高效液相色谱法-仪器
高效液相色谱仪的原理及应用
高效液相色谱仪的原理及应用
高效液相色谱仪(High-Performance Liquid Chromatography,HPLC)是一种常用的分析仪器,根据物质在固定相和流动相
间的相互作用差异来实现物质分离和测定的方法。
高效液相色谱的主要原理如下:
1. 样品进样:样品通过进样器注入到流动相中。
2. 流动相泵:流动相泵将流动相以一定的压力送入进样阀。
3. 进样阀:进样阀控制样品的进入量,并通过连接固定相柱。
4. 固定相柱:固定相在柱中,对流动相和待分离的样品进行分离。
5. 检测器:根据样品的特性和分离程度选择合适的检测器进行检测。
6. 数据处理器:将检测的信号转化为柱温度、流量和检测器信号等数据。
高效液相色谱仪的主要应用包括:
1. 分析化学:用于定性和定量分析化学样品中的成分。
2. 生物化学:用于分析蛋白质、核酸、多肽等生物大分子。
3. 药学:用于分析药物中的活性成分、控制药品的质量。
4. 环境分析:用于监测环境中的有机污染物和无机物质。
5. 食品分析:用于检测食品中的添加剂、残留农药和毒性物质。
高效液相色谱仪的优点包括分离效率高、分析速度快、样品容量小、样品制备简单等。
然而,高效液相色谱仪的操作要求严格,仪器费用较高,且需要使用高纯度的溶剂和试剂。
高效液相色谱仪的操作步骤
高效液相色谱仪的操作步骤高效液相色谱仪(High Performance Liquid Chromatography,HPLC)是一种常用的分离和分析技术。
它利用液体流动相和固定相之间的相互作用,将样品中的混合物分离出来,并通过检测器进行定量分析。
本文将介绍高效液相色谱仪的具体操作步骤。
1. 准备工作在进行高效液相色谱仪的操作之前,首先需要进行一些准备工作。
检查色谱柱是否安装正确,确保色谱柱是干净的,并检查流动相的配制是否准确。
2. 样品制备根据需要分析的物质,准备好待测样品。
样品制备可以包括溶解样品、过滤样品等步骤,以确保样品的纯净度和稳定性。
3. 仪器开机将高效液相色谱仪接通电源,打开仪器的电源开关。
等待仪器初始化,并确保仪器各个部分正常工作。
4. 设置参数在仪器上设置分析所需的参数。
包括选择适当的检测器类型和检测波长、设置流量、温度等。
5. 启动系统启动高效液相色谱仪系统,等待系统稳定。
通常需要一段时间使得流动相在管路中充分平衡,并确保流量稳定。
6. 校正进行色谱柱的校正。
校正过程包括流量校正、波长校正等。
通过校正可以保证仪器输出结果的准确性和可靠性。
7. 注射样品将样品通过注射器引入色谱柱中,控制样品的注射量,通常在微升至毫升的量级。
确保样品的注射量稳定和准确。
8. 分离分析开始运行高效液相色谱仪系统,进行样品的分离与分析。
在此期间,流动相通过色谱柱,将样品中的化合物根据它们与固定相之间的相互作用进行分离。
9. 监测结果通过检测器对分离后的化合物进行监测。
根据检测器的信号,可以得到每个化合物的峰面积、保留时间等数据。
10. 数据处理将监测到的信号输入到数据处理软件中,进行结果的计算和分析。
通常可以得到各个化合物的峰高、峰面积等数据,从而实现对样品的定量分析。
11. 关机分析结束后,关闭高效液相色谱仪的电源开关,并进行必要的清洗和维护工作。
确保仪器的正常运行,并延长其使用寿命。
总结:高效液相色谱仪的操作步骤涵盖了仪器准备、样品制备、仪器设置、校正、样品注射、分离分析、结果监测和数据处理等多个方面。
仪器分析 高效液相色谱法
第17章HPLC法17.1 内容提要17.1.1 基本概念高效液相色谱法──在经典液相色谱法的基础上,引入了气相色谱(GC)的理论,在技术上采用了高压泵、高效固定相和高灵敏度检测器,使之发展成为高分离速率、高分离效率、高检测灵敏度的高效液相色谱法,易称为现代液相色谱法。
高效液相色谱仪──采用了高压输液泵、高效固定相和高灵敏度检测器等装置的液相色谱仪称为高效液相色谱仪。
梯度洗脱──用两种(或多种)不同极性的溶剂,在分离过程中按一定程序连续的改变流动相的浓度、配比和极性,使样品中各组分能在最佳的分配比下出峰的操作技术。
也称为梯度淋洗。
低压梯度──又称外梯度,特点是先混合后加压。
它是采用在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱系统,易称为泵前混合。
高压梯度──又称内梯度,特点是先加压后混合。
它有两台高压输液泵、梯度程序器(或计算机及接口板控制)、混合器等部件组成。
