糖代谢【生物化学及实验(丙)】

合集下载

生物化学 糖代谢

生物化学 糖代谢
2*3
6 ATP
第三阶段:三羧酸循环
2*异柠檬酸→2*α -酮戊二酸 2*α -酮戊二酸 →2*琥珀酰CoA
辅酶
NAD+ NAD+ FAD
ATP
2*3 2*3
2*琥珀酰CoA →2*琥珀酸
2*琥珀酸→2*延胡索酸
2*1
2*2
2*苹果酸→2*草酰乙酸
NAD+
2*3
24ATP
总ATP数: 第一阶段——6或8 第二阶段——6 第三阶段——24 36 或 38ATP
活性受NADP+/NADPH比值的调节,NADPH能强烈
抑制6-磷酸葡萄糖脱氢酶。磷酸戊糖途径的流
量取决于机体对NADPH的需求。
• 概念:有氧,葡萄糖(糖原) → CO2 + H2O • 反应部位:细胞液、线粒体 cytoplasm mitochondria
+ ATP
有氧氧化的概况
有氧氧化的反应过程
• 第一阶段:葡萄糖→ →丙酮酸(胞液) • 第二阶段:丙酮酸→ →乙酰CoA (线粒体) • 第三阶段:乙酰CoA → →CO2 + H2O + ATP (三羧酸循环)(线粒体)

植物和某些藻类能够利用太阳能,将二氧化碳和水合成
糖类化合物,即光合作用。光合作用将太阳能转变成化 学能(主要是糖类化合物),是自然界规模最大的一种 能量转换过程。
一、多糖和低聚糖的酶促降解
1.概述 多糖和低聚糖只有分解成小分子后才 能被吸收利用,生产中常称为糖化。 2. 淀粉
3.淀粉水解 淀粉 糊精
7.无氧发酵 (Fermentation)

⑴乙醇发酵
COOH C CH3
CO2

生物化学6.0糖代谢

生物化学6.0糖代谢

(2)麦芽糖的水解
麦芽糖是还原性糖,由水解方式。 麦芽糖酶:(麦芽糖+H2O)生成 2 (葡萄 糖)
(3)乳糖的水解
β-半乳糖苷酶:(乳糖+ H2O)生成(葡萄 糖+半乳糖)
专题:糖酵解途径
糖酵解(glycolysis)是通过一系列酶促反应 将葡萄糖降解成丙酮酸,并伴有能量释放的过程。 糖酵解途径涉及10个酶催化反应,途径中的酶都 位于细胞质中,一分子葡萄糖通过该途径被转换 成两分子丙酮酸。为纪念在研究糖酵解途径方面 有突出贡献的三位生物化学家Embden, Meyerhof 和Parnas, 又把糖酵解途径称为EmbdenMeyerhof-Parnas途径(EMP途径)。糖酵解普遍 存在于动物、植物、微生物的所有细胞中,是在 细胞质中进行的。虽然糖酵解的部分反应可以在 质体或叶绿体中进行,但不能完成全过程。
糖类是指多羟基醛或酮及其衍生物。糖 类在生物体的生理功能主要有: ① 氧化供能:糖类占人体全部供能量的 70%。 ② 作为结构成分:作为生物膜、神经组 织等的组分。 ③ 作为其他重要生物大分子的碳架来源: 如:核苷酸、氨基酸等。 ④ 与细胞识别和细胞信息传递有关 ⑤ 具有保护和润滑作用
糖是含有多羟基的醛类或酮类化合物:: 1、单糖(如葡萄糖、果糖、甘露糖)
淀粉 、糖原的分子结构
专题:多糖降解
(1)淀粉
参与淀粉水解的酶:
1、α-淀粉酶,淀粉内切酶,随机切断α-1,4糖 苷键; 2、β-淀粉酶,淀粉外切酶,随机切断α-1,4糖 苷键; 注: α-淀粉酶在种子里只有在萌发时才被诱导合 成,且耐热(70℃,15分钟)不耐酸(低于 PH3.3); β-淀粉酶耐酸(PH3.3)不耐热。
三、糖酵解的生理意义
1.糖酵解普遍存在于生物体中,是有氧呼吸和无 氧呼吸途径的共同部分。 2.糖酵解的产物丙酮酸的化学性质十分活跃,可 以通过各种代谢途径,生成不同的物质 3.通过糖酵解,生物体可获得生命活动所需的部 分能量。对于厌氧生物来说,糖酵解是糖分解 和获取能量的主要方式。 4. 糖酵解途径中,除了由己糖激酶、磷酸果糖激 酶、丙酮酸激酶等所催化的反应以外,多数反 应均可逆转,这就为糖异生作用提供了基本途 径。

