水质模型

合集下载

环境影响评价 水环境影响评价水质模型

环境影响评价 水环境影响评价水质模型

持久性污染物;
河流为非恒定流动;
连续稳定排放;
对于非持久性污染物,需要采用相应的衰减模式。
4、 河流混合过程段与水质模式选择
预测范围内的河段可以分为充分混合段,混合过程段和上游河
段。
充分混合段:是指污染物浓度在断面上均匀分布的河段,当断
面上任意一点的浓度与断面平均浓度之差小于平均浓度的5%时, 可以认为达到均匀分布。
①岸边排放
c(x, q)
ch
H
cpQp
M q x
exp
q 22 4M qx
exp
(2Qh q)2 4M q x
式中:q=Huy
Mq=H2uMy c(x,q)-(x,q)处污染物垂向平均浓度,mg/L; Mq-累积流量坐标系下的横向混合系数; 适用条件:
弯曲河流、断面形状不规则河流混合过程段;

t
0 e t
eQ V K1 t 0
如 t 0
,则 t
1
ln 1
溶解氧模型
dDO dt
Q V
(DO0
DO)
K2
DOs
DO
R
其中
R rA B
(上模型方程没有考虑浮游植物的增氧量和排入湖或库的废水 带入的氧量。)
习题:P101: 3
4-4 水质模型的标定
混合系数估值
经验公式 • 流量恒定、河宽大、水较浅、无河湾的顺直河流:
M y xu
exp(
uy2 4M y x
)
exp
u2B
4M y
y x
2
2、非岸边排放
c(x,
y)
exp
K
x 86400u
c h

流域水质模型与模拟课件

流域水质模型与模拟课件

K1L0 K1 K2
(e 1x
e2x )
2
u 2E
1
1
4EK2 u2
(2)忽略河流的弥散作用,则为
解析解
u
dL dx
K1 L
u
dC dx
K1L
K2
Cs
C
L
K1 x
L0e u
L0 e K1t
C
Cs
Cs C0
ek2t k1L0 k1 k2
e e k1t
k2t
氧垂曲线
溶解氧沿程变化曲线被称为氧垂曲线
案例分析——S-P模型
向一条河流稳定排放污水,污水排放量 Qp = 0.2 m3/s, BOD5 浓度为 30 mg/L,河流流量 Qh = 5.8 m3/s,河水平均 流速 v = 0.3 m/s,BOD5 本底浓度为 0.5 mg/L,BOD5降解 的速率常数 k1 = 0.2 d-1,纵向弥散系数 D = 10 m2/s,假定 下游无支流汇入,也无其他排污口,试求排放点下游5 km 处的 BOD5 浓度。
定义 把一个连续的一维空间划分成若干个子空间,每一个 子空间都作为一个完整混合反应器,将上一个反应器 的输出视为下一个反应器的输入
设 C1,C2,…,Ci 为相应河段的污染物浓度,每一个河 段的浓度表达式
C1
C10 1 KdV1
Q1
C2
C20 1 KdV2
Q2
Ci
Ci 0 1 KdVi
河流水质变化过程
河流水质变化过程
河流水质模型分类(按维数) 零维 一维 二维 三维
第三章 河流水质模型
零维水质模型
定义 污染物进入河流水体后,在污染物完全均匀混合断面 上,污染物的指标无论是溶解态的、颗粒态的还是总 浓度,其值均可按节点平衡原理来推求。对河流,零 维模型常见的表现形式为河流稀释模型。

第三章水质模型

第三章水质模型

水质模型
1.1 水质模型的主要问题和分类
一、 问题 (1)为了避免一条河流产生厌氧而使水质保持 在给定的条件,应当在何处建立污水处理厂? 多大规模、什么样的处理效率才能保证溶解 氧浓度不低于水质标准? (2)为了合理地利用某一区域的水资源,该区 域应当发展何种工业以及多大规模的工业才 能使该地区的水资源得以充分利用并保证水 资源不至于受污染。
C0 1 k1x
Q
u
2019/11/25
25
例题2:河流的零维模型
• 有一条比较浅而窄的河流,有一段长1km的河段,稳 定排放含酚废水1.0m3/s;含酚浓度为200mg/L,上游 河水流量为9m3/s,河水含酚浓度为0,河流的平均流 速为40km/d,酚的衰减速率常数k=2 1/d,求河段出 口处的河水含酚浓度为多少?
• 水质模型的分类:
1、按水域类型:河流、河口、河网、湖泊 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、
多重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型
水质模型按 空间维数分类
零维水质模型 一维水质模型 二维水质模型 三维水质模型
2019/11/25
0
水质模型
(4)按水质组分是否作为随机变量,可分为随 机模型和确定性模型。
水质模型还可以按模型的其他特征分类。如 按水质组分的迁移特性,可分为对流模型, 扩散模型和对流-扩散模型。按水质组分的 转化特性可分为纯迁移模型,纯反应模型和 迁移-反应模型等。
0
水质模型
1.2 水质模型的发展及建立步骤
一、水质模型的发展过程 第一阶段(1925-1965年):开发了比较简单的 生物化学需氧量(BOD)和溶解氧(DO)的双线 性系统模型,对河流和河口的水质问题采用 了一维计算方法进行模拟。 第二阶段(1965-1970年):研究发展BOD—DO 模型的多维参数估值,将水质模型扩展为六 个线性系统模型。发展河流、河口、湖泊及 海湾的水质模拟,方法从一维发展到二维。