两台泵分别将两种极性不同的溶剂输入混合器,经充分混合后进入色谱柱系统,是一种泵后高压混合形式。
柱外效应──由色谱柱以外的因素引起的色谱峰形扩展的效应。
柱外因素常指从进样口到检测器之间,除色谱柱以外的所有死时间,如进样器、连接管、检测器等的死体积,都会导致色谱峰形加宽、柱效下降。
液固吸附色谱法──以固体吸附剂为固定相,吸附剂表面的活性中心具有吸附能力,样品分子被流动相带入柱内,它将与流动相溶剂分子在吸附剂表面发生竞争吸附性。
K值大的强极性组分易被吸附,K值小的弱极性组分难被吸附,样品组分因此被分离。
液液分配色谱法──根据物质在两种互不相溶(或部分互溶)的液体中溶解度的不同,有不同的分配,从而实现分离的方法。
分配系数较大的组分保留值也较大。
正相分配色谱法──流动相极性低而固定相极性高的称为正相分配色谱法。
反相分配色谱法──流动相极性高而固定相极性低的称为反相分配色谱法。
化学键合相──利用化学反应将有机分子键合到载体表面上,形成均一、牢固的单分子薄层而形成的各种性能的固定相。
仪器分析高效液相色谱法
仪器分析高效液相色谱法高效液相色谱法(HPLC)是一种常用的仪器分析方法,广泛应用于化学、药学、环境科学、食品科学等领域。
本文将介绍HPLC的原理、仪器组成、操作步骤以及应用领域。
HPLC的原理是利用样品在液态流动条件下在固定相上的分配行为进行分离和定量分析。
相比于传统的色谱法,HPLC具有操作简便、分离效果好、灵敏度高等优点。
HPLC的仪器组成主要包括溶液配制系统、进样系统、柱温控制系统、分离柱、检测器和数据处理系统。
其中,溶液配制系统主要用于调配流动相,进样系统用于将样品注入分离柱,柱温控制系统用于控制柱温度,分离柱用于实现样品的分离,检测器用于检测样品,数据处理系统用于处理和分析检测结果。
HPLC的操作步骤如下:1.首先,需要根据需要选择合适的固定相和流动相,然后将固定相充填到分离柱中。
2.将样品溶解于合适的溶剂中,并按照一定的稀释比例稀释溶液。
3.将稀释后的溶液注入进样器中。
4.打开柱温控制系统,设置合适的柱温。
柱温的选择应考虑到样品的性质以及分离柱的要求。
5.打开溶液配制系统,调配合适的流动相,并将流动相以一定的流速通过分离柱。
6.启动检测器,并设置适当的检测波长和灵敏度,以便对样品进行检测。
7.数据处理系统会自动记录检测结果,并进行相应的数据处理和分析。
HPLC广泛应用于化学、药学、环境科学、食品科学等领域,常见的应用包括药物分析、环境污染物检测、食品成分分析等。
例如,可以利用HPLC对药物中的成分进行分离并进行定量分析,以保证药物的质量和疗效。
在环境科学中,HPLC可以用于检测空气、水体和土壤中的有机污染物。
在食品科学中,HPLC可以用于检测食品中的残留农药、添加剂和重金属等。
总之,HPLC是一种常用的高效仪器分析方法,通过流动相在固定相上的分配行为实现样品的分离和定量分析。
由于其操作简便、分离效果好、灵敏度高等优点,成为化学、药学、环境科学、食品科学等领域中不可或缺的分析工具。
hplc高效液相色谱仪使用方法
hplc高效液相色谱仪使用方法HPLC高效液相色谱仪是一种常用的色谱分析仪器,广泛应用于药物、环境、食品、化妆品等领域。
下面将详细介绍HPLC高效液相色谱仪的使用方法。
一、仪器准备:1.检查仪器的状态,确认各个部件是否正常运行,如高压泵、进样器、检测器等。
2.开机预热:打开主机电源,按照仪器操作手册上的指示,进行仪器的预热操作。
一般要求预热时间为30分钟到1小时。
二、工作站设置:1.打开工作站软件,点击新建分析方法。
根据分析需求选择不同的方法类型,如梯度洗脱、等温洗脱等。
2.设置流动相组成:根据分析物的性质和目标,选择合适的流动相,并设置其浓度和比例。
可以通过试错法或者文献参考来确定最佳流动相组成。
3.设置进样器参数:选择合适的进样方式,如全自动进样、微量进样等。
设置进样量和进样速度,根据分析物的浓度、检测器灵敏度等因素进行调整。
4.设置检测器参数:选择合适的检测器类型和波长。
一般情况下,紫外检测器是最常用的检测器,波长选择通常在200-400nm之间。
5.设置柱温:根据分析物的性质和目标,选择合适的柱温。
柱温对分离性能和分析速度有着明显的影响。
三、样品处理:1.样品制备:根据分析目标和方法要求,对样品进行处理,包括固相萃取、溶解、过滤等。
2.进样器设置:将样品注入进样器,确保进样量与方法要求相符。
3.进样:点击工作站软件上的进样按钮,开始进行进样。
