴众数在此范围内.故选D.考点:统计量的选择.5.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.【答案】D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D 符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.6.如图,是⊙的切线,是⊙的弦,,则等于()A. B. C. D.【答案】C【解析】【分析】连接OA,则∠AOB=2∠BAT,∠OA T=90°,故可用∠BAT表示出∠OAB的度数,再根据三角形的内角和定理解答即可.【详解】解:连接OA,则∠AOB=2∠BA T,OA⊥AT,∵OA⊥AT,∴∠OA T=90°,∴∠OAB=90°-∠BAT,∵∠B+∠AOB+∠OAB=180°,∴∠B+2∠BA T+90°-∠BAT=180°,解得∠BAT=35°.故选:C.【点睛】本题考查的是切线的性质(圆的切线垂直于经过切点的半径)及三角形内角和定理,解答此类问题往往通过作辅助线连接圆心和切点,利用垂直关系求解.7.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )A. (1,-1)B. (-1,-1)C. (,0)D. (0,-)【答案】B【解析】试题分析:根据已知条件O(0,0),B(2,2),可求得D(1,1),OB与x轴、y轴的交角为45°,当菱形绕点O逆时针旋转,每秒旋转45°,时,8秒可旋转到原来的位置,因60÷8=7....4,所以第60秒时是第8循环的地上个位置,这时点D的坐标原来位置点D的坐标关于原点对称,所以为(-1,-1),故答案选B.考点:规律探究题.【此处有视频,请去附件查看】8.如图,直线l上有两动点C、D,点A、点B在直线l同侧,且A点与B点分别到l的距离为a米和b米(即图中A A′=a米,BB′=b米),且A′B′=c米,动点CD之间的距离总为S米,使C到A的距离与D到B的距离之和最小,则AC+BD的最小值为()A. B.C. D.【答案】D【解析】【分析】作线段AP∥L且AP=S,且点P在点A的右侧,作P关于L的对称点P′,连接BP′交直线L于点D,在L 上D的左侧截取DC=S,此时BP′即为所求的最小值,作P′E⊥BB′交BB′的延长线于E,利用勾股定理求解即可.【详解】解:作线段AP∥L且AP=S,且点P在点A的右侧,作P关于L的对称点P′,连接BP′交直线L 于点D,∵P′E=c-S,BE=a+b,∴P′B==.故选:D.【点睛】考查最短路线问题及平移问题的综合应用;用平移和对称的知识综合解决最短路线问题是解决本题的关键;构造出直角三角形解决问题是解决本题的难点.9.如图,是⊙的直径,是⊙上一点,,垂足为、、分别是、上一点(不与端点重合),如果,下面结论:①;②;③;④;⑤.其中正确的是()A. ①②③B. ①③⑤C. ④⑤D. ①②⑤【答案】B【解析】【分析】利用等角的余角相等得到①对;利用三角形内角和定理得②错;利用垂径定理,同弧所对的圆周角相等得③对;利用三角形相似得④错,⑤对.【详解】解:延长QN交圆O于C,延长MN交圆O于D,如图∵MN⊥AB,∠MNP=∠MNQ,则∠1=∠2,故①正确;∵∠P+∠PMN<180°,∴∠P+∠Q<180°,故②错误;∵AB是⊙O的直径,MN⊥AB,,由∠1=∠2,∠ANC=∠2,∴∠1=∠ANC,得P,C关于AB对称,,,∴∠Q=∠PMN,故③正确;∵∠MNP=∠MNQ,∠Q=∠PMN,∴△PMN∽△MQN,∴MN2=PN•QN,PM不一定等于MQ;故④错误,⑤正确.故选:B.【点睛】此题考查了垂径定理、圆周角定理、相似三角形的判定与性质以及等腰三角形的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.10.如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C 为矩形,则a,b应满足的关系式为()A. ab=﹣2B. ab=﹣3C. ab=﹣4D. ab=﹣5【答案】B【解析】分析:利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出.详解:令x=0,得:y=b.∴C(0,b).令y=0,得:ax2+b=0,∴x=±,∴A(﹣,0),B(,0),∴AB=2,BC==.要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴2=.∴4×(﹣)=b2﹣,∴ab=﹣3,∴a,b应满足关系式ab=﹣3.故选B.点睛:本题主要考查了平行四边形的性质以及矩形的性质和点的坐标关于一点中心对称的性质,灵活应用平行四边形的性质是解决问题的关键.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6小题,共18.0分)11.分解因式:__________.【答案】【解析】【分析】前三项利用完全平方公式分解,再进一步利用平方差公式分解可得.【详解】解:原式=(a+b)2-22=(a+b+2)(a+b-2),故答案为:(a+b+2)(a+b-2).【点睛】本题考查了分组分解法分解因式,分组分解法一般是针对四项或四项以上多项式的因式分解,分组有两个目的,一是分组后能出现公因式,二是分组后能应用公式.12.三张完全相同的卡片上分别写有函数,,,从中随机抽取一张,则所得卡片上函数的图象在第一象限内随的增大而增大的概率是__________.【答案】.【解析】【分析】由三张完全相同的卡片上分别写有函数y=3x,y=,y=x2,其中函数的图象在第一象限内y随x的增大而增大的有y=3x,y=x2,直接利用概率公式求解即可求得答案.【详解】解:∵三张完全相同的卡片上分别写有函数y=3x,y=,y=x2,其中函数的图象在第一象限内y随x的增大而增大的有y=3x,y=x2,∴所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是_____.【答案】6【解析】试题分析:首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;最后从左视图判断出第二层、第三层的个数,进而求出组成这个几何体的小正方体的个数是多少.根据几何体的左视图,可得这个几何体共有3层,从俯视图可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上所述,组成这个几何体的小正方体的个数是6或7或8.故答案为:6或7或8.考点:由三视图判断几何体.14.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为________.【答案】【解析】【分析】由等边三角形的性质结合条件可证明△ABP∽△PCD,由相似三角形的性质可求得CD.【详解】∵△ABC为等边三角形,∴∠B=∠C=60°,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∵AB=BC=3,BP=1,∴PC=2,∴,∴CD=.答案为.【点睛】本题主要考查相似三角形的判定和性质,由条件能找到∠BAP=∠DPC是解题的关键,注意三角形外角性质的灵活运用.15.二次函数y=x2﹣8x的最低点的坐标是______.【答案】(4,﹣16)【解析】【分析】利用配方法将二次函数解析式由一般式变形为顶点式,由此即可找出该函数图象的最低点的坐标.【详解】,,二次函数图象开口向上,二次函数的最低点的坐标是.故答案为:.【点睛】本题考查了二次函数的最值,利用配方法将二次函数解析式由一般式变形为顶点式是解题的关键.16.二次函数y=x2+2的图象,与y轴的交点坐标为_____.【答案】(0,2)【解析】【分析】把x=0代入求出y,然后写出坐标得出答案.【详解】解:y=x2+2,当x=0时,y=0+2=2,即抛物线与y轴的交点坐标为(0,2),故答案为:(0,2).【点睛】本题考查了二次函数的图象和函数的关系,会代入求参数是解答本题的关键.三、计算题(本大题共1小题,共10.0分)17.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.(1)根据题意,袋中有个蓝球.(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).【答案】(1)1;(2)【解析】试题分析:根据红球的个数和红球的概率可求出总球的个数,然后相减即可;(2)根据题意画出树状图,然后求出总可能数和符合条件的次数,根据概率公式求解即可.试题解析:(1)1.(2)将袋中各球分别记为红1、红2、红3、蓝.根据题意,可以画出如下的树状图:由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中事件A的结果共有6种,所以P(A)=.四、解答题(本大题共8小题,共92.0分)18.解方程:(1)(2).【答案】(1)x=1;(2)x=1.【解析】试题分析:(1)先去分母,化分式方程为整式方程,解方程即可,注意:需要验根;(2)先去分母,化分式方程为整式方程,解方程即可,注意:需要验根.试题解析:(1)由原方程,得2(x+1)=4,2x=4-2,x=1,经检验,x=1是原方程的增根,所以原方程无解.(2)由原方程,得x-3+x-2=-3,2x=-3+5,x=1,经检验,x=1是原方程的根.点睛:解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19.某民营企业准备用14000元从外地购进A、B两种商品共600件,其中A种商品的成本价为20元,B种商品的成本价为30元.(1)该民营企业从外地购得A、B两种商品各多少件?(2)该民营企业计划租用甲、乙两种货车共6辆,一次性将A、B两种商品运往某城市,已知每辆甲种货车最多可装A种商品110件和B种商品20件;每辆乙种货车最多可装A种商品30件和B种商品90件,问安排甲、乙两种货车有几种方案?请你设计出具体的方案.【答案】(1)A种商品400件,B种商品200件;(2)有两种方案,方案一:租用甲车3辆,乙车3辆;方案二:租用甲车4辆,乙车2辆.【解析】【分析】(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据总价=单价×数量结合用14000元从外地购进A、B两种商品共600件,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设租甲种货车a辆,则租乙种货车(6﹣a)辆,由要一次性将A、B两种商品运往某城市,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,再结合a为整数,即可找出各租车方案.【详解】解:(1)设该民营企业从外地购得A种商品x件,B种商品y件,根据题意得:解得:.答:该民营企业从外地购得A种商品400件,B种商品200件.(2)设租甲种货车a辆,则租乙种货车(6﹣a)辆,根据题意得:,解得:≤a≤,∵a为整数,∴a=3或4,∴有两种方案,方案一:租用甲车3辆,乙车3辆;方案二:租用甲车4辆,乙车2辆.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.20. 如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.【答案】(1)详见解析;(2)BC与⊙P相切,理由见解析.【解析】试题分析:(1)根据题目要求作出图形即可,如图所示;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,利用角平分线定理得到PD=PA,而PA为圆P的半径,即可得BC与⊙P相切.试题解析:(1)如图所示,⊙P为所求的圆;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB,∴PD=PA,∵PA为⊙P的半径.∴BC与⊙P相切.考点:直线与圆的位置关系;尺规作图.21.如图,AB是⊙O的直径,点C为⊙O外一点,连接OC交⊙O于点D,连接BD并延长交线段AC于点E,∠CDE=∠CAD.(1)求证:CD2=AC•EC;(2)判断AC与⊙O的位置关系,并证明你的结论;(3)若AE=EC,求tanB的值.【答案】(1)见解析;(2)见解析;(3).【解析】【分析】(1)根据相似三角形的判定证明△CDE∽△CAD,再根据相似三角形的性质定理即可证明;(2)根据圆周角定理得到∠ADB=90°,再利用等量代换得到∠B=∠CAD,进而得到∠BAC=∠BAD+∠CAD=∠B+∠BAD=90°,即可得证;(3)根据(1)与题意得到CD=CE,利用相似三角形的性质与等量代换可得tanB=tan∠CAD=.【详解】(1)证明:∵∠CDE=∠CAD,∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CA•CE;(2)AC与⊙O相切,证明:∵AC是⊙O的直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵OB=OD,∴∠B=∠ODB,∵∠ODB=∠CDE,∠CDE=∠CAD,∴∠B=∠CAD,∴∠BAC=∠BAD+∠CAD=∠B+∠BAD=90°,∴BA⊥AC,∴AC与⊙O相切;(3)解:∵AE=EC,∴CD2=CA•CE=(AE+CE)•CE=2CE2,∴CD=CE,∵△CDE∽△CAD,∴,∵∠ADE=180°-∠ADB=90°,∠B=∠CAD,∴tanB=tan∠CAD=.【点睛】本题考查的是圆的知识的综合应用,掌握圆的切线的判定定理、相似三角形的判定和性质定理、锐角三角函数的概念是解题的关键.22.已知关于x的一元二次方程有实数根.(1)求m的值;(2)先作的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式.【答案】(1)m=1;(2)y=-x2-4x-2.【解析】【分析】(1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式.【详解】(1)对于一元二次方程x2﹣(m+1)x(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2.∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.【点睛】本题考查了抛物线与x轴的交点、待定系数法、翻折变换、平移变换等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.23.如图⊙O的半径为1,过点A(2,0)的直线切⊙O于点B,交y轴于点C.(1)求线段AB的长;(2)求以直线AC为图象的一次函数的解析式.【答案】(1);(2) y=-x+.【解析】【分析】(1)由于直线AC是⊙O的切线,B为切点,所以需连接OB,利用切线的性质得OB⊥AB,在Rt△AOB 中,利用勾股定理,求出AB的长.(2)要求直线AC的解析式,需知A、C两点的坐标,易证△ABO∽△AOC,利用相似三角形的性质求得C点坐标,设解析式为y=kx+b,将A、C两点代入求出k、b的值即可.【详解】解:(1)连接OB,∵AC切⊙O于点B,∴OB⊥AC,∴AB==;(2)∵∠A=∠A,∠ABO=∠AOC,∴△ABO∽△AOC,∴=,即:=,解得:OC=,∴点C坐标为(0,),设一次函数的解析式为:y=kx+,将点A(2,0)代入,解得:k=-,∴以直线AC为图象的一次函数的解析式为:y=-x+.【点睛】本题考查切线的性质,相似三角形的判定与性质,一次函数解析式的求法,解此题的关键在于熟练掌握其知识点.24.中,,为高线,点在边上,且,连接,,与边相交于点.(1)如图1,当时,求证:(2)如图2,当时,则线段、的数量关系为;(3)如图3,在(2)的条件下,将绕点顺时针旋转,旋转后边所在的直线与边相交于点,边所在的直线与边相交于点,与高线相交于点,若,且,求线段H的长.【答案】(1)证明见解析;(2)当时,;(3)2【解析】【分析】(1)根据tan∠BAC=1=tan45°,得出△ABC为等腰直角三角形,再过E点作EK⊥BC,EK与CD相交于点K,得出∠GKE=45°=∠B,再根据∠GEK+∠KEF=90°=∠KEF+∠BEF,得出△GEK∽△FEB,从而证出,即可得出EF=2EG;(2)根据(1)的证明过程,同理可证出当tan∠BAC=2时,得出EF=EG;(3)根据(2)的结论,先设AC=3k,得出BC=6k,EC=EC=2k,再过点E作EM⊥BC,EM与CD的延长线相交于点M,得出△AGC∽△EGM,得出,再过点G作GN∥EH,与AH相交于点N,得出△ANG∽△AHE,得出NH的值,同理得出△GEM∽△FEB,得出EF=EG.同理可证EF′=EG′,∠FEF'=∠GEG',得出△GEG'≌△FEF',即可证出的值,再根据HG′∥NG,同理可证,得出EC=CH,得出△HCE是等腰直角三角形,在△HG'C中,求出CW的值,从而得出G′H的值.【详解】(1)证明:在中,,,,.为等腰直角三角形,,,过点作,与相交于点,,,,,,;(2)根据(1)的证明,同理可证:当时,;(3)在中,,,则,设,则BC=6k,则,过点作,与的延长线相交于点,,.在与中,,,,,过点作,与相交于点,,,,,,,,,.同理可证, ,,,.,同理可证,,,,,是等腰直角三角形,,在中,过点作,垂足是,设,则HW=x,则,,,,,.【点睛】此题考查了相似三角形的判定与性质;解决本题的关键是根据直角三角形的性质以及相似三角形的性质得到它们的比值进行计算即可.25.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,作OF∥AB交BC于点F,连接EF.(1)求证:OF⊥CE;(2)求证:EF是⊙O的切线;(3)若⊙O的半径为3,∠EAC=60°,求CD的长.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)由于AC是⊙O的直径,得出CE⊥AE,根据OF∥AB,得出OF⊥CE,(2)得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(3)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.【详解】(1)如图,连接CE,∵是的直径,∴,∵,∴.(2)∵OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠OEC=∠OCE,∵,即,∴,即,∴FE为的切线.(3)如图,∵⊙O的半径为3,∴AO=CO=EO=3,∵,,∴,∴,∵在Rt△OCD中,∠COD=60°,OC=3,∴,∵在中,,,,∴【点睛】本题考查了切线的判定和性质,勾股定理,线段垂直平分线的性质,直角三角形的性质,熟练掌握定理是解题的关键.。
天河区中考一模数学试题及答案