湖库零维稳态水质模型

湖库零维稳态水质模型

湖库零维稳态水质模型
湖库零维稳态水质模型是一种用于评估湖库水体水质的数学模型。

该模型假设湖库水体的水质参数在空间上保持均匀且稳定,不考虑水体中的流动和混合。

输入参数:
入流通量:描述进入湖库的水体量的时间变化规律。

出流通量:描述从湖库流出的水体量的时间变化规律。

水体体积:湖库的总体积。

初始水质条件:描述湖库水体的初始水质参数,如溶解氧、氮、磷等浓度。

定义变量:
时间:模拟的时间尺度。

水质参数:描述湖库水体中各种污染物或指标的浓度。

模型方程:
质量守恒方程:根据湖库的入流通量、出流通量和水体体积,可以建立质量守恒方程来描述水质参数的变化过程。

该方程表示了水质参数随时间的变化率。

物质平衡方程:根据湖库水体的水质特征和水质参数的相互作用关系,可以建立物质平衡方程来描述水质参数之间的转化过程。

该方程表示了水质参数之间的转化速率。

模型求解:
数值求解方法:采用数值方法求解模型方程,常见的方法包括欧
拉法、龙格-库塔法等。

通过离散化时间和空间,将模型方程转化为差分方程,然后迭代求解得到水质参数随时间的变化情况。

边界条件:根据实际情况,设置模型的边界条件,如入流通量、出流通量和初始水质条件。

第三章水环境化学-第四节水质模型介绍

第三章水环境化学-第四节水质模型介绍
第四节 水质模型
水质模型,是一个用于描述物质在水环境中的混合、 迁移、扩散和转化过程(包括物理、化学、生物作用过 程)的数学方程(或方程组) .

水质模型的基本原理是质量守恒原理;建立水质模 型的目的是用来描述污染物数量与水环境影响因素之间 的定量关系,从而为水质分析、预测和水环境管理提供 基础的量化依据。

本节讨论的水质模型主要是:氧平衡模型、湖泊富 营养化模型和有毒有机污染物归趋模型。

一、氧平衡模型
1. Streeter-Phelps(S-P)模型(河流水质自净模型)

S-P模型的建立基于两项假设: (1)只考虑好氧微生物参加的有机物降解反应,并 认为该反应为一级反应。 (2)河流中的耗氧只是有机物降解反应引起的。有 机物的降解反应速率与河水中溶解氧(DO)的减少速 率相同,大气中的氧进入水体的复氧速率与河水中 的亏氧量 D 成正比。

极限距离:
极限溶解氧:
(DC为极限氧亏)
2.托马斯(Thomas)模型

对于一维静态河流,在S—P模型的基础上考虑沉淀、絮 凝、冲刷和再悬浮过程对BOD变化的影响,引入了BOD沉 浮系数k3 dL
u -(k1 k3 ) L dx u dD k L - k D 1 2 dx
湖泊水质模型的类型:
湖泊水质模型可划分为:多元相关模型;输入输出 模型;富营养化预测模型和扩散模型,这里仅讨论富 营养化预测模型。

2. 富营养化预测模型 对于停留时间很长、水质基本处于稳定状态的中小 型湖泊和水库,可视为一个均匀混合的水体。 沃兰伟德假定,湖泊中某种营养物的浓度随时间的 变化率,是输入、输出和在湖泊内沉积的该种营养物量 的函数,用质量平衡方程表示就是:

水质模型

水质模型

2
水质模型的类型
1、从空间维数上 零维、一维、二维和三维模型 2、是否含有时间变量 可分为动态和稳态模型 3、从模型的数学特征 随机性、确定性模型和线性、非线性模型 4、从描述的水体、对象、现象、物质迁移和反应动力学性质可分为 河流、湖泊、河口、海湾、地下水模型; 溶解氧、温度、重金属、有毒有机物、放射性模型; 对流、扩散模型以及迁移、反应、生态学模型等 。
第四节 水质模型 (Water Quality Model)
1
水质模型( 水质模型(water quality model) )
水质模型( 水质模型(water quality model) 根据物质守恒原理用 ) 数学的语言和方法描述参加水循环的水体中水质组分所发 生的物理、化学、生物化学和生态学诸方面的变化、 生的物理、化学、生物化学和生态学诸方面的变化、内在 规律和相互关系的数学模型。 规律和相互关系的数学模型。 描述环境污染物在水中的运动和迁移转化规律, 描述环境污染物在水中的运动和迁移转化规律,为水资源 保护服务。它可用于实现水质模拟和评价,进行水质预报 保护服务。它可用于实现水质模拟和评价, 和预测, 和预测,制订污染物排放标准和水质规划以及进行水域的 水质管理等,是实现水污染控制的有力工具。 水质管理等,是实现水污染控制的有力工具。
4
水质模型的发展阶段
1925-1960,S—P模型,BOD—DO耦合模型 , 模型, 模型 耦合模型 1960—1965,新发展,引进空间变量,动力学系数、 ,新发展,引进空间变量,动力学系数、 温度 1965—1970,光和作用、藻类的呼吸作用,沉降,悬 ,光和作用、藻类的呼吸作用,沉降, 浮,计算机的应用 1970 —1975,线性化体系,生态水质模型,有限元模 ,线性化体系,生态水质模型, 型,有限差分技术 最近30年 最近 年,改善模型的可靠性和评价能力

