人工智能教程答案(DOC 46页)
《人工智能》课后答案
《人工智能》课后答案第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。
2、对量水问题给出产生式系统描述,并画出状态空间图。
有两个无刻度标志的水壶,分别可装5升和2升的水。
设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌。
已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来。
3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。
相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。
和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。
问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。
求N=2时,求解该问题的产生式系统描述,给出其状态空间图。
讨论N为任意时,状态空间的规模。
4、对猴子摘香蕉问题,给出产生式系统描述。
一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。
设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉。
5、对三枚钱币问题给出产生式系统描述及状态空间图。
设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正"或"反、反、反"状态。
6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。
人工智能教程习题及答案第4章习题参考解答
第四章不确定性推理习题参考解答4.1 练习题4.1什么是不确定性推理?有哪几类不确定性推理方法?不确定性推理中需要解决的基本问题有哪些?4.2什么是可信度?由可信度因子CF(H,E)的定义说明它的含义。
4.3什么是信任增长度?什么是不信任增长度?根据定义说明它们的含义。
4.4当有多条证据支持一个结论时,什么情况下使用合成法求取结论的可信度?什么情况下使用更新法求取结论可信度?试说明这两种方法实际是一致的。
4.5设有如下一组推理规则:r1:IF E1THEN E2(0.6)r2:IF E2AND E3THEN E4 (0.8)r3:IF E4THEN H (0.7)r4:IF E5THEN H (0.9)且已知CF(E1)=0.5,CF(E3)=0.6,CF(E5)=0.4,结论H的初始可信度一无所知。
求CF(H)=?4.6已知:规则可信度为r1:IF E1THEN H1(0.7)r2:IF E2THEN H1(0.6)r3:IF E3THEN H1(0.4)r4:IF (H1AND E4) THEN H2(0.2)证据可信度为CF(E1)=CF(E2)=CF(E3)=CF(E4)=CF(E5)=0.5H1的初始可信度一无所知,H2的初始可信度CF0(H2)=0.3计算结论H2的可信度CF(H2)。
4.7设有三个独立的结论H1,H2,H3及两个独立的证据E1与E2,它们的先验概率和条件概率分别为P(H1)=0.4,P(H2)=0.3,P(H3)=0.394P(E1/H1)=0.5,P(E1/H2)=0.6,P(E1/H3)=0.3P(E2/H1)=0.7,P(E2/H2)=0.9,P(E2/H3)=0.1利用基本Bayes方法分别求出:方法分别求出:(1)当只有证据E1出现时,P(H1/E1),P(H2/E1),P(H3/E1)的值各为多少?这说明了什么?么?(2)当E1和E2同时出现时,P(H1/E1E2),P(H2/E1E2),P(H3/E1E2)的值各是多少?这说明了什么?明了什么?4.8在主观Bayes方法中,请说明LS与LN的意义。
人工智能课后习题答案
可采用批量梯度下降、随机梯度下降、小批量梯度下降等优化算法,以及动量 法、AdaGrad、RMSProp、Adam等自适应学习率优化方法。
课后习题解答与讨论
• 习题一解答:详细阐述感知器模型的原理及算法实现过程,包括模型结构、激 活函数选择、损失函数定义、权重和偏置项更新方法等。
• 习题二解答:分析多层前馈神经网络的结构特点,讨论隐藏层数量、神经元个 数等超参数对网络性能的影响,并给出一种合适的超参数选择方法。
发展历程
人工智能的发展大致经历了符号主义、连接主义和深度学习三个阶段。符号主义认为人工智能源于对人类思 维的研究,尤其是对语言和逻辑的研究;连接主义主张通过训练大量神经元之间的连接关系来模拟人脑的思 维;深度学习则通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
机器学习原理及分类
深度学习框架与应用领域
深度学习框架
