电晕放电和沿面放电ppt课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10)
流柱发展阶段
(1)当棒具有正极性时 电子崩进入棒电极,正电荷留在棒尖加
强了前方的电场(曲线2),对形成流柱发展 有利。头部前方产生电子崩,吸引入流柱头部 正电荷区域,加强并延长流柱通道;
流柱及其头部的正电荷使强电场区更向前 推移(曲线3),促进流柱通道进一步发展, 逐渐向阴极推进,形成正流柱。
(30)
六、污闪事故的对策 调整爬距(增大泄露距离) 耐张绝缘子增加片数; 悬式绝缘子选用爬距较 长的耐污型绝缘子或改 用V型串。
(31)
定期或不定期的清扫 干步擦拭或高压水枪;
(32)
涂料 硅油或硅脂;室温硫化硅橡胶
(33)
半导体釉绝缘子 新型合成绝缘子
新型合成绝缘子的优点:
(15)
二、研究沿面放电的意义
电力系统中绝缘子、套管等固体绝缘在机械 上对高压导体起固定作用,又在电气上起绝缘作 用,其绝缘状况(击穿和闪络)关系到整个电力 系统的可靠运行。输电线路和变电所外绝缘的实 际绝缘水平取决于它的沿面闪络电压(为什么)。
沿固体介质表面的闪络电压不但比固体介质 本身的击穿电压低得多,而且比极间距离相同的 纯气隙的击穿电压低不少?
影响因素:
固体介质材料 主要取决于该材料的亲水性或憎水性。
电场形式 同样的表面闪落距离下均匀与稍不均匀电场闪落
电压最高。 大气条件
气压增大时,闪络电压增加不多; 湿度小于40%时无影响,大于40%时由水分在介质 表面的凝结状况确定。 固体介质表面状况 淋雨、污秽及覆冰等。
(26)
四、固体表面有水膜时的沿面放电(湿闪)
(16)
三、沿面放电的类型与特点
界面电场分布可分为三种典型 情况,分别为:
(a)均匀和稍不均匀电场; (b)极不均匀电场具有强垂 直分量; (c)极不均匀电场具有弱垂 直分量
E (a)
Et
E En (b)
En
E Et (c)
(17)
(一)均匀和稍不均匀电场中的沿面放电。
界面与电力线平行,但沿面闪落电 压仍要比空气间隙的击穿电压低很 多?
(5)
(1)基本物理过程描述; (2)外观特征:电极附近空间发出蓝色的晕光; (3)外加电压增大,电晕区也随之扩大,放电电流也 增大(由微安级到毫安级),但气隙总的来看,还保 持着绝缘状态,还没有被击穿。
(6)
§2.4 不均匀电场气隙的击穿
一、短间隙的击穿 击穿过程
1、非自持放电阶段 2、流柱发展阶段。
法兰
外施电压升高 电压超过某一值 电压再升高
电晕放电-辉光放电-滑闪放电-沿面闪络
(21)
2、理论分析
等值电路: 由介质表面电阻RS、比电容 C0和体积电阻G1构成。
(22)
3、放电特点
滑闪放电在交流和冲击电压下很 明显; 随着电压的增加,滑闪长度增加得 很快,靠增加沿面闪络距离来提高 闪络电压的效果有限; 法兰处套管的外径和壁厚越大,滑 闪放电电压越大。
(11)
流柱发展阶段
(1)当棒具有负极性时 电子崩由强场区向弱场区发展,对电子崩
发展不利。棒极前的正电荷区消弱了前方空间 的电场,使流柱发展不利(曲线2);
等离子体层前方电场足够强后,发展新电 子崩,形成了大量二次电子崩,汇集起来后使 得等离子体层向阳极推进,形成负流柱
U 放 棒 板 U 放 棒 板
(12)
极性效应 曲率半径较小的电极的电位符号不同时,气隙的击穿电压
存在明显差异的现象。 极性效应的应用
在进行外绝缘的冲击高压试验时往往加正极性冲击电压; 在工频高压作用下,击穿均发生在外加电压为正极性的 半周内。
(13)
二、长气隙的击穿 气隙较长时,流注往往不能一次贯穿整个气隙,而
出现逐级推进的先导放电现象。 长间隙的放电过程:电晕放电——先导放电(热电
第三节 自放电条件
§2.3 电晕放电 第六节 不均匀电场中的放电过程 一、稍不均匀电场和极不均匀电场中的放电过程
一、稍不均匀电场和极不均匀电场的放电特征
按照电场的不均匀程度分为 稍不均匀电场 和 极 不均匀电场。
稍不均匀电场:放电特性与均匀电场相似,一旦 出现自持放电便一定立即导致整个气隙击穿。例如: 高压实验中用来测高电压的球隙、全封闭组合电器中 的分相母线筒。
E
Keywords:气隙,水膜,电阻不 均匀和粗糙不平。
提高沿面闪络电压的措施:在连接 处涂导电粉末或导电胶。
(18)
不同憎水性固体表面的沿面闪络情况如左图; 不同电压形式下玻璃表面的闪络情况如右图。
(19)
(二)极不均匀电场具有强垂直分量时的沿面放电。
(20)
1、放电现象
导杆
滑闪放电机理: 带电粒子撞击介质 表面,使局部温度 升高,导致热电离
非自持放电阶段
(1)当棒具有正极性时 在棒极附近,积聚起正空间电荷,减 少了紧贴棒极附近的电场,而略微 加强了外部空间的电场,棒极附近难 以造成流柱,使得放电自持,即电晕 放电难以形成。
(9)
非自持放电阶段 (1)当棒具有负极性时 电子崩中电子离开强电场区后,不再 引起电离,正离子逐渐向棒极运动, 在棒极附近出现了比较集中的正空间 电荷,使电场畸变。棒极附近的电场 得到增强,因而自持放电条件易于满 足,易于转入流柱而形成电晕放电。
(23)
4、提高措施
减小比电容; 减小绝缘表面电阻;
(24)
(三)极不均匀电场垂直分量很弱时的沿面放电。
这种绝缘子的两个电极之间
的距离较长,只可能出现沿面闪
En
落。不出现热电离和滑闪放电?