4.2水质模型及应用讲解

4.2水质模型及应用讲解
水质模型及应用
胡莺
水质数学模型分类
按上游来水和排污随时间的变化情况: 动态模式、稳态模式 按水质分布状况: 零维、一维、二维和三维 按模拟预测的水质组分: 单一组分、多组分耦合模式 水质数学模式的求解方法及方程形式 解析解模式、数值解模式
水质模式中坐标系的建立
以排放点为原点 Z轴铅直向上,X、Y轴为水平方向 X方向与主流方向一致 Y方向与主流垂直
一维稳态模式 P72
对于一般河流,由于推流导致的污染物迁移作用要比 弥散作用大得多,可忽略弥散作用:

C 为污染物的浓度; Dx 为纵向弥散系数, ux 断面平均流速; K 为污染物衰减系数
模型的适用对象:污染物浓度在各断面上分布均匀的中小
型河流的水质预测 P72例4-2
BOD-DO耦合模型(S-P模型)
• 2、计算最大氧亏处的临界DO浓度和临界点位置
• 3、利用EXCEL求解并绘制出BOD、DO的浓度沿程变 化曲线(选作)
托马斯模式 P75
x c exp ( K 1 K 3 ) c0 86400 u x exp ( K 1 K 3 ) 86400 u K 1c 0 x D D exp K 0 2 K 2 ( K1 K 3 ) 86400 u x exp K 2 86400 u K2 K 2 ( K 1 K 3 K 2 ) D0 u xc ln K 2 ( K1 K 3 ) K1 K 3 K 1 ( K 1 K 3 )c 0 c0 (c0 Q p c h Qh ) /(Q p Qh ) D0 ( D0 Q p Dh Qh ) /(Q p Qh )
计算时注意单位换算;以 及起始点处假定完全混合 后的初始浓度的计算

水质模型选择依据

水质模型选择依据

水质模型选择的依据包括以下几点:
水质模型的类型:根据水质模型的类型,如半经验模型、统计模型、机器学习模型等,选择适合的模型。

水质数据的特点:根据水质数据的特点,如数据量、数据类型、数据分布等,选择适合的模型。

水质问题的需求:根据水质问题的需求,如预测、分类、聚类等,选择适合的模型。

水质模型的可解释性:根据水质模型的可解释性要求,选择适合的模型。

水质模型的准确性和可靠性:根据水质模型的准确性和可靠性要求,选择适合的模型。

《水环境化学》水质模型

《水环境化学》水质模型
第四节 水质模型
水质模型的基本原理: 污染物在水环境中的物理化学和生物过程遵守质 量守恒定律,模型发展大体经历了简单的氧平衡 模型阶段、形态模型阶段和多介质环境结合生态 模型阶段。
第四节 水质模型
氧平衡模型
1。 Streeter-Phelps 模型
水体有机污染物(浓度用BOD表示)消耗速率为
L t
便可得出有机毒物在系统内的浓度和半衰期。
K1L
u
L x
K1L
Fick第二定律,河流的离散导致的BOD的变化为
u
L x
Ex
2L x 2
则BOD变化速率为:
L
2L
u x Ex x2 K1L
3.菲克第二定律:解决溶质浓度随时间变化的情况
两个相距dx垂直x轴的平面组成的微体积,J1、J2为进入、
流出两平面间的扩散通量,扩散中浓度变化为 c,则单元体
1
Z (q /V )
2. OECD公式
1
1
7
0.5
Z
V qv
0.6
1
第四节 水质模型
三、有毒污染物的归趋模型 摒弃经验参数,在模型中只出现表征化合物固有性 质的参数(实验室测定,与时间地点无关)和表征 环境特征所测量的参数。 主要考察动力学过程 酸碱平衡,水解,生物降解,光解作用,挥发,沉 淀-溶解作用,吸附解吸作用,生物浓缩,沉积作用 以及污水排放等uxEx2
x 2
K2(s
) K1L
第四节 水质模型
1。 Streeter-Phelps 模型
若忽略河流离散作用
u
L x
K1L
u
x
K2(s
) K1L
t时刻BOD和溶解氧的值分别为

2024年MIKE21水质培训教程

2024年MIKE21水质培训教程

MIKE21水质培训教程MIKE21水质模型培训教程1.引言MIKE21是一款广泛应用于水文、水质、泥沙和海洋等领域的数值模拟软件,具有强大的前后处理功能和灵活的模型构建方式。