《生物化学》 第8章 糖代谢

《生物化学》 第8章 糖代谢
2020/9/29
⑥ 糖酵解的生理意义
❖酵解途径是单糖分解代谢的一条最重要的
基本途径
❖细胞在缺氧条件下,通过无氧酵解可以获得
有限的能量维持生命活动
❖有氧条件下,酵解是单糖完全氧化分解成
CO2和水的必要准备阶段
2020/9/29
8.2.2 无氧条件下丙酮酸的去路
1.酵母菌的酒精发酵
C O O H C O 丙酮酸脱羧酶
2020/9/29
8.3.2 淀粉的合成
G
G-6-P G-1-P
ATP ADP
(A)UTP
(A)UDPG
焦磷酸化酶 PPi
(A)UDPG n(A)UDPG
转糖苷酶
引物
(G)m m≥2
n(A)UDP
(α-1,4-G)n+mBiblioteka Q酶2020/9/29
(α-1,6)
8.3.3 糖原的合成
非还原端 糖原结构特点
(1)丙酮酸羧化支路
C O O H
OC C O O H
CO+ C O 2+ A T P+ H O 2 丙酮酸羧化酶、生物素,Mg2+ C H 2 C O O H+ A D P+ Pi
C H 3 丙酮酸
草酰乙酸
2020/9/29
⑥ 回补途径
C O O H
C O+ C O 2+ N A D P H+ H +
三羧酸循环
→Acetyl-CoA→→→CO2 + H2O
Lac (——————)
酵解
(—————————————————————)
有氧分解
2020/9/29
① 丙酮酸脱氢酶系

糖代谢的实验报告(3篇)

糖代谢的实验报告(3篇)