广州市天河区初中毕业班综合测试(一)数学试题一、选择题(本大题共10小题,每小题3分,共30分.)1.4的算术平方根是().A.-2B.±2C.2D.162.下面的图形中,既是轴对称图形又是中心对称图形的是().3.在平面直角坐标系中,点A(﹣4,﹣3)在().A.第一象限B.第二象限 C.第三象限 D.第四象限4.如果等边三角形的边长为4,那么这个三角形的中位线长为().A.2B.4C.6D.85.4月24日6时到11时某城市空气质量指数PM2.5的1小时均值(单位:μg/m3)如下:70,74,78,80,74,75,这组数据的中位数和众数分别是().A.79和74B.74.5和74C.74和74.5D.74和796.要使式子有意义,则m 的取值范围是().A.m>﹣1 B.m≥﹣1 C.m>﹣1 且m≠1 D.m≥﹣1 且m≠17.△ABC 与△A′B′C′是相似图形,且△ABC 与△A′B′C′的相似比是1︰2,已知△ABC 的面积是3,则△A′B′C′的面积是().A.3 B.6 C.9D.128.如图,PA、PB 是⊙O 的切线,切点分别是A,B,已知∠P=60°,OA=3,那么∠AOB 所对的劣弧的长度为().A.6B.5C.3D.29.函数y=﹣x 的图象与函数y=x+1 的图象的交点在().A.第一象限B.第二象限C. 第三象限D.第四象限10.如图,E 是边长为4 的正方形ABCD 的对角线BD 上一点,且BE=BC,P 为CE 上任意一点,PQ⊥BC 于点Q,PR⊥BE 于点R,则PQ+PR 的值是().第二部分非选择题(共120 分)二、填空题(本大题共6 小题,每小题3 分,共18 分.)11.如图,已知a∥b,∠ 1=45°,则∠ 2= .12.因式分解:a2+2a=.13.计算(12a3-6a2 ) (-2a) =.14.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.15.已知关于的取值范围为.16.如图,在△ABO 中,E 是AB 的中点,双曲线(k>0)经过A、E 两点,若△ABO的面积为12,则k=三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解分式方程:18.(本小题满分9分)如图,矩形对角线AC,BD相交于点O,,AB=4cm,求矩形对角线AC和边BC的长.某酒家为了解市民对去年销量较好的五仁馅、豆沙馅、红枣馅、双黄馅四种不同口味月饼(以下分别用A,B,C,D表示)的喜爱情况,在节前对人口总数8000人的某社区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据信息回答:(1)将两幅不完整的图补充完整,并估计该社区爱吃D型月饼的人数;(2)若有外型完全相同的A,B,C,D月饼各一个,小王吃了两个.求他第二个吃到的月饼恰好是C型的概率.20.(本小题满分10分)如图,AB是高为60米的铁塔,分别在河边D处测得塔顶A的仰角为60°,在与B.D同一直线上的河对岸C处测得塔顶A的仰角为40°.(1)求D点到铁塔距离DB的长;(结果保留根号)(2)求河岸间CD的宽度.(结果取整数)21.(本小题满分12分)如图,在△ABC中,∠ACB=120°,BC=2AC.(1)利用尺规作等腰△DBC,使点D,A在直线BC的同侧,且DB=BC,∠DBC=∠ACB.(保留作图痕迹,不写画法)(2)设(1)中所作的△DBC的边DC交AB于E点,求证: DE=3CE.市政府建设一项水利工程,某运输公司承担运送总量为m³的土石方任务,该公司有甲、乙两种型号的卡车共100辆,甲型车平均每天可以运送土石方80m³,乙型车平均每天可以运送土石方120m³,计划100天完成运输任务.6 10(1)该公司甲、乙两种型号的卡车各有多少台?(2)如果该公司用原有的100辆卡车工作了40天后,由于工程进度的需要,剩下的所有运输任务必须在50天内完成,在甲型卡车数量不变情况下,公司至少应增加多少辆乙型卡车?23.(本小题满分12分)如图,直线与坐标轴分别交于点M,N.(1)求M,N两点的坐标;(2)若点P在坐标轴上,且P到直线的距离为,求符合条件的P点坐标.24.(本小题满分14分)如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN.设AM=NP与梯形BCNM重合的面积为y,试求y关于N为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.参考答案说明:1、本解答给出了一种解法供参考,如果考生的解法与本解答不同,各题组可根据试题的主要考查内容比照评分标准制订相应的评分细则.2、对于计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.三、解答题(本题有9个小题, 共102分。
【真题】2019年广东省广州市天河区中考数学一模试卷(有答案)
2019年广东省广州市天河区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.9的平方根是()A.±3B.﹣3C.3D.2.下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab63.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣34.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30B.x(x+1)=30C.=30D.=308.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.米9.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB =60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)10.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣1的绝对值是,倒数是.12.若代数式有意义,则m的取值范围是.13.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是.14.关于x的一元二次方程(m﹣3)x2+x+(m2﹣9)=0的一个根是0,则m的值是.15.已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y 轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则∁n的坐标是.三.解答题(共9小题,满分102分)17.(9分)解方程组(1)(2).18.(9分)已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.19.(10分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2.(2)直接写出点B1、B2坐标.(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.20.(10分)已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.21.(12分)2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.(1)第一批脐橙每件进价多少元?(2)陈老板以每件120元的价格销售第二批脐橙,售出60%后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价﹣进价)22.(12分)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC边于点D,E是边BC的中点,连接DE、OD,(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于F,若OF=FC,试判断△ABC的形状,并说明理由;(3)若,求⊙O的半径.23.(12分)已知反比例函数y=的图象的一支位于第一象限,点A(x1,y1),B(x2,y2)都在该函数的图象上.(1)m的取值范围是,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第象限;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若△OAC的面积为6,求m的值.24.(14分)如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F (1)求∠EDF的度数;(2)若AD=6,求△AEF的周长;(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.25.(14分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年广东省广州市天河区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.2.【分析】分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.【解答】解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选:B.【点评】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.3.【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】先过E作EG∥AB,根据平行线的性质即可得到∠ABE+∠BED+∠CDE=360°,再根据DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,即可得出∠FBE+∠FDE=135°,最后根据四边形内角和进行计算即可.【解答】解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.5.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD 的长,据此即可求出AB的长.【解答】解:∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选:D.【点评】本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.9.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.10.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=或BH=(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴∴BH=BD,CD=BC+BD=a+.故选:B.【点评】本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值,乘积是1的两数互为倒数可得答案.【解答】解:﹣1的绝对值是1,倒数是﹣,故答案为:1;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握倒数定义和绝对值定义.12.【分析】根据二次根式有意义的条件可得m+1≥0,根据分式有意义的条件可得m﹣1≠0,再解即可.【解答】解:由题意得:m+1≥0,且m﹣1≠0,解得:m≥﹣1,且m≠1,故答案为:m≥﹣1,且m≠1.【点评】此题主要考查了分式和二次根式有意义的条件,关键是掌握:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】先根据旋转的性质得∠AOC=∠BOD=40°,OA=OC,则根据等腰三角形的性质和三角形内角和定理可计算出∠A=(180°﹣∠A)=70°【解答】解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∴∠AOC=∠BOD=40°,OA=OC,∵OA=OC,∴∠A=∠OCA,∴∠A=(180°﹣40°)=70°,故答案为:70°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程(m﹣3)x2+x+(m2﹣9)=0,得m2﹣9=0,解得:m=±3,∵m﹣3≠0,∴m=﹣3,故答案是:﹣3.【点评】本题主要考查了一元二次方程的定义及其解,注意方程有意义,其二次项系数不能为0.15.【分析】根据题意画出图形,由于AB、CD的位置不能确定,故应分AB与CD在圆心O的同侧及AB 与CD在圆心O的异侧两种情况讨论,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE﹣OF即可求出答案;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE+OF即可求出答案.【解答】解:如图所示,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE﹣OF=4﹣3=1cm;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE+OF=4+3=7cm.故答案为:1cm或7cm.【点评】本题考查的是垂径定理及勾股定理,解答此题时要注意分类讨论,不要漏解.16.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得∁n的坐标是(﹣×4n﹣1,4n).【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则∁n的坐标是(﹣×4n﹣1,4n).故答案为(﹣×4n﹣1,4n).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三.解答题(共9小题,满分102分)17.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】根据已知及矩形的性质利用AAS判定△ADF≌△DEC,从而得到AF=DC,因为DC=AB,所以AF=AB.【解答】证明:∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC.∴∠AFE=∠C=90°.∵AD=DE.∴△ADF≌△DEC.∴AF=DC.∵DC=AB.∴AF=AB.【点评】此题考查学生对矩形的性质及全等三角形的判定方法的理解及运用.19.【分析】(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求:(2)点B1坐标为(2,4)、B2坐标为(0,﹣1);(3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).【点评】本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.20.【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.【解答】解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:白白红红红红红白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为;(3)设有x个红球被换成了黄球.根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,再根据等量关系:第二批脐橙所购件数是第一批的2倍;(2)设剩余的脐橙每件售价打y折,由利润=售价﹣进价,根据第二批的销售利润不低于640元,可列不等式求解.【解答】解:(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,根据题意,得:×2=,解得x=80.经检验,x=80是原方程的解且符合题意.答:第一批脐橙每件进价为80元.(2)设剩余的脐橙每件售价打y折,根据题意,得:(120﹣100)××60%+(120×﹣100)××(1﹣60%)≥480,解得:y≥7.5.答:剩余的脐橙每件售价最少打7.5折.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.【分析】(1)求出∠CDB=90°,推出DE=BE,得到∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE =90°即可;(2)连接OE,证正方形DEBO,推出OB=BE,推出∠EOB=45°,根据平行线的性质推出∠A=45°即可;(3)设AD=x,CD=2x,证△CDB∽△CBA,得到比例式,代入求出AB即可.【解答】解:如右图所示,连接BD,(1)∵AB是直径,∴∠ADB=90°,∵O是AB的中点,∴OA=OB=OD,∴∠OAD=∠ODA,∠ODB=∠OBD,同理在Rt△BDC中,E是BC的中点,∴∠EDB=∠EBD,∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°,∴∠OAD=∠CBD,∴∠ODA=∠EBD,又∵∠ODA+∠ODB=90°,∴∠EBD+∠ODB=90°,即∠ODE=90°,∴DE是⊙O的切线.(2)答:△ABC的形状是等腰直角三角形.理由是:∵E、F分别是BC、OC的中点,∴EF是三角形OBC的中位线,∴EF∥AB,DE⊥BC,OB=OD,四边形OBED是正方形,连接OE,OE是△ABC的中位线,OE∥AC,∠A=∠EOB=45度,∴∠A=∠ACB=45°,∵∠ABC=90°,∴△ACB是等腰直角三角形.(3)设AD=x,CD=2x,∵∠CDB=∠CBA=90°,∠C=∠C,∴△CDB∽△CBA,∴=,∴=,x=2,AC=6,由勾股定理得:AB==6,∴圆的半径是3.答:⊙O的半径是3.【点评】本题主要考查对等腰三角形的性质和判定,切线的判定,相似三角形的性质和判定,平行线的性质,等腰直角三角形,三角形的内角和定理,勾股定理,直角三角形斜边上的中线,正方形的性质和判定的连接和掌握,综合运用这些性质进行推理是解此题的关键.23.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;故答案是:m>3,三;(2)∵点A在第一象限,且与点C关于x轴对称∴AC⊥x轴,AC=2y=2×,=AC•x=×2וx=m﹣3,∴S△OAC∵△OAC的面积为6,∴m﹣3=6,解得m=9.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.24.【分析】(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.想办法求出∠EOF的度数即可解决问题;(2)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.利用全等三角形的性质证明EK=EM,FM=FL,即可推出△AEF的周长=2AL.即可解决问题;(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.想办法求出AD,AN即可解决问题;【解答】解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴Rt△OIE≌△Rt△OJF(HL),∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GFD=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK⊥EB,DM⊥EF,∴∠EKD=∠EMD=90°,DK=DM,∴Rt△DEK≌Rt△DEM(HL),∴∴EK=EM,同法可证:DK=DL,∴DM=CL,∵DM⊥FE,DL⊥FC,∴∠FMD=∠FLD=90°,∴Rt△DFM≌Rt△DFL(HL),∴FM=FL,∵AD=AD,DK=DF,∴Rt△ADK≌Rt△ADL(HL),∴AK=AL,∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,∵AD=6,∴AL=AD•cos30°=9,∴△AEF的周长=18.(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.在Rt△AEM中,∵AE=3,∠EAM=60°,∴AM=AE=,EM=,在Rt△EFM中,EF===,∴AF=AM+MF=8,∵△AEF的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD=30°,∴AQ=√3NQ,设EQ=x,则QN=4x,AQ=12x,∴AE=11x=3,∴x=,∴AN=2NQ=,∴DN=AD﹣AN=.【点评】本题属于圆综合题,考查了等边三角形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,角平分线的性质定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C (0,3),D (2,3), ∴CD =2,且CD ∥x 轴, ∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4; ②∵点P 在线段AB 上, ∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°, i .当∠ADQ =90°时,则DQ ⊥AD , ∵A (﹣1,0),D (2,3), ∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′, 把D (2,3)代入可求得b ′=5, ∴直线DQ 解析式为y =﹣x +5, 联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3), 设直线AQ 的解析式为y =k 1x +b 1, 把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t , ∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =,当t =时,﹣t 2+2t +3=, 当t =时,﹣t 2+2t +3=, ∴Q 点坐标为(,)或(,); 综上可知Q 点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2019年广东省广州市中考数学试卷(word版,含答案解析)
