电磁场与电磁波题库知识分享
电磁场与电磁波期末考试复习试题4套(部分含答案)
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
电磁场与电磁波总复习
一、 填空题(10)——已写入的答案——力佐提供1.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 垂直 。
2.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互 平行 。
3.矢量z y x e e e A ˆˆˆ++=的大小为 3 。
4.矢量场)(r A穿过闭合曲面S 的通量的表达式为:()sA r d s ∙⎰⎰ 。
5.磁感应强度沿任一曲面S 的积分称为穿过曲面S 的 磁能量 。
6.从场角度来讲,电流是电流密度矢量场的 通量 。
7.矢量场)(r A在闭合曲线C 上环量的表达式为:C()d r A r ∙⎰ 。
8.如果一个矢量场的旋度等于零,则称此矢量场为 无旋场 。
9.如果一个矢量场的散度等于零,则称此矢量场为 无散场 。
10.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于0 。
11.恒定磁场是无散场,故磁感应强度沿任一闭合曲面的积分等于 0 。
12.一个标量场的性质,完全可以由它的 梯度 来表征。
13. 亥姆霍兹定理告诉我们,研究任何一个矢量场应该从矢量的 散度与旋度 两个角度去研究。
14.从矢量场的整体而言,无散场的 旋度 不能处处为零。
15.从矢量场的整体而言,无旋场的 散度 不能处处为零。
16.由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 静电场 。
17.由恒定电流所产生的磁场称为 恒磁场 。
18.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B和磁场H满足的方程为: =B H μ .19. 在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D 和电场E满足的方程为: =D E ε . 20. 麦克斯韦 方程是经典电磁理论的核心。
21.所谓矢量线,乃是这样一些曲线,在曲线上的每一点上,该点的切线方向与矢量场的方向 相同 。
22.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 矢位(矢势) 函数的旋度来表示。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波试题
电磁场与电磁波试题一、选择题1.物体自带的静电荷可以产生()电场。
A. 近距离的 B. 远距离的 C. 高速的 D. 恒定的2.下列哪个物理量是电场强度的定义? A. 电荷的大小 B. 电势差的变化C. 电场线的形状D. 电场力的大小3.两个相同电量的电荷之间的力为F,若电荷1的电量变为原来的4倍,电荷2的电量变为原来的2倍,则两个电荷之间的力变为原来的()倍。
A. 1/8B. 1/4C. 1/2D. 24.以下哪个物理量在电路中是守恒的? A. 电流 B. 电荷 C. 电压 D. 电功5.电流方向由正极流动到负极。
这是因为电流是由()极到()极流动的。
A. 正极,负极 B. 负极,正极 C. 高电势,低电势 D. 低电势,高电势二、填空题1.电场强度的单位是()。
2.在均匀介质中,电位与电势之间的关系是:()。
3.电容的单位是()。
4.电容和电容器的关系是:()。
三、解答题1.简述电场的概念及其性质。
答:电场是由电荷周围的空间所产生的物理现象。
当电荷存在时,它会在其周围产生一个电场。
电场有以下性质:–电场是矢量量,具有大小和方向。
–电场的强度随着距离的增加而减弱,遵循反比例关系。
–电场由正电荷指向负电荷,或由高电势指向低电势。
–电场相互叠加,遵循矢量相加原则。
–电场线表示了电场的方向和强度,线的密度表示电场强度的大小。
2.简述电流的概念及其特性。
答:电流是指单位时间内通过导体截面的电荷量,用符号I表示,单位是安培(A)。
电流具有以下特性:–电流的方向由正极流向负极,与电子的运动方向相反。
–电流是守恒量,即在封闭电路中,电流的大小不会改变。
–电流的大小与导体电阻、电势差和电阻之间的关系符合欧姆定律:I = U/R,其中I为电流,U为电势差,R为电阻。
3.电容器与电场之间有怎样的关系?答:电容器是一种用于储存电荷和电能的元件。
当电容器充电时,电荷会从一极板移动到另一极板,形成了电场。
电容器的电容决定了电容器储存电荷和电能的能力。
电磁场与电磁波简答题及答案试题库
电磁场与电磁波简答题及答案试题库1. 写出⾮限定情况下麦克斯韦⽅程组的微分形式,并简要说明其物理意义。
2.答⾮限定情况下麦克斯韦⽅程组的微分形式为,,0,D BH J E B D t tρ=+??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界⾯时的边界条件。
2. 时变场的⼀般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或⽮量式2n D σ= 、20n E ?=、2s n H J ?=、20n B = )1. 写出⽮量位、动态⽮量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答⽮量位,0B A A == ;动态⽮量位A E t ??=-?-? 或AE t ??+=-??。
