相似三角形性质及其应用教案
(完整版)相似三角形的性质和判定教案
个性化教学设计方案教师姓名吴其明学生姓名填写时间5月9 学科年级教材版本第章(单元)第节阶段□观察期□维护期课时计划第( 3 )课时共()课时课程名称相似三角形判定与性质个性化学习教学目标掌握相似三角形的概念、性质及判定方法,能够灵活应用相似三角形的性质和判定方法方法解决实际问题。
教学重点相似三角形的性质及判定方法。
教学难点相似三角形的性质和判定方法方法的应用教学过程一、归纳导入(呈现知识)1、相似三角形的概念(1)对应角相等,对应边成比例的三角形,叫做相似三角形。
相似用符号“∽”表示,读作“相似于”。
(2)相似三角形对应角相等,对应边成比例。
(3)相似三角形对应边的比叫做相似比(或相似系数)。
(4)全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例。
(5)相似三角形的等价关系①反身性:对于任一ABC∆有ABC∆∽ABC∆。
②对称性:若ABC∆∽'''CBA∆,则'''CBA∆∽ABC∆。
③传递性:若ABC∆∽CBA'∆'',且CBA'∆''∽CBA''''''∆,则ABC∆∽CBA''''''∆。
2、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
初中数学教案:相似三角形的性质与应用
初中数学教案:相似三角形的性质与应用相似三角形的性质与应用一、引言数学是一门基础学科,而其中的几何部分更是对我们生活中的实际问题有着广泛的应用。
在初中阶段,相似三角形作为几何学中重要的内容之一,具有深远的意义和广泛的应用范围。
本文将从相似三角形的性质入手,探讨其在数学教育中的实际应用。
二、相似三角形的定义和基本性质1. 相似三角形定义相似三角形指两个或多个三角形,在每一个对应边成比例,对应角相等或成比例。
2. 相似三角形性质- 对应角相等: 如果两个三角形的对应顶点间的夹角分别相等,则这两个三角形是相似的。
- 对应边成比例: 如果两个三角形各边之比都相等,则这两个三角形是相似的。
- 任意两个锐角分别相等: 如果两个锐角、一个锐角一个钝/直/补直/平邻分相关即它们之和为180°,则这两个锐塾彩-。
- 被过付线从不同顶点所切三角形的对应部分分别成比例: 如果两个三角形有一个公共顶点,且该顶点的两条直线交叉切割另外两个顶点所在边,则与该交叉线相交的两条边上截获部分之比相等。
3. 相似三角形的判定- SSS判定法: 依据两个三角形各边之比都相等。
- SAS判定法: 依据对应锐角相等和一条对应边成比例。
- AA判定法: 依据对应锐角(或全等两边)相等。
三、相似三角形的应用场景1. 海上测距问题在实际生活中,海上航行时需要测算舰船之间的距离。
设立一个观察塔,并恰好在一个平面内与地平线垂直,可利用观察塔上的仪器,在指定时刻测得几何高及其基座的宽度。
通过利用观察塔到目标物体上沿地面高度和倾斜仪读数来计算目标物体至观察塔之间的水平距离,并借助相似三角形原理得出结果。
2. 塔楼高度问题在测算一个塔或建筑物的高度时,可以利用相似三角形的原理。
观察者站在已知距离塔底点A处,并且与水平线保持平行,通过仰望顶部点B所成的角度,以及观察者自身与地面上某个标记点C间保持竖直状态时视线和水平线之间的夹角,再测量AB的长度(为已知值),从而利用相似三角形得出塔楼的高度。
相似三角形性质与判定教案
相似三角形性质与判定教案教案标题:相似三角形性质与判定教案目标:1. 理解相似三角形的定义和性质。
2. 掌握相似三角形的判定方法。
3. 能够应用相似三角形的性质解决实际问题。
教学步骤:引入活动:1. 引入活动:通过播放一个有关相似三角形的视频,激发学生对相似三角形的兴趣,并引发他们的思考。
知识讲解:2. 介绍相似三角形的定义:相似三角形是指对应角相等且对应边成比例的两个三角形。
3. 解释相似三角形的性质:a. 对应角相等:两个相似三角形的对应角相等。
b. 对应边成比例:两个相似三角形的对应边之间的比值相等。
c. 相似三角形的比例因子:相似三角形的任意两条对应边之间的比值相等。
案例分析与讨论:4. 呈现一些相似三角形的案例,并引导学生观察案例中的对应角和对应边,让他们发现相似三角形的性质。
5. 引导学生分析相似三角形的比例因子,帮助他们理解比例因子的概念和作用。