第1篇一、实验目的1. 理解糖代谢的基本原理和过程。

2. 掌握糖代谢实验的操作技能。

3. 通过实验,观察糖代谢过程中不同代谢途径的产物和现象。

4. 分析实验结果,加深对糖代谢过程的理解。

二、实验原理糖代谢是生物体内重要的生物化学过程,主要包括糖的摄取、分解、合成和储存等环节。

本实验主要涉及以下糖代谢途径:1. 糖酵解:将葡萄糖分解成丙酮酸,产生ATP和NADH。

2. 三羧酸循环:丙酮酸进入线粒体,经过一系列反应,生成CO2、H2O和ATP。

3. 磷酸戊糖途径:将葡萄糖转化为NADPH,为细胞合成和还原反应提供还原剂。

三、实验材料与仪器1. 材料:葡萄糖、丙酮酸、NADP+、NAD+、磷酸戊糖、三羧酸循环底物等。

2. 仪器:分光光度计、离心机、水浴锅、移液器、试管等。

四、实验步骤1. 糖酵解实验- 将葡萄糖溶液加入反应体系中,加入NAD+和磷酸戊糖,观察反应过程中颜色变化。

- 将反应产物离心分离,测定上清液中ATP和NADH的浓度。

2. 三羧酸循环实验- 将丙酮酸加入反应体系中,加入NADP+和磷酸戊糖,观察反应过程中颜色变化。

- 将反应产物离心分离,测定上清液中CO2、H2O和ATP的浓度。

3. 磷酸戊糖途径实验- 将葡萄糖加入反应体系中,加入NADP+,观察反应过程中颜色变化。

- 将反应产物离心分离,测定上清液中NADPH的浓度。

五、实验结果与分析1. 糖酵解实验结果- 实验结果显示,在加入葡萄糖、NAD+和磷酸戊糖后,反应体系中颜色发生变化,说明糖酵解反应发生。

- 上清液中ATP和NADH的浓度升高,说明糖酵解过程中产生了能量和还原剂。

2. 三羧酸循环实验结果- 实验结果显示,在加入丙酮酸、NADP+和磷酸戊糖后,反应体系中颜色发生变化,说明三羧酸循环反应发生。

- 上清液中CO2、H2O和ATP的浓度升高,说明三羧酸循环过程中产生了能量和CO2。

3. 磷酸戊糖途径实验结果- 实验结果显示,在加入葡萄糖和NADP+后,反应体系中颜色发生变化,说明磷酸戊糖途径反应发生。

医学生物化学(第六章)糖 代 谢

医学生物化学(第六章)糖  代  谢

46
F-2,6-BP的生成与作用 * 生成:
(PFK-2)
(F-6-P)
(F-2,6-BP)
* 作用:促进F-1,6-BP生成
图6-5
47
PFK-2是一双功能酶:
PFK-2活性(使F-2,6-BP↑) 具有
2,6-二磷酸果糖酶2活性(使F-2,6-BP↓)
(PFK-2)
(F-6-P)
(F-2,6-BP)
TCA循环
56
图6-3 糖代谢三条途径间的关系
①无氧酵解 ②磷酸戊糖途径 ③有氧氧化
57
(一) 葡萄糖
丙酮酸
* 胞浆内进行
* 过程同糖酵解, 消耗2ATP
* 生成4ATP
* 生成2 NADH + H+
(3-磷酸甘油醛 (×2)
1,3-二磷酸甘油酸)
58
己糖激酶
6-磷酸果糖 激酶-1
(直链)
丙 酮 酸 激 酶
四个阶段:
I.己糖磷酸化(Glc
F-1,6P)
II.
(×1)
磷酸己糖
裂解
(×2)
磷酸丙糖
(×2) 氧化 (×2)
III. 磷酸丙糖 丙酮酸
IV.
(×2)
丙酮酸
还原乳(×酸2)(无氧)
18
(×2) (×2)
(×2)
19
1.己糖磷酸化(Glc
F-1,6P)
(1) Glc/Gn磷酸化为G-6-P
第一次磷酸化反应
a. 神经系统:
下丘脑和自主神经 调节 激素分泌
b. 激素:
(表6-1)
c. 组织器官: 肝脏最主要
9
激素对血糖浓度的调节
相互协同/拮抗

生物化学 糖代谢

生物化学 糖代谢

生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。

糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。

糖代谢主要包括两大路径:糖酵解和糖异生。

本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。

糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。

糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。

其中主要以糖原泛素和琥珀酸途径为代表。

糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。

它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。

糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。

糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。

接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。

随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。

草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。

草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。

琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。

琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。

琥珀酸途径的关键酶有异构酶、羧酸还原酶等。

糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。

糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。

糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。

丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。

生物化学--糖代谢

生物化学--糖代谢
2-磷酸甘油酸
COO-
C
O~ P
H2 O
CH2
烯醇化酶
磷酸烯醇式丙酮酸
(10)磷酸烯醇式丙酮酸旳磷酸转移
COO-
ADP ATP
C
O~ P
CH2
丙酮酸激酶
磷酸烯醇式丙酮酸
COO-
CO
CH
3
丙酮酸
2. 丙酮酸转变为乳酸
COOH NADH+H + NAD +
CO
CH
3
乳酸脱氢酶
丙酮酸
COOH
CHOH
CH
H2O
延胡索酸酶
COO-
HOCH
CH2 COO-
延胡索酸
苹果酸
反应8:苹果酸氧化生成草酰乙酸
乙酰-CoA H2O
草酰乙酸
苹果酸脱氢酶 (氧化)
苹果酸
NADH
柠檬酸合成酶 (缩合)
柠檬酸
顺乌头酸酶(脱水)
H2O
顺乌头酸
H2O
顺乌头酸酶
(水化)
异柠檬酸
H2O
延胡索酸酶
(加水)
延胡索酸
FADH2
NADH
非糖物质
血糖 肝、肌肉 合成糖原
(3.89~6.11mmol/L) 转变为
[血糖]> 8.9mmol/L
非糖物质
转变成其他 糖及衍生物
尿糖
血糖水平旳调整
正常情况,来路去路,维持动态平衡 1.肝脏调整 [血糖]正常水平,肝糖元Glc,[Glc]
糖异生作用加强 [血糖]正常水平,Glc肝糖元,[Glc]
糖异生作用减弱 2.肾脏调整
肾 糖 阈 : 肾 脏 所 能 保 持 旳 最 高 [Glc] 在 160180mg/dl,

生物化学总结下生科第八章糖代谢一名词

生物化学总结下生科第八章糖代谢一名词

⽣物化学总结下⽣科第⼋章糖代谢⼀名词⽣物化学总结下————By ⽣科2005 狐狸Z第⼋章糖代谢⼀、名词解释:糖酵解途径:是指糖原或葡萄糖分⼦分解⾄⽣成丙酮酸的阶段。