水质模型作为MIKE21软件的核心模块之一,为研究水体中污染物的输移、扩散和衰减过程提供了有效的工具。

本教程旨在帮助初学者快速掌握MIKE21水质模型的基本操作和建模方法,为实际工程应用奠定基础。

2.MIKE21水质模型简介2.1水质模型分类MIKE21水质模型主要包括两大类:稳态模型和动态模型。

稳态模型适用于模拟长期平均水质状况,动态模型则可以模拟水质随时间的变化过程。

根据研究问题的不同,用户可以选择相应的模型进行模拟。

2.2水质模型原理MIKE21水质模型基于质量守恒定律和纳维-斯托克斯方程,考虑了污染物在水体中的对流、扩散和生物化学反应等过程。

模型通过求解偏微分方程组,得到污染物浓度随时间和空间的变化规律。

3.MIKE21水质模型操作步骤3.1创建项目启动MIKE21软件,创建一个新的项目。

在项目设置中,选择相应的地理坐标系和投影方式。

3.2导入数据导入研究区域的底图数据,如DEM、河网、土地利用等。

同时,还需要导入污染源数据、监测站点数据和边界条件等。

3.3建立模型3.3.1创建网格根据研究区域的特点,选择合适的网格类型(如矩形网格、三角形网格等)和网格分辨率。

在MIKE21中,可以通过自动或手动方式创建网格。

3.3.2设置边界条件根据实际情况,设置模型的边界条件。

边界条件包括入口浓度、出口浓度、自由液面等。

3.3.3设置初始条件设置模型初始时刻的污染物浓度分布。

3.3.4设置参数根据实际情况,设置模型中的各类参数,如污染物衰减系数、扩散系数等。

3.4模型求解设置求解器参数,如时间步长、迭代次数等。

然后运行模型,求解污染物浓度分布。

3.5结果分析利用MIKE21的后处理功能,对模拟结果进行分析。

可以绘制污染物浓度等值线图、浓度变化曲线等,以便于直观地了解污染物在水体中的分布和变化规律。

第三节河流水质模型-PPT

第三节河流水质模型-PPT
放口处得纵向坐标x=0、
S-P模型—描述河流水质得第一个模型,由斯特里特(H • Streeter) 与菲而普斯(E • Phelps)在1925年建立。
基本假设:河流中得BOD得衰减与溶解氧得复氧都就是一级反应,反 应速度为常数;河流中得耗氧就是由BOD衰减引起得,而河流中 得溶解氧来源则就是大气复氧。
S-P氧垂公式
O= Os-D = Os-
Kd L0 Ka - Kd
[e-Kd t - e-Ka t] - D0 e-Ka t
污水排放点 河流BOD=L0
饱和溶解氧浓度Cs
O—河流中得溶解氧值
溶解氧
D0 Dc
氧垂曲线
Os —饱与溶解氧值
DO
L0-河流起始点得BOD值
D0-河流起始点得氧亏值
Dc-临界点得氧亏值
KL = C
uxn Hm
饱与溶解氧浓度Cs就是温度、盐度与大气压力得函数。在
760mmHg压力下,淡水中得饱与溶解氧浓度为
T为0c
468 Cs =
31.6 + T
四、光合作用
水生植物得光合作用就是河流溶解氧得另一个重要来源。
欧康奈尔假定光合作用得速度随着光照强度得变化而变 化。中午光照强度最大时,产氧速度最快,夜晚没有光照时,产 氧速度化
水质模型得解析解就是在均匀与稳定得水流条件 下取得得,划分断面得原则:
a)河流断面形状发生剧烈变化处 b)支流或污水得输入处 c) 河流取水口处 d)其她需要设立断面得地方
二、多河段BOD模型及DO模型得建立
1、 BOD模型 河流水质得特点之一就是上游每一个排放口排放得
Kc= Kd + Ks
3、 1966年, K·Bosko研究了河流中生化作用得BOD衰减速度 常数Kd与实验室得数值Kc之间得关系:

《水质模型》课件

《水质模型》课件

确保数据质量
实际监测的水质数据质量直接影 响验证与评估的结果,因此要确 保数据的准确性和可靠性。
多种方法综合评估
单一的验证与评估方法可能存在 局限性,应采用多种方法进行综 合评估。
误差的可接受范围
应根据实际情况确定误差的可接 受范围,判断模型是否满足实际 应用的需求。
PART 06
水质模型的应用案例
总结词
预测不同水文条件下的水质变化
详细描述
通过建立水质模型,可以预测在不同水文条件下的水质变 化,为水资源管理和调度提供决策依据,确保供水安全。
水质模型在湖泊中的应用案例
总结词
模拟湖泊中污染物的分布、迁移和归宿
详细描述
水质模型在湖泊中的应用主要集中在模拟湖泊中污染物的 分布、迁移和归宿,探究不同污染物在湖泊中的扩散、转 化和归宿规律,为湖泊污染治理提供科学依据。
总结词
模拟地下水与地表水的相互关系
详细描述
地下水与地表水之间存在密切的相互关系,水质模型可以 模拟地下水与地表水的相互关系,探究不同因素之间的相 互作用和影响机制,为水资源管理和保护提供决策支持。
建立水质模型的常用软件和工具
MATLAB
01
一款功能强大的数学计算软件,可用于水质模型的建立、模拟
和数据分析。
MIKE
02
一款专业的水质模拟软件,具有强大的三维模拟功能和可视化
界面。
HYDSIM
03
一款针对河流、湖泊等水体的水质模拟软件,适用于一维和二
维模型的建立。
PART 04
水质模型的参数估计
水质模型在地下水中的应用案例
总结词
预测地下水中污染物的扩散和迁移
详细描述
地下水是重要的水资源之一,水质模型在地下水中的应用 主要集中在预测地下水中污染物的扩散和迁移,评估地下 水水质状况和变化趋势,为地下水保护提供科学依据。

水质模型

水质模型
第四节 水质模型
水质模型 — 可较好描述污染物在水环境中 的复杂规律及其影响因素之间的相互关系,因此 水质模型是研究水环境的重要工具。 水质模型的基本原理是根据质量守恒原理。 污染物在水环境中的物理、化学和生物过程 的各种模型,大体经历了三个发展阶段, 即简单的氧平衡模型阶段,形态模型阶段和多介质 环境结合生态模型阶段。
2.Thomas模型(忽略离散作用)
在s—P模型的基础上,增加固悬浮物的沉 淀和上浮引起的删的变化速率(K3L0),则:
二、 湖泊富营养化模型
目前常采用的有多元相关模型、输入输出模 型、富营养化预测模型和扩散模型。
前三种模型实际上只能预测未来湖泊水质的 平均发展趋势,而扩散模型可反映湖泊水质的空 间变化,预测污水人湖口附近局部水域可能出现 的严重污染程度。 实际应用时可根据湖泊的污染特征和基础资 料等情况选用相应模型。