进样过程中要确保无气泡进入柱。
四、开展分析:1.开始分析:点击工作站软件上的开始按钮,运行分析方法。
监控色谱图,观察峰的形状和分离度。
根据需要可以对分析方法进行优化,如调整流速、洗脱程序等。
2.数据处理:完成分析后,保存并导出色谱图和数据。
进行数据处理和结果分析。
五、仪器维护:1.使用完毕后,关闭泵和检测器,将柱中流动相完全排空,以免柱内残留物引起污染。
2.保养柱:每次使用后,要清洗柱和重新平衡柱。
柱的清洗和保养要根据具体的柱类型和使用情况进行。
3.保持仪器干燥和清洁:定期清洁仪器,尤其是注射器、透射比色噪声汇丰牌等易受污染的部件,以保证仪器的正常运行。
仪器分析-高效液相色谱法
流动相的选择与制备
选择合适的流动相
根据被分析化合物的性质, 选择适当的流动相,如有 机溶剂、缓冲液等。
流动相的配制
按照实验要求,准确称量 流动相组分,混合均匀, 并进行过滤和脱气处理。
流动相的梯度洗脱
对于多组分分离,可以采 用梯度洗脱技术,以提高 分离效果。
仪器的开机与平衡
开机
按照仪器说明书,打开仪器电源, 启动仪器操作系统。
药物制剂质量控制
高效液相色谱法可以用于药物制剂的质量控制, 检测制剂中药物的含量、纯度和稳定性等指标。
环境样品分析中的应用
污染物检测
高效液相色谱法可以用 于检测环境中的有机污 染物,如农药、多环芳 烃等,为环境污染控制 和治理提供依据。
饮用水质量检测
通过高效液相色谱法可 以检测饮用水中的有害 物质,如消毒副产物、 微量有机物等,保障公 众的饮用水安全。
粒径
色谱柱的粒径影响分离效 果和分离时间。粒径越小, 分离效果越好,但分离时 间越长。
长度
色谱柱的长度影响分离效 果和载样量。长度越长, 分离效果越好,但载样量 越小。
检测器
类型
常用的检测器有紫外-可见光检测器、荧 光检测器、电导检测器等,根据被测物质 的性质和检测需求选择合适的检测器。
响应速度
线性范围
质。
测定水体、土壤、空气 中的污染物和有害物质。
用于蛋白质、核酸、细 胞等生物大分子的分离
和检测。
高效液相色谱法的优势与局限性
优势
高分离效能、高灵敏度、高选择 性、应用范围广。
局限性
需要专业操作人员、仪器昂贵、 样品前处理复杂、耗时长。
02 高效液相色谱法的仪器构成
CHAPTER
高效液相色谱分析法(仪器+组成+分离类型+流动相选择)
2、主 要 部 件
(1) 高压输液泵
主要部件之一,压力:30MPa以上。 为了获得高柱效而使用粒度很小的固定相( <10μm),液体的流动相高速通过时,将产生 很高的压力,因此高压、高速是高效液相色谱 的特点之一。 应具有压力平稳、脉冲小、 流量稳定可调、耐腐蚀等特性
(2)梯度淋洗装置
3.离子交换色谱分离固定相
结构类别: (1)薄壳型离子交换树脂
薄壳玻璃珠为担体,表 面涂约1%的离子交换树脂; (2)离子交换键合固定相
薄壳键合型;微粒硅胶 键合型(键合离子交换基团)
树脂类别: (1) 阳离子交换树脂(强酸 性、弱酸性) (2) 阴离子交换树脂(强碱 性、弱碱性)
4. 空间排阻分离固定相
liquid-solid adsorption chromatography 固定相:固体吸附剂如硅胶、氧化铝等,较
常使用的是5~10μm的硅胶吸附剂;
流动相:各种不同极性的一元或多元溶剂。 基本原理:利用溶质分子占据固定相表面吸 附活性中心能力的差异;适用于分离相对分子 质量中等的油溶性试样,对具有官能团的化合 物和异构体有较高选择性; 缺点:非线形等温吸附常引起峰的拖尾;
GC:H = A + B / u + C • u (填充柱)
A = 2λ • dp
A ∝ λ • dp
B = 2γ • Dm = 2γ • Dg B ∝ t R ,B ∝ Dg
Dg
∝
T η
或Dg
∝
T M
B = 2γ • Dm
Dm
∝
T η
柱温T ↓低,流动相η ↑大 ⇒B相忽略
在高效液相色谱中, 液体的扩散系数
(4) 高效分离柱
仪器分析第4讲 高效液相色谱法
经典液相色谱法 75-600 0.01-1.0 1-20 50-200 2-50 1-10
高效液相色谱法 3-50(常用5-10)
20-300 0.05-1.0
2-30 104-105 10-6-10-2
2.高效液相色谱法与气相色谱法
(l)气相色谱法分析对象只限于分析气体和 沸点较低的化合物,它们仅占有机物总数 的20%.对于占有机物总数近80%的那些高 沸点、热稳定性差、摩尔质量大的物质, 目前主要采用高效液相色谱法进行分离和 分析.