判定方法讲解:6. 介绍相似三角形的判定方法:a. AA 判定法:如果两个三角形的两个角分别相等,则它们是相似三角形。
b. SAS 判定法:如果两个三角形的一个角相等,且两个对应边成比例,则它们是相似三角形。
c. SSS 判定法:如果两个三角形的三条对应边成比例,则它们是相似三角形。
练习与巩固:7. 给学生提供一些练习题,让他们应用相似三角形的性质和判定方法进行求解。
8. 逐步引导学生解答问题,及时纠正错误,确保他们掌握相似三角形的判定方法和应用能力。
拓展活动:9. 鼓励学生进行实际问题的拓展应用,例如计算高楼上的阴影长度、测量不便的物体的高度等,让他们将所学知识应用于实际生活中。
总结与反思:10. 总结相似三角形的性质和判定方法,并与学生一起回顾所学内容,解答他们可能存在的疑问。
11. 鼓励学生思考相似三角形在几何学中的重要性,并对他们在本节课中的表现给予肯定和鼓励。
教学辅助工具:1. 相关视频资料。
2. 教材和练习题。
3. 黑板/白板和彩色粉笔/白板笔。
相似三角形教案
相似三角形教案I. 教学目标通过本教案的学习,学生将能够:1. 掌握相似三角形的定义;2. 理解相似三角形的性质和判定方法;3. 运用相似三角形的性质解决实际问题。
II. 教学准备1. 教师准备:投影仪、幻灯片、黑板、粉笔等教学工具;2. 学生准备:教材、笔、纸等学习用具。
III. 教学过程Step 1: 导入新知1. 教师引导学生回顾已经学过的一些基础概念,如平行线、角等。
2. 引入相似三角形的概念,让学生尝试给出相似三角形的定义。
Step 2: 相似三角形的定义与性质1. 教师通过幻灯片展示相似三角形的定义,并与学生一起讨论其特点。
2. 学生借助教材,归纳相似三角形的性质,如对应角相等、对应边成比例等。
Step 3: 判断相似三角形的方法1. 教师介绍判定相似三角形的方法,包括AAA(角-角-角)相似判定法、AA(角-角)相似判定法和SAS(边-角-边)相似判定法。
2. 通过幻灯片展示实例,让学生运用这些方法判断相似三角形。
Step 4: 案例分析与讨论1. 教师提供一些实际问题,要求学生分析并运用相似三角形的性质解决。
2. 学生在小组中合作讨论,找出解决问题的方法,并向全班展示他们的解决思路。
Step 5: 练习与巩固1. 教师布置一些练习题,要求学生运用相似三角形的性质进行求解。
2. 学生独立完成练习,并检查答案。
Step 6: 拓展与应用1. 教师推荐一些与相似三角形相关的拓展阅读资料,鼓励学生深入了解这一概念的应用和意义。
2. 学生可以选择阅读其中的一篇文章,并做一份读后感。
IV. 教学反思通过本教案的设计,学生在活动中能够借助幻灯片、小组合作讨论以及个人练习等方式全面了解相似三角形的定义、性质和判定方法。
此外,通过解决实际问题的过程,学生能够培养思维能力和解决问题的策略意识。
教学过程中要注意调动学生积极性,激发他们的学习兴趣,让他们充分参与到教学活动中。
相似三角形的性质教案
相似三角形的性质教案相似三角形的性质教案一、教学目标:1. 理解相似三角形的概念;2. 掌握相似三角形的判定方法;3. 掌握相似三角形的性质;4. 运用相似三角形的知识解决实际问题。
二、教学重点和难点:1. 相似三角形的判定方法;2. 相似三角形的性质。
三、教学内容和教学过程:1. 引入新课教师用两个相似的三角形拼接成一个平行四边形的图形,让学生通过观察推测相似三角形的特点。
2. 概念解释教师向学生解释相似三角形的概念:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。
3. 判定方法让学生尝试找出判定相似三角形的方法,并与同桌分享。
教师引导学生总结出判定相似三角形的方法:考察两个三角形的对应角是否相等以及对应边是否成比例。
4. 性质解释让学生想象两个相似三角形的比例关系,观察和分析两个相似三角形之间的性质差异。
教师引导学生总结出相似三角形的性质:(1)对应角相等性质:相似三角形的三个对应角都相等。
(2)对应边成比例性质:相似三角形的三个对应边都成比例。
(3)相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。
5. 实际应用教师给出一些实际问题,让学生运用相似三角形的知识解决问题,如计算高塔的高度、测量不可直接测量的距离等。
四、课堂练习在黑板上列出一些相似三角形的题目,让学生在课堂上解答,并让他们互相交流讨论解题思路。