是体内糖代谢的最主要的途径。

糖酵解:是指糖原或葡萄糖分⼦在⼈体组织中,经⽆氧分解为乳酸和少量ATP的过程,和酵母菌使葡萄⽣醇发酵的过程基本相同,故称为糖酵解作⽤。

糖的有氧氧化:指糖原或葡萄糖分⼦在有氧条件下彻底氧化成⽔和⼆氧化碳的过程。

巴斯德效应:指有氧氧化抑制⽣醇发酵的作⽤糖原储积症:是⼀类以组织中⼤量糖原堆积为特征的遗传性代谢病。

引起糖原堆积的原因是患者先天性缺乏与糖代谢有关的酶类。

底物循环:是指两种代谢物分别由不同的酶催化的单项互变过程。

催化这种单项不平衡反应的酶多为代谢途径中的限速酶。

乳酸循环:指肌⾁收缩时(尤其缺氧)产⽣⼤量乳酸,部分乳酸随尿排出,⼤部分经⾎液运到肝脏,通过糖异⽣作⽤和成肝糖原或葡萄糖补充⾎糖,⾎糖可在被肌⾁利⽤,这样形成的循环(肌⾁-肝-肌⾁)称为乳酸循环。

磷酸戊糖途径:指机体某些组织(如肝,脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进⽽代谢⽣成磷酸戊糖为中间代谢物的过程,⼜称为⼰糖磷酸⽀路。

糖蛋⽩:由糖链以共价键与肽链连接形成的结合蛋⽩质。

蛋⽩聚糖:由糖氨聚糖和蛋⽩质共价结合形成的复合物。

别构调节:指某些调节物能与酶的调节部位以次级键结合,使酶分⼦的构想发⽣改变,从⽽改变酶的活性,称为酶的别构调节。

共价修饰:指⼀种酶在另⼀种酶的催化下,通过共价键结合或⼀曲某种集团,从⽽改变酶的活性,由此实现对代谢的快速调节。

底物⽔平磷酸化:底物⽔平磷酸化指底物在脱氢或脱⽔时分⼦内能量重新分布形成的⾼能磷酸根直接转移ADP给⽣成ATP的⽅式。

激酶:使底物磷酸化,但必须由ATP提供磷酸基团催化,这样反应的酶称为激酶。

三羧酸循环:⼄辅酶A的⼄酰基部分是通过三羧酸循环,在有氧条件下彻底氧化为⼆氧化碳和⽔的。

《生化》第六章糖代谢

《生化》第六章糖代谢
O=C O
P
ATP ADP
ADP
ATP
COOH C OH
C
OH
磷酸甘油酸激酶
F-1,6-2P
CH2 O
磷酸二 羟丙酮
NAD+ NADH+H+
P
CH2 O
P
3-磷酸 甘油醛
1,3-二磷酸 甘油酸
3-磷酸甘油酸
磷酸甘油酸激酶(phosphoglycerate kinase)
ATP
1,3-二磷酸甘油酸
ADP
G-1-P
二、单糖的氧化分解 主要指G,经多糖降解后生成的G,吸收进 入细胞进行氧化分解,从而为机体提供能量。机 体几乎所有的组织的细胞中,都能进行糖的分解 以获能。
G进行氧化分解供能的途径主要有三条
糖的无氧分解(酵解)
糖的有氧分解 糖的磷酸戊糖支路分解
1.糖酵解的反应过程
(1)糖酵解(glycolysis)的定义
第二阶段
由丙酮酸转变成乳酸。
Glu
ATP ADP
(一)葡萄糖分解成丙酮酸
⑴ 葡萄糖磷酸化为6-磷酸葡萄糖
G-6-P F-6-P
ATP ADP
F-1,6-2P 磷酸二 羟丙酮
NAD+ NADH+H+
HO CH2 H HO O H OH H H H OH
P O CH2
ATP ADP
H HO O H OH H H H OH
门静脉
肝脏
GLUT
各种组织细胞
体循环
三、糖代谢的概况
糖原
糖原合成 肝糖原分解
酵解途径
ATP
有氧
核糖 磷酸戊糖途径 +
NADPH+H+

生物化学 --糖代谢(共32张PPT)

