数学四格漫画之令狐文艳创作

合集下载

小升初讲义数学共16讲之令狐文艳创作

小升初讲义数学共16讲之令狐文艳创作

令狐文艳创作目录令狐文艳第1讲前言第一章丰富的图形世界第2讲生活中的立体图形第3讲展开与折叠第4讲截与看几何体第5讲平面图形与基本的推理第6讲直线、线段、射线、角第二章有理数第7讲数怎么不够用了第8讲数轴第9讲绝对值第10讲有理数的加法第11讲有理数的减法第12讲有理数的加减混合运算第13讲有理数的乘法第14讲有理数的除法第15讲有理数的乘方第16讲有理数的混合运算第1讲前言数学:人类离不开;人人都能学会!一、走进数学世界宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

1.大自然的鬼斧神工使几何图形的对称美成了造型艺术、建筑美学的基础。

雪花的对称性就是大自然的杰作。

晶体(如冰糖)的表面对称极为精巧,并由此内含着深刻的物理性质。

在人类赖以生存的建筑群中,小到衣物装饰,大到房屋建筑、路面铺设,几乎处处都有美丽的对称性装饰,古代皇宫中壁画的边饰等无不含有极为壮丽的对称美,以至亡国之君李煜在身受软禁之际,还深情怀恋昔日的“雕阑玉砌应犹在”。

2.天工造物,每每使人惊叹不已;生物进化提示的规律,有时几个世纪也难以洞悉其中的奥秘。

蜂房的构造,大概最令人折服的实例之一。

18世纪初,法国学者马拉尔琪实测了蜂房底部菱形,得出令人惊异而有趣得结论:拼成蜂房底部的每个菱形的蜡板,钝角都是109°28ˊ,锐角都是70°32ˊ。

瑞士数学家克尼格经过精心计算,结果更令人震惊:建造同样体积且用料最省的蜂房,菱形的两角应是109°26ˊ与70°34ˊ,与实测仅差2分。

人们对蜜蜂出类拔萃的“建筑术”赞叹万分之余,无人去理会这不起眼的“2分”。

不料蜜蜂却不买克尼格的账,冷酷的科学事实后来去判断错方是克尼格。

2021年高中数学等价转化思想方法之令狐文艳创作

2021年高中数学等价转化思想方法之令狐文艳创作

第二章高中数学常用的数学思想令狐文艳四、等价转化思想方法等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

转化有等价转化与非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。

我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授 C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。