五、板书设计相似三角形定义:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。
性质:1. 对应角相等性质:相似三角形的三个对应角都相等。
2. 对应边成比例性质:相似三角形的三个对应边都成比例。
3. 相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。
六、教学反思通过本节课的教学,学生能够理解并掌握相似三角形的概念、判定方法和性质。
通过实际应用的练习,学生也能够灵活运用相似三角形的知识解决问题。
初中数学初三数学上册《相似三角形的性质及其应用》教案、教学设计
3.引导学生回顾已学的全等三角形的性质和判定方法,为新课的学习做好铺垫。
4.揭示本节课的主题——相似三角形的性质及其应用,激发学生的学习兴趣。
(二)讲授新知
在这一环节中,我将系统地讲授相似三角形的性质和判定方法:
-以小组为单位,共同完成一道具有挑战性的相似三角形综合应用题,要求小组成员分工合作,共同讨论解题策略。
-每个小组将解题过程和答案进行整理,并在下一节课上进行汇报,分享学习成果。
4.思考与反思:
-结合本节课的学习,反思自己在解决相似三角形问题时遇到的困难和挑战,分析原因,并总结经验教训。
-撰写一篇学习心得,谈谈自己对相似三角形性质及其应用的认识和理解。
4.学会运用相似三角形的性质解决与实际生活相关的问题,如测量物体的高度、求解线段长度等。
(二)过程与方法
1.通过自主探究、合作交流等形式,引导学生主动发现相似三角形的性质及其应用。
2.培养学生运用几何直观和逻辑推理解决问题的能力,提高学生的几何思维能力。
3.引导学生运用类比、归纳等方法,从特殊到一般,发现几何图形的性质,培养学生发现问题和解决问题的能力。
5.预习与拓展:
-预习下一节课要学习的相似多边形的性质及其应用,为新课的学习做好准备。
-探索相似三角形与其他数学分支(如代数、平面几何等)的联系,拓展知识面。
3.培养学生的几何直观和逻辑推理能力,提高学生解决几何问题的策略和方法。
4.激发学生的学习兴趣,增强学生对数学学科的情感态度,提升学生的数学素养。
(二)教学设想
1.创设情境,引入新课
-通过展示实际生活中的相似图形,如建筑物的立面图、摄影中的缩放效果等,引起学生对相似三角形性质的兴趣。
数学教案三角形相似的判定(优秀3篇)
数学教案三角形相似的判定(优秀3篇)知识结构本文范文为朋友们整理了3篇《数学教案三角形相似的判定》,可以帮助到您,就是本文范文我最大的乐趣哦。
角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。
2.继续渗透和培养学生对类比数学思想的认识和理解。
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4.通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。
应让学生对此有所了解。
定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B 成对应点,对应边分别是斜边和一条直角边。
初中数学相似教案
初中数学相似教案教学目标:1. 理解相似三角形的定义和性质;2. 学会运用相似三角形解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 相似三角形的定义和性质;2. 相似三角形的判定;3. 相似三角形的应用。
教学步骤:一、导入(5分钟)1. 引导学生回顾已学的三角形相关知识,如三角形的分类、三角形的性质等;2. 提问:同学们,你们知道什么是相似三角形吗?有没有谁能举个例子来说明一下?二、新课讲解(15分钟)1. 讲解相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形;2. 讲解相似三角形的性质:相似三角形的对应边成比例,对应角相等;3. 讲解相似三角形的判定:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似;4. 举例说明相似三角形的应用,如解决实际问题中的测量问题、几何图形的构造等。
三、课堂练习(15分钟)1. 请同学们完成教材上的练习题,巩固相似三角形的定义和性质;2. 教师选取部分学生的作业进行讲解和解析,解答学生的疑问。
