七年级上册数学典型例题
人教版七年级数学(上)第一章《整式》经典例题及练习含答案
人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
七年级数学上册(沪科版)典型题培优训练
七年级数学上册典型题训练1、 ()()20042004424250131515131⨯-+-+-÷⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-.2、已知431)119991(441=++x ,则代数式19991999481872+⋅+x x 的值。
3、(9-10)×(10-11)×(11-12)×……×(108-109) 4、计算:200720061......431321211⨯++⨯+⨯+⨯ 5、计算 2-22-23-24-……-218-219+220. 6、计算:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311...9811991110011 7、已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如图).化简b c b a a -+-+8、解下列方程(1)03.0x 02.003.025-x -5.09-x 4.0+= (2)x x x --=+-4.013.08.037.01(3) 31221+-=--x x x (4) │x-1│+│x-5│=4(5)23)6(2)232(25+-=++x x x (6) x x 413243-=+9、代数式ababb b a a ++的所有可能的值有( )个(2、3、4、无数个) 10、已知单项式23ma b 与4112n a b --的和是单项式,则m= ,n= ;11、已知二元一次方程643=+y x ,当x 、y 互为相反数时,x=_____,y =_____;当x 与y 相等时,x =_____,y =______12、方程1523=+y x 的自然数解为_______________ 13、已知:3x-6y-5=0,则2x-4y+6=_____(特殊值法这种方法只对填空和选择题可用)14、已知代数式1)1(++-n n x x ,其中n 为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .15、从⎩⎨⎧=--=ty tx 523中消去t ,得x 、y 之间的关系式为__________16、如果0)1()52(22=--+-+y x y x ,则x +y =_____ 17、当=x ___时,代数式24+x 与93-x 的值互为相反数.18、 如果代数式2x 2+3x+7的值为8,则4x 2+6x-9的值为19、单项式2237xy π-的系数是 ,次数是 。
七年级数学(上册)第3章代数式典型例题及解答解析)
第三章代数式典型例题及解答例1.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( )A.1B.23b +C.23a -D.-11解.B 解析:由数轴可知错误!未找到引用源。
,且错误!未找到引用源。
,所以错误!未找到引用源。
,故12(1)(2)+--++=+--a b a b a b a b . 例2.在排成每行七天的日历表中取下一个33⨯方块(如图).若所有日期数之和为189,则错误!未找到引用源。
的值为( )A.21B.11C.15D.92解.A 解析:日历的排列是有一定规律的,在日历表中取下一个3×3方块,当中间的数是错误!未找到引用源。
的话,它上面的数是错误!未找到引用源。
,下面的数是错误!未找到引用源。
,左边的数是错误!未找到引用源。
,右边的数是错误!未找到引用源。
,左边最上面的数是错误!未找到引用源。
,最下面的数是错误!未找到引用源。
, 右边最上面的数是错误!未找到引用源。
,最下面的数是错误!未找到引用源。
.若所有日期数之和为189,则错误!未找到引用源。
错误!未找到引用源。
,即错误!未找到引用源。
,解得:错误!未找到引用源。
,故选A . 例3.如图:(1)阴影部分的周长是: ;(2)阴影部分的面积是: ;(3)当错误!未找到引用源。
,错误!未找到引用源。
时,阴影部分的周长是 ,面积是 .3解.(1)错误!未找到引用源。
(2)错误!未找到引用源。
(3)46,77 解析:阴影部分的面积是:错误!未找到引用源。
.例4.当242a b a b -=+时,代数式3(2)3(2)4(2)2a b a b a b a b-+++-的值是 . 4解.154解析:因为422=+-b a b a ,所以4122=-+b a b a , 例5.当错误!未找到引用源。
时,代数式13++qx px 的值为2005,则当错误!未找到引用源。
时,代数式13++qx px 的值为__________.5解.-2 003 解析:因为当错误!未找到引用源。
七年级数学上册第三章一元一次方程经典大题例题
(名师选题)七年级数学上册第三章一元一次方程经典大题例题单选题1、在解关于y的方程2y-13=y+a2-1时,小明在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为y=4,则方程正确的解是()A.y=-1B.y=-2C.y=1D.y=2答案:A分析:把y=4代入方程2(2y-1)=3(y+a)-1得出2×(8-1)=3(4+a)-1,求出方程的解是a=1,把a=1代入方程2y-1 3=y+a2-1得出2y-13=y+12-1,再去分母,去括号,移项,合并同类项,系数化成1即可.解:∵在解关于y的方程2y-13=y+a2-1时,小明在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为y=4,∴把y=4代入方程2(2y-1)=3(y+a)-1,得2×(8-1)=3(4+a)-1,解得:a=1,即方程为2y-13=y+12-1,去分母得2(2y-1)=3(y+1)-6,去括号得4y-2=3y+3-6,移项得4y-3y=3-6+2,解得y=-1,故选:A.小提示:本题考查一元一次方程的解和解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.2、古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x,则所列方程为()A.23x+17x+x=33B.23x+12x+17x=33C.23x+12x+17x+x=33D.x+23x+17x−12x=33答案:C分析:根据题意列方程23x+12x+17x+x=33.解:由题意可得23x+12x+17x+x=33.