一、 氧平衡模型
1.Streeter—Phelps模型(S—P模型)
假定河流的自净过程中存在着两个相反的过程.
a.
有机污染物在水体中先发生氧化反应,消耗水体 中的氧,其速率与其在水中的有机污染物浓度成 正比
b.
大气中的氧不断进入水体,其速率与水中的氧亏z 值成正比.
根据质量守衡原理,提出一维稳态河流的 BOD—DO藕合模型的基本方程式如下:
当人湖污染物为氮、磷等营养物时,根据质量守恒原理.湖水中污染物 的变化不仅与进出湖泊的数量有关,而且还受其沉降速率的影响。

水质模型及其应用研究进展

水质模型及其应用研究进展

水质模型及其应用研究进展随着环境保护意识的不断提高,水质模型的研究与应用逐渐成为水环境管理领域的热点话题。

本文将概述水质模型的概念、定义及其应用背景,并综述近年来水质模型的研究进展,以期为相关领域的研究和实践提供有益的参考。

水质模型是描述水中污染物传输、转化和降解过程的数学模型,广泛应用于水环境质量评价、污染物排放控制、水处理工艺设计等领域。

随着计算机技术的发展,水质模型的应用逐渐由定性描述向定量预测转变。

本文将从研究现状和模型应用两个方面,探讨水质模型的研究进展及其在实际问题中的应用。

近年来,水质模型的研究取得了长足的进展。

根据模型的原理和应用范围,可将现有的水质模型大致分为三类:物理模型、化学模型和生态模型。

物理模型主要水体中污染物的扩散、对流和吸附等物理过程。

常用的物理模型包括扩散对流方程、表面张力模型等。

这些模型的优势在于能够准确描述污染物的空间分布和动态变化,但往往忽略了污染物的化学和生物过程。

化学模型则重点水中污染物的化学反应过程,如氧化还原反应、络合反应等。

典型的水质化学模型有零维或多维扩散方程,以及基于反应动力学的模型。

化学模型具有较好的理论依据,但对反应机制和动力学参数的要求较高。

生态模型则结合了物理和化学模型的优势,同时考虑了水生生物和环境因素对水质的影响。

典型的生态模型包括河流生态系统模型、湖泊生态系统模型等。

这些模型通过模拟生物群落的结构和功能,能够更全面地评估水环境的质量状况。

然而,生态模型的应用仍面临数据获取和处理等方面的挑战。

为了提高模型的预测精度,研究者们还提出了多种耦合模型,即将不同类型的模型进行组合,以弥补单一模型的不足。

例如,物理-化学耦合模型综合考虑了污染物的物理和化学过程,能够更准确地模拟水质的动态变化。

生态-化学耦合模型、生态-物理耦合模型等也逐渐得到应用。

这些耦合模型的发展为水质模型的未来研究提供了新的方向。

水质模型在实际问题中的应用取得了丰硕的成果。

第七章 水质模型

第七章 水质模型

QUAL2K相对于QUAL2E模型而言,它不仅适用于混合的枝状河 流系统,而且允许多个排污口、取水口的存在以及支流汇入和流
出,尤其对藻类、营养物质、光三者之间的相互作用进行了矫正,
并在模拟过程对输入和输出等程序有了进一步改进,主要增强功
能包括计算功能的扩展、新反应因子的增加,如藻类BOD、反硝
化作用和固着植物引起的DO变化。对于任意一种水质组分,有:
水质模型研究的深 化、完善与广泛。 考虑水质模型与面 源模型的对接,并 采用多种新技术方 法,如:随机数学、 模糊数学、人工神 经网络、专家系统 等。
四、建立水质模型的基本步骤
调查研究,获取资料 模型的一般性质研究 初步建立模型 模型验证 模型应用
§6-2 河流水质模型
一、BOD-DO耦合模型(S-P模型)及其修正模型
k1 x / u
S-P适用的5个条件

a、河流充分混合段; b、污染物为耗氧性有机污染物; c、需要预测河流溶解氧状态; d、河流为恒定流动; e、污染物连续稳定排放。
25 20 15 10
L mg/L DOmg/L
DOmg/L
L mg/L
5 0 0
氧垂曲线示意图
2
4
6
8
10 X km
(四)奥康纳模型
LC u (k1 k3 ) LC x LN u k N LN x D u k1 LC k N LN k 2 D x
kN—硝化BOD耗氧系数,1/d;
( k1 k3 ) x / u L L e 其解析解为: C 0C kN x /u L L e N 0N k1 L0 ( k1 k3 ) x / u k2 x / u k2 x / u D D e ( e e ) 0 k2 k1 k3 k L N 0 N (e k N x / u e k2 x / u ) k2 k N