深度学习框架是一种用于构建、训练和部署深度学习模型的开发工具。目前流行的深度学习框架包括 TensorFlow、PyTorch、Keras等。
应用领域
深度学习已广泛应用于图像识别、语音识别、自然语言处理、推荐系统等多个领域,并取得了显著的 成果。
课后习题解答与讨论
习题四解答
讨论人工智能的伦理问题,如数据隐私、算法偏见等,并 提出可能的解决方案。
02 感知器与神经网络
感知器模型及算法实现
感知器模型
感知器是一种简单的二分类线性模型 ,由输入层、权重和偏置项、激活函 数(通常为阶跃函数)以及输出层组 成。
感知器算法实现
通过训练数据集,采用梯度下降法更 新权重和偏置项,使得感知器对训练 样本的分类误差最小化。
时序差分方法
人工智能教程答案
第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能事情科学。
人工智能是相对于人自然智能而言,即用人工方法和技术,研制智能机器或智能系统来模仿延伸和扩展人智能,实现智能行为和“机器思维”,解决需要人类专家才能处理问题。
1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有智力和行为能力。
智力是针对具体情况,根据不同情况有不同含义。
“智力”是指学会某种技能能力,而不是指技能本身。
1.3答:专家系统是一个智能计算机程序,他运用知识和推理步骤来解决只有专家才能解决复杂问题。
即任何解题能力达到了同领域人类专家水平计算机程序度可以称为专家系统。
1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题有关知识符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目状态,G⊂S,(G可若干具体状态,也可满足某些性质路径信息描述)从S0结点到G结点路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间一个解(解往往不是唯一)(2)谓词逻辑是命题逻辑扩充和发展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识方法。
即用一个有向图表示概念和概念之间关系,其中节点代表概念,节点之间连接弧(也称联想弧)代表概念之间关系。
人工智能教程习题及答案第2章习题参考解答
第二章知识表示习题参考解答2.3 练习题2.1 什么是知识?它有哪些特性?有哪几种分类方法?2.2 何谓知识表示? 陈述性知识表示法与过程性知识表示法的区别是什么?2.3 在选择知识的表示方法时,应该考虑哪些主要因素?2.4 一阶谓词逻辑表示法适合于表示哪种类型的知识?它有哪些特点?2.5 请写出用一阶谓词逻辑表示法表示知识的步骤。
2.6 设有下列语句,请用相应的谓词公式把它们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
(2)他每天下午都去玩足球。
(3)太原市的夏天既干燥又炎热。
(4)所有人都有饭吃。
(5)喜欢玩篮球的人必喜欢玩排球。
(6)要想出国留学,必须通过外语考试。
2.7 房内有一只猴子、一个箱子,天花板上挂了一串香蕉,其位置关系如图2. 11所示,猴子为了拿到香蕉,它必须把箱子推到香蕉下面,然后再爬到箱子上。
请定义必要的谓词,写出问题的初始状态(即图2.16所示的状态)、目标状态(猴子拿到了香蕉,站在箱子上,箱子位于位置b)。
图2.11 猴子摘香蕉问题2.8 对习题2.7中的猴子摘香蕉问题,利用一阶谓词逻辑表述一个行动规划,使问题从初始状态变化到目标状态。
2.9 产生式的基本形式是什么?它与谓词逻辑中的蕴含式有什么共同处及不同处?2.10 何谓产生式系统?它由哪几部分组成?2.11 产生式系统中,推理机的推理方式有哪几种?在产生式推理过程中,如果发生策略冲突,如何解决?2.12 设有下列八数码难题:在一个3×3的方框内放有8个编号的小方块,紧邻空位的小方块可以移入到空位上,通过平移小方块可将某一布局变换为另一布局(如图2.12所示)。
请用产生式规则表示移动小方块的操作。
2831231684754765S0S g图2.12 习题2.12的图图2.13 习题2.13的图2.13 推销员旅行问题:设有五个相互可直达且距离已知的城市A、B、C、D、E,如图2.13所示,推销员从城市A出发,去其它四城市各旅行一次,最后再回到城市A,请找出一条最短的旅行路线。
人工智能--课后习题答案
《人工智能》课后习题答案第一章绪论答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。
人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有的智力和行为能力。
智力是针对具体情况的,根据不同的情况有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。