2019年广东省广州市中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分) 1. |−6|=( )A. −6B. 6C. −16D. 162. 广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是( ) A. 5 B. 5.2 C. 6 D. 6.4 3. 如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若tan∠BAC =25,则此斜坡的水平距离AC 为( )A. 75mB. 50mC. 30mD. 12m4. 下列运算正确的是( )A. −3−2=−1B. 3×(−13)2=−13 C. x 3⋅x 5=x 15D. √a ⋅√ab =a √b5. 平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( )A. 0条B. 1条C. 2条D. 无数条6. 甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A.120x=150x−8B. 120x+8=150xC. 120x−8=150xD.120x=150x+87. 如图,▱ABCD 中,AB =2,AD =4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是( )A. EH =HGB. 四边形EFGH 是平行四边形C. AC ⊥BDD. △ABO 的面积是△EFO 的面积的2倍8. 若点A(−1,y 1),B(2,y 2),C(3,y 3)在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系是( )A. y 3<y 2<y 1B. y 2<y 1<y 3C. y 1<y 3<y 2D. y 1<y 2<y 39. 如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( )A. 4√5B. 4√3C. 10D. 810. 关于x 的一元二次方程x 2−(k −1)x −k +2=0有两个实数根x 1,x 2,若(x 1−x 2+2)(x 1−x 2−2)+2x 1x 2=−3,则k 的值( ) A. 0或2 B. −2或2 C. −2 D. 2 二、填空题(本大题共6小题,共18.0分)11. 如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA =6cm ,PB =5cm ,PC =7cm ,则点P 到直线l 的距离是______cm . 12. 代数式1√x−8有意义时,x 应满足的条件是 . 13. 分解因式:x 2y +2xy +y =______.14. 一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.15. 如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为______.(结果保留π)16. 如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =√2BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论: ①∠ECF =45°;②△AEG 的周长为(1+√22)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值18a 2. 其中正确的结论是______.(填写所有正确结论的序号)三、解答题(本大题共9小题,共102.0分)17. 解方程组:{x −y =1x +3y =9.18.如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,求证:△ADE≌CFE.19.已知P=2aa2−b2−1a+b(a≠±b).(1)化简P;(2)若点(a,b)在一次函数y=x−√2的图象上,求P的值.20.某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<12B组1≤t<2mC组2≤t<310D组3≤t<412E组4≤t<57F组t≥54(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(−1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=n−3的图象相交于A,xP两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF//AB;(2)设△ABC的面积为S1,△ABF的面积为S2,记S=S1−S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.已知抛物线G:y=mx2−2mx−3有最低点.(1)求二次函数y=mx2−2mx−3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.答案和解析1.【答案】B【解析】【分析】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 根据负数的绝对值等于它的相反数解答. 【解答】解:−6的绝对值是|−6|=6. 故选:B . 2.【答案】A【解析】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A .众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 本题主要考查众数的定义,是需要熟练掌握的概念. 3.【答案】A【解析】【分析】本题考查解直角三角形的应用−坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解决. 【解答】解:∵∠BCA =90°,tan∠BAC =25,BC =30m , ∴tan∠BAC =25=BCAC =30AC , 解得,AC =75(m), 故选A . 4.【答案】D【解析】解:A 、−3−2=−5,故此选项错误; B 、3×(−13)2=13,故此选项错误; C 、x 3⋅x 5=x 8,故此选项错误; D 、√a ⋅√ab =a √b ,正确. 故选:D .直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【答案】C【解析】解:∵⊙O 的半径为1,点P 到圆心O 的距离为2, ∴d >r ,∴点P 与⊙O 的位置关系是:P 在⊙O 外, ∵过圆外一点可以作圆的2条切线, 故选:C .先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.【答案】D【解析】解:设甲每小时做x个零件,可得:120x =150x+8,故选:D.设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.【答案】B【解析】【分析】本题考查平行四边形的面积、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=12AD=2,HG=12CD=12AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=12AD=12BC=FG,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF//AB,,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.8.【答案】C【解析】解:∵点A(−1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,∴y1=6−1=−6,y2=62=3,y3=63=2,又∵−6<2<3,∴y1<y3<y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.【答案】A【解析】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD//BC,∴∠OAF=∠OCE,在△AOF和△COE中,{∠AOF=∠COEOA=OC∠OAF=∠OCE,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB=√AE2−BE2=√52−32=4,∴AC=√AB2+BC2=√42+82=4√5;故选:A.连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=√AE2−BE2=4,再由勾股定理求出AC即可.本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.【答案】D【解析】解:∵关于x的一元二次方程x2−(k−1)x−k+2=0的两个实数根为x1,x2,∴x1+x2=k−1,x1x2=−k+2.∵(x1−x2+2)(x1−x2−2)+2x1x2=−3,即(x1+x2)2−2x1x2−4=−3,∴(k−1)2+2k−4−4=−3,解得:k=±2.∵关于x的一元二次方程x2−(k−1)x−k+2=0有实数根,∴Δ=[−(k−1)]2−4×1×(−k+2)≥0,解得:k≥2√2−1或k≤−2√2−1,∴k=2.故选:D.由根与系数的关系可得出x1+x2=k−1,x1x2=−k+2,结合(x1−x2+2)(x1−x2−2)+2x1x2=−3可求出k的值,根据方程的系数结合根的判别式Δ≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1−x2+2)(x1−x2−2)+2x1x2=−3,求出k的值.11.【答案】5【解析】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.【答案】x>8【解析】【分析】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,属于基础题.直接利用分式、二次根式的定义求出x的取值范围.【解答】有意义时,解:代数式√x−8x−8>0,解得:x>8.故答案为:x>8.13.【答案】y(x+1)2【解析】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.首先提取公因式y,再利用完全平方进行二次分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】15°或60°【解析】【分析】分情况讨论:①DE⊥BC;②AD⊥BC.本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°−∠BAD=15°;②当AD⊥BC时,∠BAD=30°,即α=60°.故答案为15°或60°.15.【答案】2√2π【解析】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2√2,则底面圆的周长为2√2π,∴该圆锥侧面展开扇形的弧长为2√2π,故答案为2√2π.根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】①④【解析】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=√2BE,∵AF=√2BE,∴AF=EH,∵∠DAM =∠EHB =45°,∠BAD =90°, ∴∠FAE =∠EHC =135°, ∵BA =BC ,BE =BH , ∴AE =HC ,∴△FAE≌△EHC(SAS),∴EF =EC ,∠AEF =∠ECH , ∵∠ECH +∠CEB =90°, ∴∠AEF +∠CEB =90°, ∴∠FEC =90°,∴∠ECF =∠EFC =45°,故①正确,如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),∴∠ECB =∠DCH ,∴∠ECH =∠BCD =90°, ∴∠ECG =∠GCH =45°, ∵CG =CG ,CE =CH , ∴△GCE≌△GCH(SAS), ∴EG =GH ,∵GH =DG +DH ,DH =BE , ∴EG =BE +DG ,故③错误,∴△AEG 的周长=AE +EG +AG =AG +GH =AD +DH +AE =AE +EB +AD =AB +AD =2a ,故②错误,设BE =x ,则AE =a −x ,AF =√2x ,∴S △AEF =12⋅(a −x)×x =−12x 2+12ax =−12(x 2−ax +14a 2−14a 2)=−12(x −12a)2+18a 2,∵−12<0,∴x =12a 时,△AEF 的面积的最大值为18a 2.故④正确,故答案为①④.①正确.如图1中,在BC 上截取BH =BE ,连接EH.证明△FAE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD 到H ,使得DH =BE ,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE =x ,则AE =a −x ,AF =√2x ,构建二次函数,利用二次函数的性质解决最值问题.本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题. 17.【答案】解:{x −y =1 ①x +3y =9 ②,②−①得,4y =8,解得y =2,把y =2代入①得,x −2=1,解得x =3,故原方程组的解为{x =3y =2.【解析】运用加减消元解答即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】证明:∵FC//AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵{∠A=∠FCF ∠ADE=∠F DE=EF,∴△ADE≌△CFE(AAS).【解析】利用AAS证明:△ADE≌CFE.本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.【答案】解:(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)∵点(a,b)在一次函数y=x−√2的图象上,∴b=a−√2,∴a−b=√2,∴P=√22;【解析】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.(1)P=2aa2−b2−1a+b=2a(a+b)(a−b)−1a+b=2a−a+b(a+b)(a−b)=1a−b;(2)将点(a,b)代入y=x−√2得到a−b=√2,再将a−b=√2代入化简后的P,即可求解;20.【答案】解:(1)m=40−2−10−12−7−4=5;(2)B组的圆心角=360°×540=45°,C组的圆心角=360°×1040=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为612=12.【解析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.【答案】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G 基站的数量是6万座.(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,依题意,得:6(1+x)2=17.34,解得:x 1=0.7=70%,x 2=−2.7(舍去).答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.【解析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)2020年全省5G 基站的数量=目前广东5G 基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,根据2020年底及2022年底全省5G 基站数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.22.【答案】(1)解:将点P(−1,2)代入y =mx ,得:2=−m ,解得:m =−2,∴正比例函数解析式为y =−2x ;将点P(−1,2)代入y =n−3x ,得:2=−(n −3), 解得:n =1,∴反比例函数解析式为y =−2x .联立正、反比例函数解析式成方程组,得:{y =−2xy =−2x, 解得:{x 1=−1y 1=2,{x 2=1y 2=−2, ∴点A 的坐标为(1,−2).(2)证明:∵四边形ABCD 是菱形,∴AC ⊥BD ,AB//CD ,∴∠DCP =∠BAP ,即∠DCP =∠OAE .∵AB ⊥x 轴,∴∠AEO =∠CPD =90°,∴△CPD∽△AEO .(3)解:∵点A 的坐标为(1,−2),∴AE =2,OE =1,AO =√AE 2+OE 2=√5.∵△CPD∽△AEO ,∴∠CDP =∠AOE ,∴sin∠CDB =sin∠AOE =AEAO =√5=2√55.【解析】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m ,n 的值;(2)利用菱形的性质,找出∠DCP =∠OAE ,∠AEO =∠CPD =90°;(3)利用相似三角形的性质,找出∠CDP =∠AOE .(1)根据点P 的坐标,利用待定系数法可求出m ,n 的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A 的坐标(利用正、反比例函数图象的对称性结合点P 的坐标找出点A 的坐标亦可);(2)由菱形的性质可得出AC ⊥BD ,AB//CD ,利用平行线的性质可得出∠DCP =∠OAE ,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.23.【答案】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC=√AB2−AC2=√102−82=6,∵BC=CD,∴BC⏜=CD⏜,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2−EC2=OB2−OE2,∴62−(5−x)2=52−x2,解得x=75,∵BE=DE,BO=OA,∴AD=2OE=145,∴四边形ABCD的周长=6+6+10+145=1245.【解析】本题考查作图−复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.24.【答案】证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,由折叠可知:DF=DC,当点F在AC上时,有∠DFC=∠C=60°,∴∠DFC=∠A,∴DF//AB;解:(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2,∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°,∴MD=2√3,∴S△ABF的最小值=12×6×(2√3−2)=6√3−6,∴S最大值=√34×62−(6√3−6)=3√3+6;(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE,∴DF=DC=2,∠EFD=∠C=60°,∵GD⊥EF,∠EFD=60°,∴FG=1,DG=√3FG=√3,∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=√13−1,∴BG=√13,∵EH⊥BC,∠C=60°,∴CH=EC2,EH=√3HC=√32EC,∵∠GBD=∠EBH,∠BGD=∠BHE=90°,∴△BGD∽△BHE,∴DGBG =EHBH,∴√3√13=√32EC6−EC2,∴EC=√13−1,∴AE=AC−EC=7−√13.【解析】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.(1)由折叠的性质和等边三角形的性质可得∠DFC =∠A ,可证DF//AB ;(2)过点D 作DM ⊥AB 交AB 于点M ,由题意可得点F 在以D 为圆心,DF 为半径的圆上,由△ABC 的面积为S 1的值是定值,则当点F 在DM 上时,S △ABF 最小时,S 最大;(3)过点D 作DG ⊥EF 于点G ,过点E 作EH ⊥CD 于点H ,由勾股定理可求BG 的长,通过证明△BGD∽△BHE ,可求EC 的长,即可求AE 的长.25.【答案】解:(1)∵y =mx 2−2mx −3=m(x −1)2−m −3,抛物线有最低点, ∴二次函数y =mx 2−2mx −3的最小值为−m −3;(2)∵抛物线G :y =m(x −1)2−m −3∴平移后的抛物线G 1:y =m(x −1−m)2−m −3∴抛物线G 1顶点坐标为(m +1,−m −3)∴x =m +1,y =−m −3∴x +y =m +1−m −3=−2即x +y =−2,变形得y =−x −2∵m >0,m =x −1∴x −1>0∴x >1∴y 与x 的函数关系式为y =−x −2(x >1);(3)法一:如图,函数H :y =−x −2(x >1)图象为射线x =1时,y =−1−2=−3;x =2时,y =−2−2=−4∴函数H 的图象恒过点B(2,−4)∵抛物线G :y =m(x −1)2−m −3x =1时,y =−m −3;x =2时,y =m −m −3=−3∴抛物线G 恒过点A(2,−3)由图象可知,若抛物线与函数H 的图象有交点P ,则y B <y P <y A ,∴点P 纵坐标的取值范围为−4<y P <−3;法二:{y =−x −2y =mx 2−2mx −3整理的:m(x 2−2x)=1−x∵x >1,且x =2时,方程为0=−1不成立∴x ≠2,即x 2−2x =x(x −2)≠0∴m =1−x x(x −2)>0 ∵x >1∴1−x <0∴x(x −2)<0∴x −2<0∴x <2即1<x <2∵y P =−x −2∴−4<y P <−3.【解析】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.(1)抛物线有最低点即开口向上,m >0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G 的顶点式,根据平移规律即得到抛物线G 1的顶点式,进而得到抛物线G 1顶点坐标(m+1,−m−3),即x=m+1,y=−m−3,x+y=−2即消去m,得到y 与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,−4),函数H图象恒过点A(2,−3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.。