数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。

在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。

它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。

消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。

可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。

由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。

经典竞赛几何题之令狐文艳创作

经典竞赛几何题之令狐文艳创作

绝密★启用前令狐文艳2018年05月17日张朋松的初中数学组卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.解答题(共50小题)1.已知△ABC是等边三角形,D是BC边上的一个动点(点D 不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK与DK有怎样的大小关系?并说明理由.5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.7.如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC 至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.8.如图,在正方形ABCD中,取AD,CD的边的中点E,F,连接CE,BF交于点G,连接AG,试判断AG与AB是否相等,并说明理由.9.如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM 于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)10.如图,在四边形ABCD中,AD=BC,E、F分别是DC及AB 的中点,射线FE与AD及BC的延长线分别交于点H及G.试猜想∠AHF与∠BGF的关系,并给出证明.提示:若猜想不出∠AHF与∠BGF的关系,可考虑使四边形ABCD为特殊情况.如果给不出证明,可考虑下面作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP.11.如图,D为△ABC中线AM的中点,过M作AB、AC边的垂线,垂足分别为P、Q,过P、Q分别作DP、DQ的垂线交于点N.(1)求证:PN=QN;(2)求证:MN⊥BC.12.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;②∠PAE=∠PBF.13.如图:已知AB∥DC,∠BAD和∠ADC的平分线相交于点E,过点E的直线分别交AB、DC于B、C两点.猜想线段AD、AB、DC之间的数量关系,并证明.14.如图,已知△ABC中,AB=BC=CA,D、E、F分别是AB、BC、CA的中点,G是BC上一点,△DGH是等边三角形.求证:EG=FH.15.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD的平分线于G,求证:HF∥BC.16.已知:如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E是CD的中点,过点E作CD的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)试猜想∠MPB与∠FCM数量关系并证明.17.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.18.已知A,C,B在同一条直线上,△ACE,△BCF都是等边三角形,BE交CF于N,AF交CE于M,MG⊥CN,垂足为G.求证:CG=NG.19.如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D、E引直线交AC于点F,请判定AF与FC的数量关系,并证明之.20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.21.已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AB+AD),求证:∠B与∠D互补.22.如图,已知△ABC中,∠A=90°,AB=AC,∠1=∠2,CE⊥BD于E.求证:BD=2CE.23.AD是△ABC的角平分线,M是BC的中点,FM∥AD交AB的延长线于F,交AC于E.(1)求证:CE=BF;(2)探索线段CE与AB+AC之间的数量关系,并证明.24.如图,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°.判断线段AD与EF数量和位置关系.25.如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,BC=DC=10,求AC的长.26.如图,已知线段AB的同侧有两点C、D满足∠ACB=∠ADB=60°,∠ABD=90°﹣∠DBC.求证:AC=AD.27.