故选C小提示:本题考查了一元一次方程的应用,找等量关系是解题的关键.3、解方程3x−12=1−x+33时,去分母结果正确的是()A.3(3x−1)=1−2(x+3)B.3(3x−1)=1−(x+3) C.2(3x−1)=6−3(x+3)D.3(3x−1)=6−2(x+3)答案:D分析:根据等式的性质,把方程3x−12=1−x+33的等号的左右两边分别乘6,判断出去分母结果正确的是哪个即可.解:解方程3x−12=1−x+33时,去分母结果正确的是:3(3x-1)=6-2(x+3).故选:D.小提示:此题主要考查了解一元一次方程的方法,注意等式的性质的应用.4、下列运用等式的性质对等式进行的变形中,错误的是()A.若a(x2+1)=b(x2+1),则a=b B.若a=b,则ac=bcC.若a=b,则ac2=bc2D.若x=y,则x−3=y−3答案:C分析:根据等式的性质,逐项判断即可.解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.小提示:此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5、《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x只,可列方程为()A.4x+2(94−x)=35B.4x+2(35−x)=94C.2x+4(94−x)=35D.2x+4(35−x)=94答案:D分析:设鸡有x只,则兔子有(35-x)只,根据足共有94列出方程即可.解:设鸡有x只,则兔子有(35-x)只,根据题意可得:2x+4(35-x)=94,故选:D.小提示:题目主要考查一元一次方程的应用,理解题意列出方程是解题关键.6、下列方程变形中,正确的是()=1,去分母,得3(x−2)−(4x−3)=1A.x−2−4x−33B.1+x=4,移项,得x=4−1C.2x−(1−3x)=5,去括号,得2x−1−3x=5D.2x=−3,两边都除以2,得x=−23答案:B分析:根据去分母、去括号、移项、系数化1等基本步骤逐项判断即可.=1,去分母,得3(x−2)−(4x−3)=3,故本选项错误,不合题意;解:A,x−2−4x−33B,1+x=4,移项,得x=4−1,故本选项正确,符合题意;C,2x−(1−3x)=5,去括号,得2x−1+3x=5,故本选项错误,不合题意;,故本选项错误,不合题意;D,2x=−3,两边都除以2,得x=−32故选B.小提示:本题考查解一元一次方程,解题的关键是掌握去分母、去括号、移项、系数化1等基本步骤.7、在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4) C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)答案:A分析:根据水的体积不变的性质以及圆柱体体积计算公式,即可列出一元一次方程,从而得到答案. 依题意得:π×(92)2×x =π×(52)2×(x+4)故选:A .小提示:本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.8、将连续的奇数1、3、5、7、9、11等,按一定规律排成如图:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数.若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .34B .62C .118D .158答案:A分析:由题意,设T 字框内处于中间且靠上方的数为2n ﹣1,则框内该数左边的数为2n ﹣3,右边的为2n +1,下面的数为2n ﹣1+10,故T 字框内四个数的和为:8n +6.由题意,设T 字框内处于中间且靠上方的数为2n ﹣1,则框内该数左边的数为2n ﹣3,右边的为2n +1,下面的数为2n ﹣1+10,∴T 字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为34,则有:8n+6=34,解得n=3.5.不满足整数的条件.故框住的四个数的和不能等于34,故本选项符合题意;B、由题意,令框住的四个数的和为62,则有:8n+6=62,解得n=7.满足整数的条件.故本选项不符合题意;C、由题意,令框住的四个数的和为118,则有:8n+6=118,解得n=14.满足整数的条件.故本选项不符合题意;D、由题意,令框住的四个数的和为158,则有:8n+6=158,解得n=19.满足整数的条件.故本选项不符合题意;故选:A.小提示:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.9、已知x=y,则下列等式不一定成立的是()A.x﹣k=y﹣kB.x+2k=y+2kC.xk =ykD.kx=ky答案:C分析:根据等式的基本性质1是等式两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式两边都乘以(或除以)同一个数(除数不为0),所得的结果仍是等式可以得出答案.解:A、因为x=y,根据等式性质1,等式两边都减去k,等式仍然成立,所以A正确;B、因为x=y,根据等式性质1,等式两边都加上2k,等式仍然成立,所以B正确;C、因为x=y,根据等式性质2,等式两边都同时除以一个不为0的数,等式才成立,由于此选项没强调k≠0,所以C不一定成立;D、因为x=y,根据等式的基本性质2,等式两边都乘以k,等式仍然成立,所以D正确.故选C.小提示:本题主要考查了等式的基本性质,熟练掌握等式的基本性质以及理解到位除数不能为0是解决本题的关键.10、下列解方程的过程中,移项错误的是()A.方程2x+6=−3变形为2x=−6+3B.方程2x−6=−3变形为2x=−3+6C.方程3x=4−x变形为3x+x=4D.方程4−x=3x变形为x+3x=4答案:A分析:各方程移项变形得到结果,即可作出判断.解:A、方程2x+6=-3变形为2x=-3-6,该选项符合题意;B、方程2x-6=-3变形为2x=-3+6,该选项不符合题意;C、方程3x=4-x变形为3x+x=4,该选项不符合题意;D、方程4-x=3x变形为x+3x=4,该选项不符合题意.故选:A.小提示:此题考查了解一元一次方程,以及等式的性质,熟练掌握等式的性质是解本题的关键.填空题11、某足球协会举办一次足球赛,其记分规则及奖励方案(每人)如下表:(1)A队胜______场;(2)若每赛一场每名队员均得出场费500元,则A队的某一名队员在这12场比赛中所得的奖金与他的出场费的和为______元.答案: 5 18400分析:(1)设A队胜利x场,则平了(12−x)场,根据总积分为22分列出方程即可求解;(2)根据(1)中求得胜场数和平场数计算每名队员的奖金和出场费的总和即可解题.解:(1)设A队胜利x场,则平了(12−x)场,根据题意得:3x+(12−x)=22,解得:x=5;∴A队胜5场.所以答案是:5.