答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0S;G—目的状态,GS,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0S1S2……G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识的方法。
即用一个有向图表示概念和概念之间的关系,其中节点代表概念,节点之间的连接弧(也称联想弧)代表概念之间的关系。
(完整word版)人工智能课后习题答案(清华大学出版社)
第1章 1.1 解图如下:(1) 1->2(2) 1->3(3) 2->3(6) 3->2(5) 3->1(4) 2->1 8数码问题 启发函数为不在位的将牌数启发函数为不在位的将牌数距离和S(4)S(5)第2章 2.1 解图:第3章 3.18(1)证明:待归结的命题公式为()P Q P ∧→,合取范式为:P Q P ∧∧,求取子句集为{,,}S P Q P =,对子句集中的子句进行归结可得:① P ② Q③P ④ ①③归结 由上可得原公式成立。
(2)证明:待归结的命题公式为())(()())P Q R P Q P R →→∧→→→(,合取范式为:()()P Q R P Q P R ∨∨∧∨∧∧,求取子句集为{,,,}S P Q R P Q P R =∨∨∨,对子句集中的子句进行归结可得:① P Q R ∨∨ ② P Q ∨③ P ④R ⑤ Q②③归结⑥ P R ∨ ①④归结⑦ R ③⑥归结 ⑧ ④⑦归结 由上可得原公式成立。
(3)证明:待归结的命题公式为()(())Q P Q P Q →∧→→,合取范式为:()()Q P Q P Q ∨∧∨∧,求取子句集为{,,}S Q P Q P Q =∨∨,对子句集中的子句进行归结可得:① Q P ∨ ② Q③ Q P ∨④ P ①②归结 ⑤ P ②③归结 ⑥ ④⑤归结 由上可得原公式成立。
3.19 答案(1) {/,/,/}mgu a x b y b z = (2) {(())/,()/}mgu g f v x f v u = (3) 不可合一(4) {/,/,/}=mgu b x b y b z3.23 证明R1:所有不贫穷且聪明的人都快乐:(()()())∀∧→x Poor x Smart x Happy x R2:那些看书的人是聪明的:(()())∀→x read x Smart xR3:李明能看书且不贫穷:()()∧read Li Poor LiR4:快乐的人过着激动人心的生活:(()())∀→x Happy x Exciting x 结论李明过着激动人心的生活的否定:()Exciting Li将上述谓词公式转化为子句集并进行归结如下:由R1可得子句:①()()()Poor x Smart x Happy x∨∨由R2可得子句:②()()read y Smart y∨由R3可得子句:③()read Li④()Poor Li由R4可得子句:⑤()()∨Happy z Exciting z有结论的否定可得子句:⑥()Exciting Li根据以上6条子句,归结如下:⑦()Happy Li⑤⑥Li/z⑧()()∨⑦①Li/xPoor Li Smart Li⑨()Smart Li⑧④⑩()read Li⑨②Li/y⑩③⑪第4章4.9 答案4.11 答案第5章 5.9 答案 解:把该网络看成两个部分,首先求取(1|12)P T S S ∧。
人工智能教程习题及答案第5章习题参考解答
第五章搜索策略习题参考解答5.1 练习题5.1 什么是搜索?有哪两大类不同的搜索方法?两者的区别是什么?5.2 用状态空间法表示问题时,什么是问题的解?求解过程的本质是什么?什么是最优解?最优解唯一吗?5.3 请写出状态空间图的一般搜索过程。
在搜索过程中OPEN表和CLOSE表的作用分别是什么?有何区别?5.4 什么是盲目搜索?主要有几种盲目搜索策略?5.5 宽度优先搜索与深度优先搜索有何不同?在何种情况下,宽度优先搜索优于深度优先搜索?在何种情况下,深度优先搜索优于宽度优先搜索?5.6 用深度优先搜索和宽度优先搜索分别求图5.10所示的迷宫出路。
图5.10 习题5.6的图5.7 修道士和野人问题。
设有3个修道士和3个野人来到河边,打算用一条船从河的左岸渡到河的右岸去。
但该船每次只能装载两个人,在任何岸边野人的数目都不得超过修道士的人数,否则修道士就会被野人吃掉。
假设野人服从任何一种过河安排,请使用状态空间搜索法,规划一使全部6人安全过河的方案。
(提示:应用状态空间表示和搜索方法时,可用(N m,N c)来表示状态描述,其中N m和N c分别为传教士和野人的人数。
初始状态为(3,3),而可能的中间状态为(0,1),(0,2),(0,3), (1,1),(2,1),(2,2),(3,0),(3,1),(3,2)等。
)5.8 用状态空间搜索法求解农夫、狐狸、鸡、小米问题。
农夫、狐狸、鸡、小米都在一条河的左岸,现在要把它们全部送到右岸去。