库仑规范与洛仑兹规范的作⽤都是限制A 的散度,从⽽使A的取值具有唯⼀性;库仑规范⽤在静态场,洛仑兹规范⽤在时变场。
1. 简述穿过闭合曲⾯的通量及其物理定义2.sA ds φ=是⽮量A 穿过闭合曲⾯S 的通量或发散量。
若Ф>0,流出S ⾯的通量⼤于流⼊的通量,即通量由S ⾯内向外扩散,说明S ⾯内有正源若Ф< 0,则流⼊S ⾯的通量⼤于流出的通量,即通量向S ⾯内汇集,说明S ⾯内有负源。
若Ф=0,则流⼊S ⾯的通量等于流出的通量,说明S ⾯内⽆源。
1. 证明位置⽮量x y z r e x e y e z =++的散度,并由此说明⽮量场的散度与坐标的选择⽆关。
2. 证明在直⾓坐标系⾥计算,则有()()xy z x y z r r e e e e x e y e z xy z =++?++ ??????3x y zx y z=++= 若在球坐标系⾥计算,则 23==??由此说明了⽮量场的散度与坐标的选择⽆关。
电磁场与电磁波复习题(简答题)
电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。
静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
2、请解释磁场与恒定磁场的概念。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
3、请解释时变电磁场与电磁波的概念。
如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
4、请解释自由空间的概念。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
5、举例说明电磁场与波的应用。
静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。
电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。
当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。
6、请解释常矢与变矢的概念。
若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。
而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。
7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。
8、请解释静态场和动态场的概念。
如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。
换句话说,在某一空间区域中,物理量的无穷集合表示一种场。
电磁场与电磁波期末复习题库
物理与电信工程学院《电磁场与电磁波》 期末复习题库一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ∇⋅=DB. 0∇⨯=EC. 0C d ⋅=⎰ E lD.0S q d ε⋅=⎰ E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___ A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0∇⨯=B 说明 __A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:( D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位ϕ所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波考试试题
电磁场与电磁波考试试题一、选择题(每题 3 分,共 30 分)1、真空中的介电常数为()。
A 885×10^(-12) F/mB 4π×10^(-7) H/mC 0D 无穷大2、静电场中,电场强度的环流恒等于()。
A 电荷的代数和B 零C 电场强度的大小D 不确定3、磁场强度的单位是()。
A 安培/米B 伏特/米C 牛顿/库仑D 特斯拉4、对于时变电磁场,以下说法正确的是()。
A 电场和磁场相互独立B 电场是无旋场C 磁场是无散场D 电场和磁场没有关系5、电磁波在真空中的传播速度为()。
A 光速B 声速C 无限大D 不确定6、以下哪种波不是电磁波()。
A 可见光B 超声波C 无线电波D X 射线7、均匀平面波在理想介质中传播时,电场和磁场的相位()。
A 相同B 相反C 相差 90 度D 不确定8、电位移矢量 D 与电场强度 E 的关系为()。
A D =εEB D =ε0ECD =μH D D =μ0H9、坡印廷矢量的方向表示()。
A 电场的方向B 磁场的方向C 能量的传播方向D 电荷的运动方向10、电磁波的极化方式不包括()。
A 线极化B 圆极化C 椭圆极化D 方极化二、填空题(每题 3 分,共 30 分)1、库仑定律的表达式为________。