如图,正方形ABDE和ACFG是以△ABC的AB、AC为边的正方形,P、Q为它们的中心,M是BC的中点,试判断MP、MQ 在数量和位置是有什么关系?并证明你的结论.28.如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.29.如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连接AN,CM相交于点P,试求∠APM的度数.30.已知如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,并且它们交于点O,(1)求:∠AOC的度数;(2)求证:AC=AE+CD.31.如图,已知△ABC中AB>AC,P是角平分线AD上任一点,求证:AB﹣AC>PB﹣PC.32.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP ⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.33.如图已知△ABC中,AB=AC,∠ABD=60°,且∠ADB=90°﹣∠BDC,求证:AB=BD+DC.34.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE度数.35.如图,已知△ABC是等腰直角三角形,∠C=90°,点M、N 分别是边AC和BC的中点,点D在射线BM上,且BD=2BM.点E在射线NA上,且NE=2NA,求证:BD⊥DE.36.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.37.如图,△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD.求证:BD=CD.38.如图所示,在△ABF中,已知BC=CE=EF,∠BAC=∠CAD=∠DAE=45°,求的值.39.如图,已知过△ABC的顶点A,在∠BAC内部任意作一条射线,过B、C分别作此射线的垂线段BD、CE,M为BC边中点.求证:MD=ME.40.已知,如图,在正方形ABCD中,O是对角线的交点,AF 平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E求证:.41.已知:在△ABC中,∠A=90°,AB=AC,D为AC中点,AE ⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.42.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD,求证:CD=2EC.43.如图,在△ABC中,BD=CD,AG平分∠DAC,BF⊥AG,垂足为H,与AD交于E,与AC交于F,过点C的直线CM交AD的延长线于M,且∠EBD=∠MCD,AC=AM.求证:DE=CF.44.如图,BE、CF是△ABC的高,它们相交于点O,点P在BE 上,Q在CF的延长线上且BP=AC,CQ=AB,(1)求证:△ABP≌△QCA.(2)AP和AQ的位置关系如何,请给予证明.45.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG∥AB交BC于G,说明BG=CF的理由.46.在△ABC中,∠ACB=90°,D是AB上一点,M是CD的中点,若∠AMD=∠BMD,求证:∠CDA=2∠ACD.47.如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD的延长线相交于G、H.求证:∠AHF=∠BGF.48.如图,在等腰直角△ABC中,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于G,求证:BG=AF+FG.49.已知△ABC,∠C=90°,AC=BC.M为AC中点,延长BM到D,使MD=BM;N为BC中点,延长NA到E,使AE=NA,连接ED,求证:ED⊥BD.50.如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA.2018年05月17日张朋松的初中数学组卷参考答案与试题解析一.解答题(共50小题)1.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.【分析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【解答】证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(2)由①得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;(3)成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC﹣∠FAE,∠DAC=∠FAD﹣∠FAE,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.【分析】EF为中位线,所以EF∥BC,又因为∠HFE和∠FHB,∠DEF和∠CDE 分别为一组平行线的对角,所以相等;转化成求证∠FHB=∠CDE.【解答】证明:∵E,F分别为AC,AB的中点,∴EF∥BC,根据平行线定理,∠HFE=∠FHB,∠DEF=∠CDE;同理可证∠CDE=∠B,∴∠DEF=∠B.