农夫有一条船,过河时,除农夫外,船上至多能载狐狸、鸡和小米中的一样。
狐狸要吃鸡,鸡要吃小米,除非农夫在那里。
试规划出一个确保全部安全的过河计划。
(提示:a.用四元组(农夫,狐狸,鸡,米)表示状态,其中每个元素都可为0或1,0表示在左岸,1表示在右岸;b.把每次过河的一种安排作为一个算符,每次过河都必须有农夫,因为只有他可以划船。
)5.9 设有三个大小不等的圆盘A 、B 、C 套在一根轴上,每个圆盘上都标有数字1、2、3、4,并且每个圆盘都可以独立地绕轴做逆时针转动,每次转动90°,初始状态S 0和目标状态S g 如图5.11所示,用宽度优先搜索法和深度优先搜索法求从S 0到S g 的路径。
《人工智能》课后习题答案
《人工智能》课后习题答案第一章绪论1.1答:人工智能确实是让机器完成那些假如由人来做则需要智能的情况的科学。
人工智能是相关于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来仿照延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
1.2答:“智能”一词源于拉丁“Legere”,意思是收集、聚拢,智能通常用来表示从中进行选择、明白得和感受。
所谓自然智能确实是人类和一些动物所具有的智力和行为能力。
智力是针对具体情形的,依照不同的情形有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
1.3答:专家系统是一个智能的运算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的运算机程序度能够称为专家系统。
1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯独的)(2)谓词逻辑是命题逻辑的扩充和进展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采纳网络形式表示人类知识的方法。
(完整版)人工智能习题解答
人工智能第1部分绪论1-1.什么是人工智能?试从学科和能力两方面加以说明。
答:从学科方面定义:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期目标在于研究用机器来模拟和执行人脑的某些智力功能,并开发相关理论和技术从能力方面定义:人工智能是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。
1-2.在人工智能的发展过程中,有哪些思想和思潮起了重要作用?答:1)数理逻辑和关于计算本质的新思想,提供了形式推理概念与即将发明的计算机之间的联系;2)1956年第一次人工智能研讨会召开,标志着人工智能学科的诞生;3)控制论思想把神经系统的工作原理与信息理论、控制理论、逻辑以及计算联系起来,影响了许多早期人工智能工作者,并成为他们的指导思想;4)计算机的发明与发展;5)专家系统与知识工程;6)机器学习、计算智能、人工神经网络和行为主义研究,推动人工智能研究的近一步发展。
1-3.为什么能够用机器(计算机)模仿人的智能?答:物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件迁移6种功能。
反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。
物理符号系统的假设伴随有3个推论。
推论一:既然人具有智能,那么他(她)就一定是各物理符号系统;推论二:既然计算机是一个物理符号系统,它就一定能够表现出智能;推论三:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。
1-4.人工智能的主要研究内容和应用领域是什么?其中,哪些是新的研究热点?答:研究和应用领域:问题求解(下棋程序),逻辑推理与定理证明(四色定理证明),自然语言理解,自动程序设计,专家系统,机器学习,神经网络,机器人学(星际探索机器人),模式识别(手写识别,汽车牌照识别,指纹识别),机器视觉(机器装配,卫星图像处理),智能控制,智能检索,智能调度与指挥(汽车运输高度,列车编组指挥),系统与语言工具。
(完整word版)人工智能课后答案
第一章课后习题1、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。
2、对量水问题给出产生式系统描述,并画出状态空间图.有两个无刻度标志的水壶,分别可装5升和2升的水.设另有一水缸,可用来向水壶灌水或倒出水,两个水壶之间,水也可以相互倾灌.已知5升壶为满壶,2升壶为空壶,问如何通过倒水或灌水操作,使能在2升的壶中量出一升的水来.3、对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。
相传古代某处一庙宇中,有三根立柱,柱子上可套放直径不等的N个圆盘,开始时所有圆盘都放在第一根柱子上,且小盘处在大盘之上,即从下向上直径是递减的。