2、静电场的高斯定理表明,通过任意闭合曲面的电通量等于该闭合曲面所包围的________。
3、安培环路定理表明,磁场强度沿任意闭合回路的线积分等于穿过该回路所包围面积的________。
4、位移电流的定义式为________。
5、麦克斯韦方程组的四个方程分别是________、________、________、________。
6、电磁波的波长、频率和波速之间的关系为________。
7、理想导体表面的电场强度________,磁场强度________。
8、均匀平面波的电场强度和磁场强度的比值称为________。
9、线极化波可以分解为两个________极化波的合成。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案导言:电磁场和电磁波是电磁学领域中的重要概念,对于理解电磁现象、电磁波传播及应用都具有重要意义。
本文将针对电磁场和电磁波相关的试题进行解答,帮助读者巩固对这一知识点的理解。
一、电磁场概念及特点1. 试题:电磁场是指什么?电磁场有哪些特点?答案:电磁场指的是电荷或电流所产生的周围空间的物理场。
具体包括静电场和磁场。
电磁场的特点有以下几个方面:- 电磁场具有源极性:任何一个电磁场的产生都必须由电荷或电流来产生。
- 电磁场具有传递性:当源增大或减小时,电磁场的强度也会相应变化。
- 电磁场具有辐射性:电磁场会以电磁波形式向外传播。
- 电磁场具有叠加性:多个电磁场可以在同一空间中叠加。
二、电磁场强度及电磁波的传播1. 试题:电磁场强度的概念是指什么?电磁波的传播过程是怎样的?答案:电磁场强度是指单位电荷所受到的电磁力的大小,通常用矢量表示,其方向为电荷所受电磁力的方向。
电磁波的传播过程主要包括以下几个阶段:- 在电磁场中,源电荷或电流激发出电磁波。
- 电磁波在空间中以垂直波动的方式传播。
- 电磁波的传播过程中,电场和磁场相互垂直、交替变化。
- 电磁波传播速度为光速,即3×10^8 m/s。
三、电磁波的频率和波长1. 试题:电磁波的频率和波长有什么关系?请列举几种常见电磁波的频率和波长范围。
答案:电磁波的频率和波长之间有以下关系:频率 = 光速 / 波长以下是几种常见电磁波的频率和波长范围:- α射线:频率高,波长短,一般范围为10^18 - 10^20 Hz,波长约为10^(-12) - 10^(-10) m。
- 紫外线:频率较高,波长较短,一般范围为10^14 - 10^16 Hz,波长约为10^(-8) - 10^(-7) m。
- 可见光:频率适中,波长适中,范围为4×10^14 - 8×10^14 Hz,波长约为3.75×10^(-7) - 7.5×10^(-7) m。
电磁场与电磁波考试题答案参考资料
第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
电磁场与电磁波期末考试题库
电磁场与电磁波期末考试题库一、选择题1.静电场是指:– A. 电荷在电场中不断运动的状态– B. 电荷在电场中静止的状态– C. 电场中没有电荷存在的状态– D. 电场中电势为零的状态2.电场强度的定义式是:– A. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r^2}$– B. $E = \\varepsilon_0\\frac{q}{r^2}$– C. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r}$– D. $E = \\varepsilon_0\\frac{q}{r}$3.电场线的特点是:– A. 线的密度表示电场强度的大小– B. 线的颜色表示电场强度的大小– C. 线的方向表示电场强度的方向– D. 线上的点表示电场强度的大小4.关于电场线的说法正确的是:– A. 电场线一定是直线– B. 电场线一定是曲线– C. 电场线既可以是直线也可以是曲线– D. 电场线没有特定的形状5.电场中的带电粒子受到的力是由以下哪些因素决定的?– A. 粒子的电荷大小– B. 粒子所处位置的电场强度– C. 粒子的质量– D. 粒子的电荷大小和所处位置的电场强度二、填空题1.电场强度的单位是\\\\。
2.静电势能的单位是\\\\。
3.感应电场的方向与引起它的磁场的变化方式\\\\。
4.麦克斯韦方程组包括\\\_\_个方程。
三、计算题1.一根长为10cm的直导线通有1A的电流,求导线周围某点的磁场强度。
2.一个带电粒子在电场中受到的力为5N,电荷大小为2C,求电场强度的大小。
3.两个带电粒子相距1m,电荷分别为1C和-2C,求它们之间的电势能。
四、问答题1.什么是电磁场?2.什么是电磁波?3.静电场和感应电场有什么区别?4.麦克斯韦方程组描述了什么?五、实验题设计一个实验,验证库仑定律。
以上是《电磁场与电磁波期末考试题库》的题目内容,包括选择题、填空题、计算题、问答题和实验题。
电磁场与电磁波试题与答案
电磁场与电磁波试题与答案一、选择题(每题10分,共40分)1. 以下哪个选项是描述电磁场波动性的基本方程?A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦方程组D. 洛伦兹力定律2. 下列哪个物理量表示电磁波的传播速度?A. 介电常数B. 磁导率C. 电磁波频率D. 波长3. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的电场和磁场相互垂直B. 电磁波的传播方向与电场和磁场方向相同C. 电磁波的传播速度与频率成正比D. 电磁波不能在真空中传播4. 在电磁波传播过程中,以下哪个因素会影响电磁波的衰减?A. 传播距离B. 电磁波频率C. 介质类型D. 所有以上选项二、填空题(每题20分,共60分)5. 电磁波在真空中的传播速度为______。