又∵AH⊥BC,且F为AB的中点,∴HF=BF,∴∠B=∠BHF,∴∠HFE=∠B=∠DEF.即∠HFE=∠DEF.【点评】本题考查了三角形的中位线定理,平行四边形的判定,直角三角形中斜边的中线为斜边边长的一半.3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.【分析】(1)可证明△ACF≌△CAE,再由角平分线的性质得出∠OAC=∠OCA,从而得出OE=OF;(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.根据角平分线的性质定理以及逆定理可推得点O在∠B的平分线上,从而得出∠OBN=∠OBM=30°,由已知得出∠OEM=∠OFN,能证明Rt△OFN≌Rt △OEM,则OE=OF成立.【解答】证明:(1)∵∠B=60°,AB=BC,∴∠A=∠C=60°,∵AECF分别平分∠A,∠C,∴∠OAC=∠OCA=30°,∴OA=OC,△ACF≌△CAE(ASA),∴AE=CF,∴OE=OF;(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.∵点O在∠A,∠C的平分线上,∴ON=OH,OH=OM,从而OM=ON,∴点O在∠B的平分线上(1分)∴∠OBN=∠OBM=30°,ON=OM (2分)又∠OEM=∠B+∠A=60°+∠A∠OFN=∠A+∠C=(∠A+∠C)+∠A=(180°﹣60°)+∠A=60°+∠A.∴∠OEM=∠OFN.(2分)∴Rt△OFN≌Rt△OEM(AAS),(1分)∴OE=OF.(1分)【点评】本题考查了全等三角形的判定和性质以及角平分线的性质,注意一题多解以及方法的简单性.4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK与DK有怎样的大小关系?并说明理由.【分析】首先作出EI⊥AB,DH⊥AB,证明△EAI≌△DCF再得出DH=DF进而得出△EKI≌△DKH即可证出.【解答】解:结论:EK=DK.(2分)理由:过点E作EI⊥AB,过点D作DH⊥AB于H,DF⊥BC于F,在△EAI和△DCF中∵,∴△EAI≌△DCF(AAS),(2分)∴EI=DF,(2分)∵BD是∠ABC的平分线,∴DH=DF,(2分)∴DH=EI,在△EKI和△DKH中,∵,∴△EKI≌△DKH(AAS),(2分)∴EK=DK.(2分)【点评】此题主要考查了三角形全等证明方法,根据题意作出EI⊥AB,DH⊥AB,从而利于全等证明是解决问题的关键.5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.【分析】延长AC、BE交于点M,易证得△ACD≌△BCM,可得AD=BM①,可证得△AEM≌△AEB,可得EM=BE,即BM=2BE②,由①②即可得结论.【解答】解:如图,延长AC、BE交于点M,∵∠A的平分线AD,BE垂直AD于E,∴∠MAE=∠BAE,∠AEM=∠AEB=90°,∵AE=AE,∴△AEM≌△AEB(ASA),∴EM=BE,即BM=2BE①;∵∠A的平分线AD,AC=BC,∠C=90°,∴∠CAD=∠DAB=22.5°,∠ABC=45°,∵BE垂直AD于E,∴∠DAB+∠ABC+∠DBE=90°,即∠DBE=22.5°,∴∠CAD=∠DBE,又∵AC=BC,且∠ACB=∠BCM=90°,∴△ACD≌△BCM(ASA),∴AD=BM②;由①②得AD=2BE,即BE=AD.【点评】本题主要考查了全等三角形的判定和性质,涉及到等腰直角三角形的性质、三角形内角和定理等知识点,正确作出辅助线是解题的关键.6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.【分析】先延长DB,使BE=CD,连接AE,BC,根据已知条件得出A,B,D,C四点共圆,得出∠ACB=∠ADE,再根据等边三角形的性质得出△ABC是等边三角形,在△ABE和△ACD中,根据SAS得出△ABE≌△ACD,得出△ADE是等边三角形,得出AD=DE,再根据DE=BD+BE,即可证出AD=BD+CD.【解答】解:延长DB,使BE=CD,连接AE,BC,∵∠BAC+∠ACD+∠BDC+∠ABD=360°,∠BAC=60°,∠BDC=120°,∴∠ABD+∠ACD=180°,∴A,B,D,C四点共圆,∴∠ACB=∠ADE,∵∠ABD+∠ABE=180°,∴∠ABE=∠ACD,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∴∠ADE=60°,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AE=AD,∴△ADE是等边三角形,∴AD=DE,∵DE=BD+BE,∴AD=BD+CD.【点评】此题考查了全等三角形的判定与性质,用到的知识点是等边三角形的性质,全等三角形的判定与性质和三角形内角和定理,关键是根据题意作出辅助线.7.如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.【分析】由三角形的中位线得,MS∥AE,MS=AE,HS∥CF,HS=CF,由已知得HS=SM,从而得出∠SHM=∠SMH,则得出∠TGH=∠THG,GT=TH,最后不难看出AB=CD.