3. 柱外效应
由于色谱柱之外的因 素引起的色谱峰的展 宽,例如进样系统、 连接管路及检测器的 死体积等。
3-3 高效液相色谱的类型及其分离原理
液—液分配色谱及化学键合相色谱 液—固吸附色谱 离子交换色谱 离子色谱 空间排阻色谱
1、 液-液分配色谱
liquid- liquid partition chromatography
4、 离子色谱
ion chromatography
离子色谱法是由离子交换色谱法派生出来的一种 分离方法。由于离子交换色谱法在无机离子的分 析和应用受到限制。例如,对于那些不能采用紫 外检测器的被测离子,如采用电导检测器,由于 被测离子的电导信号被强电解质流动相的高背景 电导信号掩没而无法检测。
2、 液-固吸附色谱
liquid-solid adsorption chromatography
流动相为液体,固定相为固体吸附剂
分离原理:利用溶质分子占据固定相表面吸附 活性中心能力的差异
分离前提:K不等或k不等
液—固吸附色谱
固体吸附剂主要类型: 极性的硅胶(应用最广) 氧化铝 分子筛 非极性的活性炭
1971年科克兰等人出版了《液相色谱的现代实践》一 书,标志着高效液相色谱法(HPLC)正式建立。
实验一高效液相色谱法测定萘
2. 标准溶液配制; 3. 样品溶液的配制; 4. 进样并记录色谱图
五、数据处理与分析
Pi(%)A Asi ms100
实验 二 内标法测定联苯
一、实验目的
1. 进一步熟悉高效液相色谱仪的基本构造与一 2. 般使用方法;
2. 理解内标法的测定原理和优点;
3. 初步学会设计色谱法进行样品测定的实验步 骤,并以萘为内标物测定样品中联苯的含量。
1.00
定容(mL)
10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0
C(ppm)
0 2.0 4.0 6.0 8.0 10.0
X1
X2
五、数据处理与分析
1. 标准曲线的绘制:以苯甲酸钠系列标准溶液 的吸光度为纵坐标,相应的浓度为横坐标, 绘制作A-C标准曲线。
2. 样品溶液中苯甲酸钠含量计算:从A-C标准 曲线上查出X值,从而求出样品中苯甲酸的 含量。
选 择)”检查负高压与±15V电源是否正常。
3. 点火 ⑴关紧主机上各气体调节针阀,将“空气-笑 气” 钮旋至“空气”,开排废气装置; ⑵开空压机,调空气输入压为2~3kg·cm-2; ⑶打开助燃气针阀,开大至限压开关被启动 后,调助燃气流量; ⑷依次打开乙炔钢瓶总阀、分阀,调节乙炔 输出压力0.8 kg·cm-2,调燃气流量后点火。
4. 测定 依次从低到高浓度测定标液和样液(最佳条件
选择方法见说明书)。
5. 关机 ⑴“状态检查(工作选择)”置“T(能量)”,
吸喷蒸馏水1min,清洗燃烧器;
⑵依次关乙炔钢瓶总阀、分阀和主机燃气针阀; ⑶依次关空压机、辅助气和助燃气针阀; ⑷关灯电源、总电源,其它复原。
6. 注意事项 ⑴仪器废液管应加水封,换灯或调试时,“状
仪器分析高效液相色谱法
仪器分析高效液相色谱法高效液相色谱法(High Performance Liquid Chromatography,简称HPLC)是目前广泛应用于仪器分析领域的一种重要分析方法。
它通过利用柱子中流动的流动相和样品的物理化学性质的相互作用,使样品组分在柱子中发生分离,再通过检测器对各组分进行定量或定性分析。
仪器分析高效液相色谱法主要由流动相供给系统、进样器、柱子、检测器和数据处理系统等组成。
流动相供给系统通过恒压或恒流的方式将流动相送入进样器中,进样器将样品注入柱子中,柱子根据物理化学性质的差异,使不同组分发生分离,之后检测器检测进入检测器的各组分的浓度,并通过数据处理系统对数据进行分析和整理。
高效液相色谱法具有分离效率高、分离时间短、适用范围广等特点。
与传统的液相色谱法相比,高效液相色谱法的流动相的流速更高,柱子填充物颗粒更小,从而大大提高了分离效率。
同时,高效液相色谱法对样品的需求量较小,具有较好的分析灵敏度。
因此,高效液相色谱法被广泛应用于生物、环境、食品、药物、化工等领域的组分分析和质量控制。
在生物领域中,高效液相色谱法常用于生物样品中代谢产物和药物的分析。
通过绑定柱子、手性柱子以及使用不同的检测器,可以对复杂的生物样品中的不同组分进行准确的分析和定量测试。
例如,对尿液中的代谢产物进行分析可以帮助人们了解人体健康状态,对药物的残留物进行分析可以保证食品和水的安全等。
在环境领域中,高效液相色谱法常用于水质、大气和土壤等环境样品中有机污染物的分析。
通过连接各种不同相的柱子,可以对复杂的环境样品中的有机污染物进行有效的分离,使用紫外-可见光检测器或质谱检测器可以对分离后的各组分进行检测和定量。