(2)∵每场比赛出场费500元,12场比赛出场费共500×12=6000(元),赢了5场,奖金为1500×5=7500(元),平了7场,奖金为700×7=4900(元),∴奖金加出场费一共6000+7500+4900=18400(元).所以答案是:18400.小提示:本题主要考查了一元一次方程的应用,本题中根据总场数和总积分,设A队胜利x场,列出方程求解,是解题的关键.12、如图,在编写数学谜题时,“口”内要求填写同一个数字,若设“口”内的数字为y,则可列出方程___________.答案:5(120+y)=100y+30分析:根据题意可知,第一个乘数可以表示为120+y,积可以表示为100y+30,由此列出方程即可.解:由题意得:5(120+y)=100y+30,所以答案是:5(120+y)=100y+30.小提示:本题主要考查了列一元一次方程,正确理解题意是解题的关键.13、已知x+2y−3=0,用含x的代数式表示y:__________,用含y的代数式表示x:_________.答案:y=3−xx=3−2y2分析:先把x当常数,求解函数值y,再把y当常数,求解自变量x,从而可得答案.解:∵x+2y−3=0,∴2y=−x+3,∴y=3−x2,∵x+2y−3=0,∴x=3−2y,所以答案是:y=3−x2,x=3−2y小提示:本题考查的是函数自变量与因变量之间的关系,掌握用含有一个变量的代数式表示另外一个变量是解题的关键.14、如果关于x的方程12022x+2021=2x+m的解是x=2023,则关于y的方程12022(y+1)+2021=2(y+1)+m的解是y=___.答案:2022分析:根据题意得到y+1=2023,即可求出y的值.解:∵关于x的方程12022x+2021=2x+m的解是x=2023,∴关于y的方程12022(y+1)+2021=2(y+1)+m中的y+1=2023,解得:y=2022,所以答案是:2022.小提示:此题考查了一元一次方程解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程解的含义.15、为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月),例如:王女士家6月份用电420度,电费=180×0.6+220×0.7+20×0.9=280元,实行“阶梯价格”收费以后,居民用电__________千瓦时,其当月的平均电价每千瓦时恰好为0.65元.分析:设实行“阶梯价格”收费以后,居民月用电x千瓦时,其当月的平均电价每千瓦时恰好为0.65元,分情况讨论得出180<x<400,再由题意列出方程,解方程即可.解:设实行“阶梯价格”收费以后,居民月用电x千瓦时,其当月的平均电价每千瓦时恰好为0.65元,①当居民月用电量0<x≤180时,∵0.6<0.65,∴x>180;②当x=400时,电费为:180×0.6+220×0.7=262(元),平均电价=262÷400=0.655(元/度),∴180<x<400;由题意得:180×0.6+(x﹣180)×0.7=0.65x,解得:x=360.故实行“阶梯价格”收费以后,居民用电360千瓦时,其当月的平均电价每千瓦时恰好为0.65元.所以答案是:360.小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.解答题,则称该方程为“商解方程”.例如:2 16、我们规定:若关于x的一元一次方程a+x=b(a≠0)的解为x=ba+x=4的解为x=2且2=4,则方程2+x=4是“商解方程”.请回答下列问题:2(1)判断3+x=5是不是“商解方程”.(2)若关于x的一元一次方程6+x=3(m﹣3)是“商解方程”,求m的值.答案:(1)不是(2)m=275分析:(1)求出方程的解是x=2,再进行判断即可;(2)先求出方程的解,再根据题意得出关于m的方程,最后求出方程的解即可.(1)3+x=5,x=2,而2≠5,3所以3+x=5不是“商解方程”;(2)6+x =3(m −3),6+x =3m −9,x =3m −9−6=3m −15,∵关于x 的一元一次方程6+x =3(m −3)是“商解方程”,∴ 3(m−3)6=3m −15,解得:m =275.小提示:本题考查了一元一次方程的解和解一元一次方程,能熟记方程的解的定义(使方程左右两边相等的未知数的值,叫方程的解)是解此题的关键.17、观察下列两个等式:1−23=2×1×23−1,2−35=2×2×35−1. 给出定义如下:我们称使等式a −b =2ab −1成立的一对有理数(a ,b )为“好姊妹数对”,如:数对(1,23),(2,35),都是“好姊妹数对”. (1)数对(-2,1),(3,47)是“好姊妹数对”吗?(2)若(a ,3)是“好姊妹数对”,求a 的值;(3)若(m ,n )是“好姊妹数对”,那么(-n ,-m )是“好姊妹数对”吗?答案:(1)(−2,1)不“好姊妹数对”,(3,47)是“好姊妹数对”(2)a =−25(3)是“好姊妹数对”,理由见解析分析:(1)根据“好姊妹数对”的定义判断即可;(2)根据“好姊妹数对”的定义可得关于a 的一元一次方程,解方程即可;(3)根据“好姊妹数对”的定义解答即可.(1)解:(−2,1)不“好姊妹数对”,(3,47)是“好姊妹数对”,理由如下:∵−2−1=−3,2×(−2)×1−1=−5,∴(−2,1)不是“好姊妹数对”;∵3−47=177,2×3×47−1=177, ∴(3,47)是“好姊妹数对”.(2)解:∵(a,3)是“好姊妹数对”,∴a −3=6a −1,∴a =−25. (3)解:是“好姊妹数对”.理由:∵(m,n )是“好姊妹数对”,∴m −n =2mn −1,∴−n −(−m )=−n +m =m −n =2mn −1,∴(−n,−m )是“好姊妹数对”.小提示:本题考查有理数的混合运算、新定义,解答本题的关键是会用新定义解答问题.18、为了平衡电力负荷,减少用电高峰时段用电和不必要的能源消耗,浙江省居民生活用电可申请“峰谷电”,两种收费标准如下:未申请峰谷电即阶梯电价收员标准:低谷时用电200千瓦时.如果不申请峰谷电则需费用0.54×230+0.59×(300−230);若申请峰谷电则需费用0.57×100+0.29×200+0.05×(300−230).(1)小明家5月份用电总量为400千瓦时,其中峰时用电量为150千瓦时,低谷时间段用电量为250千瓦时,如不申请峰谷电,应付电费______元;若申请峰谷电,应付电费______元;(2)小强家未申请峰谷电,8月份一共交电费308.5元,求小强家8月份的用电总量;(3)小强听小朋介绍峰谷电节能且收费便宜,于是9月份就申请了峰谷电, 9月份用电总量是330千瓦时,经计算申请峰谷电后比申请前节约了54.5元,求小强家9月份的峰时用电量为多少?