生物化学 --糖代谢(共32张PPT)
新陈代谢
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O

生物化学第四章糖代谢ppt课件

生物化学第四章糖代谢ppt课件
为单糖。
吸收机制
单糖主要通过小肠黏膜上皮细胞以 主动转运方式吸收进入血液。
影响因素
糖的消化吸收受多种因素影响,如 食物中糖的
吸收后的单糖主要通过门 静脉进入肝脏,再经血液 循环运输到全身各组织器 官。
淋巴运输
少量单糖和寡糖也可通过 淋巴管运输到血液循环中 。
06 糖原的合成与分 解
糖原的合成
合成部位
肝和肌肉是合成糖原的主要器官,其中肝糖原占总量10% ,肌糖原占90%。
合成原料
主要有葡萄糖、果糖和半乳糖等单糖。
合成过程
包括活化、缩合、分支和交联等步骤,最终形成具有高度 分支结构的糖原分子。
糖原的分解
01
分解部位
主要在肝脏和肌肉中进行。
02 03
分解过程
柠檬酸循环
在线粒体中,丙酮酸经过一系列反应生成CO2、 H2O和大量ATP。
糖有氧氧化的生理意义
1 2
能量供应
糖有氧氧化是体内主要的能量供应途径,为细胞 活动提供ATP。
物质代谢枢纽
糖有氧氧化连接糖、脂肪和蛋白质三大物质代谢 ,实现能量转换和物质转化。
3
维持血糖水平
通过糖有氧氧化,可以维持血糖水平在正常范围 内。
糖有氧氧化的调节
激素调节
胰岛素促进糖有氧氧化,而胰高血糖素和肾上腺素则抑制该过程 。
底物水平调节
细胞内糖浓度升高时,可促进糖有氧氧化;反之,则抑制该过程。
酶活性调节
关键酶的活性受到磷酸化和去磷酸化的共价修饰调节,从而控制糖 有氧氧化的速率。
05 磷酸戊糖途径
磷酸戊糖途径的过程
磷酸戊糖的形成
在磷酸戊糖途径中,葡萄糖首先经过磷酸化反应生成葡萄糖6-磷酸,随后经过异构化反应生成果糖-6-磷酸。果糖-6-磷 酸再经过磷酸化反应生成果糖-1,6-二磷酸,最终裂解成两个 磷酸丙糖分子。

糖代谢相关检验(生物化学检验课件)

糖代谢相关检验(生物化学检验课件)

体检:
T : 36.2℃ , R : 18 次 / 分 , BP : 134/85mmHg ; 身 高 178cm,体重80kg,BMI 25.2kg/m2, HR:80次/分,律 齐,余未见异常
实验室检查:空腹葡萄糖16.51mmol/L,餐后2小时血糖 28.36mmol/L;尿常规:尿糖(-),酮直接作用于肝脏 ✓ 调节激素的分泌而影响血糖
激素调节
降低血糖浓度的激素
✓ 胰岛素 ✓ 胰岛素样生长因子
升高血糖浓度的激素
✓ 胰高血糖素 ✓ 肾上腺素 ✓ 生长激素 ✓ 皮质醇 ✓ 甲状腺激素
胰岛素
胰岛素结构 胰岛素作用于靶细胞的机制 影响胰岛素生物活性效应的因素 胰岛素功能
(一)胰岛素结构 51个aa的蛋白类激素
【临床意义】
GHb反映测定前6~8周内血糖的平均水平,故可作 为糖尿病长期监控的良好指标,是糖尿病达标监控的 “金标准”。 新发生的糖尿病人,血糖虽高,但GHb增高不明显
在未控制的糖尿病人,GHb可高达10%-20%;控制后GHb缓慢下降。
【临床意义】
可鉴别糖尿病性高血糖及应激性高血糖,前者GHb水 平多增高,后者正常。
N




C

前胰岛素原
B链 A链
+
C肽
胰岛素 (有活性) 【等摩尔】
C肽 (无活性)
(二)胰岛素作用于靶细胞的机制
(三)胰岛素的生物活性效应
胰岛素的生物活性效应取决于: ✓ 靶细胞上胰岛素受体的绝对或相对数量 ✓ 到达靶细胞的胰岛素浓度 ✓ 胰岛素与靶细胞受体的亲和力 ✓ 胰岛素与受体结合后的细胞内改变情况
第八章
糖代谢相关检验
教学目标 OBJECTIVES