【解答】证明:取BC中点T,AF的中点S,连接GT,HT,HS,SM,∵GHM分别为BD,AC,EF的中点,∴MS∥AE,MS=AE,HS∥CF,HS=CF,∵GT∥CD,HT∥AB,GT=CD,HT=AB,∴GT∥HS,HT∥SM,∴∠SHM=∠TGH,∠SMH=∠THG,∴∠TGH=∠THG,∴GT=TH,∴AB=CD.【点评】本题考查了三角形的中位线定理以及平行线的性质.8.如图,在正方形ABCD中,取AD,CD的边的中点E,F,连接CE,BF交于点G,连接AG,试判断AG与AB是否相等,并说明理由.【分析】延长CE、BA交于P,易证△CDE≌△BCF,可得∠CFB=∠DEC,即可求得CE⊥BF,进而可以求证△PAE∽△PBC,可得PA=AB,根据直角三角形斜边中线等于斜边一半性质即可解题.【解答】解:延长CE、BA交于P,∵在△CDE和△BCF中,,∴△CDE≌△BCF;(SAS)∴∠CFB=∠DEC,∵∠FCG+∠DEC=90°,∴CE⊥BF,∴△PAE∽△PBC,==,∴A是PB的中点,即AB=PB,∵RT△BPG中,AG=PB.∴AG=AB.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△CDE≌△BCF是解题的关键.9.如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)【分析】法(1)先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD;法(2)先作∠BAC的平分线交BM于N,得出∠ABN=∠CAE,再根据∠BAN=∠C=45°,AB=AC,证出△BAN≌△ACD,得出AN=CD,证出△NAM≌△DCM,即可得出∠AMB=∠CMD.【解答】证明:法(1)如图,延长AD至F,使得CF⊥AC,∵AB⊥AC,AD⊥BM,∴∠ABM=∠DAC,又∵AB=AC,CF⊥AC,∴△ABM≌△CAF,∴∠BMA=∠F,AM=CF,∵∠BCA=∠BCF=45°,AM=CM=CF,DC=DC,∴△FCD≌△MCD,法(2)AD交BM于E,作∠BAC的平分线交BM于N,∵AE⊥BM,BA⊥AC,∴∠ABN=∠CAE,∵∠BAN=∠C=45°,AB=AC,∴△BAN≌△ACD.∴AN=CD,∵∠NAM=∠C=45°,AM=MC∴△NAM≌△DCM,∴∠AMB=∠CMD.【点评】此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和相似三角形的判断与性质进行解答即可.10.如图,在四边形ABCD中,AD=BC,E、F分别是DC及AB的中点,射线FE与AD及BC的延长线分别交于点H及G.试猜想∠AHF与∠BGF的关系,并给出证明.提示:若猜想不出∠AHF与∠BGF的关系,可考虑使四边形ABCD为特殊情况.如果给不出证明,可考虑下面作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP.【分析】方法一:连AC,取其中点为M,连EM和FM,根据三角形的中位线平行于第三边并且等于第三边的一半可得EM∥AD,2EM=AD,同理FM∥BC,2FM=BC,再根据两直线平行,内错角相等可得∠AHF=∠MEF,两直线平行,内错角相等可得∠BGF=∠MFE,从而得证;方法二:作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP,根据独角戏互相平分的四边形的平行四边形可得APBC是平行四边形,根据平行四边形对边相等可得AP=BC=AD,连结AP,根据等边对等角可得∠APD=∠ADP,根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥DP根据两直线平行,同位角相等可得∠AHF=∠ADP,根据两边互相平行的两个角相等或互补可得∠BGF=∠APD,然后等量代换即可得证.【解答】答:∠AHF=∠BGF.证明:方法一:连AC,取其中点为M,连EM和FM,∵EM是△ACD的中位线,∴EM∥AD,2EM=AD,同理FM∥BC,2FM=BC,∴EM=FM,∴∠MEF=∠MFE,∵∠AHF=∠MEF,∠BGF=∠MFE,∴∠AHF=∠BGF;方法二:作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP,∵F是AB的中点,∴APBC是平行四边形,∴AP=BC=AD,连结AP,则∠APD=∠ADP,∵EF是△CDP的中位线,∴EF∥DP,∴∠AHF=∠ADP,∵GF∥DP,GB∥AP,∴∠BGF=∠APD,∴∠AHF=∠BGF.【点评】本题考查了三角形的中位线定理,等腰三角形的判定与性质,难点在于作辅助线构造出三角形的中位线.11.如图,D为△ABC中线AM的中点,过M作AB、AC边的垂线,垂足分别为P、Q,过P、Q分别作DP、DQ的垂线交于点N.(1)求证:PN=QN;(2)求证:MN⊥BC.【分析】(1)要证明PN=QN,只有证明这两条线段所在的三角形全等就可以了,连接DN,利用斜边直角边对应相等的两个三角形全等就可以了.(2)△BPM和△CQM是直角三角形,由条件知道MB=CM,取BM、CM的中点S、T,连接PS、QT可以得到PS=QT,利用角的关系证明∠SPN=∠TQN,再证明△SPN≌△TQN,从而得到NS=NT,利用等腰三角形的三线合一的性质证明MN⊥BC.