四、课后作业(5分钟)1. 请同学们完成教材上的课后作业,加深对相似三角形的理解和应用;2. 教师布置一些相关的拓展题目,提高学生的思维能力。
教学评价:1. 课堂讲解:教师对学生的学习情况进行观察和评估,了解学生对相似三角形知识的掌握程度;2. 课堂练习:教师对学生的练习情况进行批改和评价,及时发现和纠正学生的错误;3. 课后作业:教师对学生的作业情况进行批改和评价,了解学生对相似三角形知识的应用能力。
教学反思:本节课通过讲解相似三角形的定义、性质和判定,以及应用,使学生掌握了相似三角形的基本知识。
在教学过程中,要注意引导学生主动参与,积极思考,通过举例和练习题来巩固所学知识。
同时,还要注重培养学生的逻辑思维能力和解决问题的能力,提高他们对数学学科的兴趣和信心。
相似三角形的性质数学教案
相似三角形的性质数学教案
标题:相似三角形的性质
一、教学目标:
1. 理解并掌握相似三角形的定义。
2. 掌握相似三角形的基本性质,并能够应用这些性质解决实际问题。
3. 培养学生的空间观念和逻辑推理能力。
二、教学重点与难点:
1. 教学重点:理解相似三角形的定义和性质。
2. 教学难点:运用相似三角形的性质解决实际问题。
三、教学过程:
(一)引入新课
通过一些生活中的实例引出相似的概念,激发学生的学习兴趣。
(二)新课讲解
1. 定义:如果两个三角形的对应角相等,那么这两个三角形就叫做相似三角形。
2. 性质:相似三角形的对应边成比例,对应高的比等于对应边的比,对应中线的比等于对应边的比,对应角平分线的比也等于对应边的比。
(三)例题解析
1. 选择适当的题目进行示范,让学生理解和掌握如何运用相似三角形的性质解决问题。
2. 让学生自己尝试解答一些题目,教师在一旁指导。
(四)课堂练习
设计一些练习题,让学生巩固所学的知识。
(五)小结与作业
1. 小结本节课的主要内容和学习的重点。
2. 分配一些课后作业,让学生在课后继续复习和巩固所学知识。
四、教学反思
在教学结束后,对整个教学过程进行反思,总结成功之处和需要改进的地方。
相似三角形的性质教案
相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。
2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。
3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。
二、教学重难点:1.教学重点:相似三角形的性质。
2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。
三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。
例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。
(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。
(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。
记作ΔABC∼ΔDEF。
(2)相似三角形的性质:相似三角形的对应边成比例。
即有如下比例关系:AB/DE=BC/EF=AC/DF。
3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。
例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。
(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。
代入已知条件,得6/9=8/EF=10/DF。
由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。
例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。
(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。
代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。