《生物化学(高职案例版)》第6章:糖代谢

《生物化学(高职案例版)》第6章:糖代谢
GDP+Pi GTP
异柠檬酸
NAD+ NADH+H+ NAD+
③ CO2

FAD
NADH+H+

⑤ CoASH CO2 CoASH
(2) 三羧酸循环的特点
TAC是1分子乙酰CoA彻底氧化的过程
• 四次脱氢,二次脱羧,一次底物水平磷酸 化。 生成1分子FADH2,3分子NADH+H+,2 分子CO2, 1分子GTP。 • 产能12分子ATP • 关键酶有:柠檬酸合酶
• 糖原储存的主要器官及其生理意义
肌肉:肌糖原,180 ~ 300g,主要供肌肉收缩所需
肝脏:肝糖原,70 ~ 100g,维持血糖水平
• 糖原的结构特点及其意义
1. 葡萄糖单元以α-1,4-糖苷 键 形成长链。 2. 约10个葡萄糖单元处形成分 枝,分枝处葡萄糖以α-1,6糖苷键连接,分支增加,溶 解度增加。 3. 每条链都终止于一个非还原 端.非还原端增多,以利于其
ATP
ADP
6-磷酸果糖
磷酸果糖激酶
1,6-二磷酸果糖
关键酶
⑷ 磷酸己糖裂解成2分子磷酸丙糖 磷酸二羟丙酮 E 1,6-二磷酸果糖 E 3-磷酸甘油醛
第一阶段特点:
1.能量变化 耗能:2ATP 2.有C链长短的变化(6C→3C)
2.磷酸丙糖转变为丙酮酸
(1)3-磷酸甘油醛氧化为1,3-二磷酸甘油酸
3-磷酸甘油酸
2-磷酸甘油酸 磷酸烯醇式丙酮酸
丙酮酸
(二)糖酵解反应的特点
⑴ 反应部位:胞液 终产物:乳酸 ⑵ 糖酵解是产能过程: 方式:底物水平磷酸化 净生成ATP数量:2ATP
(3) 关键酶:3个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




准备阶段
糖酵解从葡萄 糖开始,经过一一 系列反应到丙酮酸的生生成,总共 包括10个反应步骤,可划分为两 个反应阶段。
补偿阶段
•・ 糖酵解的过程 ✴ 1.葡萄糖的磷酸化
激酶kinase:指能催化ATP和其他底物反应,转移ATP上磷酸基团 的一一类酶。







✴ 4.甘油-3-磷酸和磷酸二二羟丙酮的生生成
-
-
✴ 5. 磷酸丙糖的相互转换:只有3-磷酸甘油醛能继续后面的 代谢反应。
-
✴ 6. 3-磷酸甘油醛转变为1,3-二二磷酸甘油酸:糖酵解途径的 第一一个氧化反应。




新陈代谢
•・ 代谢:是指发生生在活细胞内的所有化学反应的总称。代谢 反应都是由酶催化的、高高度协调、高高度目的性的化学反应。
✴ 分解代谢:生生物体不断地将体内的自身物质分解,将分解的 终产物排出体外,分解所释放的能量供给机体生生命活动需要。
✴ 合成代谢:生生物体不断地从体外环境中摄取有用的物质,使 其合成、转化为自身物质。
2
13
2(
+ ), )
E2
E3
E1
✴ 丙酮酸的氧化: 1. 丙酮酸脱氢酶催化的反应:羟乙乙基TPP的生生成
非还原端
还原端


✦ 支链淀粉:分子子较直链淀粉大大,分支处含有α-1,6糖苷 键,遇碘呈紫红色色。不溶于水水,吸水水后膨胀为糊状。
✴ 糖原glycogen:广广泛存在于脊椎动物和细菌中,又称“动 物淀粉”。结构类似于支链淀粉。人人体的糖原主要储存于 肝脏及肌肉肉组织中。糖原溶于沸水水,遇碘呈红色色。
+ 2 ADP + 2Pi+ 2NAD+→
2
+ 2ATP + 2H2O + 2NADH + 2H+
•・ 糖酵解的调节:在代谢反应中,催化基本上不可逆反应的 酶所处的部位一一般为代谢反应的主要调节部位。
✴ 1. 磷酸果糖激酶Ⅰ:是糖酵解的主要调节酶,是糖酵解的 限速酶。