6. 电磁波的频率与波长之间的关系为______。
7. 麦克斯韦方程组由______个方程组成。
8. 在电磁波传播过程中,电场强度和磁场强度之间的关系为______。
答案:一、选择题1. C. 麦克斯韦方程组2. D. 波长3. A. 电磁波的电场和磁场相互垂直4. D. 所有以上选项二、填空题5. 3×10^8 m/s6. c = λf(其中c为光速,λ为波长,f为频率)7. 4个方程8. E = cB(其中E为电场强度,B为磁场强度,c为光速)以下为电磁场与电磁波试题解析:一、选择题1. 麦克斯韦方程组是描述电磁场波动性的基本方程,包括高斯定律、法拉第电磁感应定律等。
故选C。
2. 电磁波的传播速度v = c/√(εμ),其中c为光速,ε为介电常数,μ为磁导率。
波长λ = v/f,其中f为频率。
故选D。
3. 电磁波的电场和磁场相互垂直,且传播方向与电场和磁场方向垂直。
故选A。
4. 电磁波传播过程中,传播距离、电磁波频率和介质类型都会影响电磁波的衰减。
故选D。
二、填空题5. 电磁波在真空中的传播速度为3×10^8 m/s。
6. 电磁波的频率f与波长λ之间的关系为c = λf,其中c 为光速。
电磁场和电磁波复习题
《电磁场和电磁波》复习题一、选择题1.图所示两个载流线圈,所受的电流力使两线圈间的距离扩大缩小不变2.毕奥—沙伐定律在任何媒质情况下都能应用在单一媒质中就能应用必须在线性,均匀各向同性媒质中应用。
3. 真空中两个点电荷之间的作用力A. 若此两个点电荷位置是固定的,则不受其他电荷的引入而改变B. 若此两个点电荷位置是固定的,则受其他电荷的引入而改变C. 无论固定与不固定,都不受其他电荷的引入而改变4.真空中有三个点电荷、、。
带电荷量,带电荷量,且。
要使每个点电荷所受的电场力都为零,则:A. 电荷位于、电荷连线的延长线上,一定与同号,且电荷量一定大于B. 电荷可位于连线的任何处,可正、可负,电荷量可为任意大小C. 电荷应位于、电荷连线的延长线上,电荷量可正、可负,且电荷量一定要大于5.静电场中电位为零处的电场强度A. 一定为零B. 一定不为零C. 不能确定6.空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A. 大于腔内各点的电场强度B. 小于腔内各点的电场强度C. 等于腔内各点的电场强度7.图示长直圆柱电容器中,内圆柱导体的半径为,外圆柱导体的半径为,内、外导体间的上、下两半空间分别充有介电常数为与的电介质,并外施电压源。
若以外导体圆柱为电位参考点,则对应该问题电位的唯一正确解是A.B.C.8.电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场9.设半径为a 的接地导体球外空气中有一点电荷Q,距球心的距离为,如图所示。
现拆除接地线,再把点电荷Q移至足够远处,可略去点电荷Q对导体球的影响。
若以无穷远处为电位参考点,则此时导体球的电位A.B.C.10.图示一点电荷Q与一半径为a 、不接地导体球的球心相距为,则导体球的电位A. 一定为零B. 可能与点电荷Q的大小、位置有关C. 仅与点电荷Q的大小、位置有关11.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第二类边值问题是指给定12.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第三类边值问题是指给定13.以位函数为待求量边值问题中,设、、都为边界点的点函数,则所谓第一类边值问题是指给定(为在边界上的法向导数值)14.在无限大被均匀磁化的磁介质中,有一圆柱形空腔,其轴线平行于磁化强度, 则空腔中点的与磁介质中的满足15.两块平行放置载有相反方向电流线密度与的无限大薄板,板间距离为, 这时A. 两板间磁感应强度为零。
《电磁场与电磁波》期末复习题-基础
《电磁场与电磁波》期末复习题-基础电磁场与电磁波复习题1.点电荷电场的等电位⽅程是()。
A .B .C .D .C Rq =04πεC Rq =204πεCRq =024πεCRq =2024πε2.磁场强度的单位是()。
A .韦伯B .特斯拉C .亨利D .安培/⽶3.磁偶极矩为的磁偶极⼦,它的⽮量磁位为()。
A .B .C .D .024R m e R µπ?u r r 02 ·4R m e R µπu r r 024Rm e R επ?u r r2·4Rm e R επu r r 4.全电流中由电场的变化形成的是()。
A .传导电流 B .运流电流 C .位移电流 D .感应电流5.µ0是真空中的磁导率,它的值是()。
A .4×H/mB .4×H/mC .8.85×F/mD .8.85×F/mπ710-π710710-12106.电磁波传播速度的⼤⼩决定于()。