【解答】证明:(1)方法一:连接DN∵D为△ABC中线AM的中点∴AD=MD,MB=CM∵MP⊥AB,MQ⊥AC∴∠APM=∠AQM=90°∴△APM、△AMQ是直角三角形∴PD=AM,QD=AM∴PD=QD∴Rt△DPN≌Rt△DQN(HL)∴NP=PQ;方法二:∵MP⊥AB,MQ⊥AC∴∠APM=∠AQM=90°,所以∠APM+∠AQM=180°,所以四边形APMQ为圆内接四边形.∵D为AM的中点,∴PD,DQ为以D为圆心的四边形APMQ内接圆的半径.∵PN⊥PD,QN⊥QD,∴PN,NQ为圆的两条切线,∴PN=NQ.(2)取BM、CM的中点S、T,连接SP、SN、TQ、TN∴SP=BM=MC=TQ∴∠SPN=90°﹣∠BPS﹣∠NPM=90°﹣∠B﹣∠DPA=90°﹣∠B﹣∠BAM=90°﹣∠AMC=90°﹣∠DMQ﹣∠QMT=90°﹣∠DQM﹣∠MQT=∠TQN∴△SPN≌△TQN∴SN=TN∵SM=TM∴NM⊥BC【点评】本题考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,等腰三角形的判定与性质.12.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;②∠PAE=∠PBF.【分析】①要证△DEM≌△DFN,由D、M、N分别是AB、AP、BP的中点,所以DM=BP,DN=AP,再有过E、F分别作CA、CB的垂线相交于P,所以EM=AP=DN,FN=BP=DM.又DE=DF所以△DEM≌△DFN.②由①得∠EMD=∠FND,由∠AMD=∠BND=∠APB所以∠AME=∠BNF,那么∠PAE=(180°﹣∠AME),∠PBF=(180°﹣∠BNF),即∠PAE=∠PBF.【解答】证明:①如图,在△ABP中,∵D、M、N分别是AB、AP、BP的中点,∴DM=BP,DN=AP,又∵PE⊥AE,BF⊥PF∴EM=AP=DN,FN=BP=DM,∵DE=DF∴△DEM≌△DFN(SSS);②∵由①结论△DEM≌△DFN可知∠EMD=∠FND,∵DM∥BP,DN∥AP,∴∠AMD=∠BND=∠APB,∴∠AME=∠BNF又∵PE⊥AE,BF⊥PF,∴△AEP和△BFP都为直角三角形,又M,N分别为斜边PA与PB的中点,∴AM=EM=AP,BN=NF=BP,∴∠MAE=∠MEA,∠NBF=∠NFB,∴∠PAE=(180°﹣∠AME),∠PBF=(180°﹣∠BNF).即∠PAE=∠PBF,【点评】此题考查了线段之间的关系,和全等三角形的判定和性质,同学们应该熟练掌握.13.如图:已知AB∥DC,∠BAD和∠ADC的平分线相交于点E,过点E的直线分别交AB、DC于B、C两点.猜想线段AD、AB、DC之间的数量关系,并证明.【分析】在AD上截取AF=AB,连接EF,根据SAS证△BAE≌△FAE,推出∠B=∠EFA,求出∠C=∠EFD,证△CDE≌△FDE,推出DC=DF,即可得出答案.【解答】答:AD=AB+DC,证明:在AD上截取AF=AB,连接EF,∵AE平分∠BAF,∴∠BAE=∠FAE,∵在△BAE和△FAE中∴△BAE≌△FAE(SAS),∴∠B=∠EFA,∵AB∥DC,∴∠B+∠C=180°,∵∠EFD+∠EFA=180°,∴∠C=∠EFD,∵DE平分∠CDA,∴∠CDE=∠FDE,∵在△CDE和△FDE中∴△CDE≌△FDE(AAS),∴DC=DF,∴AD=AF+DF=AB+DC.【点评】本题考查了全等三角形的性质和判定,平行线的性质,角平分线定义等知识点的应用,关键是能正确作辅助线.14.如图,已知△ABC中,AB=BC=CA,D、E、F分别是AB、BC、CA的中点,G是BC上一点,△DGH是等边三角形.求证:EG=FH.【分析】连接DE、DF,根据三角形中位线定理及等边三角形的性质,可证明△DEG≌△DFH,即可得结论.【解答】证明:连接DE、DF,(如图)∵D、E、F是各边中点,∴DE平行且等于AC,DF平行且等于BC,∵AB=BC=CA,∴∠A=∠B=∠C=60°,∴DE=DF,∠EDF=∠DFA=∠C=60°∵已知等边△DHG,∴DG=DH,∠HDG=60°=∠EDF,∴∠EDF﹣∠FDG=∠HDG﹣∠FDG,即∠1=∠2,∴△DEG≌△DFH(SAS),∴FH=EG.【点评】本题考查了三角形全等的判定及性质,涉及到三角形中位线定理、等边三角形的性质等知识点,熟练掌握三角形全等判定方法是解题的关键.15.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD的平分线于G,求证:HF∥BC.【分析】根据角平分线性质作辅助线连接FE,进而证得HCEF是菱形从而证得.【解答】证明:连接FE,∵CD是Rt△ABC斜边上的高,∴∠A=∠DCB,又∵AE平分∠A,CF平分∠BCD,∴∠DCF=∠DAE,又∵∠AHD=∠CHE,∠ADH=90度,∴∠CGE=90度,在三角形ACF中,AE是高,中线,角平分线,∴CF⊥HE,CG=FG,∴CH=FH,CE=EF,∴CF是△CHE的高,中线,角平分线,∴CH=CE,∴CH=HF=EF=CE,∴四边形HCEF是菱形,∴HF∥BC.【点评】本题考查了角平分线性质以及其应用,问题有一定难度.16.已知:如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E是CD的中点,过点E作CD的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)试猜想∠MPB与∠FCM数量关系并证明.