九年级数学上册《相似三角形的性质及应用》教案、教学设计
4.培养学生严谨、踏实的学术态度,使其养成良好的学习习惯。
5.通过相似三角形的学习,引导学生体会几何图形的和谐美,提高学生的审美情趣。
二、学情分析
九年级的学生已经具备了一定的几何基础,对三角形的性质、全等三角形的判定和应用有较为深入的了解。在此基础上,学习相似三角形的性质及应用,对学生来说是一个新的挑战。此时,学生正处于抽象逻辑思维逐渐成熟的阶段,对几何图形的观察、分析和解决问题的能力有待提高。因此,在教学过程中,要关注以下几点:
3.实践应用题:鼓励学生从生活中发现相似三角形的应用,拍摄照片或画图,并简要说明相似三角形在其中的作用。例如,建筑物的立面图、桥梁的支撑结构等。这样的作业既有助于学生将所学知识应用于实际,又能激发学生的学习兴趣。
4.小组合作题:布置一道小组合作题目,要求学生在课后分组讨论,共同完成。题目可以涉及相似三角形在实际问题中的应用,如测量距离、计算面积等。通过合作完成作业,培养学生的团队协作能力和沟通表达能力。
5.思考题:提出一些富有挑战性的问题,引导学生深入思考相似三角形的性质及应用。例如:“在相似三角形中,如何求解一个未知角的度数?”这类题目可以激发学生的探究欲望,提高学生的自主学习能力。
作业布置要求:
1.学生在完成作业时,要注意书写规范,保持解答过程的简洁和清晰。
2.鼓励学生在解题过程中尝试不同的方法,培养解题的灵活性和创新意识。
1.学生对相似三角形的概念和性质可能存在理解困难,需要教师耐心引导,通过具体实例和图形演示,帮助学生建立清晰的认识。
2.学生在解决相似三角形相关问题时的思路可能不够开阔,需要教师设计多样化的练习题,引导学生从不同角度思考问题,提高解题技巧。
相似三角形的判定数学教学教案【优秀10篇】
相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。
相似三角形性质教案
相似三角形性质教案
一、教学目标:
1. 知识与技能目标:了解相似三角形的性质,并能够运用相似三角形的性质解决实际问题。
2. 过程与方法目标:通过引入问题和解决问题的方式进行课堂教学,并通过示范、练习、讨论等方式帮助学生理解和掌握相似三角形的性质。
二、教学重点与难点:
1. 知识重点:相似三角形的性质。
2. 知识难点:通过图像和文字说明相似三角形的性质。
三、教学过程:
1. 引入问题:讲师出示一个问题,比如:“如何判断两个三角形相似?”让学生思考并讨论答案。
2. 导入知识:通过讨论和引导,引出相似三角形的定义和判定条件。
3. 介绍相似三角形的性质:
a. 相似三角形的对应角相等。
b. 相似三角形的对应边成比例。
c. 相似三角形的对应边比例为常数。
4. 示范与练习:
a. 讲师示范解题,通过图像和文字说明如何应用相似三角形的性质解决问题。
b. 学生在教师指导下进行练习,巩固相似三角形的性质。
5. 拓展练习:讲师出示一些复杂的相似三角形问题,让学生通过运用相似三角形的性质解决问题。
6. 总结回顾:讲师和学生一起回顾相似三角形的性质,并总结运用相似三角形性质解决问题的方法。
四、教学用具:
1. PPT演示或黑板。
2. 课堂练习题。
3. 学生作业本。
五、评价和反馈:
1. 教师观察学生在课堂上的表现,并进行评价。
2. 布置相应的作业,检查学生对相似三角形性质的掌握情况。
第15讲-相似三角形的性质与应用-教案
第15讲相似三角形的性质和应用温故知新一、相似三角形的判定方法课堂导入一、黄金分割在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果AC =5-12AB ,那么称线段AB被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,黄金比约为0.618,一条线段的黄金分割点有2个.二、相似三角形的性质1、相似三角形对应角相等,对应边成比例.2、相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.3、相似三角形周长的比等于相似比.4、相似三角形面积的比等于相似比的平方.典例分析例1、已知线段AB=8,点C 是AB 的黄金分割点,则AC= 【解答】根据黄金分割点的概念,应有两种情况,当AC 是较长线段时,AC=4×=2﹣2;当AC 是较短线段时,则AC=4﹣2+2=6﹣2.