A .电磁波波长B .电磁波振幅C .电磁波周期D .媒质的性质7.静电场中试验电荷受到的作⽤⼒⼤⼩与试验电荷的电量( )A.成反⽐ B.成平⽅关系 C.成正⽐ D.⽆关8.真空中磁导率的数值为( )A.4π×10-5H/mB.4π×10-6H/mC.4π×10-7H/mD.4π×10-8H/m 9.磁通Φ的单位为( )A.特斯拉 B.韦伯 C.库仑 D.安/匝10.⽮量磁位的旋度是( )A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度11.真空中介电常数ε0的值为( )A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 12.下⾯说法正确的是( )A.凡是有磁场的区域都存在磁场能量B.仅在⽆源区域存在磁场能量C.仅在有源区域存在磁场能量D.在⽆源、有源区域均不存在磁场能量13.电场强度的量度单位为()A .库/⽶ B .法/⽶ C .⽜/⽶D .伏/⽶14.磁媒质中的磁场强度由()A .⾃由电流和传导电流产⽣B .束缚电流和磁化电流产⽣C .磁化电流和位移电流产⽣D .⾃由电流和束缚电流产⽣15.仅使⽤库仓规范,则⽮量磁位的值()A .不唯⼀ B .等于零 C .⼤于零D .⼩于零16.电位函数的负梯度(-▽)是()。
电磁场与电磁波(必考题)
1 / 91.已知自由空间中均匀平面波磁场强度瞬时值为:())]43(cos[31,,z x t-e t z x H +=πωπy A/m ,求①该平面波角频率ω、频率f 、波长λ ②电场、磁场强度复矢量③瞬时坡印廷矢量、平均坡印廷矢量。
解:① z x z k y k x k z y x ππ43+=++;π3=x k ,0=yk ,π4=z k ;)/(5)4()3(22222m rad k k k k z y x πππ=+=++=;λπ2=k ,)(4.02m k ==πλ c v f ==λ(因是自由空间),)(105.74.010388Hz c f ⨯=⨯==λ;)/(101528s rad f ⨯==ππω②)/(31),()43(m A e e z x H z x j y +-=ππ; )/()243254331120),(),(),()43()43(m V e e e e e e e k k z x H e z x H z x E z x j z x z x z x j y n +-+--=+⨯⨯=⨯=⨯=πππππππηη(③ ()[])/()43(cos 2432),,(m V z x t e e t z x E z x +--=πω())]43(cos[31,,z x t-e t z x H +=πωπy (A/m ) ()[]()[])/()43(cos 322431)]43(cos[31)43(cos 243222m W z x t e e z x t-e z x t e e H E S z x z x +-+=+⨯+--=⨯=πωππωππωy ())43(2432),(z x j z x e e e z x E +--=π,)43(31),(z x j y e e z x H +-=ππ()())/(322461312432Re 21Re 212*)43()43(*m W e e e e e e e H E S z x z x j y z x j z x av +=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯-=⎪⎭⎫ ⎝⎛⨯=+-+-ππππ2.横截面为矩形的无限长接地金属导体槽,上部有电位为 的金属盖板;导体槽的侧壁与盖板间有非常小的间隙以保证相互绝缘。
电磁场与电磁波重要例题、习题复习资料
电磁场与电磁波易考简答题归纳1、什么是均匀平面电磁波?答:平面波是指波阵面为平面的电磁波。
均匀平面波是指波的电场→E 和磁场→H 只沿波的传播方向变化,而在波阵面内→E 和→H 的方向、振幅和相位不变的平面波。
2、电磁波有哪三种极化情况?简述其区别。
答:(1)直线极化,同相位或相差 180;2)圆极化,同频率,同振幅,相位相差 90或 270;(3)椭圆极化,振幅相位任意。
3、试写出正弦电磁场的亥姆霍兹方程(即亥姆霍兹波动方程的复数形式),并说明意义。
答:002222=+∇=+∇→→→→H k H E k E ,式中μεω22=k 称为正弦电磁波的波数。
意义:均匀平面电磁波在无界理想介质中传播时,电场和磁场的振幅不变,它们在时间上同相,在空间上互相垂直,并且电场、磁场、波的传播方向三者满足右手螺旋关系。
电场和磁场的分量由媒质决定。
4、写出时变电磁场中麦克斯韦方程组的非限定微分形式,并简述其意义。
答:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇→→→→→→→ρεμμεE H t H E tE J H )4(0)3()2()1(物理意义:A 、第一方程:时变电磁场中的安培环路定律。
物理意义:磁场是由电流和时变的电场激励的。
B 、第二方程:法拉第电磁感应定律。
物理意义:说明了时变的磁场激励电场的这一事实。
C 、第三方程:时变电场的磁通连续性方程。
物理意义:说明了磁场是一个旋涡场。
D 、第四方程:高斯定律。
物理意义:时变电磁场中的发散电场分量是由电荷激励的。
5、写出麦克斯韦方程组的微分形式或积分形式,并简述其意义。
答:(1)微分形式(2) 积分形式 物理意义:同第4题。
6、写出达朗贝尔方程,即非齐次波动方程,简述其意义。