答案:(1)224.5 ;166.5(2)小强家8月份用电总量500千瓦时(3)小强家9月份峰时用电100千瓦时分析:(1)根据两种计费方式进行求解即可;(2)可设小强家8月份用电总量为x千瓦时,根据未申请峰谷电的方式进行列方程计算即可;(3)根据两种方式相差54.5元可列出方程求解.(1)解:不申请峰谷电,应付电费为:0.54×230+0.59×(400﹣230)=224.5(元),请峰谷电,应付电费为:0.57×150+0.29×250+0.05×(400﹣230)=166.5(元),所以答案是:224.5,166.5;(2)解:∵308.5>224.5,∴用电量超过400千瓦时,设小强家8月份用电总量为x千瓦时,依题意得:0.54×230+0.59×(400﹣230)+0.84(x﹣400)=308.5,解得:x=500,答:小强家8月份用电总量为500千瓦时;(3)解:设小强家9月份的峰时用电量为y千瓦时,依题意得:0.54×230+0.59×(330﹣230)﹣[0.57y+0.29(330﹣y)+0.05×(330﹣230)]=54.5,解得:y=100,答:小强家9月份的峰时用电量为100千瓦时.小提示:本题主要考查一元一次方程的应用,解答的关键是理解清楚题意找到等量关系.。
北师大版七年级数学上册《角》典型例题(含答案)
《角》典型例题例1 指出下面角的表示方法是否正确,错误的改正过来。
(1)如图①中的角可以表示为ABC∠;(2)如图②中的BAC∠可以表示为A∠。
例2 如图,用量角器度量三角形的三个角,并指出哪个角是钝角。
例3 计算:(1)0.12°=()′ (2)24′36″=()°例4如图,在海岸上有A、B两个观测站,B观测站与A观测站的距离是2.5km,某天,A观测站观测到有一条船在南偏东50°方向,在同一时刻,B观测站观测到该船在南偏东74°方向.(1)请根据以上情况画出船的位置.(2)计算船到B观测站的距离(画图时用1cm表示1km)例5 如图:(1)以B为顶点的角有几个:把它们表示出来;(2)指出以射线BA为边的角;(3)以D为顶点,DC为一边的角有几个?分别表示出来。
例6 填空题(1);______638128︒='''︒(2)=''0451 '''︒;(3)=︒26.78 '''︒;(4)︒120=________平角=_______周角。
例7 求时钟表面3点25分时,时针与分针所夹角的度数.参考答案例1 分析 (1)中角顶点的字母没有写在中间,(2)中用A ∠表示,就很难分清是表示三个角中的哪个角。
解 (1)错,应表示为BAC ∠;(2)错,它能用BAC ∠或α∠表示。
说明:(1)表示角时顶点字母必须写在中间;(2)用顶点一个字母去表示角时,必须分清楚表示的是哪个角。
例 2 分析 度量时应注意把量角器中角的顶点和所要度量的角的顶点重合,把量角器的“0”点落在被量角的一边上,使被量角的另一边和量角器都在被量角这一边的同侧,这时被量角的另一边所对的刻度就是这个角的度数。
解 经度量︒=∠140A 是钝角;︒=∠︒=∠15,25C B 。
说明:学生所用的一般量角器只精确到度,有时要根据观察来确定角的近似值。
七年级上册数学例题汇总(一)
七年级上册数学例题汇总P3例(2)某年下列国家的商品进出口总额比上年的变化情况是: 美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%,中国增长7.5%. 写出这些国家该年商品进出口总额的增长率. 解:六个国家该年商品出口总额的增长率:美国 -6.4%, 德国 1.3%, 法国 -2.4%, 英国 -3.5%,意大利 0.2%, 中国 7.5%. P13 例比较下列各数的大小(1))1(--和)2(+- ; (2) 73218--和 ; (3)31)3.0(---和解:(1)先化简,1)1(=--,2)2(-=+-. 因为正数大于负数,所以21->,即>--)1()2(+-(2)这是两个负数比较大小,先求它们的绝对值。
218218=-,2197373== 因为219218<,即73218-<-, 所以73218->-。
(3)先化简,3.0)3.0(=--,3131=-。
因为313.0<, 所以31)3.0(-<--。
P18例1 计算(1))9()3(-+-; (2)9.3)7.4(+-解(1)12)93()9()3(-=+-=-+- (2)8.0)9.37.4(9.3)7.4(-=--=+-P19例2 计算)35(24)25(16-++-+。
解:)35(24)25(16-++-+)]35()25[(2416-+-++= )60(40-+=20=P20例3 每袋小麦的标准重量为90千克,10袋小麦称重记录如 图所示,与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?解法1:先计算10袋小麦的总重量,91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4再计算总计超过多少千克, 905.4 –90×10=5.4答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克. 解法2:每袋小麦超过标准重量的千克数记作正数,不足的千克数记作负数,10袋小麦对应的数为+1,+1, +1.5,–1,+1.2,+1.3,–1.3,–1.2,+1.8,+1.1.1+1+1.5+(–1)+1.2+1.3+(–1.3)+(–1.2)+1.8+1.1 =[1+(–1)]+[1.2+(–1.2)]+[1.3+(–1.3)]+(1+1.5+1.8+1.1) =5.490×10+5.4=905.4答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克. 例4 计算(1))5()3(--- (2)70- (3))8.4(2.7-- (4)415)213(-- 解:(1)25)3()5()3(=+-=--- (2)7)7(070-=-+=- (3)128.42.7)8.4(2.7=+=-- (4)438)415()213(415)213(-=-+-=--。
初中七年级数学上册-《相反数》典型例题2
典型例题二
例2 下面说法中正确的是( ).
A .
32和2
3是互为相反数 B .8
1和125.0 是互为相反数 C .-a 的相反数是正数; D .两个表示相反意义的数是相反数
分析:互为相反数的数应是数字相同,符号不同的数.A 中的两个数是互为倒数,它们不是互为相反数,要注意区别相反数与倒数;B 中的两个数的符号不同,数字相同,81=0.125,所以它们是互为相反数;C 中的-a 不一定是负数,若a 是负数,则-a 是正数,正数的相反数是负数;D 中要注意区别相反数和相反意义的量,在数轴上互为相反数是在原点两旁,并且与原点距离相等的两个数,相反意义的量则不同,如向东行40米和向西行50米是相反意义的量,不是相反数.