在食品领域中,高效液相色谱法常用于食品中添加剂、农药残留物和食品中的有害物质的分析。
通过选择合适的柱子和检测器,可以对复杂的食品样品进行分离和检测,以保证食品的安全性和质量。
在药物领域中,高效液相色谱法常用于药品中活性成分和杂质的分析。
高效液相色谱仪可以测的指标
高效液相色谱仪可以测的指标高效液相色谱仪(High-Performance Liquid Chromatography,HPLC)是一种分离和分析化学物质的仪器,广泛应用于检测和分析各种化合物,包括有机物、无机物和生物分子等。
以下是高效液相色谱仪可以测定的主要指标:1. 化合物含量:通过对比标准品和样品的色谱图,可以定量地测定出样品中各种化合物的含量。
2. 化合物纯度:高效液相色谱仪能够分离样品中的不同组分,因此可以用于评估化合物的纯度。
3. 杂质分析:除了主成分外,高效液相色谱仪还可以检测样品中的杂质,这对于药物分析和质量控制尤其重要。
4. 分子量和分子结构:通过与已知分子量或结构的化合物进行对比,可以推测未知化合物的分子量或结构。
5. 手性化合物分析:使用手性柱的高效液相色谱仪可以对具有手性的化合物进行分离和分析,如手性药物。
6. 物质的稳定性和降解产物:高效液相色谱仪可用于研究物质在特定条件下的稳定性和降解产物,如药物在储存过程中的稳定性。
7. 环境样品中的污染物:高效液相色谱仪可以用于环境样品中污染物的分离和测定,如多环芳烃、农药残留等。
请注意,高效液相色谱仪只能测定易溶于甲醇、水、乙腈等溶剂的物质。
对于不溶于这些溶剂的物质,需要使用其他分析方法。
同时,高效液相色谱仪的检测结果受到多种因素的影响,如色谱柱的选择、流动相的组成、检测器的灵敏度等,因此在进行实验时需要严格控制实验条件以保证结果的准确性。
此外,高效液相色谱仪检测器的主要技术指标有噪声、灵敏度、检测下限和线性范围等。
这些指标对于评估检测器的性能和保证实验结果的准确性具有重要意义。
总之,高效液相色谱仪是一种功能强大的分析仪器,能够用于测定多种化学和生物指标,为科研和工业生产提供有力支持。
《高效液相色谱仪》课件
目 录
• 高效液相色谱仪简介 • 高效液相色谱仪的组成和工作原理 • 高效液相色谱仪的操作流程 • 高效液相色谱仪的维护与保养 • 高效液相色谱仪的实验技术与应用实例
01
高效液相色谱仪简介
定义与特点
定义
高效液相色谱仪是一种分离和分 析复杂混合物中各组分的仪器, 基于物质在固定相和流动相之间 的分配差异实现分离。
。
食品工业
用于检测食品中的添加剂、农 药残留和营养成分等。
高效液相色谱仪的发展历程
起源
20世纪50年代初,基于经典液 相柱色谱的原理,开发出了高
效液相色谱法。
发展
20世纪60年代,出现了填充柱 和柱切换技术,提高了分离效 率。
革新
20世纪70年代,出现了高效微 粒固定相和新型检测器,提高 了灵敏度和选择性。
流动相的纯化和过滤
确保流动相的纯度和清洁度,以避免对色谱柱和检测器造成污染。
流动相的脱气
使用真空脱气法或超声波脱气法去除流动相中的气泡,以避免对色 谱分离造成干扰。
色谱柱的安装与选择
安装色谱柱
按照仪器说明书正确安装色谱柱 ,确保密封性和稳定性。
色谱柱的选择
根据样品的性质和分离要求,选择 合适的色谱柱类型和规格。
检测器对流出的组分进行 检测,并将信号记录下来 ,形成色谱图。
高效液相色谱仪的分离原理
分配原理
组分在固定相和流动相之 间的分配平衡是实现物质 分离的基础。
吸附与解吸平衡
组分在固定相上的吸附与 流动相中的溶解度差异导 致分离。
分子间作用力
分子间的相互作用力(如 范德华力、氢键等)影响 组分的吸附与解吸平衡。
物的分子结构和化学键信息。
仪器分析高效液相色谱法
离子交换色谱法适用于分离离子化合物,如氨基酸、核酸等。在分离过程中,离子交换剂对不同离子的亲和力不 同,通过改变流动相的离子强度和种类,可以实现对不同离子的分离。
体积排阻色谱法
总结词
利用固定相孔径大小排除不同大小的分子进行分离。
详细描述
体积排阻色谱法适用于分离大分子物质,如蛋白质、多糖等。在分离过程中,固定相的孔径大小不同 ,能够排除不同大小的分子,从而实现分离。该方法具有较高的分辨率和分离效果。
检测
通过检测器对分离后的组分进 行检测,记录数据并进行后续
分析。
03
高效液相色谱法的分离模式
正相色谱法
总结词
利用极性固定相吸附剂,对极性物质的吸附作用进行分离。
详细描述
正相色谱法适用于分离极性物质,如醇、胺、水溶性氨基酸 等。在分离过程中,固定相的极性大于流动相的极性,极性 物质在固定相上的吸附力较强,因此能够得到较好的分离效 果。
金属、霉菌毒素等,保障食品安全。