答:→→→-=∂∂-∇J tA A μμε222,ερμε-=∂Φ∂-Φ∇→→222t物理意义:→J 激励→A ,源ρ激励Φ,时变源激励的时变电磁场在空间中以波动方式传播,是时变源的电场辐射过程。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案一、选择题1. 以下哪个物理量描述了电场线的密度?A. 电场强度B. 电势C. 电通量D. 电荷密度答案:A. 电场强度2. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的传播速度与频率成正比B. 电磁波的传播速度与波长成正比C. 电磁波的传播速度与频率无关D. 电磁波的传播速度与波长成反比答案:C. 电磁波的传播速度与频率无关3. 在真空中,以下哪个物理量与磁感应强度成正比?A. 磁场强度B. 磁通量C. 磁导率D. 磁化强度答案:A. 磁场强度二、填空题4. 在电场中,某点的电场强度大小为200 V/m,方向向东,则该点的电场强度可以表示为______。
答案:200 V/m,方向向东5. 一个电磁波在空气中的波长为3 m,频率为100 MHz,则在空气中的传播速度为______。
答案:300,000,000 m/s6. 一个长直导线通过交流电流,其周围产生的磁场是______。
答案:圆形磁场三、计算题7. 一个平面电磁波在真空中的电场强度为50 V/m,磁场强度为0.2 A/m。
求该电磁波的波长和频率。
解题过程:根据电磁波的基本关系,电场强度和磁场强度满足以下关系:\[ E = c \times B \]其中,\( c \) 为光速,\( E \) 为电场强度,\( B \) 为磁场强度。
代入数据:\[ 50 = 3 \times 10^8 \times 0.2 \]解得:\[ c = 1.25 \times 10^7 m/s \]根据电磁波的波长和频率关系:\[ c = \lambda \times f \]代入光速和波长关系:\[ 1.25 \times 10^7 = \lambda \times f \]假设频率为 \( f \),则波长为:\[ \lambda = \frac{1.25 \times 10^7}{f} \]由于波长和频率的乘积为光速,可以求出频率:\[ f = \frac{1.25 \times 10^7}{3 \times 10^8} = 0.0417 \text{ GHz} \]将频率代入波长公式,求出波长:\[ \lambda = \frac{1.25 \times 10^7}{0.0417\times 10^9} = 3 m \]答案:波长为3 m,频率为0.0417 GHz8. 一个半径为10 cm的圆形线圈,通过频率为10 MHz的正弦交流电流,求线圈中心处的磁场强度。
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场与电磁波考题整理
电磁场与电磁波考题整理1、在给定尺⼨的矩形波导中,传输模式的阶数越⾼,相应的截⽌频率( A ) A 、越⾼ B 、越低 C 、与阶数⽆关2、假定磁荷不存在的情况下,稳恒电流磁场是( D ) A 、⽆源⽆旋场B 、有源⽆旋场C 、有源有旋场D 、⽆源有旋场3、时变电磁场中,在理想导体表⾯,( B )A 、电场与磁场的⽅向都垂直于表⾯B 、电场的⽅向垂直于表⾯,磁场的⽅向都平⾏于表⾯C 、电场的⽅向平⾏于表⾯,磁场的⽅向垂直于表⾯在两个夹⾓为600的接地导体 D 、电场与磁场的⽅向都平⾏于表⾯ 4、在传输10TE 模的矩形空波导观众,当填充电介质),(00µµεεε==x 后,设⼯作频率不变,其波阻抗ωTE Z 将( B )A 、变⼤B 、变⼩C 、不变5、⼀圆极化电磁波从媒质参数为3=r ε 1=r µ的介质⼊射到空⽓中,要使电场的平⾏极化分量不产⽣反射,⼊射⾓应为( B )A 、15B 、30C 、45D 、606、已知均匀平⾯电磁波的电场强度⽮量为jkzy x eE e e E --=0)32( ,由此可知,该平⾯电磁波是( C )A. 沿Z 轴正⽅向传播的左旋椭圆极化波B. 沿Z 轴负⽅向传播的右旋圆极化波C. 沿Z 轴正⽅向传播的线极化波D. 沿Z 轴负⽅向传播的线极化波7、已知均匀平⾯电磁波电场复振幅分量为()/22j -2jkzx y E e 5e e 10e p --=+?v vv,由此可知,该平⾯电磁波是(貌似题⽬有误) A. 沿Z 轴正⽅向传播的右旋椭圆极化波 B. 沿Z 轴负⽅向传播的左旋圆极化波 C. 沿Z 轴正⽅向传播的线极化波D. 沿Z 轴负⽅向传播的线极化波8、按照麦克斯韦的电磁场理论,以下说法中正确的是( C ) A. 恒定的电场周围产⽣恒定的磁场 B. 恒定的磁场周围产⽣恒定的电场C. 变化的电场周围产⽣磁场,变化的磁场周围产⽣电9、谐变电磁场所满⾜的麦克斯韦⽅程组中,能反映“变化的电场产⽣磁场”和“变化的磁场产⽣电场”这⼀物理思想的两个⽅程是( B )(A )ερ==E H ,0 (B )H j E E j J Hωµωε-=??+=??,(C )0,=??=??E J H(D )ερ==E H ,01、写出电流连续⽅程在电流恒定时,积分形式:?=-=s dt dqS d J 0 ;微分形式:0=??J . 2、麦克斯韦⽅程组中的0ρ=??D 和t B E ??-=?? 表明:不仅___⾃由电荷__要产⽣电场,⽽且__变化的磁场____也要产⽣电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波题库一 填空题1.对于矢量A ,若A =xe xA+ye yA+ze zA,则:y e •x e = ;z e •z e = ;ze ⨯xe= ;x e ⨯x e = 。