水质模型

水质模型
水质模型分类
• 水质模型是一个用于描述物质在水中混合、迁移等变 水质模型是一个用于描述物质在水中混合、 是一个用于描述物质在水中混合 化过程的数学方程,即描述水体中污染物与时间、 化过程的数学方程,即描述水体中污染物与时间、空 间的定量关系。 间的定量关系。 • 水质模型的分类: 水质模型的分类:
1、按水域类型:河流、河口、湖泊(水库)以及地下水水质 、按水域类型 河流 河口、湖泊(水库) 河流、 模型 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、多 、按水质组分:单一组分、耦合组分( 模型)、 模型)、多 重组分(比较复杂,如综合水生态模型) 重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型 、按水力学和排放条件:稳态模型、 4、根据研究水质维度:零维、一维、二维、三维水质模型。 、根据研究水质维度:零维、一维、二维、三维水质模型。
河流的混合稀释模型
在最早出现的水质完全混合断面, 在最早出现的水质完全混合断面,有:
C hQh + C P Q P C = QE + QP
式中: 河水流量, /s; 式中:Qh-河水流量, m3/s; 河水背景断的污染物浓度, mg/L; Ch-河水背景断的污染物浓度, mg/L; 废水中污染物的浓度, mg/L; CP-废水中污染物的浓度, mg/L; 废水的流量, /s; QP-废水的流量, m3/s; 完全混合的水质浓度, mg/L。 C-完全混合的水质浓度, mg/L。
x + D0 exp − K 2 86400u
( 6 ) C s = 4 6 8 /(3 1 .6 + T ) (7 ) D = C s − C (O ) (8 ) D c = C s − C c ( 9 ) D 0 = C s − C 0 (O ) (10)Co = (11)Do = C pQ p + C hQ h Q p + Qh D pQ p + D hQ h Q p + Qh

4.2 水质模型及应用

4.2 水质模型及应用

稳态混合衰减累积流量模式
c pQp x c( x, q) exp K1 ch 86400 u H M q x
c pQp x c( x, q) exp K1 ch 86400 u 2 H M q x
非岸边排放
q Huy
M q H 2uM y
Mq:累积流量坐标系下的横向混合系数; x,q:累积流量坐标系的坐标
河流pH模式
适用于河流充分混合段
河流一维日均水温模式
适用于河流充分混合段
河口水质模型
欧康那河口模式与欧康那河口衰减模式(适用
于中小河口的潮周平均、高潮平均和低潮平均 水质) BOD-DO河口耦合模式( 与河流S-P模式类似 ) 河口一维动态混合数值模式(一维流场方程和 一维水质方程。适用于一维潮汐河口,得到任 意时刻浓度分布) 河口二维数值模式(适用于潮汐河口混合过程 段,得出任意时刻断面不同位置的浓度)
式4-48
M (1 4K1Ex / ux )
2 1/ 2
Qh :排污口上游来水流量, Ch :上游来水的水质浓度, Qp :污水流量, Cp :污水中污染物的浓度,
BOD-DO河口耦合模式
1 c c0 e 1x 1 1 1x 1 2 x 1 2x D c0 1 e e D0 e 2 2 1 o o D S
计算出每一时间层的水流状态(水位和水量、流速), 再用偏心差分法解上式算浓度变化 适用条件:河口充分混合段,非持久性污染物,可以预 测任意时刻的水质
河口二维动态混合衰减数值模式
湖泊(水库)水质模型
湖泊完全混合平衡模式与湖泊完全混合衰减模式 (适用于小湖库,可求稳定的平衡出水浓度) 卡拉乌舍夫模式与湖泊推流衰减模式(适用于无

《河流水质模型》课件

《河流水质模型》课件
详细描述
该河流的水质模拟主要针对有机物和重金属进行,通过建立水质模型,预测不同排放量对水质的影响 ,为河流治理提供科学依据。
案例二:某水库的水质模拟
总结词
该水库具有高营养盐水平,主要污染物 为氮、磷等营养盐。
VS
详细描述
该水库的水质模拟主要针对氮、磷等营养 盐进行,通过建立水质模型,预测不同排 放量对水库富营养化的影响,为水库的生 态恢复提供技术支持。
模型的参数与变量
参数
污染物排放量、河流流量、水体 容量、污染物降解系数等。
变量
河流水质浓度、污染物排放量、 河流流量等。
模型的建立过程
确定模型的目标和范围。
选择合适的数学模型,如 一维水质模型、二维水质 模型等。
收集相关数据和资料,包 括河流水质监测数据、污 染物排放数据等。
建立数学方程,包括质量 守恒方程、污染物降解方 程等。
利用数据可视化技术,如热力图、散点图等,将复杂的数据以易于理解的方式呈 现,帮助用户更好地理解结果。
结果的误差分析
误差来源
分析模型结果的误差来源,如数据采 集误差、模型参数不确定性等,以便 更好地了解误差的构成。
误差评估
通过比较模型结果与实际观测数据, 对误差进行定量评估,判断模型的准 确性和可靠性。
结果的优化与改进
模型参数优化
根据结果分析,对模型参数进行优化调整,以提高模型的预测精度和稳定性。
模型改进建议
基于结果分析,提出对模型的改进建议,如改进模型结构、增加数据输入等,以提升模型的性能和适用范围。
05 河流水质模型的案例分析
CHAPTER
案例一:某河流的水质模拟
总结词
该河流具有中等污染程度,主要污染物为有机物和重金属。

水质模型

水质模型

河流常用数学模型--例题
解:河段起始端:
河水的BOD5: 河水的氧亏值:
河流常用数学模型
二维水质模型

使用条件:河流稳态,恒定排污。 持久性污染物岸边排放:

非持久性污染物岸边排放:
湖泊水库数学模型

持久性污染物


非持久性污染物
湖泊水库的盒模型
湖泊水库数学模型
持久性污染物


小湖
无风时的大湖 近岸环流显著的大湖
第二节 水质模型

河流常用数学模型
湖泊水库数学模型

非点源水质模型
地下水水质模型
河流常用数学模型


完全混合模型
零维模型P68

BOD-DO耦合模 型P78 二维水质模型P76

一维水质模型P70
河流常用数学模型
完全混合模型
使用条件: 河流稳态 污染物在河段内均匀混合 河段无源和汇 污染物为持久性污染物
非点源水质模型
农田非点源污染模型

