有机化学(手性碳原子化合物)
有机化合物的手性
![有机化合物的手性](https://img.taocdn.com/s3/m/7a073b400b1c59eef8c7b44b.png)
• 而非手性分子不具有这样的性质:
手性化合物构型的R-S标记法
• 基团大小顺序: OH > CH2CH3 > CH3 > H
手性化合物的旋光性
注意点
R-、S-构型与旋光方向(左旋、右旋)没有对 应关系 将同一手性化合物的R-异构体和S-异构体 等量混合,由于旋光性恰好相互抵消,结 果得到的是一个没有旋光性的物质,称为 外消旋体。
Imidazole
H H H
H N H
Pyridine
H H N
H N H
Pyrimidine
N
N
OH
NH2
OH CH3
N
N
N
HO
N
HO
N
HO
N
尿嘧啶,U 主要在RNA中
胞嘧啶,C
胸腺嘧啶,T
主要在DNA中
N N
N
N H
嘌呤: 由嘧啶环和咪唑环稠合而成
OH NH2 N N N
N
H2N
N
N H
有机化合物的手性
• 在有机化学中,手性最经常地出现在这样 的分子中:1个中心碳原子联接着4个不同 的取代基。如:溴氯氟甲烷
• 这4个基团在四面体顶点上可以有两种不同 的排列方式,所得到的两种分子相互不能 重叠,构成物体与镜像的关系:
手性分子;不能重叠:
N
N H
鸟嘌呤,G 存在于 DNA,RNA中
腺嘌呤,A
今日作业
• 191页 3;4;5;6;8题
外消旋体的拆分
消旋光过程示意图
手性药物
O S H2N N N CF3 O O O
CH3 COOH
H3C S O O
H3C
有机化学的手性合成方法研究
![有机化学的手性合成方法研究](https://img.taocdn.com/s3/m/f162cd336d85ec3a87c24028915f804d2b1687c3.png)
有机化学的手性合成方法研究手性合成是有机化学中令人着迷的领域之一。
手性化合物是指具有非对称碳原子的化合物,其与镜像异构体非重合且不可重叠。
由于手性化合物在生物学、医药学和材料科学等领域具有重要的应用价值,研究人员一直致力于寻找高效可行的手性合成方法。
本文将就目前常用的手性合成方法进行介绍。
一、非手性催化剂手性诱导合成法非手性催化剂手性诱导合成法是通过添加手性诱导剂来使反应过程中形成手性产物。
手性诱导剂可以是手性分子或手性配体,通过与反应物形成稳定的间接或直接化学键,使手性诱导剂的手性信息转移到合成物中。
这种方法相对简单易行,广泛应用于大量手性化合物的合成。
例如,通过采用金属催化剂和手性配体的催化剂手性诱导合成法,可以高选择性地合成手性化合物。
二、手性催化剂直接合成法手性催化剂直接合成法是指手性催化剂直接参与反应并介导反应进行。
手性催化剂可为有机分子、金属配合物或生物分子等,其结构对合成产物的手性选择性起着决定性作用。
这种方法具有高立体选择性和环境友好性等优点。
例如,通过采用手性膦化合物、手性有机胺、手性酸碱等作为手性催化剂,可以高效合成手性化合物。
三、手性晶体催化合成法手性晶体催化合成法是利用具有手性结构的晶体催化剂来促进手性化合物的合成。
手性晶体催化剂具有非常特殊的手性识别性能,可以在催化反应过程中引导产物形成特定的手性结构。
这种方法广泛应用于手性酮、手性醇等手性分子的合成。
例如,利用手性有机盐晶体或金属有机配合物晶体作为催化剂,可以实现多种手性化合物的合成。
四、手性固定相合成法手性固定相合成法是通过在固体表面修饰手性吸附剂,使反应物在固定相上发生手性选择性的反应。
手性固定相合成法具有高效、无需手性诱导剂和催化剂等优点。
例如,通过在固体表面修饰手性金属有机框架或手性多孔材料,可以实现手性分子的高选择性合成。
综上所述,有机化学的手性合成涉及多种方法,包括非手性催化剂手性诱导合成法、手性催化剂直接合成法、手性晶体催化合成法和手性固定相合成法等。
手性碳
![手性碳](https://img.taocdn.com/s3/m/cde9125b852458fb770b5656.png)
手性碳手性碳原子定义:人们将连有四个不同基团的碳原子形象地称为手性碳原子(常以*标记手性碳原子)。
举例:手性碳原子存在于许多有机化合物中特别是和生命现象有关的有机化合物中。
例如:葡萄糖、果糖、乳酸等。
判断方法:1、手性碳原子一定是饱和碳原子;2、手性碳原子所连接的四个基团要是不同的。
手性碳原子的化学性质:旋光性:分子的化学结构决定其是否有手性。
在有机化合物中,手性分子大多数都含有手性碳原子,所以,一般来说,可以通过判断分子是否有手性碳原子来断定分子是否有手性。
含有一个手性碳原子的分子一定是个手性分子。
一个手性碳原子可以有两种构型,所以,含有一个手性碳原子的化合物有两种构型不同的分子,它们组成一对对映异构体,一个使偏振光右旋,另一个使偏振光左旋。
因有手性碳原子的存在而存在光学异构体。
手性碳的旋光性:为什么有*C原子就可能具有旋光性这是因为:(1)一个*C就有两种不同的构型:(2)二者的关系:互为镜象(实物与镜象关系,或者说左,右手关系).二者无论如何也不能完全重叠.与镜象不能重叠的分子,称为手性分子.分子的构造相同,但构型不同,形成实物与镜象的两种分子,称为对映异构体(简称:对映体).对映体:成对存在,旋光能力相同,但旋光方向相反.二者能量相同(分子中任何两原子的距离相同).判断一个化合物是不是手性分子,一般可考查它是否有对称面或对称中心等对称因素.而判断一个化合物是否有旋光性,则要看该化合物是否是手性分子.如果是手性分子,则该化合物一定有旋光性.如果是非手性分子,则没有旋光性.所以化合物分子的手性是产生旋光性的充分和必要的条件.2,对称因素:(1). 对称面把分子分成互为实物和镜像关系两半的假想平面,称为对称面.(2). 对称中心分子中任意原子或原子团与P点连线的延长线上等距离处,仍是相同的原子或原子团时,P点就称为对称中心.(3). 对称轴以设想直线为轴旋转360./ n,得到与原分子相同的分子,该直线称为n 重对称轴(又称n阶对称轴).(4). 交替对称轴(旋转反映轴)结论:A.有对称面,对称中心,交替对称轴的分子均可与其镜象重叠,是非手性分子;反之,为手性分子至于对称轴并不能作为分子是否具有手性的判据.B.大多数非手性分子都有对称轴或对称中心,只有交替对称轴而无对称面或对称中心的化合物是少数.∴既无对称面也没有对称中心的,一般可判定为是手性分子.旋光性19世纪后半叶,化学家们发现了一种特别奇妙的同分异构现象,后来证明,这种现象在生命化学中是极其重要的。
有机化学(手性碳原子化合物)课件