2019年广东省广州市天河区中考数学一模试卷(含答案解析)
2019年广东省广州市天河区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.9的平方根是()A.±3B.﹣3C.3D.2.下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab63.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣34.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30B.x(x+1)=30C.=30D.=308.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.米9.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)10.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣1的绝对值是,倒数是.12.若代数式有意义,则m的取值范围是.13.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是.14.关于x的一元二次方程(m﹣3)x2+x+(m2﹣9)=0的一个根是0,则m的值是.15.已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则∁n的坐标是.三.解答题(共9小题,满分102分)17.(9分)解方程组(1)(2).18.(9分)已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.19.(10分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2.(2)直接写出点B1、B2坐标.(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.20.(10分)已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.21.(12分)2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.(1)第一批脐橙每件进价多少元?(2)陈老板以每件120元的价格销售第二批脐橙,售出60%后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价﹣进价)22.(12分)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC边于点D,E是边BC的中点,连接DE、OD,(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于F,若OF=FC,试判断△ABC的形状,并说明理由;(3)若,求⊙O的半径.23.(12分)已知反比例函数y=的图象的一支位于第一象限,点A(x1,y1),B(x2,y2)都在该函数的图象上.(1)m的取值范围是,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第象限;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若△OAC的面积为6,求m的值.24.(14分)如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F(1)求∠EDF的度数;(2)若AD=6,求△AEF的周长;(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.25.(14分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年广东省广州市天河区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.2.【分析】分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.【解答】解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选:B.【点评】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.3.【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】先过E作EG∥AB,根据平行线的性质即可得到∠ABE+∠BED+∠CDE=360°,再根据DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,即可得出∠FBE+∠FDE=135°,最后根据四边形内角和进行计算即可.【解答】解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.5.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【解答】解:∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选:D.【点评】本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.9.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.10.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD =BC+BD,即可求出答案.【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D ∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=或BH=(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴∴BH=BD,CD=BC+BD=a+.故选:B.【点评】本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值,乘积是1的两数互为倒数可得答案.【解答】解:﹣1的绝对值是1,倒数是﹣,故答案为:1;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握倒数定义和绝对值定义.12.【分析】根据二次根式有意义的条件可得m+1≥0,根据分式有意义的条件可得m﹣1≠0,再解即可.【解答】解:由题意得:m+1≥0,且m﹣1≠0,解得:m≥﹣1,且m≠1,故答案为:m≥﹣1,且m≠1.【点评】此题主要考查了分式和二次根式有意义的条件,关键是掌握:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】先根据旋转的性质得∠AOC=∠BOD=40°,OA=OC,则根据等腰三角形的性质和三角形内角和定理可计算出∠A=(180°﹣∠A)=70°【解答】解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∴∠AOC=∠BOD=40°,OA=OC,∵OA=OC,∴∠A=∠OCA,∴∠A=(180°﹣40°)=70°,故答案为:70°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程(m﹣3)x2+x+(m2﹣9)=0,得m2﹣9=0,解得:m=±3,∵m﹣3≠0,∴m=﹣3,故答案是:﹣3.【点评】本题主要考查了一元二次方程的定义及其解,注意方程有意义,其二次项系数不能为0.15.【分析】根据题意画出图形,由于AB、CD的位置不能确定,故应分AB与CD在圆心O的同侧及AB与CD在圆心O的异侧两种情况讨论,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE﹣OF即可求出答案;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE+OF即可求出答案.【解答】解:如图所示,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE﹣OF=4﹣3=1cm;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE+OF=4+3=7cm.故答案为:1cm或7cm.【点评】本题考查的是垂径定理及勾股定理,解答此题时要注意分类讨论,不要漏解.16.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得∁n的坐标是(﹣×4n ﹣1,4n).【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则∁n的坐标是(﹣×4n﹣1,4n).故答案为(﹣×4n﹣1,4n).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三.解答题(共9小题,满分102分)17.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:, ①﹣②得:4y =26,解得:y =,把y =代入①得:x =,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】根据已知及矩形的性质利用AAS 判定△ADF ≌△DEC ,从而得到AF =DC ,因为DC =AB ,所以AF =AB .【解答】证明:∵AF ⊥DE .∴∠AFE =90°.∵在矩形ABCD 中,AD ∥BC ,∠C =90°.∴∠ADF =∠DEC .∴∠AFE =∠C =90°.∵AD =DE .∴△ADF ≌△DEC .∴AF =DC .∵DC =AB .∴AF =AB .【点评】此题考查学生对矩形的性质及全等三角形的判定方法的理解及运用.19.【分析】(1)根据△ABC 绕原点顺时针旋转90°,得到△A 1B 1C 1,△A 1B 1C 1向左平移2个单位,再向下平移5个单位得到△A 2B 2C 2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P 的位置,即可得出点P 1、P 2的坐标.【解答】解:(1)如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求:(2)点B1坐标为(2,4)、B2坐标为(0,﹣1);(3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).【点评】本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.20.【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.【解答】解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为;(3)设有x个红球被换成了黄球.根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,再根据等量关系:第二批脐橙所购件数是第一批的2倍;(2)设剩余的脐橙每件售价打y折,由利润=售价﹣进价,根据第二批的销售利润不低于640元,可列不等式求解.【解答】解:(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,根据题意,得:×2=,解得x=80.经检验,x=80是原方程的解且符合题意.答:第一批脐橙每件进价为80元.(2)设剩余的脐橙每件售价打y折,根据题意,得:(120﹣100)××60%+(120×﹣100)××(1﹣60%)≥480,解得:y≥7.5.答:剩余的脐橙每件售价最少打7.5折.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.【分析】(1)求出∠CDB=90°,推出DE=BE,得到∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE=90°即可;(2)连接OE,证正方形DEBO,推出OB=BE,推出∠EOB=45°,根据平行线的性质推出∠A =45°即可;(3)设AD=x,CD=2x,证△CDB∽△CBA,得到比例式,代入求出AB即可.【解答】解:如右图所示,连接BD,(1)∵AB是直径,∴∠ADB=90°,∵O是AB的中点,∴OA=OB=OD,∴∠OAD=∠ODA,∠ODB=∠OBD,同理在Rt△BDC中,E是BC的中点,∴∠EDB=∠EBD,∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°,∴∠OAD=∠CBD,∴∠ODA=∠EBD,又∵∠ODA+∠ODB=90°,∴∠EBD+∠ODB=90°,即∠ODE=90°,∴DE是⊙O的切线.(2)答:△ABC的形状是等腰直角三角形.理由是:∵E、F分别是BC、OC的中点,∴EF是三角形OBC的中位线,∴EF∥AB,DE⊥BC,OB=OD,四边形OBED是正方形,连接OE,OE是△ABC的中位线,OE∥AC,∠A=∠EOB=45度,∴∠A=∠ACB=45°,∵∠ABC=90°,∴△ACB是等腰直角三角形.(3)设AD=x,CD=2x,∵∠CDB=∠CBA=90°,∠C=∠C,∴△CDB∽△CBA,∴=,∴=,x=2,AC=6,由勾股定理得:AB==6,∴圆的半径是3.答:⊙O的半径是3.【点评】本题主要考查对等腰三角形的性质和判定,切线的判定,相似三角形的性质和判定,平行线的性质,等腰直角三角形,三角形的内角和定理,勾股定理,直角三角形斜边上的中线,正方形的性质和判定的连接和掌握,综合运用这些性质进行推理是解此题的关键.23.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;故答案是:m>3,三;(2)∵点A在第一象限,且与点C关于x轴对称∴AC⊥x轴,AC=2y=2×,=AC•x=×2וx=m﹣3,∴S△OAC∵△OAC的面积为6,∴m﹣3=6,解得m=9.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.24.【分析】(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.想办法求出∠EOF的度数即可解决问题;(2)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.利用全等三角形的性质证明EK =EM,FM=FL,即可推出△AEF的周长=2AL.即可解决问题;(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.想办法求出AD,AN即可解决问题;【解答】解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GFD=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK⊥EB,DM⊥EF,∴∠EKD=∠EMD=90°,DK=DM,∴Rt△DEK≌Rt△DEM(HL),∴∴EK=EM,同法可证:DK=DL,∴DM=CL,∵DM⊥FE,DL⊥FC,∴∠FMD=∠FLD=90°,∴FM=FL,∵AD=AD,DK=DF,∴Rt△ADK≌Rt△ADL(HL),∴AK=AL,∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,∵AD=6,∴AL=AD•cos30°=9,∴△AEF的周长=18.(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.在Rt△AEM中,∵AE=3,∠EAM=60°,∴AM=AE=,EM=,在Rt△EFM中,EF===,∴AF=AM+MF=8,∵△AEF的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD=30°,∴AQ =√3NQ ,设EQ =x ,则QN =4x ,AQ =12x , ∴AE =11x =3,∴x =,∴AN =2NQ =,∴DN =AD ﹣AN =. 【点评】本题属于圆综合题,考查了等边三角形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,角平分线的性质定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题. 25.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ =90°或∠AQD =90°,当∠ADQ =90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,则可用t 表示出k ′,设直线DQ 解析式为y =k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD =2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
【2020精编】广东省广州市天河区中考数学一模试卷(含答案解析)