和尚们的任务是把所有圆盘一次一个地搬到另一个柱子上去(不许暂搁地上等),且小盘只许在大盘之上。
问和尚们如何搬法最后能完成将所有的盘子都移到第三根柱子上(其余两根柱子,有一根可作过渡盘子使用)。
求N=2时,求解该问题的产生式系统描述,给出其状态空间图。
讨论N为任意时,状态空间的规模。
4、对猴子摘香蕉问题,给出产生式系统描述。
一个房间里,天花板上挂有一串香蕉,有一只猴子可在房间里任意活动(到处走动,推移箱子,攀登箱子等)。
设房间里还有一只可被猴子移动的箱子,且猴子登上箱子时才能摘到香蕉,问猴子在某一状态下(设猴子位置为a,箱子位置为b,香蕉位置为c),如何行动可摘取到香蕉.5、对三枚钱币问题给出产生式系统描述及状态空间图。
设有三枚钱币,其排列处在"正、正、反"状态,现允许每次可翻动其中任意一个钱币,问只许操作三次的情况下,如何翻动钱币使其变成"正、正、正”或”反、反、反”状态。
6、说明怎样才能用一个产生式系统把十进制数转换为二进制数,并通过转换141.125这个数为二进制数,阐明其运行过程。
7、设可交换产生式系统的一条规则R可应用于综合数据库D来生成出D',试证明若R存在逆,则可应用于D’的规则集等同于可应用于D的规则集。
人工智能——课后练习的答案.doc
人工智能——课后练习的答案答:人工智能是一门允许机器做需要智能的事情的科学,如果它们是由人类做的话。
人工智能是相对于人类的自然智能而言的,即利用人工方法和技术开发智能机器或智能系统来模仿、扩展和拓展人类智能,实现智能行为和“机器思维”,解决需要人类专家处理的问题。
1.2回答: “情报”一词来自拉丁语“传说”,意思是收集和收集。
智力通常用来表达选择、理解和感受。
所谓自然智能是指人类和某些动物所拥有的智能和行为能力。
智力因具体情况而异,根据不同情况有不同的含义。
“智力”是指学习某项技能的能力,而不是技能本身。
1.3回答:专家系统是一种智能计算机程序,它使用知识和推理步骤来解决只有专家才能解决的复杂问题。
也就是说,任何达到同一领域人类专家水平的计算机编程程度都可以称为专家系统。
1.4回答: 自然语言处理-语言翻译系统,金山词霸系列机器人-足球机器人模式识别-微软动画制作游戏-围棋和跳棋第二章知识表达技术2.1解决方案:(1)状态空间是一个符号系统,它使用状态变量和操作符号来表示关于系统或问题的知识。
状态空间是一个四元组(S,O,S0,G): s-状态集;算子的o集;S0-初始状态,S0;G—目的地状态,GS,(G可以是多个特定状态,也可以满足某些属性的路径信息描述)从S0节点到G节点的路径称为解决方案路径。
状态空间解是将初始状态转换成目标状态的有限算子序列:O1O2 O3正常S0S1S2.其中O1、(2)谓词逻辑是命题逻辑的扩展和发展,它将原子命题分解为两部分:对象和谓词。
与命题逻辑中的命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式和复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种。
(3)语义网是以网络形式表达人类知识的一种方式。
也就是说,有向图用于表示概念之间的关系,其中节点表示概念,节点之间的连接弧(也称为关联弧)表示概念之间的关系。
常见的语义网络形式包括命题语义网络和数据语义网络;人工智能是一门允许机器做需要人工智能的事情的科学。
人工智能教程习题及答案
人工智能教程习题及答案第一章绪论1.1 练习题1.1什么是人类智能?它有哪些特征或特点?1.2人工智能是何时、何地、怎样诞生的?1.3什么是人工智能?它的研究目标是什么?1.4人工智能有哪些主要研究领域?1.5人工智能有哪几个主要学派?各自的特点是什么?1.6什么是以符号处理为核心的方法?1.7 什么是以网络连接为主的连接机制方法?1.2 习题参考解答(略)第二章知识表示习题参考解答2.3 练习题2.1 什么是知识?它有哪些特性?有哪几种分类方法?2.2 何谓知识表示? 陈述性知识表示法与过程性知识表示法的区别是什么?2.3 在选择知识的表示方法时,应该考虑哪些主要因素?2.4 一阶谓词逻辑表示法适合于表示哪种类型的知识?它有哪些特点?2.5 请写出用一阶谓词逻辑表示法表示知识的步骤。
2.6 设有下列语句,请用相应的谓词公式把它们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
(2)他每天下午都去玩足球。
(3)太原市的夏天既干燥又炎热。
(4)所有人都有饭吃。
(5)喜欢玩篮球的人必喜欢玩排球。
(6)要想出国留学,必须通过外语考试。
2.7 房内有一只猴子、一个箱子,天花板上挂了一串香蕉,其位置关系如图2. 11所示,猴子为了拿到香蕉,它必须把箱子推到香蕉下面,然后再爬到箱子上。
请定义必要的谓词,写出问题的初始状态(即图2.16所示的状态)、目标状态(猴子拿到了香蕉,站在箱子上,箱子位于位置b)。