![有机化学(手性碳原子化合物)课件](https://img.taocdn.com/s3/m/2c2dea7f82c4bb4cf7ec4afe04a1b0717fd5b381.png)
总结词
新技术的开发将进一步推动手性碳原子化合 物的应用。
详细描述
随着合成技术和分析方法的不断进步,手性 碳原子化合物的制备和分离将更加高效和精 确。此外,新技术的发展也将促进手性碳原 子化合物在药物合成、生物催化等领域的应 用,提高相关产业的技术水平和生产效率。
新应用的探索
总结词
手性碳原子化合物的新应用将不断涌现。
生物合成法
总结词
利用生物酶的催化作用,在生物体内或体外合成手性碳原子化合物。
详细描述
生物合成法利用生物酶的专一性和高效性,通过生物反应过程将底物转化为手 性碳原子化合物。该方法通常需要特定的微生物或细胞培养条件,并可以产生 光学纯度较高的产物。
物理合成法
总结词
通过物理手段将手性碳原子引入到分子中,是一种新兴的手性碳原子化合物合成方法。
手性碳原子化合物的异构体包括对映异构体和非对映异构体。对映异构体是指具 有相同化学组成但互为镜像的分子,而非对映异构体则是指具有不同化学组成的 分子。
性质
手性碳原子化合物具有旋光性,即能 使偏振光发生旋转的性质。旋光度的 大小取决于手性碳原子化合物的浓度 、温度和波长等因素。
手性碳原子化合物的物理性质和化学 性质与非手性碳原子化合物相似,但 它们在结晶、熔点、溶解度等方面可 能存在差异。
总结词
随着科技的发展,手性碳原子化合物在 新材料的研发中具有广阔的应用前景。
VS
详细描述
手性碳原子化合物具有独特的物理和化学 性质,如光学活性、不对称合成等,使其 成为新型功能材料的重要候选者。在未来 的新材料研发中,手性碳原子化合物有望 在光电材料、生物医用材料等领域发挥重 要作用。
新技术的开发
有机化学(手性碳原子化合物) 课件
有机化学(李景宁)6.
![有机化学(李景宁)6.](https://img.taocdn.com/s3/m/aaf86492f524ccbff0218410.png)
CH3 Cl H H Br CH3
HO CH3
H
H
(3)锯架式
CH3 Cl H OH CH3 H
H H
Cl
CH3 H
竖立
CH3 OH CH3
Cl OH CH3
H
交叉式
重叠式
(4)纽曼式
CH3 H H CH3 Br OH
OH H
Br H
CH3 CH3
交叉式
CH3 H HO Br H CH3
重叠式
三、绝对构型与相对构型
手性和对映体 生活中的对映体 (1)-镜象
沙漠胡杨
生活中的 对映体(2) -镜象
左右手互为镜象
井冈山风景
桂林风情
1. 对称面——若一个平面能把一个分子分为互为镜
像的两部分,则这个平面即为这个分子的对称面(用 σ 表示)。如:
Br C H C
Br H
苯或环己烷分子有多少个对称面?
(提示:环烷烃分子骨架可以按照平面多边形来处理)
CH3
当一对对映体与手性试剂反应时,反应速度表现
出一定的差异,甚至一个反应,另一个不反应。
生物体中的酶即为一种手性催化剂,只对对映体
中的某一个起催化作用,正因为如此,对映体的
生理作用有很大差别,如:(+)-葡萄糖对人体具
有营养价值,而(-)-葡萄糖则不能被人体所代谢
。又如: (-)-氯霉素具有消炎抗菌作用,而其右 旋体则毫无疗效。
CH3 H Cl H CH3 Cl
H
CH3 H
Cl CH3
第三节 含一个手性碳原子 化合物的对映异构
一、对映体和外消旋体 只含一个手性碳的分子一定是手性分子而具有旋光性 如:在2-甲基-1-丁醇 一个手性碳,因此必然为手性分子,存在两个异构 体:
有机化学中的手性识别与拆分
![有机化学中的手性识别与拆分](https://img.taocdn.com/s3/m/87a115ea27fff705cc1755270722192e453658ef.png)
有机化学中的手性识别与拆分有机化学是研究有机物质的结构、性质和变化的学科。
手性识别与拆分是有机化学中一个重要的研究领域,它涉及到手性化合物的性质、合成和应用等方面。
本文将从手性的概念、手性识别的方法、手性拆分的策略等方面进行探讨。
手性是指分子或物质的非对称性质。
在有机化学中,手性分子由不对称的碳原子或其他原子组成,它们的镜像异构体无法通过旋转或平移重叠,因此具有不同的性质。
手性分子的存在对于生命体系、药物研究和有机合成等领域具有重要意义。
手性识别是指区分手性分子的方法和技术。
目前,常用的手性识别方法包括光学方法、核磁共振方法、质谱方法和色谱方法等。
其中,光学方法是最常用的手性识别方法之一。
光学活性物质对于不同偏振光的旋光度有不同的响应,通过测量旋光度可以确定手性分子的结构和组成。
核磁共振方法则是通过测量手性分子在磁场中的响应来识别手性。
质谱方法和色谱方法则是利用分子的质量差异或分子在柱上的分离来实现手性识别。
手性拆分是指将手性分子分离为其对映异构体的过程。
手性拆分的策略多种多样,常见的手性拆分方法包括晶体拆分、化学拆分和生物拆分等。
晶体拆分是通过晶体生长的方式将手性分子分离为不同的晶体,进而得到对映异构体。
化学拆分则是通过化学反应将手性分子转化为其他化合物,从而实现手性分子的拆分。
生物拆分则是利用生物体系中的酶或其他生物分子对手性分子进行选择性催化,从而实现手性分子的分离。
手性识别与拆分在药物研究和合成中具有重要的应用价值。
在药物研究中,手性药物的对映异构体往往具有不同的药理活性和毒性。
因此,通过手性识别和拆分可以选择性地合成和使用具有更好活性和安全性的手性药物。
在有机合成中,手性识别和拆分可以帮助合成化学家选择性地合成手性分子,从而提高合成效率和产率。
总之,手性识别与拆分是有机化学中的重要研究领域。
通过手性识别和拆分,我们可以更好地理解和利用手性分子的性质,为药物研究和有机合成等领域提供更多的选择和可能性。
6、有机化学:立体化学(4H)
![6、有机化学:立体化学(4H)](https://img.taocdn.com/s3/m/c4fc0b016c85ec3a87c2c5df.png)
四、构型的标记法(R/S法) 1、在透视式中,R/S法标记构型的步骤 按照次序规则,确定手性碳原子所连四个原子或基
团的优先次序;
将最次的原子或基团置于距观察者最远处; 观察其余三个原子或基团由优到次的排列方式,如
为顺时针者:R构型;反之,逆时针者:S构型。
观察
COOH C HO CH3 H
分析:
(Ⅰ)式与(Ⅱ)式、(Ⅲ)式与(Ⅳ)式可分
别组成两对对映体,形成两组外消旋体。
(Ⅰ)式和(Ⅲ)式属于什么关系?