故本题答案为:2﹣2或6﹣2.例2、如图,在△ABC 中,AB=AC ,AC 的垂直平分线交AC 于点D ,交AB 于点E ,若AE=BC ,则点E 是线段AB 的黄金分割点吗?说明你的理由. 【解答】点E 是线段AB 的黄金分割点.证明(略)相似三角形的性质知识要点一ABC D例3、两个相似三角形的面积比为4:9,周长和是20cm,则这两个三角形的周长分别是()A.8cm和12cm B.7cm和13cm C.9cm和11cm D.6cm和14cm 【解答】A.例4、以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积S n=.【解答】∵正方形ABCD的边长为1,∴AB=1,AC=,∴AE=AO1=,则:AO2=AB=,∴S2=,S3=,S4=,∴作的第n个正方形的面积S n=.故答案为:.举一反三1、如果两个相似多边形的周长比为1:5,则它们的面积比为()A.1:2.5 B.1:5 C.1:25 D.1:【解答】解:相似多边形的周长的比是1:5,周长的比等于相似比,因而相似比是1:5,面积的比是相似比的平方,因而它们的面积比为1:25;故选C.2、如果两个相似多边形面积的比是4:9,那么这两个相似多边形对应边的比是()A.4:9 B.2:3 C.16:81 D.9:4【解答】解:∵两个相似多边形面积的比是4:9,∴这两个相似多边形对应边的比是2:3.故选B.3、如图,AB⊥DB于点B,CD⊥DB于点D,AB=6,CD=4,BD=14,点P在DB上移动.若以点C,D,P为顶点的三角形与点A,B,P为顶点的三角形相似,则DP= 2或12或5.6 .【解答】解:∵①若△PCD∽△APB,则,即,解得DP=2或12;②若△PCD∽△PAB,则,即,解得DP=5.6.∴DP=2或12或5.6.故答案为:2或12或5.6.4、电视节目主持人在主持节目时,站在舞台的黄金分割点0.6 处最自然得体,若舞台AB长为20m,试计算主持人应走到离A点至少8 m处.【解答】解:如图所示:,∵BP=0.6AB=0.6×20=12m,∴AP=AB﹣BP=20﹣12=8m.即主持人应走到离A点至少8m处.故答案为:8.5、已知点P是线段AB的黄金分割点,AB=20厘米,则线段AP= 10﹣10或30﹣10厘米.【解答】解:当AP>BP时,AP=×20=10﹣10厘米,当AP<BP时,AP=20﹣(10﹣10)=30﹣10厘米.故答案为:10﹣10或30﹣10.1、利用三角形相似测量高度方法 1、利用阳光下的影子测量物高根据太阳光线是平行的,寻找相似三角形.在同一时刻,被测量物体的实际高度被测量物体的影长 = 某物体的实际高度某物体的影长2、利用标杆测量物高观测者的眼睛、标杆顶端、旗杆顶端“三点一线”. 3、利用镜子原理测量物高借助“反射角等于入射角”找出相等的角,得到三角形相似.典例分析例1、某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC=3.6米,墙上影子高CD=1.8米,求树高AB 。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
九年级数学上册《相似三角形的性质及其应用》教案、教学设计
6.课后布置综合性、实践性作业,让学生将所学知识应用于实际情境,提高学生的几何建模和解决问题的能力。
-例如,让学生设计一幅利用相似三角形原理的图案,或解决生活中的实际问题。
7.开展课后辅导和个性化教学,关注学生的个体差异,使每个学生都能在原有基础上得到提高。
(2)学生通过观察、分析,总结相似三角形的性质,如对应角相等、对应边成比例等。
(3)教师引导学生运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
(4)教师讲解相似三角形判定方法,如AA、SAS、SSS等,并结合实例进行分析。
(三)学生小组讨论
1.教学内容:相似三角形性质的应用问题。
2.教学活动设计:
-对于学习困难的学生,教师可以提供针对性的辅导,帮助他们克服难点,提高学习效果。
四、教学内容与过程
(一)导入新课
1.教学活动设计:通过展示实际生活中含有相似三角形元素的图片,如建筑物的立面图、艺术作品等,引发学生对相似三角形的关注。
教师引导学生观察这些图片,并提出问题:“这些图片中有什么共同特征?它们在几何学中有什么特别之处?”