坡面径流计算 利用美国水土保持部门提出的经验方
程:
非点源水质模型
农田非点源污染模型

坡面径流计算
降雨损失量是降水截留量、渗透量和地表 滞留量的总和,是滞洪系数S的函数: I=0.2S。而

此外,融雪也会产生地表径流,因此,在 北方地区,计算径流时要考虑降雪的影响: SM=CsnTad
湖泊水库数学模型--非持久性污染物
小湖

湖泊完全混合衰减模式:
平衡时:
湖泊水库数学模型--非持久性污染物
无风时的大湖

湖泊移流模型:
湖泊水库数学模型--非持久性污染物
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖泊富营养化
湖泊的富营养化是由磷、氮的化合物过多排放引起的 污染。主要表现为水体中藻类的大量繁殖,严重影响 了水质。
24
湖泊水质污染预测模型对于预测湖泊水质 发展趋势及提出相应的防治对策有着重要 的意义。 目前常采用的有多元相关模型、输入输出 模型、富营养化预测模型和扩散模型。前 三种模型实际上只能预测未来湖泊水质的 平均发展趋势,而扩散模型可以反映湖泊 水质的空间变化,预测污水入湖口附近局 部水域可能出现的严重污染程度。实际应 用时可根据湖泊的污染特征和基础资料等 情况选用相应模型。
26
为了求得在均匀混合条件下,V稳定时上述方 程的解,Vollenweider,Dillon,合田健和经济 合作与发展组织(OECD)还分别求得以下湖 水总磷质量浓度的计算公式。
1.Vollenweider公式 ρ=ρ1(1+√ Z/Q)-1 式中:ρ——湖水按容积加权的年平均总磷质量浓度,mg/L; ρ1——流入湖泊水量按流量加权的年平均总磷质量浓 度(包括入湖河道,湖区径流和湖面降水的总 量),mg/L; Z——湖泊的平均水深,可用湖泊容积(V)除以湖泊 相应的表面积求得,m; Q——湖泊单位面积上的水量负荷,可用湖泊的年流 入水量(qm)除以湖泊的表面积(A)来求得, t/(m2· a)。
17
S-P模型基本方程及其解
dL k1 L dt dD k1 L k 2 D dt
式中: L—河水中的BOD值,mg/L; D—河水中的亏氧值,mg/L,是饱和溶解氧浓度 Cs(mg/L)与河水中的实际溶解氧浓度C( mg/L)的差值; k1—河水中BOD衰减(耗氧)速度常数,1/d; k2—河水中的复氧速度常数,1/d; t—河水中的流行时间, d;
3.合田健公式 L ρ= ——————-----Z(qV/V+α)
式中:α——湖水中总磷的沉降系数,a-1; 其他符号的意义同前。
合田健根据日本25个湖泊的调查资料,求得总磷的沉 降系数与平均水深之间的关系式为 α=10/Z
4.OECD的计算公式 国际经济合作与发展组织在浅水湖泊总磷变化规律 的研究中,提出了如下公式: 7 V ρ=ρ1[ 1+———— · ﹙——﹚0.6 ]-1 Z0.5 qV
大型淡水湖 城市内湖 大型水库 总计 2004年比例 2005年比例
湖泊富营养化
2007年太湖蓝藻爆发事件
研究水质模型的意义与作用
模拟污染物在流域范围内迁移转化过程 查明污染物运移的时空分布规律 为流域水质预测、管理和规划决策等提供有力的技术 与方法支持



水质模型建立的方法与步骤
水质模型建立的步骤
式中符号意义同前。 按照上述各方程要求,应用于玄武湖水质中总磷、 总氮浓度的预测和验算,结果表明,用 Vollenweider模型预测总磷、合田健模型预测总氮, 预测精度最高。


S-P模型
BOD-DO耦合模型
S-P模型的基本假设是:
①河流中的BOD的衰减和溶解氧的复氧都是一级反应; ②反应速度是定常的;
③河流中的耗氧是由BOD衰减引起的,而河流中的溶解氧来源则是 大气复氧。 S-P模式的适用条件: ①河流充分混合段; ②污染物为耗氧性有机污染物; ③需要预测河流溶解氧状态; ④河流恒定流动; ⑤连续稳定排放。
25 20 15 10 5 0 0 2 4 6 8
L mg/L DOmg/L DOmg/L L mg/L
10 X km
8 7 6 5 4 3 2 1 0
S-P 模型的临界点和临界点氧浓度
k2 u xc Ln k 2 k1 k1 k 2x c / u C C (C C ) s s 0 e
k2 C S C 0 1 ( 1) k1 L0 k1L0 k1x c / u k 2x c / u (e e k1 k 2
Thomas模型
对一维静态河流,在S—P模型的基础上 考虑沉淀、絮凝、冲刷和再悬浮过程对 BOD去除的影响,引入了BOD沉浮系数 k3 ,
水质模型的发展阶段