图2.11 猴子摘香蕉问题2.8 对习题2.7中的猴子摘香蕉问题,利用一阶谓词逻辑表述一个行动规划,使问题从初始状态变化到目标状态。
2.9 产生式的基本形式是什么?它与谓词逻辑中的蕴含式有什么共同处及不同处?2.10 何谓产生式系统?它由哪几部分组成?2.11 产生式系统中,推理机的推理方式有哪几种?在产生式推理过程中,如果发生策略冲突,如何解决?2.12 设有下列八数码难题:在一个3×3的方框内放有8个编号的小方块,紧邻空位的小方块可以移入到空位上,通过平移小方块可将某一布局变换为另一布局(如图2.12所示)。
人工智能教程习题及答案第2章习题参考解答
第二章知识表示习题参考解答2.3 练习题2.1 什么是知识?它有哪些特性?有哪几种分类方法?2.2 何谓知识表示? 陈述性知识表示法与过程性知识表示法的区别是什么?2.3 在选择知识的表示方法时,应该考虑哪些主要因素?2.4 一阶谓词逻辑表示法适合于表示哪种类型的知识?它有哪些特点?2.5 请写出用一阶谓词逻辑表示法表示知识的步骤。
2.6 设有下列语句,请用相应的谓词公式把它们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
(2)他每天下午都去玩足球。
(3)太原市的夏天既干燥又炎热。
(4)所有人都有饭吃。
(5)喜欢玩篮球的人必喜欢玩排球。
(6)要想出国留学,必须通过外语考试。
2.7 房内有一只猴子、一个箱子,天花板上挂了一串香蕉,其位置关系如图2. 11所示,猴子为了拿到香蕉,它必须把箱子推到香蕉下面,然后再爬到箱子上。
请定义必要的谓词,写出问题的初始状态(即图2.16 所示的状态)、目标状态(猴子拿到了香蕉,站在箱子上,箱子位于位置b)。
图2.11 猴子摘香蕉问题2.8 对习题2.7 中的猴子摘香蕉问题,利用一阶谓词逻辑表述一个行动规划,使问题从初始状态变化到目标状态。
2.9 产生式的基本形式是什么?它与谓词逻辑中的蕴含式有什么共同处及不同处?2.10 何谓产生式系统?它由哪几部分组成?2.11 产生式系统中,推理机的推理方式有哪几种?在产生式推理过程中,如果发生策略冲突,如何解决?2.12 设有下列八数码难题:在一个3× 3的方框内放有8 个编号的小方块,紧邻空位的小方块可以移入到空位上,通过平移小方块可将某一布局变换为另一布局(如图2.12 所示)。
请用产生式规则表示移动小方块的操作。
图2.12 习题2.12 的图图2.13 习题2.13 的图2.13 推销员旅行问题:设有五个相互可直达且距离已知的城市A、B、C、D、E,如图2.13 所示,推销员从城市A 出发,去其它四城市各旅行一次,最后再回到城市A ,请找出一条最短的旅行路线。
人工智能-课后答案
本页面为作品封面,下载文档后可自由编辑删除!精品文档课后习题4、AO*算法中,第7步从S中选一个节点,要求其子孙不在S中出现,讨论应如何实现对S的控制使得能有效地选出这个节点。
如下图所示,若E的耗散值发生变化时,所提出的对S的处理方法应能正确工作。
错误!未找到引用源。
5、如何修改AO*算法使之能处理出现回路的情况。
如下图所示,若节点C的耗散值发生变化时,所修改的算法能正确处理这种情况。
错误!未找到引用源。
6、对3×3的一字棋,设用+1和-1分别表示两选手棋子的标记,用0表示空格,试给出一字棋产生式系统的描述。
错误!未找到引用源。
7、写一个α-β搜索的算法。
错误!未找到引用源。
8、用一个9维向量C来表示一字棋棋盘的格局,其分量根据相应格内的×,空或○的标记分别用+1,0,或-1来表示。
试规定另一个9维向量W,使得点积C·W可作为MAX选手(棋子标记为×)估计非终端位置的一个有效的评价函数。
用这个评价函数来完成几步极小-极大搜索,并分析该评价函数的效果。
第四章课后习题13、一个积木世界的状态由下列公式集描述:ONTABLE(A)CLEAR(E)ONTABLE(C)CLEAR(D)ON(D,C)HEAVY(D)ON(B,A)WOODEN(B)HEAVY(B)ON(E,B)绘出这些公式所描述的状态的草图。
下列语句提供了有关这个积木世界的一般知识:每个大的蓝色积木块是在一个绿色积木块上。
每个重的木制积木块是大的。
所有顶上没有东西的积木块都是蓝色的。
所有木制积木块是蓝色的。
以具有单文字后项的蕴涵式的集合表示这些语句。
绘出能求解"哪个积木块是在绿积木块上"这个问题的一致解图(用B规则)。