解:根据分析,A 、C 、D 均错,只有B 对,
∴选B .。
人教版-数学-七年级上册-《去括号》典型例题
《去括号》典型例题例1 解下列方程:(1))72(65)8(5-=-+x x(2))1(2)1()1(3-=--+x x x(3)()[]{}1720815432=----x例2 某抗洪突击队有50名队员,承担着保护大堤的任务.已知在相同的时间内,每名队员可装土7袋或运土3袋.问应如何分配人数,才能使装好的土及时运到大堤上?例3 蜘蛛有8条腿,蜻蜓有6条腿.现有蜘蛛、蜻蜓若干只,它们共有270条腿,且蜻蜓的只数是蜘蛛的2倍少5.问蜘蛛、蜻蜓各有多少只?例4 (北京崇文,2003)小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?例5(“希望杯”试题)方程0333321212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 的解为__________.参考答案例1 分析:方程中含有多重括号,一般方法是逐层去括号,但考虑到本题的特点,可先将-7移到右边,再两边除以2,自动地去掉了大括号,同理去掉中括号,再去掉小括号.解:(1)去括号,得42125405-=-+x x移项,得54042125+--=-x x合并,得777-=-x系数化为1,得11=x(2)去括号,得22133-=+-+x x x移项,得13223+--=-+x x x合并,得42-=x系数化为1,得2-=x(3)移项,得()[]{}820815432=---x两边都除以2,得[]4208)15(43=---x移项,得[]248)15(43=--x两边都除以3,得88)15(4=--x移项,得16)15(4=-x两边都除以4,得415=-x移项,得55=x系数化为1,得1=x说明:去括号时要注意括号前面的符号,是负号时去掉括号后要改变括号内各项的符号;解方程的过程是等式恒等变形的过程,计算中要注意括号、符号等,掌握正确计算的方法.例 2 解:设分配工人装土,则运土有)50(x -人.根据装上的袋数与运土的袋数相等的关系,列得)50(37x x -=去括号,得x x 31507-=移项及合并,得15010=x所以运土的人数为3550=-x .答:应分配15人装土,35人运土,才能使装好的土及时运到大堤上.说明:找准题目中的相等关系关键在于如何理解“装好的土及时运到大堤上”,即使得已装好土的袋数和运走的袋数是相同的,所以依靠总人数50人可没装土的人数为x 人,则可以用x 表示运土的人数.其实在题中还可以依靠其他的相等关系列方程,试试看.例3 解:设蜘蛛有x 只,则蜻蜓有)52(-x 只.根据蜘蛛与蜻蜓共有270条腿,列得270)52(68=-+x x去括号,得27030128=-+x x移项及合并,得30020=x15=x蜻蜓的只数为2552=-x答:蜘蛛有15只,蜻蜓有25只.说明:本题要求出两个未知数的值,但由于这两个未知数的关系为“2倍少5”,所以只要用x 表示其中的一个未知数,就可以用)52(-x 表示另一个未知数.如果设蜻蜓的只数为x ,那么应该如何列方程呢?应用题的答案与上面求得的答案一样吗?例4 分析:等量关系是:上次买牛奶的钱数+2=这次买牛奶的钱数.解:设上次买了x 袋这样的鲜奶,依题意得)2(5.228.2+=+x x55.228.2+=+x x255.28.2-=-x x33.0=x10=x答:小王上次买了10袋这样的鲜奶.说明:与市场经济相关联的方程应用题是当前中考的一个热点,要加强这方面的练习.例5 分析:方程里的括号较多,要依次去掉.解法1:去掉小括号,整理后03329412121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-x , 去掉中括号,整理后034218121=-⎭⎬⎫⎩⎨⎧-x , 去掉大括号,整理后0845161=-x . 去分母,得090=-x .所以90=x .解法2:-3移到右边,去掉大括号(乘以2),得6333212121=-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x , -3移到右边,乘以2去掉中括号,得18332121=-⎪⎭⎫ ⎝⎛-x , -3移到右边,乘以2去掉小括号,得42321=-x 易得90=x说明:①解此方程要边去括号,边运算、化简;②解法2运算量小.。
河南省七年级数学上册第一章有理数典型例题
河南省七年级数学上册第一章有理数典型例题单选题1、华为最新款手机芯片“麒麟990”是一种微型处理器,每秒可进行100亿次运算,它工作2022秒可进行的运算次数用科学记数法表示为()A.0.2022×1014B.20.22×1012C.2.022×1013D.2.022×1014答案:C分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的值与小数点移动的位数相同,题中:1亿=108.解:100亿=1010,1010×2022=2.022×1013,故选:C.小提示:本题考查科学记数法的表示方法,关键要正确确定a的值以及n的值.2、在一次数学测验中,小明所在班级的平均分为86分,把高出平均分的部分记为正数,小明考了98分记作+12分,若小强成绩记作-4分,则他的考试分数为()A.90分B.88分C.84分D.82分答案:D分析:根据高出平均分的部分记作正数,得到低于平均分的部分记作负数,即可得到结果.解:根据题意得:小明98分,应记为+12分;小强成绩记作-4分,则他的考试分数为82分.故选:D.小提示:此题考查了正数与负数,弄清题意是解本题的关键.3、下列各数中,是负数的是()A.-1B.0C.0.2D.12答案:A分析:根据小于0的数为负数,可作出正确的选择.解:A、-1<0,是负数,故选项正确;B、0既不是正数,也不是负数,故选项错误;C、0.2>0,是正数,故选项错误;D、1>0,是正数,故选项错误.2故选:A.小提示:本题考查了负数.能够准确理解负数的概念是解题的关键.4、按照如图所示的计算程序,若x=3,则输出的结果是()A.1B.9C.−71D.−81答案:C分析:将x的值代入程序图中的程序按要求计算即可.解:当x=3时,10-x2=10-9=1>0,于是再把x=1输入,10-x2=10-1=9>0,不合题意;再把x=9输入,10-x2=10-81=-71<0,符合题意,因此输出的数为:-71,故选:C.