(1)学生分享本节课的收获,教师点评并补充。
(2)教师强调相似三角形在实际生活中的重要性,激发学生学习兴趣。
(3)教师布置课后作业,巩固所学知识。
(4)教师鼓励学生继续探索相似三角形的相关知识,为后续学习打下基础。
五、作业布置
为了巩固学生对相似三角形性质的理解和应用,以及培养学生的几何思维和问题解决能力,特布置以下作业:
(二)教学难点
1.相似三角形性质的推导和应用,尤其是相似三角形面积比等于相似比的平方这一结论的理解。
第5讲-相似三角形的性质(教案)
(3)相似三角形的周长比和面积比:掌握相似三角形的周长比和面积比等于相似比;
-举例:给出具体相似比,让学生计算相似三角形的周长和面积,并解释其原理。
2.教学难点
(1)相似三角形的判定:学生对判定方法的掌握和运用,特别是SAS判定方法,容易与其他全等三角形的判定方法混淆;
-突破方法:通过对比全等三角形和相似三角形的判定方法,强调SAS判定方法在相似三角形中的应用。
(2)相似三角形的性质应用:学生在运用相似三角形的性质解决实际问题时,容易忽略对应角和对应边的关系;
-突破方法:设计具有实际情境的问题,引导学生注意相似三角形的对应关系,并应用于解题过程。
(3)相似三角形周长比和面积比的计算:学生在计算过程中容易混淆相似比、周长比和面积比的关系;
-突破方法:通过具体例题,让学生逐步掌握相似比、周长比和面积比的计算方法,加强练习和巩固。
注意:教学难点与重点的内容需要精简扼要,确保学生理解透彻。在实际教学中,教师应结合学生的实际情况,适当调整教学方法和举例,以帮助学生更好地掌握知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似三角形的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过形状相似但大小不同的三角形?”比如,放大镜下的三角形和实际三角形的相似关系。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的性质。
2.培养学生运用数学知识解决实际问题的能力,将相似三角形的应用与生活实际相结合,提高学以致用的素养;
3.培养学生的空间观念和数据分析观念,通过探讨相似三角形的周长比和面积比,发展学生的数学抽象和推理能力;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形性质及其应用
知识点相似三角形性质,直角三角形中成比例线段
大纲要求
1.掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。
2.掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项;每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的简单问题。
考查重点与常见题型
1.相似三角形性质的应用能力,常以选择题或填空形式出现,如:
若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------,
2.考查直角三角形的性质,常以选择题或填空题形式出现,如:
如图,在RtΔABC中,∠ACB=90°,
CD⊥AB与D,AC=6,BC=8,则AB=--------,CD=---------,
AD=----------,BD=-----------。
,
3.综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。
预习练习
1.已知两个相似三角形的周长分别为8和6,则他们面积的比是()
2.有一张比例尺为1 4000的地图上,一块多边形地区的周长是60cm,面积是250cm2,则这个地区的实际周长-------- m,面积是----------m2
3.有一个三角形的边长为3,4,5,另一个和它相似的三角形的最小边长为7,则另一个三角形的周长为----------,面积是-------------