它们构造式相同,但既不能完全重合,又不呈 实物与镜像的关系。像这种立体异构体称为非对映 异构体,简称非对映体。试问还有非对映体吗? 事实上,(Ⅰ)式和(Ⅳ)式、(Ⅱ)式和
(Ⅲ)式、(Ⅱ)式和(Ⅳ)式也均为非对映体。
H2O)。这表示为,在20℃时以钠光灯为光源测得浓 度是0.1g· mL-1的乳酸水溶液的比旋光度为右旋的 3.8°。 问:式中+3.8°能省略“+”符号吗? 比旋光度是旋光物质的一个重要物理常数。 制糖工业就是利用测定旋光度的方法来确定糖溶 液的质量浓度。
第二节 手性和对称因素
一、手性的概念 物质的分子和它的镜象不能完全重叠的特征
异 构 现 象
构造异构
立体异构
第一节 物质的旋光性
一、偏振光
Nicol 棱晶
平面偏振光
只在一个平面上振动的光称为平面偏振光, 简称偏振光或偏光。
二、物质的旋光性
糖溶液
旋光度
水
Nicol 棱晶
有机物使偏振面旋转一定角度的性质称为物 质的旋光性或光学活性。具有旋光性的物质叫做 旋光性物质或光学活性物质(如糖、乳酸等) ,
一、丙二烯型化合物
以2,3-戊二烯为例。
有机化学(手性碳原子化合物)
![有机化学(手性碳原子化合物)](https://img.taocdn.com/s3/m/701cc58414791711cc7917a5.png)
结论: 异构体数目—— 2n = 22 = 4非(对映n:体手性碳原子数目)
对映体数目—— 2n – 1 = 2(2-1)= 2(对)
4
二. 含两个相同手性碳原子化合物的对映异构
COOH
H
OH
HO
H
COOH
HO
H
H
OH
COOH
COOH
(1) 对映体 (2)
[α ]2D0
+12°
-12°
(± )酒石酸 外消旋体
5
三.含三个不同手性碳原子化合物的对映异构
CH3 Br H H Br Br H
C2H5
CH3 H Br H Br Br H
C2H5
八个旋光异构体、组成四对对映体。 C-2差向异构体
差向异构体:含多个手性碳的两个光活异构体,仅有一个手 性碳原子的构型相反,其余的手性碳构型相同,这两个光活 异构体称为差向异构体。
CH 3
CH 3
CH 3
CH 3
9
7
C3H 6
4 1 C3H
H
2 3
H
5
7
C3H 1
4
6 C3H
H2 3
H
5
sp sp2
当A≠B ,分子有手性。
A
A' Cl
Cl
CCC
C=C=C (有手性)
B
B' H
H
C H 3
类似物:
C l
无
H
H
H H O O C
有
H C O O H
10
2. 联苯型化合物
a c
对映异构
子
内消旋体
3-C—— 非手性碳
有机化学(手性碳原子化合物)
![有机化学(手性碳原子化合物)](https://img.taocdn.com/s3/m/7bbc6680af45b307e9719770.png)
末端两苯环不在同平面上。
三、含其它不对称原子的光活性分子
CH3CH2
CH3 N+ C6H5 OHCH2C6H5
C6H5
CH2C6H5 P+ CH3 BrCH2CH2CH3
无悔无愧于昨天,丰硕殷实 的今天,充满希望的明天。
CCC
CH3
CH3
7
CH3 6
4 1 CH3
H
2 3
H
5
7
C H3
1
4
6 CH3
H2 3
H
5
sp sp2
当A≠B ,分子有手性。
A
A' Cl
Cl
CCC
C=C=C (有手性)
B
B' H
H
CH3
类似物:
Cl
无
H
H
H
HOOC
H COOH
有
2. 联苯型化合物
a c
d b
a
b
c
d
(a + c )或( b +d )
C-2差向异构:由C-2引起的差向异构。(C-2构型相反)
COOH H OH R H OH HO H R
COOH
Ⅰ
COOH HO H S HO H
H OH S COOH
Ⅱ
对映异构
COOH
COOH
H OH R HO H R
假 HO H (s) H OH (r)
不 H OH S
对 COOH
称 原
Ⅲ
HO H S COOH Ⅳ
三.含三个不同手性碳原子化合物的对映异构
CH3 Br H H Br Br H
C2H5
有机化学中的手性化合物合成
![有机化学中的手性化合物合成](https://img.taocdn.com/s3/m/01bdd6e27e192279168884868762caaedd33bab3.png)
有机化学中的手性化合物合成手性化合物是指具有非对称碳原子的有机分子,它们的镜像异构体无法通过旋转或平移相互重叠。
手性化合物在生物学、医药学和材料科学等领域具有重要的应用价值。
因此,手性化合物的合成研究一直是有机化学的热点之一。
手性化合物的合成方法多种多样,其中最常用的方法是手性诱导合成。
手性诱导合成是通过引入手性辅助剂或手性催化剂来实现手性化合物的合成。
这种方法的优点是反应条件温和,产率高,选择性好。
手性辅助剂可以通过与底物形成手性中间体,然后再通过去除手性辅助剂来得到手性产物。
手性催化剂则是通过催化剂与底物之间的手性识别来实现手性化合物的合成。
另一种常用的手性化合物合成方法是不对称合成。
不对称合成是通过选择性反应、不对称催化剂或不对称试剂等手段来实现手性化合物的合成。
选择性反应是指在合成过程中,通过调节反应条件和反应物的比例,使得反应只在特定的位置或特定的立体异构体上发生。
不对称催化剂则是指通过选择性催化剂来实现手性化合物的合成。
不对称试剂则是指通过选择性试剂来实现手性化合物的合成。
此外,手性化合物的合成还可以通过手性分离来实现。
手性分离是指将手性化合物中的两个对映异构体分离开来。
常用的手性分离方法包括晶体分离、色谱法和电泳法等。
晶体分离是指通过晶体生长的方法将手性化合物中的两个对映异构体分离开来。
色谱法是指通过在手性色谱柱上进行分离来实现手性化合物的分离。