✦ 己己糖激酶在催化过程中,构象会发生生变化。
✦ 这是一一个耗能反应,消耗一一个ATP,是糖酵解的第一一个调节步 骤。
✦ 在肝脏中,由己己糖激酶的同工工酶-葡萄糖激酶催化这个反应。
✴ 2.G-6-P转变为F-6-P





✴ 3.F-6-P生生成F-1,6-2P:是整个代谢途径的限速步骤,消耗 一一个ATP。
应的载体蛋白转运至至线粒体中,才能继续氧化。
✴ 丙酮酸氧化由丙酮酸脱氢酶复合体催化:
丙酮酸脱氢酶复合体包括三种酶以及多种辅酶:
E1: 丙酮酸脱氢酶
TPP
E2: 二二氢硫辛酰转乙乙酰基酶
硫辛酸,CoA
E3: 二二氢硫辛酰脱氢酶
FAD, NAD+
大大肠杆菌丙酮酸脱氢酶复合体的电镜照片
大大肠杆菌丙酮酸脱氢酶复合体的模式图
✴ 2. 己己糖激酶:是一一个调节酶,受到催化反应产物G-6-P和 ADP的别构抑制。但肝脏中的葡萄糖激酶不受G-6-P的抑 制,它主要受血血糖水水平的影响。
✴ 3. 丙酮酸激酶:是糖酵解过程中的一一个重要的变构调节 酶。ATP,长链脂肪酸,乙乙酰CoA都对该酶有抑制作用。 F-1,6-二二磷酸和磷酸烯醇式丙酮酸对该酶有激活作用。
✴ 分解代谢和合成代谢是同时进行行、相互依存的。
第六章 糖代谢
一一、糖的结构:糖carbohydrates是多羟基醛酮及其衍生生物。 根据分子子中结构单元的数目,糖可分为单糖、寡聚糖和多糖。
•・ 单糖:monosaccharides ✴ 按分子子结构分,单糖可以分为醛糖和酮糖。 ✴ 按分子子碳原子子的数目分,单糖可以分为三碳糖,四碳糖, 五碳糖,六碳糖等。
•・ 丙酮酸的去路:无无氧条件下丙酮酸的去路 ✴ 1. 乳酸的生生成:乳酸发酵






✴ 2.乙乙醇的生生成:乙乙醇发酵





在肿瘤细胞中,糖酵解过程往往高高度旺盛(Warburg效应)
三、柠檬酸循环 •・ 丙酮酸氧化:来源于糖酵解或者其他途径的丙酮酸需经过相




核糖
葡萄糖
半乳糖
✴ 单糖的构型:以甘油醛为参照物,以最远离醛基或酮基的 对称碳原子子构型与甘油醛的不对称碳相比较而而得。


✴ 单糖的链状和环状结构
α-葡萄糖
葡萄糖 β-合而而成的糖
半缩醛基 醇羟基
麦芽糖




•・ 多糖:由多个单糖分子子之间通过糖苷键连接而而成的高高分子子 化合物。
均一一多糖
杂多糖
✴ 淀粉:主要存在于植物的种子子、果实和块茎中,是植物 的能量储备物质,也是日常膳食中糖的主要来源。
✦ 直链淀粉:大大约含有250-300个葡萄糖分子子,以α-1,4糖 苷键相连,遇碘呈蓝色色。不溶于冷水水,略溶于热水水。





✴ 8. 2-磷酸甘油酸的生生成





✴ 9. 磷酸烯醇式丙酮酸的生生成




✴ 10. 丙酮酸和ATP的生生成






葡萄糖酵解的总反应式:





NAD+是酶不可缺少的辅助因子子

NAD+ NADP+
NADH NADPH
✴ 7. 3-磷酸甘油酸和ATP的生生成
底物水水平磷酸化:指ATP的形成直接与代谢途径中的某个特殊反应偶 联。指在底物氧化的基础上,释放的能量推动ADP磷酸化形成ATP的反 应。
肝细胞细胞质 中的糖原颗粒
✴ 纤维素:是自然界含量最丰富的多糖,是植物纤维部分 的主要组成部分。分子子中的葡萄糖通过β-1,4糖苷键连接 聚合而而成。无无支链,分子子间平行行排列。
二二、糖酵解glycolysis:是指葡萄糖通过一一系列酶促反应步骤 转变为丙酮酸的过程。在细胞质中进行行,没有O2的参与。
相关文档
最新文档