第五章课后习题1.将下面的公式化成子句集~( (( P ∨~Q) → R) → (P ∧ R))2.命题是数理逻辑中常用的公式,试使用归结法证明它们的正确性:a) P → ( Q → P )b) ( P → ( Q→ R )) → ((P → Q) → ( P → R))c) ( Q → ~P) → ((Q → P) → ~ Q)3.下列子句是否可以合一,如果可以,写出最一般合一置换a) P(x, B, B) 和 P(A, y, z)b) P( g( f (v)) , g(u) ) 和 P(x , x)c) P( x , f(x) ) 和 P(y, y)d) P(y, y , B) 和 P( z, x , z)4.解释 P( f (x, x), A) 和 P( f (y , f (y, A )) , A )为什么不能合一5.将下列公式化为skolem子句形a) ((x) P(x) ∨ (x) Q(x)) → (x) ( P(x) ∨ Q(x) )b) (x) ( P(x) → (y) ( (z) Q(x , y) → ~ (z)R(y , x) ) )c) (x) P(x) → (x) ( ((z) Q(x ,z )) ∨ (z)R(x , y , z) )6.用归结法证明:存在一个绿色物体,如果有如下条件存在:a) 如果可以推动的物体是蓝色的,那么不可以推动的物体是绿色的b) 所有的物体或者是蓝色的,或者是绿色的,但不能同时具有两种颜色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能教程答案(DOC 46页)第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。
人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有的智力和行为能力。
智力是针对具体情况的,根据不同的情况有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。
1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识的方法。
即用一个有向图表示概念和概念之间的关系,其中节点代表概念,节点之间的连接弧(也称联想弧)代表概念之间的关系。
常见的语义网络形式有命题语义网络、数据语义网络:E-R图(实体-关系图)、语言语义网络等。
2.2解答:(1)(2)(3)bel GSg M P S MANAGERSPARTICIPATE PLAN ISA ISA ISAISA 动作主体F∀ 动作对象 BRANCH MANAGERS PROFIT-SHARINGPLAN ISA DEC ISAcolor GSg C H W CLOUD HAS LININGISA ISAISA ISA 动作主体 F ∀动作对象 SILVER GSg M A H MAN ARE MORTAL ISA ISA ISAISA 动作主体F∀ 动作对象2.3解答:设有如下四个谓词:HUMAN(X) X是人LAWED(X) X受法律管制COMMIT(X) X犯法PUNISHED(X) X受法律制裁前两个谓词可以变为:HUMAN(X) LAWED(X),表示:人人都要受法律的管制;后两个谓词可以变为:COMMIT(X) PUNISHED(X),表示只要X犯了罪,X就要受到惩罚;进一步,还可以把上述两个谓词联结成如下形式:[HUMAN(X) LAWED(X)] [COMMIT(X) PUNISHED(X)]本公式的含义是:如果由于某个X是人而受到法律管制,则这个人犯了罪就一定要受到惩罚。
晁盖是人,受法律的管制(老百姓受法律的管制);所以晁盖劫了生辰纲,违反了宋王朝的法律,一定要受到官府的追究。
高衙内是人,却不受法律的管制(达官贵人和恶少不受法律的管制);所以高衙内强抢民女,同样是违反了宋王朝的法律,却可以横行无忌。
推得:李、徐、周、推得:陈与2.4解答:题中提供的条件可记为①②③④⑤,依次利用这些条件可得到如下结果: (1)条件②:周和钱是同一性别;条件⑤:李、徐、周是同一性别;条件③:李的爱人是陈的爱人的表哥,则李的爱人性别是男,而李的性别是女这样可以初步推出:李、徐、周、钱均是女的,对应的王、陈、孙、吴均是男的。
(2)条件④:陈与徐、周俊不构成夫妻,则陈选择的余地为钱或李;条件③:李与陈不构成夫妻;条件④:吴与徐、周均不构成夫妻,则吴选择的余地为李;推得:吴与李是夫妻条件①:王与周不构成夫妻,则王选择的余地为徐;推得:王与徐是夫妻排除上述已经成立的条件,显然可推得:孙与周是夫妻。
2.5解答:符号微积分基本公式为b aba x F a Fb F x f |)()()()(⎰=-= 用产生式表示为:If f(x) and (a,b) Then F(b)-F(a)2.6解答:题中描述的情况用谓词形式可表达如下:DOG(X) X是狗SOUND(X) X会吠叫BIT(X,Y) X咬YANIMAL(X) X是动物题中各条推理则可以表示为:P1: ∀x DOG(X) ∃yBIT(X,Y)∨SOUND(X)P2: :∀x(ANIMAL(X)∧SOUND(X))∃yBIT(X,Y)P3: 猎犬是狗,即DOG(X)种X的谓词样品是猎犬,同时也可得ANIMAL(猎犬)将P3带入P1可得SOUND(猎犬),再将SOUND(猎犬)和ANIMAL(猎犬)带入P2可得∃yBIT(猎犬,Y),即可以得到结果:猎犬是咬人的。
2.7解答:题中的三条规则侧重点不同:R1规则的重点在于我师的任务;R2规则的重点在于敌团的配置;R3规则的重点在于我师的任务和敌团的配置同时满足。
它们之间的关系为R1⊂ R2⊂ R3。