小提示:本题主要考查了求代数式的值,有理数的混合运算,本题是操作型题目,按程序图的要求运算是解题的关键.5、若有理数a、b满足等式│b-a│-│a+b│=2b,则有理数数a、b在数轴上的位置可能是()A.B.C.D.答案:D分析:根据数值上表示的数和绝对值的意义逐一判断分析各项即可.解:A.∵a<0,b>0, |a|<|b|,∴|b−a|−|a+b|=(b−a)−(a+b)=b−a−a−b=−2a≠2b,∴选项不符合题意;B. ∵a>0,b>0, |a|<|b|,∴|b−a|−|a+b|=(b−a)−(a+b)=b−a−a−b=−2a≠2b,∴本选项不符合题意;C. ∵a>0,b>0, |a|>|b|,∴|b−a|−|a+b|=−(b−a)−(a+b)=−b+a−a−b=−2b≠2b,∴本选项不符合题意;D. ∵a<0,b<0, |a|>|b|,∴|b−a|−|a+b|=(b−a)+(a+b)=b−a+a+b=2b,∴本选项符合题意;故选:D.小提示:本题考查数轴,绝对值的意义,解题的关键是正确化简绝对值:正数和0的绝对值等于它本身,负数的绝对值等于它的相反数.6、观察下列三组数的运算:(−2)3=−8,−23=−8;(−3)3=−27,−33=−27;(−4)3=−64,−43=−64.联系这些具体数的乘方,可以发现规律.下列用字母a表示的式子:①当a<0时,a3=(−a)3;②当a>0时,−a3=(−a)3.其中表示的规律正确的是()A.①B.②C.①、②都正确D.①、②都不正确答案:B分析:根据三组数的运算的规律逐个判断即可得.解:由三组数的运算得:(−2)3=−8=−23=−[−(−2)]3,(−3)3=−27=−33=−[−(−3)]3,(−4)3=−64=−43=−[−(−4)]3,归纳类推得:当a<0时,a3=−(−a)3,式子①错误;由三组数的运算得:−23=−8=(−2)3,−33=−27=(−3)3,−43=−64=(−4)3,归纳类推得:当a>0时,−a3=(−a)3,式子②正确;故选:B.小提示:本题考查了有理数乘方的应用,正确归纳类推出一般规律是解题关键.7、为庆祝建党100周年,某党支部制作了精美的纪念章,其质量要求是“50±0.20克”,则下列纪念章质量符合标准的是()A.49.70克B.50.30克C.50.25克D.49.85克答案:D分析:将质量要求50±0.20克化为50−0.20克至50+0.20克,即可求解.解:∵质量要求是50±0.20克,∴质量要求是50−0.20克至50+0.20克,∵50−0.20=49.80,50+0.20=50.20,∴质量要求是49.80克至50.20克,∵49.80<49.85<50.20,∴49.85克符合标准,故选:D.小提示:本题考查正数和负数,解题的关键是将50±0.20克化为50−0.20克至50+0.20克.8、−2020的相反数为()A.−12020B.2020C.−2020D.12020答案:B−2020的相反数为-(-2020)=2020.故选B.小提示:此题考查了相反数,解题关键是正确理解相反数的定义.9、点A为数轴上表示-2的点,当点A沿数轴移动4个单位长度到点B时,点B所表示的数为( )A.2B.-6C.2或-6D.无法确定答案:C分析:点A为数轴上表示-2的点,即点A在原点左边表示2个单位长的点,当点A沿数轴移动4个单位长度到点B时,有两种情况:一是向右移动;二是向左移动.若向右移动,移动4个单位长度时,到原点右边表示2个长度单位的点,即2(或+2),若向左移动4个单位,B点在表示6个单位长度的点,即-6.解:点A为数轴上表示-2的点,当点A 沿数轴向左移动4个单位长度到点B 时,点B 所表示的数为-6.当点A 沿数轴向右移动4个单位长度到点B 时,点B 所表示的数为2.故选:C .小提示:此题是考查数轴的认识.数轴是规定了原点(0点)、方向和单位长度的直线,在原点(0点)左边的点所表示的数都是负数,右边的点表示的数都是正数.注意,点B 既可向右移动也可向左移动.10、a 与﹣2互为倒数,那么a 等于( )A .﹣2B .2C .﹣12D .12 答案:C分析:乘积是1的两数互为倒数.据此判断即可.解:a 与﹣2互为倒数,那么a 等于﹣12. 故选:C .小提示:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解题关键是掌握倒数的定义.11、已知实数a 在数轴上的对应点位置如图所示,则化简|a −1|−√(a −2)2的结果是( )A .3−2aB .−1C .1D .2a −3答案:D分析:根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.解:由图知:1<a <2,∴a−1>0,a−2<0,原式=a−1-|a −2|=a−1+(a−2)=2a−3.故选D .小提示:此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.12、如图,数轴上的两个点分别表示数a 和-2,则a 可以是( )A.-3B.-1C.1D.2答案:A分析:根据数轴上点的特征即可求解.解:由数轴可得,a在−2的左侧,故a<−2,故选A.小提示:本题考查了数轴上点的特点,熟悉数轴上点左侧数要比点右侧的数小是解题的关键.13、在数轴上点P表示的一个数是−2,将点P移动4个单位后所得的点A表示的数是()A.2或−6B.6或−6C.−6D.2答案:A分析:分点P向左移动和向右移动两种情况,根据数轴上点的移动规律即可求解.解:点P向左移动4个单位后,得到的点A表示的数是−2−4=−6;点P向右移动4个单位后,得到的点A表示的数是−2+4=2;所以答案是:A.小提示:本题考查数轴上点的移动规律:当数a表示的点向右移动b个单位长度后到达点表示的数为a+b,向左移动b个单位长度后到达点表示的数为a-b.14、实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<−2B.b<1C.a>b D.−a>b答案:D分析:根据数轴上的点的特征即可判断.解:点a在−2的右边,故a>−2,故A选项错误;点b在1的右边,故b>1,故B选项错误;b在a的右边,故b>a,故C选项错误;由数轴得:−2<a<−1.5,则1.5<−a<2,1<b<1.5,则−a>b,故D选项正确,故选:D.