【分析】(1)连接MD,根据线段垂直平分线上的点到两端点的距离相等可得MD=MC,然后利用“边边边”证M明△MFC与△MAD全等,根据全等三角形对应角相等可得∠MAD=∠MFC,根据两直线平行,同旁内角互补求出∠BAD,然后求出∠BAM=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半证明;(2)根据全等三角形对应角相等和轴对称的性质可得∠BMP=∠FMD=∠DMA,然后用∠BMP表示出∠FCM,再根据直角三角形两锐角互余列式整理即可得解.【解答】(1)证明:连接MD,∵点E是CD的中点,ME⊥D,∴MD=MC,在△MFC与△MAD中,,∴△MFC≌△MAD(SSS),∴∠MAD=∠MFC=120°,∵AD∥BC,∠ABC=90°,∴∠BAD=180°﹣∠ABC=180°﹣90°=90°,∴∠BAM=∠MAD﹣∠BAD=120°﹣90°=30°,∵∠ABM=90°,∴AM=2MB;(2)解:2∠MPB+∠FCM=180°.理由如下:由(1)可知∠BMP=∠FMD=∠DMA,∵∠FCM=∠ADM=∠DMC=2∠BMP,∴∠BMP=∠FCM,∵∠ABC=90°,∴∠MPB+∠BMP=90°,∴∠MPB+∠FCM=90°,∴2∠MPB+∠FCM=180°.【点评】本题考查了全等三角形的判定与性质,线段垂直平分线上的点到两端点的距离相等的性质,直角三角形两锐角互余,熟记各性质并作辅助线构造出全等三角形是解题的关键.17.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.【分析】作∠OBF=∠OAE交AD于F,由已知条件用“ASA”可判定△AOE≌△BOF,所以AE=BF,再有条件AE=BD得BF=BD,所以∠BDF=∠BFD,再利用三角形的外角关系证得∠BOF=∠C,又因为∠BOF=∠BAD+∠ABE=2∠BAD,所以:∠BAD=∠C.【解答】证明:作∠OBF=∠OAE交AD于F,∵∠BAD=∠ABE,∴OA=OB.又∠AOE=∠BOF,∴△AOE≌△BOF(ASA).∴AE=BF.∵AE=BD,∴BF=BD.∴∠BDF=∠BFD.∵∠BDF=∠C+∠OAE,∠BFD=∠BOF+∠OBF,∴∠BOF=∠C.∵∠BOF=∠BAD+∠ABE=2∠BAD,∴∠BAD=∠C,【点评】本题考查了全等三角形的判断和性质,常用的判断方法为:SAS,SSS,AAS,ASA.常用到的性质是:对应角相等,对应边相等.在证明中还要注意图形中隐藏条件的挖掘如:本题中的对顶角∠AOE=∠BOF.18.已知A,C,B在同一条直线上,△ACE,△BCF都是等边三角形,BE交CF于N,AF交CE于M,MG⊥CN,垂足为G.求证:CG=NG.【分析】先证△ACF与△ECB全等,得到∠AFC=∠ABE,再证△FMC≌△BNC 得到MC=MN,有条件MG垂直于NC而得到结论.【解答】证明:∵△ACE,△BCF都是等边三角形,∴AC=EC,FC=BC,∠ACE=∠BCF=60°,∴∠ECN=60°,∠BCE=∠ACF,∴△ACF≌△ECB,∴∠AFC=∠ABE,∵∠FCM=∠BCN=60°,CF=CB,∴△FMC≌△BNC,∴CM=CN,∵∠ECN=60°,∴△CNMN是等边三角形,∴CM=MN,∵MG⊥NC,∴GC=GN.【点评】本题考查了等边三角形的性质,通过两次全等得到MC=MN,通过MG垂直于NC得到结论.19.如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E 点,使BE=BD,过点D、E引直线交AC于点F,请判定AF与FC的数量关系,并证明之.【分析】根据等边对等角可得∠E=∠BDE,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ABC=2∠BDE,从而求出∠C=∠BDE,再求出∠C=∠CDF,然后根据等角对等边求出DF=FC,再根据等角的余角相等求出∠CAD=∠ADF,根据等角对等边求出DF=AF,即可得到AF=FC.【解答】解:AF=FC.理由如下:∵BE=BD,∴∠E=∠BDE,∵∠ABC=∠E+∠BDE=2∠BDE,∠ABC=2∠C,∴∠C=∠BDE,又∵∠BDE=∠CDF,∴∠C=∠CDF,∴DF=FC,∵AD为BC边上的高,∴∠CDF+∠ADF=∠ADC=90°,∠C+∠CAD=180°﹣90°=90°,∴∠CAD=∠ADF,∴DF=AF,∴AF=FC.【点评】本题考查了等腰三角形的判定与性质,等角的余角相等的性质,熟记性质与判定并准确识图是解题的关键.20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.【分析】可在AC延长线上截取CM1=BM,得Rt△BDM≌Rt△CDM1,得出边角关系,再求解△MDN≌△M1DN,得MN=NM1,再通过线段之间的转化即可得出结论.【解答】证明:如图,在AC延长线上截取CM1=BM,∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°,∴∠DCM1=90°,∵BD=CD,∵在△BDM和△CDM1中,,∴△BDM≌△CDM1(SAS),得MD=M1D,∠MDB=∠M1DC,∴∠MDM1=120°﹣∠MDB+∠M1DC=120°,∴∠NDM1=60°,在△MDN和△M1DN中,∵,∴△MDN≌△M1DN(SAS),∴MN=NM1,故△AMN的周长=AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2.