电泳法是指通过在手性电泳胶上进行分离来实现手性化合物的分离。
在有机化学中,手性化合物的合成是一个复杂而有挑战性的过程。
合成手性化合物需要克服立体障碍,控制反应条件和选择合适的合成方法。
同时,手性化合物的合成也需要考虑到环境友好性和经济性等因素。
因此,有机化学家们在手性化合物的合成研究中不断探索新的方法和策略。
总之,有机化学中的手性化合物合成是一个重要的研究领域。
通过手性诱导合成、不对称合成和手性分离等方法,有机化学家们可以合成出各种各样的手性化合物。
有机化学中的手性化合物的判断和分类
![有机化学中的手性化合物的判断和分类](https://img.taocdn.com/s3/m/9c1569c4ed3a87c24028915f804d2b160b4e8608.png)
有机化学中的手性化合物的判断和分类手性化合物是有机化学中一类重要的化合物,其独特的空间结构使其具有对映异构体的性质。
在本文中,将介绍手性化合物的判断和分类方法。
手性化合物的判断方法主要有物理性质测定法、光学活性测定法和核磁共振测定法。
物理性质测定法是通过测定化合物的旋光度或熔点来判断是否为手性化合物。
手性化合物的旋光度是指其溶液对平面偏振光的旋转程度,可以通过旋光仪进行测定。
当溶液中的化合物旋光度不为零时,说明该化合物是手性的。
另外,手性化合物的熔点通常高于其对映异构体的熔点,因为手性化合物的同一对映异构体之间存在空间位阻,使得其分子间的相互作用增强,因此熔点较高。
光学活性测定法是利用手性化合物对偏振光的旋光现象来判断其是否为手性化合物。
这种方法通过测定化合物溶液对偏振光的旋光度来判断化合物是否为手性的。
当溶液对偏振光具有旋光度时,说明该化合物是手性的。
然而,需要注意的是,光学活性测定法只能判断化合物是否有手性,不能确定其绝对配置。
核磁共振测定法是一种通过核磁共振技术来判断手性化合物的方法。
通过测定化合物质子或碳原子在核磁共振谱中出现的化学位移,可以确定化合物的结构和对映异构体之间的差异。
这种方法可以确定化合物的相对配置和绝对配置。
根据手性化合物的对称原则,手性化合物可以分为对称手性化合物和非对称手性化合物。
对称手性化合物具有一个或多个旋转轴或反射面,其不对称中心对称。
对称手性化合物的对映异构体之间具有理想的相等性,它们的物理性质和活性相同。
非对称手性化合物是没有对称元素的手性化合物。
它们的对映异构体之间具有明显的差异,包括物理性质、化学反应性和生物活性等方面的差异。
在应用中,手性化合物的分类常用到手性催化剂、手性色谱柱、手性膜等技术。
手性催化剂是一种将手性识别能力转化为非手性反应物生成手性产物的物质。
手性色谱柱则是通过手性固定相对手性化合物进行分离和纯化的工具。
手性膜则是一种通过手性识别和分离的膜材料。
有机化学中的手性化合物和不对称合成
![有机化学中的手性化合物和不对称合成](https://img.taocdn.com/s3/m/524d879148649b6648d7c1c708a1284ac9500558.png)
有机化学中的手性化合物和不对称合成有机化合物是由碳和氢元素组成的化合物,其中的碳原子具有四个价电子,可以形成四个共价键。
由于碳原子的特殊性质,它可以与其他原子或基团形成多样的化学键,从而形成各种不同类型的化合物。
在有机化学中,手性化合物和不对称合成是一类重要的研究领域。
手性化合物是指化学结构中具有非对称碳原子的化合物,具有镜像对称性,但不能通过旋转使两者完全重合。
在自然界中,存在大量的手性化合物,例如氨基酸、糖类和天然药物等。
由于手性化合物的特殊性质,它们在生物学、药学和农学等领域具有广泛的应用价值。
手性化合物的不对称合成是指通过有机合成方法制备手性化合物的过程。
在有机合成中,控制手性的来源通常是由手性试剂或催化剂引入。
其中,手性试剂是指具有手性结构的化合物,可以通过与底物反应形成手性产物。
而手性催化剂是指具有手性结构的催化剂,在化学反应中可以选择性地引入手性。
不对称合成方法有很多种,其中一种常用的方法是手性诱导反应。
手性诱导反应是指通过手性试剂或手性催化剂引发的反应,使底物得到手性产物。
在手性诱导反应中,手性诱导剂通过与底物发生相互作用,改变反应的立体选择性,从而得到手性产物。
另一种常用的方法是手性配体催化反应。
手性配体催化反应是指利用手性配体催化剂引导的反应。
手性配体催化剂具有特殊的结构,可以与底物形成稳定的配位键,从而在反应中引入手性。
通过合理设计手性配体催化剂,可以实现对底物的高度立体选择性控制。
除了手性诱导反应和手性配体催化反应,还有一些其他方法用于不对称合成,如酶催化反应、金属有机化学反应和催化剂设计等。
这些方法在不对称合成领域发挥着重要的作用,为合成手性化合物提供了多样化的策略。
手性化合物和不对称合成在药学领域具有重要意义。
根据研究表明,手性化合物和非手性化合物在生物活性和药理活性方面具有显著差异。
同一化学结构的手性异构体往往具有不同的生物活性,这也是为什么同一化学结构的手性药物和非手性药物在临床上表现出不同疗效的原因之一。
手性碳
![手性碳](https://img.taocdn.com/s3/m/cb831a1652d380eb62946de8.png)
手性碳手性碳原子定义:人们将连有四个不同基团的碳原子形象地称为手性碳原子(常以*标记手性碳原子)。
举例:手性碳原子存在于许多有机化合物中特别是和生命现象有关的有机化合物中。
例如:葡萄糖、果糖、乳酸等。
判断方法:1、手性碳原子一定是饱和碳原子;2、手性碳原子所连接的四个基团要是不同的。
手性碳原子的化学性质:旋光性:分子的化学结构决定其是否有手性。