所以根据冲突解决规则中的规模排序,可知首先应该选择规则R3,系统执行才最有效。
2.8 解答:2.9 解答:(1) Z I B CLYDE是 ISAISA ISA 动作主体 动作对象 知更鸟鸟 ISA CL-1 ISA C F会 飞ISA ISAH N占巢ISATIME S T A春天 到 秋天ISA ISA ISA鸵非(2) 摇海战轻动作主体 动作对象 动作方式2.10 解答:2.11解答:在产生式系统中,随着产生式规则的数量的增加,系统设计者难以理解规则间的相互作用,究其原因,在于每条规则的自含性使得知识表示的力度过于细微。
因此要提高产生式系统的可理解性,就应当按照软件工程的思想,通过对规则的适当划分,将规则组织诚易于管理的功能模块。
由于框架系统具有组织成块知识的良好特性,因此将两者进行有机结合,可以为产生式系统的开发、调试和管理提供有益的帮助。
基于框架的表示机制可以用作产生式语言和推理机制设计的一个重要构件。
另外,框架可以直接用于表示规则,如果将每一个规则作为一个 TV TP …TDTB Z … B 图书A 工业一般工业技术 矿业工程 自动化技术、计算机技术水利工程 书作IS出版出框架处理,一组用于解决特定问题的规则可组织成一类,且在这一类框架中表示这组规则的各种特性。
2.12 解答:略2.13 解答:(1)题目描述可转换为如下问题(N阶汉诺塔问题)有编号为A、B、C 的三个柱子和标识为1、2、…、N的尺寸依次从小到大的N个有中心孔的金片;初始状态下N个金片按1、2、…、N 顺序堆放在A号柱子上,目标状态下N个金片以同样次序顺序堆放在 B 号柱子上,金片的搬移须遵守以下规则:每次只能搬一个金片,且较大金片不能压放在较小金片之上,可以借助于C 针。
(2)假设基本操作为move(x,A,C,B),表示将x 个金片从A移到B上,中间可借助于C。
当N=1时,则无需借助中间的C针,就可以直接实现将1个金片从A移到B上,这也是问题的最简操作,可表示为move-one(1,A,B);当N>1时,需要用中间的C针作辅助。
其操作又可分为以下三步:将N-1个金片从A移到C上,中间可借助于B,转换为基本操作就是move(N-1,A, B, C);将1个金片直接从A移到B上,转换为基本操作就是move-one(1,A,B);将N-1个金片从C移到B上,中间可借助于A,转换为基本操作就是move(N-1, C, A, B);这样,就将问题的规模减小为N-1,依次递归求解就可以得到相应的结果。
(3)设M(x)表示移动x个金片所需要的操作次数,则上述N阶汉诺塔问题可以表示成如下形式:M(1)=1M(N)=2M(N-1)+1最后可以解得M(N)=2N-1下面给出对梵塔问题给出产生式系统描述,并讨论N为任意时状态空间的规模。
(1)综合数据库定义三元组:(A, B, C),其中A, B, C分别表示三根立柱,均为表,表的元素为1~N之间的整数,表示N个不同大小的盘子,数值小的数表示小盘子,数值大的数表示大盘子。
表的第一个元素表示立柱最上面的柱子,其余类推。
(2)规则集为了方便表示规则集,引入以下几个函数:first(L):取表的第一个元素,对于空表,first 得到一个很大的大于N的数值。
tail(L):取表除了第一个元素以外,其余元素组成的表。
cons(x, L):将x加入到表L的最前面。
规则集:r1: IF (A, B, C) and (first(A) < first(B)) THEN (tail(A), cons(first(A), B), C)r2: IF (A, B, C) and (first(A) < first(C)) THEN (tail(A), B, cons(first(A), C))r3: IF (A, B, C) and (first(B) < first(C)) THEN (A, tail(B), cons(first(B), C))r4: IF (A, B, C) and (first(B) < first(A)) THEN (cons(first(B), A), tail(B), C)r5: IF (A, B, C) and (first(C) < first(A)) THEN (cons(first(C), A), B, tail(C))r6: IF (A, B, C) and (first(C) < first(B)) THEN(A, cons(first(C), B), tail(C))(3)初始状态:((1,2,...,N),(),())(4)结束状态:((),(),(1,2,...,N))问题的状态规模:每一个盘子都有三种选择:在A上、或者在B上、或者在C上,共N个盘子,所以共有种可能。
即问题的状态规模为。
2.14 解答:(1)定义谓词G(x,y):x比y大,个体有张三(zhang)、李四(li),将这些个体带入谓词中,得到G(zhang,li)和⌝G(zhang,li),根据语义用逻辑连接词将它们联结起来就得到表示上述知识的谓词公式:G(zhang,li) ⌝G(zhang,li)。