E Et
提高干闪落电压的措施:增大极
间距离。
思考:三种情况下沿面闪络电压 的比较?
(25)
三、沿面放电电压的影响因素和提高方法
极不均匀电场:电场强度沿气隙分布极不均匀, 当所加电压达到某一临界值时,曲率半径小的电极附
近空间电场强度首先达到起始场强值E0 ,在此区域先
出现碰撞电离和电子崩,甚至出现流柱。
(1)
110kV全封闭组合电器
分相母线筒
(2)
图 户外1000kV特高压GIS变电站实景图
(3)
第 电晕放电 电场不均匀系数
(27)
五、绝缘子污染状态下的沿面放电(污闪)
污闪过程 绝缘子污染通常可分为积污、受潮、干区形成、局部
电弧的出现和发展等四个阶段。采取措施抑制或阻止其中 任何一个阶段的完成就能防止污闪事故的发生。 污闪危害
污闪造成的后果很严重,由于一个区域内绝缘子积污 受潮情况差不多,所以容易发生大面积污闪事故。自动重 合闸成功率远低于雷击闪落时,造成事故的扩大和长时间 停电。就经济损失而言,污闪在各类事故中居首位。
电场不均匀系数
f Emax Eav
式中 Emax 最大电场强度,Eav为平均电场强度。
Eav

U d
f < 2 时为稍不均匀电场 f > 4 以上时明显地属于极不均匀电场
(4)
Hale Waihona Puke Baidu
二、电晕放电 电晕放电可以是极不均匀电场气隙击穿过程的第
一阶段,也可以是长期存在的稳定放电形式。这种放 电是极不均匀电场所特有的一种放电形式。
(28)
(29)
污秽表征 污秽度除了与积污量有关还与污秽的化学成分有关。
通常采用“等值附盐密度”(简称“等值盐密”)来表征 绝缘子表面的污秽度,它指的是每平方厘米表面所沉积的 等效氯化钠(NaCl)毫克数。 衡量输电线路绝缘子抗污闪能力的参量是泄漏比距(也称 爬电比距)λ : 指外绝缘“相—地”之间的爬电距离 (cm) 与系统最高工作(线)电压(kv,有效值)之比。
离)——主放电——整个气隙被击穿。
** 雷电放电是自然界的超长间隙放电,其先导过程和 主放电过程发展的最充分。
§2.6 沿面放电和污闪事故
一、沿面放电概念 沿面放电:沿气体和固体绝缘或气体和液体绝缘
表面发生的气体放电现象叫沿面放电。
气体中沿着固体绝缘表面放电的形式包括: 沿面滑闪:尚未发生击穿; 沿面闪络:沿面击穿;
1、说明巴申定律的实验曲线的物理意义是什 么? 2、电晕产生的物理机理是什么?它有哪些有害 影响?试列举工程上各种防晕措施的实例。 3、极性效应的概念是什么?试以棒—板间隙为 例说明产生机理。
(35)
1、重量轻(仅相当于瓷绝缘子的1/10左右)
2、抗弯、抗拉、耐冲击附和等机械性能都很好。 3、电气绝缘性能好,特别是在严重污染和大气潮湿的情 况下性能十分优异; 4、耐电弧性能也很好。
价格昂贵、老化等问题是影响它获得更大推广的问 题。随着材料工艺的进步这种绝缘子必将获得越来越多 的采用。
(34)
第二章 P49页,2-2 补充:
相关文档
最新文档