在有机化合物中,手性分子大多数都含有手性碳原子,所以,一般来说,可以通过判断分子是否有手性碳原子来断定分子是否有手性。
含有一个手性碳原子的分子一定是个手性分子。
一个手性碳原子可以有两种构型,所以,含有一个手性碳原子的化合物有两种构型不同的分子,它们组成一对对映异构体,一个使偏振光右旋,另一个使偏振光左旋。
因有手性碳原子的存在而存在光学异构体。
手性碳的旋光性:为什么有*C原子就可能具有旋光性这是因为:(1)一个*C就有两种不同的构型:(2)二者的关系:互为镜象(实物与镜象关系,或者说左,右手关系).二者无论如何也不能完全重叠.与镜象不能重叠的分子,称为手性分子.分子的构造相同,但构型不同,形成实物与镜象的两种分子,称为对映异构体(简称:对映体).对映体:成对存在,旋光能力相同,但旋光方向相反.二者能量相同(分子中任何两原子的距离相同).判断一个化合物是不是手性分子,一般可考查它是否有对称面或对称中心等对称因素.而判断一个化合物是否有旋光性,则要看该化合物是否是手性分子.如果是手性分子,则该化合物一定有旋光性.如果是非手性分子,则没有旋光性.所以化合物分子的手性是产生旋光性的充分和必要的条件.2,对称因素:(1). 对称面把分子分成互为实物和镜像关系两半的假想平面,称为对称面.(2). 对称中心分子中任意原子或原子团与P点连线的延长线上等距离处,仍是相同的原子或原子团时,P点就称为对称中心.(3). 对称轴以设想直线为轴旋转360./ n,得到与原分子相同的分子,该直线称为n 重对称轴(又称n阶对称轴).(4). 交替对称轴(旋转反映轴)结论:A.有对称面,对称中心,交替对称轴的分子均可与其镜象重叠,是非手性分子;反之,为手性分子至于对称轴并不能作为分子是否具有手性的判据.B.大多数非手性分子都有对称轴或对称中心,只有交替对称轴而无对称面或对称中心的化合物是少数.∴既无对称面也没有对称中心的,一般可判定为是手性分子.旋光性19世纪后半叶,化学家们发现了一种特别奇妙的同分异构现象,后来证明,这种现象在生命化学中是极其重要的。
有机化学基础知识点整理手性化合物的结构和性质
![有机化学基础知识点整理手性化合物的结构和性质](https://img.taocdn.com/s3/m/020f82c78662caaedd3383c4bb4cf7ec4afeb699.png)
有机化学基础知识点整理手性化合物的结构和性质手性化合物是有机化学中一个重要的概念。
它们的分子结构不具有对称性,因此无法通过旋转或平移使得其与其镜像重合。
与手性化合物相对的是非手性化合物,即具有镜像对称性的化合物。
1. 手性化合物的定义手性化合物的定义是具有不可重合镜像关系的化合物。
这种不对称性可归因于分子的立体中心(chiral center)或轴(chiral axis)。
具有立体中心的手性化合物,通常是由四个不同的基团连接在一个碳原子上而形成的。
手性化合物的立体中心通常用星号(*)表示。
手性化合物也可以由手性轴或平面对称元素组成。
2. 手性化合物的分类手性化合物可分为两类:光学异构体和底物异构体。
2.1 光学异构体光学异构体是指无法通过旋转或平移使得其与其镜像重合的手性化合物。
光学异构体包括D-和L-异构体以及R-和S-异构体。
D-和L-异构体是对映的,它们的立体中心上的基团按照一定的规则被安排在立体中心的两侧。
R-和S-异构体是描述以手性轴或手性平面为中心的手性分子的立体化学性质的一种方法。
用CIP规则来确定每个手性中心的R-或S-配置。
2.2 底物异构体底物异构体是指化学反应中所涉及的手性化合物与其他不同底物的异构体。
底物异构体可以显著影响反应速率和产物选择性。
3. 手性化合物的性质3.1 光学活性手性化合物的一大特点是光学活性。
光学活性是指手性分子对偏振光的旋光性质。
光学活性的手性化合物可使偏振光的平面发生旋转,这种旋转称为光学活性旋光(OR)。
3.2 对映体对映体是指具有相同的分子组成,但在空间结构上是不相同的立体异构体。
对映体之间除了在涉及手性的反应中,几乎没有物理或化学性质上的区别。
3.3 拆分和合成手性化合物可通过拆分对映体或通过合成手性中心来制备。
拆分对映体是指通过物理(如晶体化学和手性配体催化等)或化学手段(如手性分离和酶催化反应等)将对映体分离成单一对映体。
合成手性中心是指通过合成手性配体或手性催化剂将非手性化合物转化为手性化合物。
有机化学中的手性化合物
![有机化学中的手性化合物](https://img.taocdn.com/s3/m/d858bb1e3069a45177232f60ddccda38376be16c.png)
有机化学中的手性化合物有机化学是研究碳元素化合物的科学,而手性化合物则是其中一个非常重要的分支。
手性化合物是指分子结构中存在对称中心,其左右两侧的分子结构不完全对称,因此左右两侧的化学性质也会有所不同。
在医药、化妆品、农药、食品添加剂等领域中,手性化合物的研究和应用非常广泛。
一、手性化合物的定义和特点手性化合物是指分子结构中存在一个对称轴或对称中心的有机化合物。
它们是由于分子结构的不对称而产生的,左右两侧的结构并不存在完全的对称,因此左右两侧的化学性质也会有所不同。
手性化合物具有非常独特的化学特性,包括对光的旋转、对酸碱性质的影响、对酶的作用等。
这些特性对于药物的生物活性、化妆品的效果、食品添加剂的性质等有着非常重要的影响。
二、手性化合物的分类手性化合物可以分为对映异构体和非对映异构体两类。
对映异构体:左右两侧的分子结构不对称的手性化合物,这一类分子的信号镜像是没有重合的。
对映异构体分子虽然结构相似,但是由于其两侧的分子结构有所不同,因此其化学性质也会有所不同。
对映异构体的存在对于一些药物的研究非常重要,例如、左旋多巴和右旋多巴就是通过整合对映异构体得到的药物。