1925-1960,S—P模型,BOD—DO耦合模型 1960—1965,新发展,引进空间变量,动力学系数、 温度 1965—1970,光和作用、藻类的呼吸作用,沉降,悬 浮,计算机的应用 1970 —1975,线性化体系,生态水质模型,有限元模 型,有限差分技术 最近30年,改善模型的可靠性和评价能力
这两个方程式是耦合的。当边界条件 L
C C0 , x 0
L0 , x 0
时,式解析解为:
L L0 e k1x / u C C (C C )e k2 x / u k1 L0 (e k1x / u e k2 x / u ) s s 0 k1 k 2
4
水质模型的发展趋势

模型不确定性的分型 基于人工神经网络的水质模型 基于地理信息系统的水质模型的研究


5
研究水质模型的意义

河流水环境污染
河流水环境污染
2005年七大水系水质类别比较

湖泊(水库)水环境污染 2005 年重点湖库水质类别
水系 三湖 个数 3 10 5 10 28 Ⅰ类 0 0 0 0 0 0 0 Ⅱ类 0 1 0 1 2 8% 7% Ⅲ类 0 2 0 4 6 18 % 21 % Ⅳ类 0 2 0 1 3 15 % 11 % Ⅴ类 0 2 2 1 5 22 % 18 % 劣Ⅴ类 3 3 3 3 12 37 % 43 % 总氮 总磷 主要 污染 指标
2.Dillon公式 L(1-Rp) ρ= ———————— Z· qV/V
式中:ρ——湖水总磷的预测质量浓度,mg/L; L——湖泊单位面积上年度总磷的负荷量,g/(m2· a); qV——年入湖水体积流量,m3/a; V——湖泊的容积,m3; Rp——磷的滞留系数,Rp=1-(年输出总磷 3 )L dx dD k1L k 2D dx
这些模型最初被用于城市排水工程的设计和简单的水体自净作 用的研究。
QUAL-Ⅱ水质模型

由于排入河流中的污染物质,特别是营养物质,对于水生生 物的生存有密切的联系和影响,美国环境保护局特推荐使用 QUAL-Ⅱ水质模型,该模型是一种较复杂的氧平衡生态模型, 模拟下面13种水质项目,即温度,DO,BOD,藻类(以叶绿素 a计),PO43-,NH3,NO2-,NO3-,大肠杆菌,一种可任选的可 衰减物质和三种不衰减物质,并建立了差分法的求解技术。 QUAL-Ⅱ水质模型既可用于研究入流污水的负荷(数量、质量 和位置)对受纳河流水质的影响,也可用于研究非点源问题。 它既可作为稳态模型使用,也可作为动态模型使用,用于研 究藻类的生长和呼吸作用引起的DO的昼夜变化,或探索冲击 负荷(如泄露或季节性、周期性排污)的影响。因此,QUALⅡ水质模型是一个能较全面描述水生生态系统与水质组分之 间联系的比较成功的例子。模型包括13个相互关联的偏微分 方程系统,其关系如图所示。
(3)研究变量的变化和相互作用,作合理近似假设
(4)形成模型的结构概念

模型的一般性质研究
平衡性研究、稳定性研究、灵敏性研究

参数估值
一般通过实验室模拟试验或将现场测定的数据代入模 型,选择最佳拟合值作为模型的参数值

模型率定 概念:检验所建立的模型是否具有预测功能的过程 常用方法:图形图示法、相关系数法、相对误差法等
不 满 意
选择变量 灵敏性
模型的概化 水质模型 一般性质研究
近似假设 平衡性 稳定性
参数估计 数据收集 数据再收集 选择求解技术 模型的率定
选择方法 结果比较
不 满 意
模型的应用
流域水质预测
流域水质管理与规划 流域水质模型建立的一般步骤
流域污染控制

模型的概化
(1)确定模型时空规模和范围 (2)识别主要因素和相互关系,选择适当变量
富营养化预测模型
dc V ( ) I P qc P V c dt
dc I P (P W P ) c dt V
式中:c —湖水平均总磷浓度 mg/L, IP —输入湖泊磷的浓度 g/d PW —水力冲刷系数 PW = q / V,d-1 q —出湖河道流量 m3/d, V- 湖泊容积 m3 λP —磷的沉降速率常数 d-1 t —河水入湖时间 d
水质模型
一、氧平衡模型
二、湖泊富营养化预测模型
吴志佳 陈奕丹 赵英豪 王彦 董玉刚
什么是水质模型?
水质模型(water quality model) 是根据物 质守恒原理, 利用数学的语言和方法描述参 加水循环的水体中水质组分所发生的物理、 化学、生物化学和生态学诸方面的变化、内 在规律和相互关系的数学模型。

模型的求解与应用 (1)选择求解技术,变换数学表达式以适合求解 常用求解技术: 解析解(理论研究) 数值解(工程技术问题)
(2)在求解基础上,形成模型的输入和输出
(3)将已建立的模型应用于解决实际问题
一、氧平衡模型
1.Streeter-Phelps模型(S-P模型) 2.Thomas模型(忽略离散作用) 3.QUAL-Ⅱ水质模型
水质模型的类型
水质模型可按其空间维数、时间相关性、数学方程的特征 以及所描述的对象、现象进行分类和命名。 从空间维数上可分为零维、一维、二维和三维模型; 从是否含有时间变量可分为动态和稳态模型; 从模型的数学特征可分为随机性、确定性模型和线性、非 线性模型; 从描述的水体、对象、现象、物质迁移和反应动力学性质 可分为河流、湖泊、河口、海湾、地下水模型;溶解氧、 温度、重金属、有毒有机物、放射性模型;对流、扩散模 型以及迁移、反应、生态学模型等。
相关文档
最新文档