生物医学研究中的应用
生物分子分离纯化
高效液相色谱法可用于分离和纯化生物分子,如蛋白质、核酸等, 为生物医学研究提供高质量的样品。
药物代谢和药代动力学研究
通过高效液相色谱法检测药物在体内的浓度和代谢产物,有助于了 解药物的作用机制和代谢途径。
临床诊断和生物标志物分析
高效液相色谱法能够检测生物体中的生物标志物,如氨基酸、脂肪 酸、激素等,为临床诊断和疾病研究提供重要信息。
食品分析中的应用
食品添加剂分析
01
高效液相色谱法可用于检测食品中的添加剂,如防腐剂、色素、
甜味剂等,确保食品质量和安全。
营养成分分析
02
通过高效液相色谱法测定食品中的维生素、矿物质和其他营养
仪器分析 第7章 高效液相色谱法
由非极性固定相和极性流动相所组成的 液相色谱体系,与正相 HPLC 体系正好相反。 其代表性的固定相是十八烷基键合硅胶 (ODS 柱),代表性的流动相是甲醇和乙腈。 是当今液相色谱的最主要分离模式。
液-液分配色谱固定相的液体往往容易溶解到流 动相中去,所以重现性很差,不大为人们所采用。 后来发展起来的键合固定相以化学键合的方法 将功能分子结合到惰性载体上,固定相就不会溶解 到流动相中去了。
(3)工作温度: 气相色谱一般都在较高温度下进行的,而 高效液相色谱法则经常可在室温条件下工作。
高效液相色谱法主要类型
类 型 液固吸附色谱 主要分离机理 吸附能,氢键 主要分析对象或应用领域 异构体分离、族分离,制备
液液分配色谱 凝胶色谱 离子交换色谱
手性色谱 亲和色谱
疏水分配作用 溶质分子大小 库仑力
由于离子对化合物A-B+具有疏水性,因而 被非极性固定相(有机相)提取。组分离 子的性质不同,它与反离子形成离子对的 能力大小不同以及形成的离子对疏水性质 不同,导致各组分离子在固定相中滞留时 间不同,因而出峰先后不同。
B. 键合相反相离子对色谱法
离子对色谱法类型很多,根据流动相和 固定相的极性可分为反相离子对和正相离子 对色谱法。其中以键合相离子对色谱法最重 要。这种色谱法的固定相采用非极性的疏水 键合相[如十八烷基键合相( ODS )等], 流动相为加有平衡离子(反离子)的极性溶 液(如甲醇—水或乙睛—水)。
抑制柱离子色谱的原理:
以阴离子分析为例:
分析柱反应:
R—Cl + NaOH R—OH + NaCl
抑制柱反应: + NaOH
R—Na + H2O
以阳离子分析为例:
仪器分析—高效液相色谱法
仪器分析—高效液相色谱法高效液相色谱(HPLC)是一种分离和定量化学物质的分析技术。
它广泛应用于生物医药、食品安全、环境监测等领域。
HPLC的原理基于样品在流动相中的分配行为,通过调节流动相成分和流速,实现对样品中化合物的分离和定量。
HPLC的特点之一是分离效率高。
其分析柱内有高效填料,通常是细小颗粒的吸附剂,能够提供大的表面积,有效地增加了分析柱与流动相接触的面积,从而提高了分离能力。
此外,在HPLC中还可以根据需要选择适当的流动相,调节柱温和压力等条件,进一步优化分析条件,提高分离效果。
其次,HPLC的灵敏度高。
在HPLC中,使用的检测器通常有紫外-可见光谱法、荧光法、质谱法等。
这些检测器可以实现对特定化合物的高选择性检测,而且还能够对不同化合物进行同时检测。
对于低浓度的化合物,可以通过选择合适的检测器和优化分析条件,提高检测灵敏度,使得即使在样品中含量很低的化合物也能够被准确地检测到。
此外,HPLC在分析速度和样品处理方面也比较快捷。
与传统的柱色谱技术相比,HPLC使用的高压泵可以提高流动相的速度,从而缩短分析时间。
对于样品预处理方面,使用HPLC时只需要进行简单的处理,如溶解样品并过滤,就可以直接进入分析阶段。
这使得HPLC具有高通量分析的优势,能够在短时间内快速分析大量样品。
此外,HPLC还可与其他技术结合应用。
例如,HPLC-质谱联用技术可以实现对样品中化合物的分离和结构的同时鉴定,具有非常高的分析灵敏度和选择性。
HPLC还可以与色谱预处理、液相萃取和样品前处理等技术结合,提高样品的净化效果和检测灵敏度。
综上所述,HPLC是一种高效、灵敏和多功能的分析技术,被广泛应用于各个科学领域。
它的分离效率高,灵敏度高,分析速度快,样品处理简便,可以与其他技术结合使用,提高分析的效果和可靠性。
在今后的科学研究和实际应用中,HPLC将继续发挥重要的作用。
《仪器分析》4-高效液相色谱法
(4) 示差折光检测器: 是一种中等灵敏度(10–6 g/mL)的通用型检测器。
是利用纯流动相和含有待测组分的流动相之间折射率的 差别进行检测的。
可分为三类:反射式;折射式(偏振式)和干涉式。常 用前两种。