非对映异构体:左右两侧的分子结构相同,但是这一类分子的空间构型是不对称的。
由于非对映异构体的分子结构是相同的,因此其化学性质也会非常相似。
在这一类化合物中,结构相同的不同立体异构体具有相同的物理性质。
例如丁烷的立体异构体,右旋丁烷和左旋丁烷的化学性质是相同的。
不过,由于其空间构型的不同,它们在识别作用上则有所差别。
三、手性化合物和生物活性手性化合物对于生物活性的影响非常显著,而这种影响经常被称为手性药学。
大量的药物原料分子是手性化合物,其中一种异构体比另一异构体的药效表现要更为显著。
例如,普罗旺斯石英酸二甲酯(PQQ)这种具有生命活力的化合物,其两个对称中心的不对称性质使PQQ对于氧化还原体系的作用比普通的化合物要强大得多。
水杨酸前体PPOH与丙氨酸前体PAOH,两者的立体异构体在抗病毒作用方面有较大差异。
有机化学基础知识点整理立体化学中的手性合成方法
![有机化学基础知识点整理立体化学中的手性合成方法](https://img.taocdn.com/s3/m/ba6e222c6fdb6f1aff00bed5b9f3f90f76c64dcb.png)
有机化学基础知识点整理立体化学中的手性合成方法有机化学基础知识点整理——立体化学中的手性合成方法在有机化学中,手性合成是一项重要的研究领域。
手性分子是具有不对称碳原子的化合物,由于其立体异构体之间在化学性质和生物活性方面的差异,手性合成成为了现代有机合成的关键领域之一。
本文将介绍几种常见的立体化学中的手性合成方法。
一、外消旋剂法外消旋剂法是一种通过添加外消旋剂来进行手性合成的方法。
该方法的基本原理是将外消旋剂与反应物发生反应,形成二级中心的消旋产物,然后通过对消旋产物进行选择性还原或者氧化等操作,制备出手性化合物。
例如,我们常用的外消旋剂-氨莎(dl-苯丙酮),可以通过与胺反应、还原、选择性氧化等步骤实现手性合成。
二、手性诱导法手性诱导法是利用手性诱导剂在反应中引入手性,使得反应生成手性产物的方法。
常用的手性诱导剂包括手性草酸、手性配体等。
手性诱导剂与反应物之间通过配位或者其他相互作用形成手性复合物,然后该复合物在反应中发挥作用,使得所得产物也具有手性。
例如,采用手性草酸作为手性诱导剂,可以通过与酮类或醛类反应,形成具有手性的醇类产物。
三、手性催化剂法手性催化剂法是利用手性催化剂在反应中引入手性,实现手性合成的方法。
手性催化剂主要包括手性草酸酯、手性金属配合物等。
催化剂与反应物形成手性复合物,然后该复合物通过催化剂的作用,促使反应进行,并最后生成手性产物。
例如,采用手性铯盐催化剂进行不对称酮的还原,可以得到具有手性的醇产物。
四、手性模板法手性模板法是将手性化合物作为模板,在一定条件下进行反应,从而合成具有手性的产物的方法。
手性模板在反应中起到模板作用,能够选择性地促使特定的反应发生,从而得到手性产物。
例如,通过选择性地使用具有手性模板的化合物,可以实现补体选择性环化反应,得到手性环化产物。
总结:手性合成是有机化学中重要的研究领域,通过外消旋剂法、手性诱导法、手性催化剂法和手性模板法等多种手性合成方法,可以制备出具有不对称碳原子的手性化合物。
手性有机化学
![手性有机化学](https://img.taocdn.com/s3/m/eeed4e2fcfc789eb172dc8f6.png)
手性有机化学常识导致旋光异构现象的原因有两种:①分子中含有一个或多个手性原子(见手性特征)。
含有一个手性碳原子时,有两个旋光异构体,它们具有互为实物和镜像的关系,故也称对映体。
对映异构体具有相等的旋光能力,但旋转方向相反,其物理和化学性质极为相似,如甘油醛(如对图片说明中“菲舍尔投影式”有疑问,见菲舍尔投影式):甘油醛菲舍尔投影式含有两个相同属性碳原子的分子,有3个旋光异构体,如酒石酸:酒石酸菲舍尔投影式其中a和b为对映异构体,c与d也好像是对映体。
但实际上c与d是同一种分子,因为它们可以互相叠合。
只要把c以通过C(2)-C(3)键中点,与读者的显示器荧屏(设荧屏竖直)垂直的线为轴旋转180°,就可以看出来它是可以与d叠合的。
也就是说,c和d是相同的。
c的旋光能力由于分子内的两个结构相同但构型(见分子构型)相反的手性原子的存在而互相抵消,称为内消旋体。
它与a或b在分子中既有构型相同的部分,又有构型相互对映的部分,这种关系称为非对映异构。
非对映异构体不仅旋光性不同,物理和化学性质也不尽相同。
环状化合物中含有手性原子时,也可出现以上旋光异构现象。
分子中当含有几个不同的手性原子时,其旋光异构体的数目为2^n,n为不同手性原子的个数。
旋光异构体可用D-、L-法标记其构型(见单糖),也可用R-、S-法标记其分子中每个原子的构型(见顺序规则)。
②某些分子虽然不含手性原子,但由于分子中的内旋转受阻碍,也可以引起旋光异构现象,例如丙二烯型或联苯型旋光化合物是通过分子中的一个轴来区别左右手征性;又如旋光性提篮型化合物分子是就一个平面来区别手征性的等。
作为生命的基本结构单元,氨基酸也有手性之分。
也就是说,生命最基本的东西也有左右之分。
手性拆分胺类化合物外消旋体与另一手性化合物作用生成非对映异构体混合物,利用非对映异构体的物理性质差异较大的特点,可以通过结晶的方法分离,这样的手性化合物称为拆分剂。
对于胺类化合物,一般用手性酸拆分。
有机化学第五版习题答案
![有机化学第五版习题答案](https://img.taocdn.com/s3/m/47da64fb19e8b8f67c1cb968.png)
《有机化学》(第五版,李景宁主编)习题答案 第一章3、指出下列各化合物所含官能团的名称。