2019年广东省广州市天河区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.9的平方根是()A.±3 B.﹣3 C.3 D.2.下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab63.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1 B.x>1 C.﹣3<x≤﹣1 D.x>﹣34.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30 B.x(x+1)=30 C.=30 D.=30 8.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD 为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.米9.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)10.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣1的绝对值是,倒数是.12.若代数式有意义,则m的取值范围是.13.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是.14.关于x的一元二次方程(m﹣3)x2+x+(m2﹣9)=0的一个根是0,则m的值是.15.已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则∁n的坐标是.三.解答题(共9小题,满分102分)17.(9分)解方程组(1)(2).18.(9分)已知:如图,矩形ABCD 中,DE 交BC 于E ,且DE =AD ,AF ⊥DE 于F . 求证:AB =AF .19.(10分)如图,在平面直角坐标系中有△ABC ,其中A (﹣3,4),B (﹣4,2),C (﹣2,1).把△ABC 绕原点顺时针旋转90°,得到△A 1B 1C 1.再把△A 1B 1C 1向左平移2个单位,向下平移5个单位得到△A 2B 2C 2.(1)画出△A 1B 1C 1和△A 2B 2C 2.(2)直接写出点B 1、B 2坐标.(3)P (a ,b )是△ABC 的AC 边上任意一点,△ABC 经旋转平移后P 对应的点分别为P 1、P 2,请直接写出点P 1、P 2的坐标.20.(10分)已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.21.(12分)2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.(1)第一批脐橙每件进价多少元?(2)陈老板以每件120元的价格销售第二批脐橙,售出60%后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价﹣进价)22.(12分)如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 边于点D ,E 是边BC 的中点,连接DE 、OD ,(1)求证:直线DE 是⊙O 的切线;(2)连接OC 交DE 于F ,若OF =FC ,试判断△ABC 的形状,并说明理由;(3)若,求⊙O 的半径.23.(12分)已知反比例函数y =的图象的一支位于第一象限,点A (x 1,y 1),B (x 2,y 2)都在该函数的图象上.(1)m 的取值范围是 ,函数图象的另一支位于第一象限,若x 1>x 2,y 1>y 2,则点B 在第 象限;(2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图象上,点C 与点A 关于x 轴对称,若△OAC 的面积为6,求m 的值.24.(14分)如图:AD 是正△ABC 的高,O 是AD 上一点,⊙O 经过点D ,分别交AB 、AC 于E 、F(1)求∠EDF 的度数;(2)若AD =6,求△AEF 的周长;(3)设EF 、AD 相较于N ,若AE =3,EF =7,求DN 的长.25.(14分)如图1,抛物线y =ax 2+bx +3交x 轴于点A (﹣1,0)和点B (3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y 轴交于点C ,顶点为F ,点D (2,3)在该抛物线上. ①求四边形ACFD 的面积;②点P 是线段AB 上的动点(点P 不与点A 、B 重合),过点P 作PQ ⊥x 轴交该抛物线于点Q ,连接AQ 、DQ ,当△AQD 是直角三角形时,求出所有满足条件的点Q 的坐标.2019年广东省广州市天河区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.2.【分析】分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.【解答】解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选:B.【点评】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.3.【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】先过E作EG∥AB,根据平行线的性质即可得到∠ABE+∠BED+∠CDE=360°,再根据DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,即可得出∠FBE+∠FDE=135°,最后根据四边形内角和进行计算即可.【解答】解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.5.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD 中求出AD的长,据此即可求出AB的长.【解答】解:∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选:D.【点评】本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.9.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.10.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=或BH=(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴∴BH=BD,CD=BC+BD=a+.故选:B.【点评】本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值,乘积是1的两数互为倒数可得答案.【解答】解:﹣1的绝对值是1,倒数是﹣,故答案为:1;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握倒数定义和绝对值定义.12.【分析】根据二次根式有意义的条件可得m+1≥0,根据分式有意义的条件可得m﹣1≠0,再解即可.【解答】解:由题意得:m+1≥0,且m﹣1≠0,解得:m≥﹣1,且m≠1,故答案为:m≥﹣1,且m≠1.【点评】此题主要考查了分式和二次根式有意义的条件,关键是掌握:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】先根据旋转的性质得∠AOC=∠BOD=40°,OA=OC,则根据等腰三角形的性质和三角形内角和定理可计算出∠A=(180°﹣∠A)=70°【解答】解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB 上,∴∠AOC=∠BOD=40°,OA=OC,∵OA=OC,∴∠A=∠OCA,∴∠A=(180°﹣40°)=70°,故答案为:70°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程(m﹣3)x2+x+(m2﹣9)=0,得m2﹣9=0,解得:m=±3,∵m﹣3≠0,∴m=﹣3,故答案是:﹣3.【点评】本题主要考查了一元二次方程的定义及其解,注意方程有意义,其二次项系数不能为0.15.【分析】根据题意画出图形,由于AB、CD的位置不能确定,故应分AB与CD在圆心O 的同侧及AB与CD在圆心O的异侧两种情况讨论,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE﹣OF即可求出答案;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE+OF即可求出答案.【解答】解:如图所示,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE﹣OF=4﹣3=1cm;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF =OE +OF =4+3=7cm .故答案为:1cm 或7cm .【点评】本题考查的是垂径定理及勾股定理,解答此题时要注意分类讨论,不要漏解.16.【分析】先求出直线l 的解析式为y =x ,设B 点坐标为(x ,1),根据直线l 经过点B ,求出B 点坐标为(,1),解Rt △A 1AB ,得出AA 1=3,OA 1=4,由平行四边形的性质得出A 1C 1=AB =,则C 1点的坐标为(﹣,4),即(﹣×40,41);根据直线l 经过点B 1,求出B 1点坐标为(4,4),解Rt △A 2A 1B 1,得出A 1A 2=12,OA 2=16,由平行四边形的性质得出A 2C 2=A 1B 1=4,则C 2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C 3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得∁n 的坐标是(﹣×4n ﹣1,4n ).【解答】解:∵直线l 经过原点,且与y 轴正半轴所夹的锐角为60°,∴直线l 的解析式为y =x .∵AB ⊥y 轴,点A (0,1),∴可设B 点坐标为(x ,1),将B (x ,1)代入y =x ,得1=x ,解得x =,∴B 点坐标为(,1),AB =.在Rt △A 1AB 中,∠AA 1B =90°﹣60°=30°,∠A 1AB =90°,∴AA 1=AB =3,OA 1=OA +AA 1=1+3=4,∵▱ABA 1C 1中,A 1C 1=AB =,∴C 1点的坐标为(﹣,4),即(﹣×40,41);由x =4,解得x =4,∴B 1点坐标为(4,4),A 1B 1=4.在Rt △A 2A 1B 1中,∠A 1A 2B 1=30°,∠A 2A 1B 1=90°,∴A 1A 2=A 1B 1=12,OA 2=OA 1+A 1A 2=4+12=16,∵▱A 1B 1A 2C 2中,A 2C 2=A 1B 1=4,∴C 2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C 3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则∁n 的坐标是(﹣×4n ﹣1,4n ).故答案为(﹣×4n ﹣1,4n ).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三.解答题(共9小题,满分102分)17.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】根据已知及矩形的性质利用AAS判定△ADF≌△DEC,从而得到AF=DC,因为DC=AB,所以AF=AB.【解答】证明:∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC.∴∠AFE=∠C=90°.∵AD=DE.∴△ADF≌△DEC.∴AF=DC.∵DC=AB.∴AF=AB.【点评】此题考查学生对矩形的性质及全等三角形的判定方法的理解及运用.19.【分析】(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求:(2)点B1坐标为(2,4)、B2坐标为(0,﹣1);(3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).【点评】本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.20.【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.【解答】解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:白白红红红红红白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为;(3)设有x个红球被换成了黄球.根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,再根据等量关系:第二批脐橙所购件数是第一批的2倍;(2)设剩余的脐橙每件售价打y折,由利润=售价﹣进价,根据第二批的销售利润不低于640元,可列不等式求解.【解答】解:(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,根据题意,得:×2=,解得x=80.经检验,x=80是原方程的解且符合题意.答:第一批脐橙每件进价为80元.(2)设剩余的脐橙每件售价打y折,根据题意,得:(120﹣100)××60%+(120×﹣100)××(1﹣60%)≥480,解得:y≥7.5.答:剩余的脐橙每件售价最少打7.5折.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.【分析】(1)求出∠CDB=90°,推出DE=BE,得到∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE=90°即可;(2)连接OE,证正方形DEBO,推出OB=BE,推出∠EOB=45°,根据平行线的性质推出∠A=45°即可;(3)设AD=x,CD=2x,证△CDB∽△CBA,得到比例式,代入求出AB即可.【解答】解:如右图所示,连接BD,(1)∵AB是直径,∴∠ADB=90°,∵O是AB的中点,∴OA=OB=OD,∴∠OAD=∠ODA,∠ODB=∠OBD,同理在Rt△BDC中,E是BC的中点,∴∠EDB=∠EBD,∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°,∴∠OAD=∠CBD,∴∠ODA=∠EBD,又∵∠ODA+∠ODB=90°,∴∠EBD+∠ODB=90°,即∠ODE=90°,∴DE是⊙O的切线.(2)答:△ABC的形状是等腰直角三角形.理由是:∵E、F分别是BC、OC的中点,∴EF是三角形OBC的中位线,∴EF∥AB,DE⊥BC,OB=OD,四边形OBED是正方形,连接OE,OE是△ABC的中位线,OE∥AC,∠A=∠EOB=45度,∴∠A=∠ACB=45°,∵∠ABC=90°,∴△ACB是等腰直角三角形.(3)设AD=x,CD=2x,∵∠CDB=∠CBA=90°,∠C=∠C,∴△CDB∽△CBA,∴=,∴=,x=2,AC=6,由勾股定理得:AB==6,∴圆的半径是3.答:⊙O的半径是3.【点评】本题主要考查对等腰三角形的性质和判定,切线的判定,相似三角形的性质和判定,平行线的性质,等腰直角三角形,三角形的内角和定理,勾股定理,直角三角形斜边上的中线,正方形的性质和判定的连接和掌握,综合运用这些性质进行推理是解此题的关键.23.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;故答案是:m>3,三;(2)∵点A在第一象限,且与点C关于x轴对称∴AC⊥x轴,AC=2y=2×,=AC•x=×2וx=m﹣3,∴S△OAC∵△OAC的面积为6,∴m﹣3=6,解得m=9.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.24.【分析】(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.想办法求出∠EOF 的度数即可解决问题;(2)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.利用全等三角形的性质证明EK=EM,FM=FL,即可推出△AEF的周长=2AL.即可解决问题;(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.想办法求出AD,AN即可解决问题;【解答】解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴Rt△OIE≌△Rt△OJF(HL),∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GFD=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK⊥EB,DM⊥EF,∴∠EKD=∠EMD=90°,DK=DM,∴Rt△DEK≌Rt△DEM(HL),∴∴EK=EM,同法可证:DK=DL,∴DM=CL,∵DM⊥FE,DL⊥FC,∴∠FMD=∠FLD=90°,∴Rt△DFM≌Rt△DFL(HL),∴FM=FL,∵AD=AD,DK=DF,∴Rt△ADK≌Rt△ADL(HL),∴AK=AL,∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,∵AD=6,∴AL=AD•cos30°=9,∴△AEF的周长=18.(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.在Rt△AEM中,∵AE=3,∠EAM=60°,∴AM=AE=,EM=,在Rt△EFM中,EF===,∴AF=AM+MF=8,∵△AEF的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD=30°,∴AQ=√3NQ,设EQ=x,则QN=4x,AQ=12x,∴AE=11x=3,∴x=,∴AN=2NQ=,∴DN=AD﹣AN=.【点评】本题属于圆综合题,考查了等边三角形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,角平分线的性质定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD =2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =,当t =时,﹣t 2+2t +3=,当t =时,﹣t 2+2t +3=,∴Q 点坐标为(,)或(,);综上可知Q 点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2019年广州中考数学试卷解析(含答案)