优点:灵敏度适宜,操作简便是一种通用型的检测器; 缺点:对温度变化敏感,不能用于梯度洗脱。 应用范围:聚合物、糖。还用于分析以紫外检测和荧光
精选课件
药典中的液相色谱检测器
精选课件
常用的检测器:
(1) 紫外光度检测器:是一种选择性浓度检测器,仅 对那些在紫外波长有吸收的物质有响应。
作用原理:基于待测试样对特定波长的紫外光有选择 性的吸收,试样浓度与吸光度的关系服从比尔定律。
结构:
1-低压汞灯 2-透镜 3-遮光板 4-测量池 5-参比池 6-紫外滤光片 7-双紫外光敏电阻
精选课件
⑶ 色谱柱 GC柱很长,特别是毛细管柱可长至几十米至上百米,柱效
很高(理论塔板数N = 104~106)。HPLC柱较短,一般为15~25 cm,柱效(理论塔板数N = 103~104),低于GC柱。 ⑷ 检测器
与GC相比,HPLC检测器种类较多。 ⑸ 制备色谱
GC难以制备样品,因为进样量小,难以收集或被破坏。 HPLC可进行制备,即制备色谱。
精选课件
2. 进样系统
在高效液相色谱中,常用的进样方式: 高压阀进样:优点是能用于高压,适于大体积进样,重现性
好;缺点是进样阀进样时需排掉一部分试样,不同的进样 量需用不同的定量管,同时峰的扩展也比注射进样大。 微量注射器进样:也可由微量注射器注入取样环少量样品, 即采用较大体积取样环而进少量试样,进样量由注射器控 制,试样不充满取样环,只填充一部分体积。
高效液相色谱法实验报告
一、实验目的1. 了解液相色谱的发展历史及最新进展。
2. 学习液相色谱的基本构造及原理。
3. 掌握液相色谱的操作方法和分析方法,能够通过HPLC分离和检测样品。
二、实验原理高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种利用高压泵将液体流动相输送至装有固定相的色谱柱,对混合物进行分离和分析的方法。
根据固定相和流动相的极性差异,将混合物中的组分分离,再通过检测器检测各个组分,从而实现对样品的分析。
三、实验仪器与试剂1. 仪器:高效液相色谱仪、色谱柱、流动相储液体瓶、输液泵、进样器、检测器、记录器等。
2. 试剂:甲醇、磷酸、标准样品、待测样品等。
四、实验步骤1. 准备色谱柱:将色谱柱安装在色谱仪上,连接好各部件,调节好流速和温度。
2. 配制流动相:根据实验要求,将甲醇和磷酸按照一定比例混合,配制成流动相。
3. 进样:将待测样品溶解于流动相中,用进样器将一定量的样品注入色谱柱。
4. 分离:流动相通过色谱柱,根据固定相和流动相的极性差异,将样品中的组分分离。
5. 检测:分离后的组分进入检测器,检测器将信号传输至记录器,记录各个组分的峰面积。
6. 数据处理:将记录器上的数据输入计算机,进行数据处理和分析。
五、实验结果与分析1. 样品分离:根据色谱图,可以观察到待测样品中各个组分的峰,证明液相色谱法可以将样品中的组分分离。
2. 线性关系:在一定的浓度范围内,峰面积与样品浓度呈线性关系,说明该方法具有良好的线性。
3. 精密度:重复进样,观察峰面积的相对标准偏差(RSD),RSD越小,说明实验结果越稳定。
4. 灵敏度:通过减小进样量,观察峰面积的变化,说明该方法具有良好的灵敏度。
六、实验结论1. 本实验成功实现了待测样品的分离和检测,证明液相色谱法在样品分析中的应用价值。
2. 液相色谱法具有分离效能高、灵敏度高、操作简便等优点,适用于多种样品的分析。
仪器分析― 高效液相色谱法PPT课件
流速仍然很低(<1mL/min),分析时间仍然很长! 当加压增加流速(真空或空气泵)时,尽管分析时间减少,
但柱塔板高度Hmin也相应增加了!或者说柱效下降了。
4
• 为了解决分析时间及柱效问题,人们认识 到:最为有效地增加柱效的唯一方法是减 小填充物的粒径(3~10 m )!
HPLC仪器包括: 1. 高压输液装置; 2. 进样系统; 3. 分离系统; 4. 检测系统; 5. 此 外 还 配 有 梯 度淋洗、自动进样 和数据处理装置。
其工作过程如图 8-2所示。
图8-2 HPLC仪器工作过程示意图
9
高效液相色谱法 HPLC High Performance Liquid Chromatography
选择原则。
3
8.1 概 述
高效液相色谱(HPLC)是以溶剂液体为流动相的色谱方法。 按照固定相不同可分为:液液分配色谱;吸附色谱(液固色 谱);离子交换色谱;尺寸排阻色谱(凝胶渗透色谱)。此外, 还有亲和色谱、平板色谱(薄层色谱)等。
早期液相色谱,包括Tswett的工作,都是在直径1~5cm, 长50~500cm的玻璃柱中进行的。为保证有一定的柱流速,
• 操作温度:GC需高温;HPLC通常在室温下进行。
• 结论:从色谱分析的发展来看,HPLC比GC更为有
用、更具发展前途!