小提示:本题考查了数轴上的点,熟练掌握数轴上点的特征是解题的关键.15、a,b是有理数,它们在数轴上的位置如图所示.把a,b,﹣a,﹣b按照从小到大的顺序排列,正确的是()A.b<a<−a<−b B.−a<b<−b<aC.b<−a<a<−b D.−b<−a<a<b答案:C分析:先根据a,b两点在数轴上的位置判断出其符号,进而可得出结论.解:∵由图可知,b<0<a,|a|<|b|,∴0<a<-b,b<-a<0,∴b<-a<a<-b.故选:C.小提示:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.填空题16、如图,在数轴上,点A表示1,现将点A沿x轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是_________.答案:13分析:当n为奇数的点在点A的左边,各点所表示的数依次减少3,当n为偶数的点在点A的右侧,各点所表示的数依次增加3.解:根据题目已知条件,A1表示的数,1-3=-2;A2表示的数为-2+6=4;A3表示的数为4-9=-5;A4表示的数为-5+12=7;A 5表示的数为7-15=-8;A 6表示的数为-8+18=10,A 7表示的数为10-21=-11,A 8表示的数为-11+24=13,A 9表示的数为13-27=-14,A 10表示的数为-14+30=16,A 11表示的数为16-33=-17,A 12表示的数为-17+36=19,A 13表示的数为19-39=-20.所以点An 与原点的距离不小于20,那么n 的最小值是13.故答案为13.小提示:本题主要考查了数字变化的规律,根据数轴发现题目规律,按照规律解答即可.17、下列各数:①−1.42;②0;③|−3|;④8;⑤−10%;⑥−42,其中正整数有______.(填序号)答案:③④分析:根据正整数的定义进行分类即可.①−1.42为负数;②0不是正数也不是负数;③|−3|=3是正整数;④8是正整数;⑤−10%是负的小数;⑥−42=−16是负数;其中正整数有③④所以答案是:③④.小提示:本题考查有理数的分类,牢记正整数的概念是解题的关键.18、比较大小:−713_____−512.答案:<分析:先求出各数的绝对值,再比较绝对值大小,根据绝对值大的反而小解答即可.解:|﹣713|=713,|−512|=512,∵713>512, ∴-713<−512.所以答案是:<.小提示:此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.19、如图,点A 在数轴上对应的数为2,若点B 也在数轴上,且线段AB 的长为112,C 为OB 的中点,则点C 在数轴上对应的数为__________.答案:−74或154分析:分两种情况:当点B 在点A 的左边时;当点B 在点A 的右边时;然后根据线段AB 的长为112,求出点B 在数轴上对应的数为多少;最后根据C 为OB 的中点,求出点C 在数轴上对应的数为多少即可.解:当点B 在点A 的左边时,∵线段AB 的长为112,点A 在数轴上对应的数为2, ∴点B 在数轴上对应的数为:2-112=−72,∵C 为OB 的中点,∴点C 在数轴上对应的数为:−72÷2=−74. 当点B 在点A 的右边时,∵线段AB 的长为112,点A 在数轴上对应的数为2,∴点B 在数轴上对应的数为:112+2=152,∵C 为OB 的中点,∴点C 在数轴上对应的数为:152÷2=154. 综上,可得点C 在数轴上对应的数为−74或154.所以答案是:−74或154.小提示:此题主要考查了两点间的距离的求法,要熟练掌握,解答此题的关键是要明确:连接两点间的线段的长度叫两点间的距离.20、小明在电脑中设置了一个有理数运算程序:输入数a ,加*键,再输入数b ,就可以得到运算a *b =3a +2b ,请照此程序运算(−4)*3=______.答案:−6分析:根据题意即可得到(−4)∗3=3×(−4)+2×3,由此求解即可.解:∵a *b =3a +2b ,∴(−4)∗3=3×(−4)+2×3=−12+6=−6,所以答案是:−6.小提示:本题主要考查了有理数的四则混合运算,正确理解题意是解题的关键.。
人教版-数学-七年级上册-《去分母》典型例题
《去分母》典型例题例1 解下列方程(1)22)5(54-=--+x x x (2)13.02.03.05.09.04.0=+-+y y (3)52221+-=--y y y (4)6.15.032.04-=--+x x (5)621223+-=--x x x (6)01.002.01.02.02.018+=--x x x例2 代数式318x +与1+x 的值的和是23,求x 的值.例3 汽车从甲地到乙地,用去油箱中汽油的41,由乙地到丙地用去剩下汽油的51,油箱中还剩下6升.(1)求油箱中原有汽油多少升?(2)若甲乙两地相距22千米,则乙丙两地相距多少千米?(3)若丁地距丙地为10千米,问汽车在不再加油的情况下,能否去丁地然后再沿原路返回到甲地?例4 一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做.剩下的部分需要几小时完成?参考答案例1 分析:①先找出各分母的最小公倍数,去掉分母.②分母出现小数,为了减少运算量,将分子、分母同乘以10,化小数为整数.解:(1)去分母,得,)2(5)5(10)4(2-=--+x x x ,去括号,得,105501082-=+-+x x x .移项合并后,6813=x .两边同时除以13,得1368=x . (2)原方程化为1323594=+-+y y , 去分母,得15)23(5)94(3=+-+y y ,去括号,得1510152712=--+y y ,移项合并后32=y .