2019年广州中考数学试卷解析(含答案)广东省广州市2019年中考数学试卷(解析版)一、选择题.(2019广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.如图所示的几何体左视图是()A.B.C.D.【分析】根据几何体的左视图的定义判断即可.【解答】解:如图所示的几何体左视图是A,故选A.【点评】本题考查了由几何体来判断三视图,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.据统计,2019年广州地铁日均客运量均为6590000人次,将6590000用科学记数法表示为()A.6.59×104B.659×104C.65.9×105D.6.59×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6590000用科学记数法表示为:6.59×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【分析】最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为故选A..【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.下列计算正确的是()A.B.xy2÷D.(xy3)2=x2y6C.2【分析】分别利用二次根式加减运算法则以及分式除法运算法则和积的乘方运算法则化简判断即可.【解答】解:A、B、xy2÷C、2+3无法化简,故此选项错误;=2xy3,故此选项错误;,无法计算,故此选项错误;D、(xy3)2=x2y6,正确.故选:D.【点评】此题主要考查了二次根式加减运算以及分式除法运算和积的乘方运算,正确掌握相关运算法则是解题关键.6.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320tB.v=C.v=20tD.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.△7.如图,已知ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC=故选:D.=5.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD 的长是解题关键.8.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0B.a﹣b>0C.a2+b>0D.a+b>0【分析】首先判断a、b的符号,再一一判断即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,a2+b>0,故C正确,a+b不一定大于0,故D错误.故选C.【点评】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.9.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大C.图象的顶点坐标为(﹣2,﹣7)B.当x=2时,y有最大值﹣3D.图象与x轴有两个交点【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=﹣又∵a=﹣<0+x﹣4可化为y=﹣(x﹣2)2﹣3,∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.【点评】本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.10.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0B.1C.2D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b⋆b﹣a⋆a=b (1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.ab=m.本题属于基础题,【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.二.填空题.(本大题共六小题,每小题3分,满分18分.)11.分解因式:2a2+ab=a2a+b【分析】直接把公因式a提出来即可.【解答】解:2a2+ab=a(2a+b).故答案为:a(2a+b).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.代数式有意义时,实数x的取值范围是x9.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,9﹣x≥0,解得,x≤9,故答案为:x≤9.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.如图,ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB △F分别落在边AB,BC上,的方向平移7cm得到线段EF,点E,则△EBF的周长为13 cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.14.分式方程的解是x=1【分析】根据解分式方程的方法可以求得分式方程本题得以解决.【解答】解:的解,记住最后要进行检验,方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.15.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧AB的长为8π.【分析】连接OA、OB,由切线的性质和垂径定理易得AP=BP=数的定义可得∠AOP=60°,利用弧长的公式可得结果.【解答】解:连接OA、OB,∵AB为小⊙O的切线,∴OP⊥AB,∴AP=BP=∵∴∠AOP=60°,=,,==8π.,由锐角三角函∴∠AOB=120°,∠OAP=30°,∴OA=2OP=12,∴劣弧AB的长为:故答案为:8π.【点评】本题主要考查了切线的性质,垂径定理和弧长公式,利用三角函数求得∠AOP=60°是解答此题的关键.16.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.【分析】首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.【解答】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=∴BE>AE,∴AE<,AE,∴CB+FG<1.5,故④错误.故答案为①②③.【点评】本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.三、解答题17.解不等式组并在数轴上表示解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.19.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组甲乙丙研究报告918179小组展示807483答辩788590(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据表格可以求得各小组的平均成绩,从而可以将各小组的成绩按照从大到小排列;(2)根据题意可以算出各组的加权平均数,从而可以得到哪组成绩最高.【解答】解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:(分),(分),丙组的平均成绩是:(分),(分),(分),(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.【点评】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.20.已知A=(1)化简A;(a,b≠0且a≠b)(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.【分析】(1)利用完全平方公式的展开式将(a+b)2展开,合并同类型、消元即可将A进行化解;(2)由点P在反比例函数图象上,即可得出ab的值,代入A化解后的分式中即可得出结论.【解答】解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.【点评】本题考查了分式的化解求值以及反比例函数图象上点的坐标特征,解题的关键是:(1)将原分式进行化解;(2)找出ab值.本题属于基础题,难度不大,解决该题型题目时,先将原分式进行化解,再代入ab求值即可.21.如图,利用尺规,在ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取△AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明四边形ABCD是平行四边形,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.【点评】本题考查尺规作图、平行四边形的判定和性质等知识,解题的关键是学会利用尺规作一个角等于已知角,属于基础题,中考常考题型.22.如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30A′处,m到达(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.【分析】(1)解直角三角形即可得到结论;,CE=AA′=30(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,于是得到A′E=AC=60,在Rt△ABC中,求得DC=AC=20,然后根据三角函数的定义即可得到结论..【解答】解:(1)由题意得:∠ABD=30°,∠ADC=60°,在Rt△ABC中,AC=60m,∴AB===120(m);(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,则A′E=AC=60,CE=AA′=30,==.在Rt△ABC中,AC=60m,∠ADC=60°,∴DC=∴DE=50AC=20,,∴tan∠AA′D=tan∠A′DC=答:从无人机A′上看目标D的俯角的正切值是【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.23.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到到结论.或,代入数据即可得【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BCE相似,∴∴==或或,,,或CE=,∴BE=2,CE=∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.24.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.【分析】(1)根据题意得出△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,得出1﹣4m≠0,解不等式即可;(2)y=m(x2﹣2x﹣3)+x+1,故只要x2﹣2x﹣3=0,那么y的值便与m无关,解得x=3或x=﹣1(舍去,此时y=0,在坐标轴上),故定点为(3,4);,因此(3)由|AB|=|xA﹣x B|得出|AB|=|﹣4|,由已知条件得出≤<4,得出0<|﹣4|≤|AB|最大时,||=,解方程得出m=8,或m=(舍去),即可得出结果.【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠;=(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,∴y=m(x2﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x2﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);=|AB|=|xA﹣x B|=(3)解:==||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,,|=,∴0<|﹣4|≤∴|AB|最大时,|解得:m=8,或m=(舍去),,∴当m=8时,|AB|有最大值此时△ABP的面积最大,没有最小值,则面积最大为:|AB|yP=××4=.【点评】本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识;本题难度较大,根据题意得出点P的坐标是解决问题的关键.上,且不与点B,D重合),25.如图,点C为△ABD的外接圆上的一动点(点C不在∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(△3)若ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM 2三者之间满足的等量关系,并证明你的结论.【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.【解答】解:(1)∵=,∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴∴AC=CE,AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,由对称性可知:∠AMB=ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,∴BM2+2AM2=DM2.【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.。
2019年广东省广州市中考数学试卷(WORD精校版带答案)
广东省广州市2019年中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(2019广州)|-6 |=( )A .-6B .6C .-16 D .162.(2019广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是( ) A .5 B .5.2 C .6 D .6.4 3.(2019广州)如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若tan ∠BAC =25,则此斜坡的水平距离AC 为( )A .75mB .50mC .30mD .12m4.(2019广州)下列运算正确的是( ) A .-3-2=-1 B .3×(-13)2=-13 C .x 3•x 5=x 15D .a •ab =a b5.(2019广州)平面内,⊙O 的半径为1,点P 到O 的距离为2,过点P 可作⊙O 的切线条数为( ) A .0条 B .1条 C .2条 D .无数条 6.(2019广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .120x =150x -8B .120x +8=150xC .120x -8=150xD .120x =150x +87.(2019广州)如图,□ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍8.(2019广州)若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=6x的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y39.(2019广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4 5 B.4 3 C.10 D.810.(2019广州)关于x的一元二次方程x2-(k-1)x-k+2=0有两个实数根x1,x2,若(x1-x2+2)(x1-x2-2)+2x1x2=-3,则k的值()A.0或2 B.-2或2 C.-2 D.2二、填空题(共6小题,每小题3分,满分18分)11.(2019广州)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是cm.12.(2019广州)代数式1x-8有意义时,x应满足的条件是.13.(2019广州)分解因式:x2y+2xy+y=.14.(2019广州)一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为 .15.(2019广州)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为 .(结果保留π)16.(2019广州)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =2BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论:①∠ECF =45°;②△AEG 的周长为(1+22)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值18a 2.其中正确的结论是 .(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17.(9分)(2019广州)解方程组:⎩⎪⎨⎪⎧x -y =1x +3y =9 .18.(9分)(2019广州)如图,D 是AB 上一点,DF 交AC 于点E ,DE =FE ,FC ∥AB ,求证:△ADE ≌CFE .19.(10分)(2019广州)已知P =2a a 2-b 2-1a +b(a ≠±b ) (1)化简P ;(2)若点(a ,b )在一次函数y =x -2的图象上,求P 的值.20.(10分)(2019广州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图. 频数分布表请根据图表中的信息解答下列问题: (1)求频数分布表中m 的值;(2)求B 组,C 组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图; (3)已知F 组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F 组中随机选取2名学生,恰好都是女生.组别 时间/小时 频数/人数A 组 0≤t <1 2B 组 1≤t <2 mC 组 2≤t <3 10D 组3≤t <4 12 E 组 4≤t <5 7 F 组t ≥5421.(12分)(2019广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.(12分)(2019广州)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=n-3 x的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.(12分)(2019广州)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.(14分)(2019广州)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.(14分)(2019广州)已知抛物线G:y=mx2-2mx-3有最低点.(1)求二次函数y=mx2-2mx-3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.广东省广州市2019年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)(2019广州)1.B绝对值2.A.众数3.A.解直角三角形的应用-坡度坡角4.D.二次根式5.C.点与圆的位置关系,切线的定义6.D.分式方程应用--效率7.B.相似性质平行四边形中位线矩形8.C.反比例函数单调性9.A.矩形的性质、垂直平分线的性质、全等、勾股定理10.D.根的判别式根与系数的关系二、填空题(共6小题,每小题3分,满分18分)(2019广州)11.5.点到直线的距离定义12.x>8.分式有意义二次根式意义.13.y(x+1)2.提公因式法公式法因式分解14.15°或60°旋转15.圆锥三视图16.①④正方形的性质,全等三角形的判定和性质,二次函数的应用三、解答题(共9小题,满分102分)(2019广州)17.解:,②-①得,4y=2,解得y=2,把y=2代入①得,x-2=1,解得x=3,故原方程组的解为.解二元一次方程组18.AAS、ASA证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵,∴△ADE≌△CFE(AAS).19.分式的化简,一次函数解:(1)P=-===;(2)∵点(a,b)在一次函数y=x-的图象上,∴b=a-,∴a-b=,∴P=;20.表法与树状图法,以及扇形统计图、频数分布表【解答】解:(1)m=40-2-10-12-7-4=5;(2)B组的圆心角=360°×=45°,C组的圆心角=360°×=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为=.21.一元二次方程的应用--平均增长率解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=-2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.22.解三角形三角函数反比例菱形正比例(1)解:将点P(-1,2)代入y=mx,得:2=-m,解得:m=-2,∴正比例函数解析式为y=-2x;将点P(-1,2)代入y=,得:2=-(n-3),解得:n=1,∴反比例函数解析式为y=-.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,-2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,-2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.23.垂径定理直径对直角勾股中位线解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2-EC2=OB2-OE2,∴62-(5-x)2=52-x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.24.★★★★★难等边对称圆勾股相似等面积解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2-2)=6-6∴S=×2×3-(6-6)=-3+6 最大值(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=-1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=-1∴AE=AC-EC=7-25.顶点平移对称图象趋势解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,抛物线有最低点∴二次函数y=mx2-2mx-3的最小值为-m-3(2)∵抛物线G:y=m(x-1)2-m-3∴平移后的抛物线G1:y=m(x-1-m)2-m-3∴抛物线G1顶点坐标为(m+1,-m-3)∴x=m+1,y=-m-3∴x+y=m+1-m-3=-2即x+y=-2,变形得y=-x-2∵m>0,m=x-1∴x-1>0∴x>1∴y与x的函数关系式为y=-x-2(x>1)(3)法一:如图,函数H:y=-x-2(x>1)图象为射线x=1时,y=-1-2=-3;x=2时,y=-2-2=-4∴函数H的图象恒过点B(2,-4)∵抛物线G:y=m(x-1)2-m-3x=1时,y=-m-3;x=2时,y=m-m-3=-3∴抛物线G恒过点A(2,-3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A ∴点P纵坐标的取值范围为-4<y P<-3法二:整理的:m(x2-2x)=1-x∵x>1,且x=2时,方程为0=-1不成立∴x≠2,即x2-2x=x(x-2)≠0∴m=>0∵x>1∴1-x<0∴x(x-2)<0∴x-2<0∴x<2即1<x<2∵y P=-x-2∴-4<y P<-3。