(1) CH 3CH=CHCH 3 答:碳碳双键 (2) CH 3CH 2Cl 答:卤素(氯) (3) CH 3CHCH 3OH 答:羟基(4) CH 3CH 2 C=O 答:羰基 (醛基)H(5)CH 3CCH 3O答:羰基 (酮基)(6) CH 3CH 2COOH 答:羧基 (7)NH 2答:氨基(8) CH 3-C ≡C-CH 3 答:碳碳叁键4、根据电负性数据,用和标明下列键或分子中带部分正电荷和负电荷的原子。
答:6、下列各化合物哪个有偶极矩?画出其方向(1)Br 2 (2) CH 2Cl 2 (3)HI (4) CHCl 3 (5)CH 3OH (6)CH 3OCH 3 答:以上化合物中(2)、(3)、(4)、(5)、(6)均有偶极矩(2)H 2C Cl (3)I (4) Cl 3 (5)H 3COH(6)H3CCH 37、一种化合物,在燃烧分析中发现含有84%的碳[Ar (C )=12.0]和16的氢[Ar (H )=1.0],这个化合物的分子式可能是(1)CH 4O (2)C 6H 14O 2 (3)C 7H 16 (4)C 6H 10 (5)C 14H 22 答:根据分析结果,化合物中没有氧元素,因而不可能是化合物(1)和(2); 在化合物(3)、(4)、(5)中根据碳、氢的比例计算(计算略)可判断这个化合物的分子式可能是(3)。
第二章习题解答1、用系统命名法命名下列化合物 (1)2,5-二甲基-3-乙基己烷 (3)3,4,4,6-四甲基辛烷 (5)3,3,6,7-四甲基癸烷(6)4-甲基-3,3-二乙基-5-异丙基辛烷2、写出下列化合物的构造式和键线式,并用系统命名法命名之。
(3)仅含有伯氢和仲氢的C 5H 12答:符合条件的构造式为CH 3CH 2CH 2CH 2CH 3;键线式为; 命名:戊烷。
有机化学基础知识点手性化合物的命名和构造
![有机化学基础知识点手性化合物的命名和构造](https://img.taocdn.com/s3/m/79daa11076232f60ddccda38376baf1ffc4fe3a5.png)
有机化学基础知识点手性化合物的命名和构造手性化合物的命名和构造在有机化学中,手性化合物是指具有不对称碳原子(手性中心)的化合物,它们的镜像构型不能通过旋转和平移相互重合。
手性化合物的命名和构造是有机化学中的基础知识点之一,本文将重点讨论有关手性化合物的命名和构造的方法和规则。
一、手性中心的定义和表示手性中心是指四个不同的官能团围绕着一个碳原子连接而成的结构,其中,该碳原子的四个官能团可以通过旋转和平移无法重合。
在有机化合物的平面结构中,手性中心通常用一个星号(*)或字母R和S表示。
例如:H Br| |C* C| |OH CH3以上结构中,C*表示手性中心,它围绕的官能团分别是H、OH、Br和CH3。
在这个手性中心中,H和OH是置于水平面之上的,而Br和CH3是置于水平面之下的。
根据Cahn-Ingold-Prelog规则,可以为这个手性中心命名一个R或S的配置。
二、手性化合物的命名1. IUPAC命名法根据国际纯粹和应用化学联合会(IUPAC)的命名规则,手性化合物的命名应遵循以下几个步骤:(1)确定主链首先需要确定化合物的主链,即最长的碳链。
主链的选取应满足碳原子数最多的原则,同时要确保包含手性中心。
(2)编号主链对主链的碳原子进行编号,使得手性中心的碳原子获得最小的编号。
(3)命名官能团命名主链上的官能团,并使用适当的前缀和后缀来表示其类型和位置。
例如,羟基官能团用“-ol”表示,氨基官能团用“-amine”表示。
(4)确定手性中心的配置根据Cahn-Ingold-Prelog规则,为手性中心命名一个R或S的配置。
如果手性中心有多个,需要为每个手性中心都指定一个配置。
2. 常用手性化合物的命名方法除了使用IUPAC命名法外,还有一些手性化合物常用的命名方法,如D、L命名法和R、S命名法。
(1)D、L命名法D、L命名法是根据左旋葡萄糖(L-glyceraldehyde)的结构命名手性化合物的方法。
有机化学基础知识点整理手性与对映体
![有机化学基础知识点整理手性与对映体](https://img.taocdn.com/s3/m/854c7f173d1ec5da50e2524de518964bcf84d2d6.png)
有机化学基础知识点整理手性与对映体手性与对映体是有机化学中的重要概念。
在分子结构中,手性指的是分子或化合物具有不对称碳原子,并且这个不对称碳原子周围分子的排列方式有两种镜像对称的方式。
这种情况下,分子会存在两个非重叠的镜像体,分别被称为对映体。
对映体在空间结构上相互镜像对应,但无法通过旋转、挪动等操作使其完全重合。
本文将对手性与对映体的概念、性质、分类以及应用进行详细介绍。
一、手性的概念和性质1.1 手性的定义手性是指分子或化合物具有不对称碳原子,使得其周围的分子排列方式存在两种非重叠的镜像对称的情况。
1.2 手性分子的特点手性分子具有以下特点:(1)无法通过旋转、挪动等操作使其与其镜像体完全重合;(2)具有旋光性,即对旋光的导致和响应;(3)对手性诱导拆分剂等具有选择性。
二、对映体的定义和性质2.1 对映体的定义对映体是指手性分子在空间结构上的两个非重叠镜像体。
2.2 对映体的性质对映体具有以下性质和特点:(1)相互间无法通过旋转、挪动等操作使其重合;(2)具有相同的物理化学性质,如沸点、熔点等;(3)对旋光性相反,并且对不同手性构型的有光学活性物质旋光角度相等、但方向相反。
三、手性的分类根据手性分子或化合物的不对称碳原子的数目,手性分为单手性和多手性。
3.1 单手性单手性是指手性分子中只有一个不对称碳原子,因而只有一对对映体。
3.2 多手性多手性是指手性分子中含有多个不对称碳原子,因而拥有多对对映体。
四、手性的应用手性分子及对映体在有机合成、药物研发、生物活性研究等领域具有重要应用价值。