2.对于某一矢量A ,它的散度定义式为 ;用哈密顿算子表示为 。
3.哈密顿算子的表达式为∇= ,其性质是 。
4.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D和电场E满足的方程为: 。
5.在均匀各向同性线性媒质中,设媒质的磁导率为μ,则磁感应强度B和磁场H满足的方程为: 。
6.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为 ,通常称它为 。
7.设线性各向同性的均匀媒质中,02=∇φ称为 方程。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9. 在自由空间中,点电荷产生的电场强度与其电荷量q 成 比,与观察点到电荷所在点的距离平方成 比。
10. 线性且各向同性媒质的本构关系方程是: 、 、 。
11.在理想导体的表面, 的切向分量等于零。
12.矢量场)(r A穿过闭合曲面S 的通量的表达式为: 。
13.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
14.由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为 。
15.由恒定电流产生的磁场称为 ,恒定磁场是无散场,因此,它可用矢量函数的 来表示。
16.磁感应强度沿任一曲面S 的积分称为穿过曲面S 的 。
17.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位所满足的方程为 。
18. 引入电位函数ϕ是根据静电场的 特性。
19. 引入矢量磁位A是根据磁场的 特性。
20. 安培环路定律的微分形式是 ,它说明磁场的旋涡源是 。
21. 静电场的基本方程为: 、 . 22. 恒定电场的基本方程为: 、 。
23. 恒定磁场的基本方程为: 、 。
24. 理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 、 、 和 。
25.静电场空间中,在不同的导电媒质交界面上,边界条件为 和 。
26.所谓分离变量法,就是将一个 函数表示成几个单变量函数乘积的方法。
27.电磁场在两种不同媒质分界面上满足的方程称为 。
28.时变电磁场中,坡印廷矢量的数学表达式为 。
29.对横电磁波而言,在波的传播方向上电场、磁场分量为 。
30.在自由空间中电磁波的传播速度为 m/s 。
31、在无界理想媒质中传播的均匀平面电磁波,电场与磁场的相位 ,幅度随传播距离的增加而 。
而在导电媒质中传播的均匀平面电磁波,电场与磁场的相位 ,幅度随传播距离的增加而 。
32、在理想介质中的均匀平面电磁波,其电场方向与磁场方向 ,其振幅之比等于 。
33.在无源区域中,变化的电场产生磁场,变化的磁场产生 ,使电磁场以波的形式传播出去,即电磁波。
34.在导电媒质中,电磁波的传播速度随频率变化的现象称为 。
35.若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为 。
36.从矢量场的整体而言,无散场的 不能处处为零。
37.随时间变化的电磁场称为 场。
38.法拉第电磁感应定律的微分形式为 。
39.两个相互靠近、又相互 的任意形状的导体可以构成电容器。
40.在理想导体的内部,电场强度 。
41.矢量场)(r A在闭合曲线C 上环量的表达式为: 。
42.静电场是保守场,故电场强度从1P 到2P 的积分值与 无关。
43.对平面电磁波而言,其电场、磁场和波的 三者符合右手螺旋关系。
44.时变电磁场中,平均坡印廷矢量的表达式为 。
45.位移电流的表达式为 。
46. 对于矢量A ,写出:高斯定理 ;斯托克斯定理 。
二 简答题1. 简述亥姆霍兹定理,并说明其意义。
2. 在直角坐标系证明0A ∇⋅∇⨯=3. 说明矢量场的环量和旋度。
4. 说明矢量场的通量和散度。
5. 试简述静电场的性质,并写出静电场的两个基本方程。
6. 高斯通量定理的微分形式为ρ=⋅∇D ,试写出其积分形式,并说明其意义。
7. 简述恒定磁场的性质,并写出其两个基本方程。
8. 试简述磁通连续性原理,并写出其数学表达式。
9. 试简述法拉第电磁感应定律,并写出其数学表达式。
10. 试写出泊松方程的表达式,并说明其意义。
11. 说明矢量磁位和库仑规范。
12. 说明恒定磁场中的标量磁位。
13. 试写出在理想导体表面电位所满足的边界条件。
14. 试简述何谓边界条件。
15. 实际边值问题的边界条件分为哪几类?16. 写出坡印廷定理的微分形式,说明它揭示的物理意义。
17. 试简述什么是均匀平面波。
18. 试解释什么是TEM 波。
19. 试简述电磁场在空间是如何传播的?20. 什么是电磁波的极化?极化分为哪三种?三 计算题1.矢量4ˆ3ˆ2ˆz y x e e e A -+= 和x e B ˆ=,求 (1)它们之间的夹角;(2)矢量A 在B上的分量。