2019年广东省广州市天河区中考数学一模试卷((有答案))
2019年广东省广州市天河区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.9的平方根是()A.±3B.﹣3C.3D.2.下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab63.已知两个不等式的解集在数轴上如图表示,那么这个解集为()A.x≥﹣1B.x>1C.﹣3<x≤﹣1D.x>﹣34.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30B.x(x+1)=30C.=30D.=308.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.米9.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)10.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣1的绝对值是,倒数是.12.若代数式有意义,则m的取值范围是.13.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是.14.关于x的一元二次方程(m﹣3)x2+x+(m2﹣9)=0的一个根是0,则m的值是.15.已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则∁n的坐标是.三.解答题(共9小题,满分102分)17.(9分)解方程组(1)(2).18.(9分)已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.19.(10分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC 绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2.(2)直接写出点B1、B2坐标.(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.20.(10分)已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.21.(12分)2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.(1)第一批脐橙每件进价多少元?(2)陈老板以每件120元的价格销售第二批脐橙,售出60%后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价﹣进价)22.(12分)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC边于点D,E是边BC的中点,连接DE、OD,(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于F,若OF=FC,试判断△ABC的形状,并说明理由;(3)若,求⊙O的半径.23.(12分)已知反比例函数y=的图象的一支位于第一象限,点A(x1,y1),B(x2,y2)都在该函数的图象上.(1)m的取值范围是,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第象限;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若△OAC 的面积为6,求m的值.24.(14分)如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F (1)求∠EDF的度数;(2)若AD=6,求△AEF的周长;(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.25.(14分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年广东省广州市天河区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.2.【分析】分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.【解答】解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选:B.【点评】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.3.【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】先过E作EG∥AB,根据平行线的性质即可得到∠ABE+∠BED+∠CDE=360°,再根据DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,即可得出∠FBE+∠FDE=135°,最后根据四边形内角和进行计算即可.【解答】解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.5.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【解答】解:∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选:D.【点评】本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.9.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.10.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=或BH=(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴∴BH=BD,CD=BC+BD=a+.故选:B.【点评】本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值,乘积是1的两数互为倒数可得答案.【解答】解:﹣1的绝对值是1,倒数是﹣,故答案为:1;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握倒数定义和绝对值定义.12.【分析】根据二次根式有意义的条件可得m+1≥0,根据分式有意义的条件可得m﹣1≠0,再解即可.【解答】解:由题意得:m+1≥0,且m﹣1≠0,解得:m≥﹣1,且m≠1,故答案为:m≥﹣1,且m≠1.【点评】此题主要考查了分式和二次根式有意义的条件,关键是掌握:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】先根据旋转的性质得∠AOC=∠BOD=40°,OA=OC,则根据等腰三角形的性质和三角形内角和定理可计算出∠A=(180°﹣∠A)=70°【解答】解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∴∠AOC=∠BOD=40°,OA=OC,∵OA=OC,∴∠A=∠OCA,∴∠A=(180°﹣40°)=70°,故答案为:70°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程(m﹣3)x2+x+(m2﹣9)=0,得m2﹣9=0,解得:m=±3,∵m﹣3≠0,∴m=﹣3,故答案是:﹣3.【点评】本题主要考查了一元二次方程的定义及其解,注意方程有意义,其二次项系数不能为0.15.【分析】根据题意画出图形,由于AB、CD的位置不能确定,故应分AB与CD在圆心O的同侧及AB与CD 在圆心O的异侧两种情况讨论,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE﹣OF即可求出答案;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE+OF即可求出答案.【解答】解:如图所示,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE﹣OF=4﹣3=1cm;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE+OF=4+3=7cm.故答案为:1cm或7cm.【点评】本题考查的是垂径定理及勾股定理,解答此题时要注意分类讨论,不要漏解.16.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得∁n的坐标是(﹣×4n﹣1,4n).【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则∁n的坐标是(﹣×4n﹣1,4n).故答案为(﹣×4n﹣1,4n).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三.解答题(共9小题,满分102分)17.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】根据已知及矩形的性质利用AAS判定△ADF≌△DEC,从而得到AF=DC,因为DC=AB,所以AF =AB.【解答】证明:∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC.∴∠AFE=∠C=90°.∵AD=DE.∴△ADF≌△DEC.∴AF=DC.∵DC=AB.∴AF=AB.【点评】此题考查学生对矩形的性质及全等三角形的判定方法的理解及运用.19.【分析】(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求:(2)点B1坐标为(2,4)、B2坐标为(0,﹣1);(3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).【点评】本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.20.【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.【解答】解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:∴两次摸出的球恰好颜色不同的概率为;(3)设有x个红球被换成了黄球.根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,再根据等量关系:第二批脐橙所购件数是第一批的2倍;(2)设剩余的脐橙每件售价打y折,由利润=售价﹣进价,根据第二批的销售利润不低于640元,可列不等式求解.【解答】解:(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,根据题意,得:×2=,解得x=80.经检验,x=80是原方程的解且符合题意.答:第一批脐橙每件进价为80元.(2)设剩余的脐橙每件售价打y折,根据题意,得:(120﹣100)××60%+(120×﹣100)××(1﹣60%)≥480,解得:y≥7.5.答:剩余的脐橙每件售价最少打7.5折.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.【分析】(1)求出∠CDB=90°,推出DE=BE,得到∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE=90°即可;(2)连接OE,证正方形DEBO,推出OB=BE,推出∠EOB=45°,根据平行线的性质推出∠A=45°即可;(3)设AD=x,CD=2x,证△CDB∽△CBA,得到比例式,代入求出AB即可.【解答】解:如右图所示,连接BD,(1)∵AB是直径,∴∠ADB=90°,∵O是AB的中点,∴OA=OB=OD,∴∠OAD=∠ODA,∠ODB=∠OBD,同理在Rt△BDC中,E是BC的中点,∴∠EDB=∠EBD,∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°,∴∠OAD=∠CBD,∴∠ODA=∠EBD,又∵∠ODA+∠ODB=90°,∴∠EBD+∠ODB=90°,即∠ODE=90°,∴DE是⊙O的切线.(2)答:△ABC的形状是等腰直角三角形.理由是:∵E、F分别是BC、OC的中点,∴EF是三角形OBC的中位线,∴EF∥AB,DE⊥BC,OB=OD,四边形OBED是正方形,连接OE,OE是△ABC的中位线,OE∥AC,∠A=∠EOB=45度,∴∠A=∠ACB=45°,∵∠ABC=90°,∴△ACB是等腰直角三角形.(3)设AD=x,CD=2x,∵∠CDB=∠CBA=90°,∠C=∠C,∴△CDB∽△CBA,∴=,∴=,x=2,AC=6,由勾股定理得:AB==6,∴圆的半径是3.答:⊙O的半径是3.【点评】本题主要考查对等腰三角形的性质和判定,切线的判定,相似三角形的性质和判定,平行线的性质,等腰直角三角形,三角形的内角和定理,勾股定理,直角三角形斜边上的中线,正方形的性质和判定的连接和掌握,综合运用这些性质进行推理是解此题的关键.23.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;故答案是:m>3,三;(2)∵点A在第一象限,且与点C关于x轴对称∴AC⊥x轴,AC=2y=2×,=AC•x=×2וx=m﹣3,∴S△OAC∵△OAC的面积为6,∴m﹣3=6,解得m=9.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.24.【分析】(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.想办法求出∠EOF的度数即可解决问题;(2)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.利用全等三角形的性质证明EK=EM,FM=FL,即可推出△AEF的周长=2AL.即可解决问题;(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.想办法求出AD,AN 即可解决问题;【解答】解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴Rt△OIE≌△Rt△OJF(HL),∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GFD=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK⊥EB,DM⊥EF,∴∠EKD=∠EMD=90°,DK=DM,∴Rt△DEK≌Rt△DEM(HL),∴∴EK=EM,同法可证:DK=DL,∴DM=CL,∵DM⊥FE,DL⊥FC,∴∠FMD=∠FLD=90°,∴Rt△DFM≌Rt△DFL(HL),∴FM=FL,∵AD=AD,DK=DF,∴Rt△ADK≌Rt△ADL(HL),∴AK=AL,∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,∵AD=6,∴AL=AD•cos30°=9,∴△AEF的周长=18.(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.在Rt△AEM中,∵AE=3,∠EAM=60°,∴AM=AE=,EM=,在Rt△EFM中,EF===,∴AF=AM+MF=8,∵△AEF的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD =30°,∴AQ =√3NQ ,设EQ =x ,则QN =4x ,AQ =12x ,∴AE =11x =3,∴x =,∴AN =2NQ =,∴DN =AD ﹣AN =.【点评】本题属于圆综合题,考查了等边三角形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,角平分线的性质定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ =90°或∠AQD =90°,当∠ADQ =90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,则可用t 表示出k ′,设直线DQ 解析式为y =k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标. 【解答】解:(1)由题意可得,解得,∴抛物线解析式为y =﹣x 2+2x +3; (2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴F (1,4),∵C (0,3),D (2,3), ∴CD =2,且CD ∥x 轴, ∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4; ②∵点P 在线段AB 上, ∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°, i .当∠ADQ =90°时,则DQ ⊥AD , ∵A (﹣1,0),D (2,3), ∴直线AD 解析式为y =x +1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2019年3月2019届九年级第一次模拟大联考(广东)-数学(参考答案)
(4)喜欢“科普常识”的学生人数为 2800×30%=840 名.(7 分)
(2)根据图象得:使二次函数的值大于一次函数的值的 x 的取值范围是-1<x<2.(6 分) (3)连接 AC、BC,设直线 AB 交 y 轴于点 D,如图,学&科网
把 x=0 代入 y=-x2+3 得:y=3,
∴C(0,3),
∴∠OAP=90°, ∵OA 是半径, ∴PA 是⊙O 的切线.(6 分)
∴ BC MC , NC BC
∴BC2=NC×MC,
1
∴NC= x,
2 1
∴MN=2x+ x=2.5x,
2 1
∴OM= MN=1.25x,
2
∴OC=2x-1.25x=0.75x, ∵O 是 BD 的中点,C 是 AB 的中点,AD=6,
1
2
3
4
5
6
7
8
9 10
ADBDDACDCA
11. 4(x 2)(x 2) 1
14.
2
12. 3 x 4
15.7;2n-1
13. 9 145 145
16.10π cm2
18.【解析】原式=
x2
x2
(x 1)(x 1) x 1
x2
x 1
(x 1)(x 1) x 2
∴DM= 2 DP.