4.1 有机合成手性分子的对映体具有不同的化学性质,可以用作手性诱导剂、手性催化剂、手性配体等,用于合成具有高度立体选择性的化合物。
4.2 药物研发手性药物存在于临床实践中的广泛应用。
对映体间的差异可能导致不同的药理活性、毒理学效应和药代动力学现象,因此手性药物的合成、分离和评价具有重要意义。
4.3 生物活性研究手性分子在生物活性研究中具有重要作用,手性分子的生物活性通常是由其特定的构象和立体结构决定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档
对映异构
对映异构是指分子式、构造式相同,构型不同,互呈镜像对映关系的 立体异构现象。
对映异构体之间的物理性质和化学性质基本相同,只是对平面偏振 光的旋转方向(旋光性能)不同。在手性环境条件下,对映体会表现 出某些不同的性质,如反应速度有差异,生理作用的不同等。 分子的手性是对映体存在的必要和充分条件。 对映体——互为物体与镜象关系的立体异构体。 对映异构体都有旋光性,其中一个是左旋的,一个是右旋的。所以对 映异构体又称为旋光异构体。
结论: 异构体数目—— 2n = 22 = 非4对映(体n:手性碳原子数目) 对映体数目—— 2n –实1用=文档2(2-1)= 2(对)
二. 含两个相同手性碳原子化合物的对映异构
COOH
H
OH
HO
H
COOH
HO
H
H
OH
COOH
COOH
(1) 对映体 (2)
[α ]2D0
+12°
-12°
(± )酒石酸 外消旋体
实用文档
COOH
H
OH
H
OH
COOH
HO
H
HO
H
COOH
COOH
(3) 同一物质 (4)
0°
0°
(m)酒石酸
内消旋体(分子中有对称面)
结论:旋光异构体的数目 = 2 n – 1
n为偶数:
内消旋体的数目 = 2 n / 2 – 1,立体异构体总数 = 2 n – 1
+ 2 n/2– 1
n为奇数:
实用文档
内消旋体的数目 =2 ( n – 1 ) / 2,立体异构体总数 = 2 n – 1
H
H
CCC
CH 3
CH 3
H
H
CCC
实用文C 档 H 3
CH 3
7
C3H 6
4 1 C3H
H
2 3
H
5
7
C3H 1
4
6 C3H
H2 3
H
5
sp sp2
当A≠B ,分子有手性。
A
A' Cl
Cl
CCC
C=C=C (有手性)
B
B' H
H
C H 3
类似物:
C l
无 有
H
H
H H O O C
实用文档
H C O O H
C-2差向异构:由C-2引起的差向异构。(C-2构型相反)
实用文档
COOH
COOH
COOH
COOH
H OH R HO H S H OH R HO H R
H OH HO H 假HO H (s) H OH (r)
HO H R COOH Ⅰ
H OH S 不 H OH S
COOH 对 COOH
Ⅱ
称 原
Ⅲ
HO H S COOH Ⅳ
(-)-[6]-螺苯 (-)-[6]-hexahelicene
(+)-[6]-螺苯 (+)-[6]-hexahelicene
末端两苯环不在同平面上。 实用文档
三、含其它不对称原子的光活性分子
CH3 CH3CH2 N+ C6H5 OH-
CH2C6H5
CH2C6H5 C6H5 P+ CH3 Br-
CH2CH2CH3
2. 联苯型化合物
a
c
ab
cd
d b
(a+c)或(b+d) 0.29 nm
苯环间碳碳键旋转受阻,产生位阻构象异构。
HH
当同一环上邻位有不对称取代时(取代基或原子体积较大), 整个分子无对称面、无对称中心, 分子有手性。
实用文档
某些原子或基团的半径如下:
H
COOH CH3
F
Cl
Br I
OH NH2 NO2
三.含三个不同手性碳原子化合物的对映异构
CH3 Br H H Br Br H
C2H5
CH3 H Br H Br Br H
C2H5
八个旋光异构体、组成四对对映体。 C-2差向异构体
差向异构体:含多个手性碳的两个光活异构体,仅有一个手 性碳原子的构型相反,其余的手性碳构型相同,这两个光活 异构体称为差向异构体。
0.094 0.156 0.173 0.138 0.189 0.211 0.220 0.145 0.156 0.192
COOH Cl
HOOC Cl
O2N OH
NO2 HO
当一个苯环对称取代时(即邻位两个取代基相同时),
分子无手性。
O2N Cl
HOOC Cl
实用文档
二、 含手性面的化合物 螺旋型分子。
对映异构
子
内消旋体
3-C—— 非手性碳
3-C——假手性碳
实用文档
实用文档
不含手性碳原子化合物的对映异构
即:含手性轴及手性面化合物的对映异构
一、含手性轴的化合物
1. 丙二烯型化 合手 物性轴
H
H
CC C
CH3
CH3
中心碳原子两个 键平面 正
交, 两端碳原子上四个基 团,两两处于互为垂直的平 面上。
实用文档
含一个手性碳原子化合物的对映异构
手性碳原子(或手性中心)——连有四个各不相同基团的碳 原子,用C*表示。
含有一个手性碳原子的化合物一定是手性分子。 它有两种不同的构型,是互为实物与镜象关系的立体异构体,称 为对映异构体(简称为对映体)。
实用文档
含两个手性碳原子化合物的对映异构
一、 含两个不同手性碳原子化合物的对映异
构
COOH
COOH
COOH
COOH
H
OH HO
H
H
Cl
Cl
H
H
OH
HO
H
Cl
H
H
Cl
COOH
COOH
(1) 对映体 (2)
COOH
COOH
(3) 对映体 (4)
m.p 173℃
[α
]
20
D
-7.1°
173℃ +7.1°
(± ) 外消旋体 m.p 145℃
167℃
167℃
-9.3°
+9.3°
外消旋体 m.p 157℃