系数化为1,得23=y . (3)去分母,得 )2(220)1(510+-=--y y y去括号,得42205510--=+-y y y移项,得54202510--=+-y y y合并,得117=y系数化为1,得711=y (4)原方程可以化成 6.15)3(102)4(10-=--+x x 去分母,得6.1)3(2)4(5-=--+x x去括号,得6.162205-=+-+x x移项,得2066.125---=-x x合并,得6.273-=x系数化为1,得2.9-=x(5)去分母,得)2(6)23(36+-=--x x x去括号,得26696--=+-x x x移项,得92666+-=++x x x合并,得1313=x系数化为1,得1=x(6)原方程可化为21022108+=--x x x 去分母,得)210(2)210(16+=--x x x去括号,得42021016+=+-x x移项,得10420216+=-+x x x合并,得142=-x系数化为1,得7-=x说明:(2)去分母时要注意不要漏乘没有分母的项,当原方程的分母是小数时,可以先用分数基本性质把它们都化成整数后,再去分母;(3)分数线除了可以代替“÷”以外,还起着括号的作用,分子如果是一个式子时,应该看作一个整体,在去分母时,不要忘了将分子作为整体加上括号.解方程的过程是等式恒等变形的过程,计算中要注意括号、符号等,掌握正确计算的方法.例2 分析:根据题意,可列方程23)1(318=+++x x ,解x 即可.解:得方程23)1(318=+++x x , 去分母,得693318=+++x x .移项,合并得484=x .所以,12=x即x 的值为12.说明:①方程的形式不同,解方程的步骤也不一定相同,五个步骤没有固定顺序,也未必全部用到.②解方程熟练以后,步骤可以简化.例 3 分析:①利用等量关系:甲乙路段的汽油+乙丙路段的汽油+剩余的汽油=油箱的总油量;②利用路程与油量成比例方程;③看油量6升能使用多少千米?解:(1)设油箱的总油量为x 升,则x x x x =+⨯⎪⎭⎫ ⎝⎛-+6514141, 整理得62012=x ,得10=x (升). (2)设乙、丙相距y 千米,则甲乙相距22千米,用油5.24110=⨯=(升) 每升油可行驶8.85.222=千米. 乙、丙之间用油5.151)5.210(=⨯-(升), 所以2.135.18.8=⨯=y (千米).(3)若从丙地返回还需用4升油,因此还剩2升油要从丙到丁再返回,6.1728.8=⨯(千米).2升油可行驶17.6千米,而丙、丁来回10×2=20千米,6.1720>,因此,不能沿原路返回.说明:①多个问题的题目,前面问题的解可作为后面问题的条件;②本题关键要找出每升汽油可行驶多少千米.例4 解:设剩下的部分需要x 小时完成.根据两段工作量之和应是总工作量,得11220204=++x x 去分母,得605312=++x x移项及合并,得488=x6=x答:剩下的部分需要6小时完成.说明:此问题里的相等关系可以表示为:全部工作量=甲独做工作量+甲、乙合做的工作量.于是问题转化为如何表示工作量,我们知道,工作量=工作效率×工作时间.这里的工作效率是用分数表示的:一件工作需要a 小时完成,那么1小时的工作效率为a 1.由此可知:m 小时的工作量=工作效率a m m =⨯,全部工作量=工作效率1==⨯aa a ,即在工程问题中,可以把全部工作量看作是1.。
七年级数学上册实数经典大题例题
(每日一练)七年级数学上册实数经典大题例题单选题1、下列计算正确的是()A.√0.09=±0.3B.√414=2√12C.√−273=−3D.−√|−25|=5答案:C解析:根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案.A、原式=0.3,故A不符合题意.B、原式=√174=√172,故B不符合题意.C、原式=﹣3,故C符合题意.D、原式=﹣5,故D不符合题意.故选:C.小提示:本题考查了平方根的性质、立方根的性质以及绝对值的性质,正确进行平方根与立方根的计算是关键,要注意平方根与算术平方根的区别.2、下列四个实数中,是无理数的为()A.0B.√3C.﹣1D.13答案:B解析:因为0,﹣1,1是有限小数或无限循环小数,√3是无限不循环小数,所以√3是无理3数,故选B.3、下列实数中,最大的数是()A.﹣1B.0C.√3D.13答案:C解析:根据实数的大小比较,负数总是小于零,正数总是大于零,同负绝对值大的反而小,同为正可以进行估算比较大小.,解:∵√3≈1.732>13∴﹣1<0<1<√3,3∴最大的数是√3.故选:C.本题主要考查实数的大小比较,可以根据负数总是小于零,正数总是大于零,同负绝对值大的反而小进行判断.填空题4、若一个数的立方根等于这个数的算术平方根,则这个数是_____.答案:0或1解析:设这个数为a,由立方根等于这个数的算术平方根可以列出方程,解方程即可求出a.解:设这个数为a,由题意知,3=√a(a≥0),√a解得:a=1或0,所以答案是:1或0小提示:本题主要考查算术平方根和立方根等知识点,基础题需要重点掌握,同学们很容易忽略a≥0.5、规定运算:(a*b)=|a-b|,其中a、b为实数,则(√7*3)+√7=________.解析:根据题意得(√7*3)+√7=|√7-3|+√7=3-√7+√7=3,所以答案是:3.解答题6、阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√2-1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知:10+√3=x+y,其中x是整数,且0<y<1,求x-y的相反数.答案:√3-12解析:本题主要考查了无理数的公式能力,解题关键是估算无理数的整数部分和小数部分. 根据题意的方法,估计√3的大小,易得10+√3的范围,进而可得xy的值;再由相反数的求法,易得答案.解:∵1<√3<2,∴1+10<10+√3<2+10,∴11<10+√3<12,∴x=11,y=10+√3-11=√3-1,x-y=11-(√3-1)=12-√3,∴x-y的相反数√3-12.。
七年级数学上册《立体图形的展开图》-典型例题五
典型例题五
例题5填空
(1)六棱柱有_____个顶点,有_______条侧棱.
(2)是_________的表面展开的平面图.
分析(1)通过观察六棱柱可知,六棱柱有12个顶点、有六条侧棱.
(2)观察可以发现展开图有六个边长相等的长方形,并且有两个边长和长方形宽相等的六边形,所以是六棱柱的表面展开平面图.
解(1)12,六.(2)六棱柱.
说明(1)我们知道四棱柱有8个顶点,五棱柱有10个顶点,六棱柱有四个顶点……,以此类推n棱柱有2×n个顶点.(2)观察棱柱的展开图,首先作为底面的多边形必须是相同的多边形,另外多边形的边数必须等于展开图中长方形的个数.。