7
3. 应用 由于HPLC分离分析的高
灵敏度、定量的准确性、适 于非挥发性和热不稳定组分 的分析,因此,在工业、科 学研究,尤其是在生物学和
不溶于水 非极性
极性增加 非离子极性
16
高效液相色谱法 HPLC High Performance Liquid Chromatography
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动进样器
对活塞和液缸的密封要求高、更换溶液不方便、 价格昂贵
主要用于微柱液相色谱或超临界流体色谱仪
往复型泵
工作原理 电机带动凸轮转动,凸轮驱动一活塞杆作往复运动, 通过单向阀的开启和关闭,定期将贮存在液缸里(0.10.5ml)的液体以高压连续输出
优点 可在高压下连续以恒定的流量输液 液缸容积很小,只有几十至几百微升,其柱塞尺寸小 易于密封,柱塞、单向阀的阀球和阀座使用人造红宝 石材料,造价低,更换溶剂方便,特别适用于梯度洗 脱
40~50MPa· cm-2。 输出流量范围宽。一般为0.1~10mL/min。 输出流量稳定,重复性高。流量控制的精密度
应小于1%。
高压泵的种类
恒压泵:
又称气动放大泵,是输出恒定压力的泵。目前 这种泵只用于装填色谱柱。
恒流泵
恒流泵可输出恒定体积流量的流动相。 恒流泵又分为注射型泵(注射式螺旋泵)和往
高压梯度
采用两台或两台以上的高压泵按比例控制流量 输出溶剂直接混合成流动相相进行洗脱。
低压梯度
几种不同的溶剂由比例 阀控制各个溶剂进入低 压混合室的量,混合后 由高压泵输入进入色谱 系统进行洗脱。
梯度洗脱与定度洗脱
梯度速度
梯度曲线
注意问题
溶剂的互溶性 溶剂纯度 混合溶剂的粘度 脱气
二仪器
高效液相色谱仪可分为
{ { 分析型
整机型
制备型
组合型
{ 凝胶色谱仪 离子色谱仪 氨基酸分析仪
工业用高效液相色谱系统
常见的高效液相色谱仪
高效液相色谱仪和气相色谱仪的流程基 本相同。从构成仪器功能块可分为五大 系统:流动相供给和输送系统、进样器、 分离柱、检测器、数据处理系统。
输
进
分
检
数据
液
样
离测
处理
系
器
柱
器
系统
统Hale Waihona Puke 1.高压输液系统 溶剂贮存器 过滤器 脱气装置 高压泵 阻尼器 梯度洗脱装置
溶剂贮存器
材料:耐腐蚀,玻璃、不锈钢、氟塑料等 容积:分析型0.5-2升 放置:高于泵体,保持一定的静压差 密闭:防止溶剂挥发、空气重新溶解
过滤器
复式泵。
注射型泵
工作原理: 用一台步进电机驱动注射泵的活塞把液流从 泵腔中挤出,泵腔体积较大(250-500mL), 密封性好的活塞把泵腔中的液体等速流出。
优点: 在高输出压力下给出精确无脉动、可重现的 流量
缺点:
泵液缸容积有限,每次流动相输完后需重新吸 入,当流量较大时不利于连续工作
脱气装置
流动相进入高压泵前必须脱气,否则容易 在系统的低压部分放出气泡,影响高压泵 工作,色谱柱的分离效率和检测器的稳定, 使固定相或样品发生化学反应。
脱气方法:
减压:可能影响流动相组成 吹氦:简单方便,氦气贵 超声:方便,普遍使用
脱气效率
高压泵
要求:
泵体材料能耐化学腐蚀。 能在高压下连续工作。通常要求耐压
溶剂纯度
2.进样系统
进样系统包括进样口、注射器和进样阀等, 它的作用是把分析试样有效地送入色谱柱 上进行分离。
高效液相色谱仪采用阀进样方式。分手动 进样和自动进样。
手动进样
定量环进样
装样
(LOAD)
进样阀
开始分析
(INJECT)
废液
淋洗液
淋洗液
废液
样品
至分离柱 样品环
样品
至分离柱
缺点:
输出的流量存在脉动
往复式恒流柱塞泵
阻尼器
梯度淋洗装置
梯度洗脱指采用两种(或多种)不同极性的溶剂, 在分离过程中按一定程序连续变化流动相组成比 和极性的一种洗脱模式,使每个流出的组分都有 合适的容量因子,样品中的所有组分可在最短的 分析时间、以合适的分离度获得圆满地选择性地 分离。对于复杂混合物,特别是保留性能相差较 大的混合物的分离梯度洗脱是一种极为重要的手 段。梯度洗脱装置可分为高压梯度或低压梯度两 种模式。