∵又∵DM=DN+MN,且由①可得 MN=DF, ∴DM=DN+DF,学科*网
∴DF+DN= 2 DP.(6 分)
(2) DN DF 2DP .理由如下:
过点 P 作 PM1⊥PD,PM1 交 AD 边于点 M1,如图,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省广州市天河区中考数学一模试卷小题,,满分30分,每小题3分)选择题((共10小题一.选择题1.9的平方根是( )A.±3 B.﹣3 C.3 D.2.下列各式计算正确的是( )A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab63.已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A.x≥﹣1 B.x>1 C.﹣3<x≤﹣1 D.x>﹣34.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=( )A.110°B.120°C.125°D.135°5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )A.B.C.D.6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )A.18分,17分B.20分,17分C.20分,19分D.20分,20分7.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A.x(x﹣1)=30 B.x(x+1)=30 C.=30 D.=308.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )A.200米B.200米C.220米D.米9.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为( )A.(2,2)B.(,)C.(2,)D.(,)10.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为( )A.B.C.D.小题,,满分18分,每小题3分)二.填空题填空题((共6小题11.﹣1的绝对值是 ,倒数是 .12.若代数式有意义,则m的取值范围是 .13.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,则∠A的度数是 .14.关于x的一元二次方程(m﹣3)x2+x+(m2﹣9)=0的一个根是0,则m的值是 .15.已知⊙O的半径为5cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离为 .16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则∁n的坐标是 .小题,,满分102分)三.解答题解答题((共9小题17.(9分)解方程组(1)(2).18.(9分)已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.19.(10分)如图,在平面直角坐标系中有△ABC,其中A(﹣3,4),B(﹣4,2),C(﹣2,1).把△ABC绕原点顺时针旋转90°,得到△A1B1C1.再把△A1B1C1向左平移2个单位,向下平移5个单位得到△A2B2C2.(1)画出△A1B1C1和△A2B2C2.(2)直接写出点B1、B2坐标.(3)P(a,b)是△ABC的AC边上任意一点,△ABC经旋转平移后P对应的点分别为P1、P2,请直接写出点P1、P2的坐标.20.(10分)已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.21.(12分)2018年我市的脐橙喜获丰收,脐橙一上市,水果店的陈老板用2400元购进一批脐橙,很快售完;陈老板又用6000元购进第二批脐橙,所购件数是第一批的2倍,但进价比第一批每件多了20元.(1)第一批脐橙每件进价多少元?(2)陈老板以每件120元的价格销售第二批脐橙,售出60%后,为了尽快售完,决定打折促销,要使第二批脐橙的销售总利润不少于480元,剩余的脐橙每件售价最低打几折?(利润=售价﹣进价)22.(12分)如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC边于点D,E是边BC的中点,连接DE、OD,(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于F,若OF=FC,试判断△ABC的形状,并说明理由;(3)若,求⊙O的半径.23.(12分)已知反比例函数y=的图象的一支位于第一象限,点A(x1,y1),B(x2,y2)都在该函数的图象上.(1)m的取值范围是 ,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第象限;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若△OAC的面积为6,求m的值.24.(14分)如图:AD是正△ABC的高,O是AD上一点,⊙O经过点D,分别交AB、AC于E、F(1)求∠EDF的度数;(2)若AD=6,求△AEF的周长;(3)设EF、AD相较于N,若AE=3,EF=7,求DN的长.25.(14分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年广东省广州市天河区中考数学一模试卷参考答案与试题解析小题,,满分30分,每小题3分)一.选择题选择题((共10小题1.【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:A.【点评】此题考查了平方根,熟练掌握平方根定义是解本题的关键.2.【分析】分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.【解答】解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选:B.【点评】本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.3.【分析】根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,即﹣1及其右边的部分.【解答】解:两个不等式的解集的公共部分是:﹣1及其右边的部分.即大于等于﹣1的数组成的集合.故选:A.【点评】本题考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.【分析】先过E作EG∥AB,根据平行线的性质即可得到∠ABE+∠BED+∠CDE=360°,再根据DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,即可得出∠FBE+∠FDE=135°,最后根据四边形内角和进行计算即可.【解答】解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.5.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【解答】解:∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选:D.【点评】本题考查了解直角三角形的应用﹣﹣仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.9.【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.【点评】主要考查了图形的翻折变换和正方形的性质,要会根据点的坐标求出所需要的线段的长度,灵活运用勾股定理.10.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD =BC+BD,即可求出答案.【解答】解:∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D ∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°∴OECF是正方形∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a∵由切割线定理可得BF2=BH•BG∴a2=BH(BH+a)∴BH=或BH=(舍去)∵OE∥DB,OE=OH∴△OEH∽△BDH∴∴BH=BD,CD=BC+BD=a+.故选:B.【点评】本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.小题,,满分18分,每小题3分)二.填空题填空题((共6小题11.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值,乘积是1的两数互为倒数可得答案.【解答】解:﹣1的绝对值是1,倒数是﹣,故答案为:1;﹣.【点评】此题主要考查了倒数和绝对值,关键是掌握倒数定义和绝对值定义.12.【分析】根据二次根式有意义的条件可得m+1≥0,根据分式有意义的条件可得m﹣1≠0,再解即可.【解答】解:由题意得:m+1≥0,且m﹣1≠0,解得:m≥﹣1,且m≠1,故答案为:m≥﹣1,且m≠1.【点评】此题主要考查了分式和二次根式有意义的条件,关键是掌握:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【分析】先根据旋转的性质得∠AOC=∠BOD=40°,OA=OC,则根据等腰三角形的性质和三角形内角和定理可计算出∠A=(180°﹣∠A)=70°【解答】解:∵△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∴∠AOC=∠BOD=40°,OA=OC,∵OA=OC,∴∠A=∠OCA,∴∠A=(180°﹣40°)=70°,故答案为:70°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.【解答】解:把x=0代入方程(m﹣3)x2+x+(m2﹣9)=0,得m2﹣9=0,解得:m=±3,∵m﹣3≠0,∴m=﹣3,故答案是:﹣3.【点评】本题主要考查了一元二次方程的定义及其解,注意方程有意义,其二次项系数不能为0.15.【分析】根据题意画出图形,由于AB、CD的位置不能确定,故应分AB与CD在圆心O的同侧及AB与CD在圆心O的异侧两种情况讨论,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE﹣OF即可求出答案;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,根据垂径定理及勾股定理可求出OF及OE的长,再用OE+OF即可求出答案.【解答】解:如图所示,如图(一),当AB、CD在圆心O的同侧时,连接OA、OC,过O作OE⊥CD于E,交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE﹣OF=4﹣3=1cm;如图(二),当AB、CD在圆心O的异侧时,连接OA、OC,过O作OE⊥CD于E,反向延长OE交AB于F,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AF=4cm,CE=3cm,∴OA=OC=5cm,∴OE===4cm,同理,OF===3cm,∴EF=OE+OF=4+3=7cm.故答案为:1cm或7cm.【点评】本题考查的是垂径定理及勾股定理,解答此题时要注意分类讨论,不要漏解.16.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得∁n的坐标是(﹣×4n ﹣1,4n).【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B 1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A 1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则∁n的坐标是(﹣×4n﹣1,4n).故答案为(﹣×4n﹣1,4n).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.小题,,满分102分)三.解答题解答题((共9小题17.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】根据已知及矩形的性质利用AAS判定△ADF≌△DEC,从而得到AF=DC,因为DC =AB,所以AF=AB.【解答】证明:∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC.∴∠AFE=∠C=90°.∵AD=DE.∴△ADF≌△DEC.∴AF=DC.∵DC=AB.∴AF=AB.【点评】此题考查学生对矩形的性质及全等三角形的判定方法的理解及运用.19.【分析】(1)根据△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.(2)根据图形得出对应点的坐标即可;(3)根据旋转和平移后的点P的位置,即可得出点P1、P2的坐标.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求:(2)点B1坐标为(2,4)、B2坐标为(0,﹣1);(3)由题意知点P1坐标为(b,﹣a),点P2的坐标为(b﹣2,﹣a﹣5).【点评】本题主要考查了利用平移变换以及旋转变换进行作图,解题时注意:确定平移后图形的基本要素有两个:平移方向、平移距离.决定旋转后图形位置的因素为:旋转角度、旋转方向、旋转中心.20.【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.【解答】解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:白白红红红红红白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为;(3)设有x个红球被换成了黄球.根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,再根据等量关系:第二批脐橙所购件数是第一批的2倍;(2)设剩余的脐橙每件售价打y折,由利润=售价﹣进价,根据第二批的销售利润不低于640元,可列不等式求解.【解答】解:(1)设第一批脐橙每件进价是x元,则第二批每件进价是(x+20)元,根据题意,得:×2=,解得x=80.经检验,x=80是原方程的解且符合题意.答:第一批脐橙每件进价为80元.(2)设剩余的脐橙每件售价打y折,根据题意,得:(120﹣100)××60%+(120×﹣100)××(1﹣60%)≥480,解得:y≥7.5.答:剩余的脐橙每件售价最少打7.5折.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.【分析】(1)求出∠CDB=90°,推出DE=BE,得到∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE=90°即可;(2)连接OE,证正方形DEBO,推出OB=BE,推出∠EOB=45°,根据平行线的性质推出∠A =45°即可;(3)设AD=x,CD=2x,证△CDB∽△CBA,得到比例式,代入求出AB即可.【解答】解:如右图所示,连接BD,(1)∵AB是直径,∴∠ADB=90°,∵O是AB的中点,∴OA=OB=OD,∴∠OAD=∠ODA,∠ODB=∠OBD,同理在Rt△BDC中,E是BC的中点,∴∠EDB=∠EBD,∵∠OAD+∠ABD=90°,∠ABD+∠CBD=90°,∴∠OAD=∠CBD,∴∠ODA=∠EBD,又∵∠ODA+∠ODB=90°,∴∠EBD+∠ODB=90°,即∠ODE=90°,∴DE是⊙O的切线.(2)答:△ABC的形状是等腰直角三角形.理由是:∵E、F分别是BC、OC的中点,∴EF是三角形OBC的中位线,∴EF∥AB,DE⊥BC,OB=OD,四边形OBED是正方形,连接OE,OE是△ABC的中位线,OE∥AC,∠A=∠EOB=45度,∴∠A=∠ACB=45°,∵∠ABC=90°,∴△ACB是等腰直角三角形.(3)设AD=x,CD=2x,∵∠CDB=∠CBA=90°,∠C=∠C,∴△CDB∽△CBA,∴=,∴=,x=2,AC=6,由勾股定理得:AB==6,∴圆的半径是3.答:⊙O的半径是3.【点评】本题主要考查对等腰三角形的性质和判定,切线的判定,相似三角形的性质和判定,平行线的性质,等腰直角三角形,三角形的内角和定理,勾股定理,直角三角形斜边上的中线,正方形的性质和判定的连接和掌握,综合运用这些性质进行推理是解此题的关键.23.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为5.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣3>0,则m>3;故答案是:m>3,三;(2)∵点A在第一象限,且与点C关于x轴对称∴AC⊥x轴,AC=2y=2×,∴S△OAC=AC•x=×2וx=m﹣3,∵△OAC的面积为6,∴m﹣3=6,解得m=9.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.24.【分析】(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.想办法求出∠EOF的度数即可解决问题;(2)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.利用全等三角形的性质证明EK =EM,FM=FL,即可推出△AEF的周长=2AL.即可解决问题;(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.想办法求出AD,AN即可解决问题;【解答】解:(1)如图1中,作OI⊥AB于I,OJ⊥AC于J,连接OE,OF.∵AD是正△ABC的高,∴∠BAC=60°,AD平分∠BAC,∴∠BAD=∠CAD=30°,∵OI⊥AB于I,OJ⊥AC于J,∴∠AIO=∠AJO=90°,∴∠IOJ=360°﹣90°﹣90°=60°=120°,OI=OJ,∵OE=OF,∴∠IOE=∠JOF,∴∠EOF=∠EOJ+∠FOJ=∠EOJ+∠IOE=∠IOJ=120°,∴∠EDF=∠EOF=60°.(2)如图1中,作DK⊥AB于K,DL⊥AC于L,DM⊥EF于M,连接FG.∵△ABC是等边三角形,AD⊥BC,∴∠B=60°,BD=CD,∵∠EDF=60°,∴∠EDF=∠B,∵∠EDC=∠EDF+∠CDF=∠B+∠BED,∴∠BED=∠CDF,∵GD是圆O的直径,∴∠ADC=90°,∠GFD=90°,∴∠FGD+∠FDG=90°,∠FDC+∠FDG=90°,∴∠FDC=∠FGD=∠DEF,∵DK⊥EB,DM⊥EF,∴∠EKD=∠EMD=90°,DK=DM,∴Rt△DEK≌Rt△DEM(HL),∴∴EK=EM,同法可证:DK=DL,∴DM=CL,∵DM⊥FE,DL⊥FC,∴∠FMD=∠FLD=90°,∴FM=FL,∵AD=AD,DK=DF,∴Rt△ADK≌Rt△ADL(HL),∴AK=AL,∴△AEF的周长=AE+EF+AF=AE+EK+AF+FL=2AL,∵AD=6,∴AL=AD•cos30°=9,∴△AEF的周长=18.(3)如图3中,作FP⊥AB于P,作EM⊥AC于M,作NQ⊥AB于Q,DL⊥AC于L.在Rt△AEM中,∵AE=3,∠EAM=60°,∴AM=AE=,EM=,在Rt△EFM中,EF===,∴AF=AM+MF=8,∵△AEF的周长=18,由(2)可知2AL=18,∴AJ=9,AD==6,∴AP=AF=4,FP=4,∵NQ∥FP,∵△EQN∽△EPF,∴==,∵∠BAD=30°,∴AQ=√3NQ,设EQ=x,则QN=4x,AQ=12x,∴AE=11x=3,∴x=,∴AN=2NQ=,∴DN=AD﹣AN=.【点评】本题属于圆综合题,考查了等边三角形的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,角平分线的性质定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。