4.两个相似三角形的对应角平分线的长分别为10cm和20cm,若它们的周长的差是60cm,则较大的三角形的周长是----------,若它们的面积之和为260cm2,则较小的三角形的面积为2
---------- cm
5.如图,矩形ABCD中,AE⊥BD于E,若BE=4,DE=9,则矩形的面积是-----------
6.已知直角三角形的两直角边之比为12,则这两直角边在
斜边上的射影之比-------------
考点训练
1.两个三角形周长之比为95,则面积比为()
(A)9∶5 (B)81∶25 (C)3∶ 5 (D)不能确定
2.RtΔABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,那么和ΔABC相似但不全等的三角形共有()
(A)1个 (B)2个 (C)3个 (D)4个
3.在RtΔABC中,∠C=90°,CD⊥AB于D,下列等式中错误的是()
(A )AD • BD=CD 2 (B )AC •BD=CB •AD (C )AC 2=AD •AB (D )AB 2=AC 2+BC 2
4.在平行四边形ABCD 中,E 为AB 中点,EF 交AC 于G ,交AD 于F ,AF FD =13 则CG GA
的比值是( )(A )2 (B )3 (C )4 (D )5
5.在Rt ΔABC 中,AD 是斜边上的高,BC=3AC 则ΔABD 与ΔACD 的面积的比值是( ) (A )2 (B )3 (C )4 ( D )8
6.在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,则BD ∶AD 等于( )
(A )a ∶b (B )a 2∶b 2
(C ) a ∶ b (D )不能确定
7.若梯形上底为4CM ,下底为6CM ,面积为5CM 2,则两腰延长线与上底围成的三角形的面积
是----------
8.已知直角三角形的斜边的长为13CM ,两条直角边的和为17CM ,则斜边上的高的长度为------------- 9..Rt ΔABC 中,CD 是斜边上的高线,,AB=29。
AD=25,则DC=---------
10.平行四边形ABCD 中,E 为BA 延长线上的一点,CE 交AD 于F 点,若AE ∶AB=1∶3则S ABCF ∶
S CDF =---------
11.如图,在ΔABC 中,D 为AC 上一点,E 为延长线上一点, 且BE=AD ,ED 和AB 交于F 求证:EF ∶FD=AC ∶BC
12.如图,在ΔABC 中,∠ABC =90°,CD ⊥AB 于D ,DE ⊥AC 于E , 求证:CE AE =BC 2AC 2
解题指导
1. 如图,在Rt ΔABC 中,∠ADB=90°,CD ⊥AB 于C ,AC=20CM,BC=9CM,求AB 及BD 的长
2. 如图,已知ΔABC 中,AD 为BC 边中线,E 为AD 上一点,并且CE=CD, ∠EAC=∠B,求证:ΔAEC ∽ΔBDA,DC 2=AD •AE
3. 如图,已知P 为ΔABC 的BC 边上的一点,PQ ∥AC 交AB 于Q ,PR ∥AB 交AC 于R ,求证:
ΔAQR 面积为ΔBPQ 面积和ΔCPQ 面积的比例中项。
4. 如图,已知P ΔABC 中,AD ,BF 分别为BC ,AC 边上的高,过D 作AB 的垂线交AB 于E ,交
BF 于G ,交AC 延长线于H ,求证:DE 2=EG •EH
A B C D
A B C D E B A C P Q R A B C D
E F
G H
A
B
C D E A B
D E C
5. 如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,EG ⊥CF
且AF=14 AD ,于,(1)求证:CE 平分∠BCF,(2) 14
AB 2=CG •FG A B C
D E
F G。