2.已知2223,3y zx y A x yze xy e ϕ==+求()rot A ϕ3.设时变电磁场的电场强度和磁场强度分别为:)cos(0e t E E φω-= )cos(0m t H H φω-=(1) 写出电场强度和磁场强度的复数表达式(2) 证明其坡印廷矢量的平均值为:)cos(2100m e av H E S φφ-⨯=4.如图1所示的二维区域,上部保持电位为0U ,其余三面电位为零, (1) 写出电位满足的方程和电位函数的边界条件 (2) 求槽内的电位分布5.一个点电荷q 位于一无限宽和厚的导电板上方,如图2所示, (1) 计算任意一点的()z y x P ,,的电位; (2) 写出0=z 的边界上电位的边界条件。
图1ba6.自由空间中一半径为a的无限长导体圆柱,其中均匀流过电流I,求导体内与导体外的磁感应强度。
7. 无源的真空中,已知时变电磁场磁场强度的瞬时矢量为试求(1) 的值 ; (2) 电场强度瞬时矢量和复矢量(即相量)。
(1)由得故得(2)图28. 无源真空中,已知时变电磁场的磁场强度为;, 其中、为常数,求位移电流密度 。
. 因为由得9. 利用直角坐标系证明()()fA f A f A ∇⨯=∇⨯+∇⨯10. 求真空中均匀带电球体的场强分布。
已知球体半径为a ,电荷密度为ρ0 。
11. 在自由空间传播的均匀平面波的电场强度复矢量为(20)420421010(/)j z j zx y E e ee ev m πππ-----=⨯+⨯求(1)平面波的传播方向; (2)频率;(3)波的极化方式; (4)磁场强度;(5)电磁波的平均坡印廷矢量av S。
解(1)平面波的传播方向为+z方向 (2)频率为903102cf k Hz π==⨯ (3)波的极化方式因为410,022xm ym x y E E ππϕϕ-==-=-=-,故为左旋圆极化.(4)磁场强度442000442001(1010)1(1010)j z z z x z y j zy x H a E e e je e e e je e ππεμηη------=⨯=⨯+⨯=-(5)平均功率坡印廷矢量*442044200424200810211Re[]Re[(1010)221(1010)1(10)(10)[]211[210]21200.26510(/)j z av x y j zy x z z z S E H e je e e je e e e e W m ππηηηπ---------=⨯=+⨯-=+=⨯⨯=⨯12. 空气中传播的均匀平面波电场为0jk r x E e E e -⋅=,已知电磁波沿z轴传播,频率为f 。
求(1)磁场H ;(2)波长λ;(3)能流密度S 和平均能流密度av S ;(4)能量密度W 。
13. 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
解 电荷1q 在(4,0,0)处产生的电场为1113014q πε'-=='-r r E r r电荷2q 在(4,0,0)处产生的电场为222302444q πε-'-=='-e e r r E r r故(4,0,0)处的电场为122+-=+=e e e E E E14. 如图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U 。
(1) 出电位满足的方程和电位函数的边界条件(2) 求槽内的电位分布. 解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ==② (,0)0x ϕ=③ 0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n x x y A a aππϕ∞==∑ 由条件③,有01sinh()sin()n n n b n x U A a aππ∞==∑ 两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n x A x a n b a aππ=⎰ 002(1cos )sinh()4,1,3,5,sinh()02,4,6,U n n n b a U n n n b a n πππππ=-⎧=⎪=⎨⎪=⎩,故得到槽内的电位分布01,3,5,41(,)sinh()sin()sinh()n U n y n x x y n n b a a a ππϕππ==∑15 下列场矢量的瞬时值形式写为复数形式(1)m m(,)cos()sin()x x x y y yE z t e E t kz e E t kzωφωφ=-++-+(2)mmπ(,,)()sin()sin()ππcos()cos()xza xH x z t e H k kz taxe H kz taωω=-+-16. 在自由空间中,已知电场3(,)10sin()V/myz t t zωβ=-E e,试求磁场强度(,)z tH。
. 解以余弦为基准,重新写出已知的电场表示式3(,)10cos()V/m2yz t t zπωβ=--E e这是一个沿+z方向传播的均匀平面波的电场,其初相角为90︒-。
与之相伴的磁场为300311(,)(,)10cos210cos265sin()A/m1202z z yx xz t z t t zt z t zπωβηηπωβωβπ⎛⎫=⨯=⨯--⎪⎝⎭⎛⎫=---=-⋅-⎪⎝⎭H e E e ee e17 计算均匀带电的环形薄圆盘轴线上任意点的电场强度。