【点评】本题主要考查了全等三角形的判定及性质问题,能够通过线段之间的转化进而求解一些简单的结论.21.已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AB+AD),求证:∠B与∠D互补.【分析】可在AB上截取AF=AD,可得△ACF≌△ACD,得出∠AFC=∠D,再由线段之间的关系AE=(AB+AD)得出BC=CF,进而通过角之间的转化即可得出结论.【解答】证明:在AB上截取AF=AD,连接CF,∵AC平分∠BAD,∴∠BAC=∠CAD,又AC=AC,∴△ACF≌△ACD(SAS),∴AF=AD,∠AFC=∠D,∵AE=(AB+AD),∴EF=BE,又∵CE⊥AB,∴BC=FC,∴∠CFB=∠B,∴∠B+D=∠CFB+∠AFC=180°,即∠B与∠D互补.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练运用三角形的性质求解一些简单的计算、证明问题.22.如图,已知△ABC中,∠A=90°,AB=AC,∠1=∠2,CE⊥BD于E.求证:BD=2CE.【分析】延长CE、BA交于F,根据角边角定理,证明△BEF≌△BEC,进而得到CF=2CE的关系.再证明∠ACF=∠1,根据角边角定理证明△ACF≌△ABD,得到BD=CF,至此问题得解.【解答】证明:如图,延长CE、BA交于F.∵CE⊥BD,∴∠BEF=∠BEC=90°,∴∠1=∠2,在△BEF和△BEC中,∴△BEF≌△BEC(ASA),∴EF=EC,∴CF=2CE,∵∠BAC=90°,∵CE⊥BD,∴∠ACF=∠1,在△ACF和△ABD中,∴△ACF≌△ABD(ASA),∴BD=CF,∴BD=2CE.【点评】本题考查全等三角形的判定与性质.解决本题主要是恰当添加辅助线,构造全等三角形,将所求问题转化为全等三角形内边间的关系来解决.23.AD是△ABC的角平分线,M是BC的中点,FM∥AD交AB的延长线于F,交AC于E.(1)求证:CE=BF;(2)探索线段CE与AB+AC之间的数量关系,并证明.【分析】(1)延长CA交FM的平行线BG于G点,利用平行线的性质得到BM=CM、CE=GE,从而证得CE=BF;(2)利用上题证得的EA=FA、CE=BF,进一步得到AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【解答】(1)证明:延长CA交FM的平行线BG于G点,∠G=∠CAD、∠GBA=∠BAD∵AD平分∠BAC,∴AG=AB,∵FM∥AD∴∠F=∠BAD、∠FEA=∠DAC∵∠BAD=∠DAC,∴∠F=∠FEA,∴EA=FA,∴GE=BF,∴M为BC边的中点,∴BM=CM,∵EM∥GB,∴CE=GE,∴CE=BF;(2)AB+AC=2EC.证明:∵EA=FA、CE=BF,∴AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【点评】本题考查了三角形的中位线定理,解题的关键是正确地构造辅助线,另外题目中还考查了平行线等分线段定理.24.如图,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°.判断线段AD与EF数量和位置关系.【分析】猜想:EF=2AD,EF⊥AD.证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,易证BD=CD,即可证明△ABD≌△MCD,可得AB=MC,∠BAD=∠M,即可求得∠EAF=∠MCA,即可证明△AEF≌△CMA,可得EF=AM,∠CAM=∠F,即可解题.【解答】解:EF=2AD,EF⊥AD.证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,∴AD=DM,AM=2AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△MCD中,,∴△ABD≌△MCD,(SAS)∴AB=MC,∠BAD=∠M,∵AB=AE,∴AE=MC,∵AE⊥AB,AF⊥AC,∴∠EAB=∠FAC=90°,∵∠FAC+∠BAC+∠EAB+∠EAF=360°,∴∠BAC+∠EAF=180°,∵∠CAD+∠M+∠MCA=180°,∴∠CAD+∠BAD+∠MCA=180°,即∠BAC+∠MCA=180°,∴∠EAF=∠MCA.在△AEF和△CMA中,,∴△AEF≌△CMA,∴EF=AM,∠CAM=∠F,∴EF=2AD;∵∠CAF=90°,∴∠CAM+∠FAN=90°,∵∠CAM=∠F,∴∠F+∠FAN=90°,∴∠ANF=90°,∴EF⊥AD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△MCD和△AEF≌△CMA是解题的关键.25.如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,BC=DC=10,求AC的长.【分析】作辅助线构建直角三角形,求证△CFD≌△CEB,即可得DF=EB,即可求得DF,根据DF求CF,根据CF、AF求AC.【解答】解:过C作CE⊥AB,CF⊥AD,∴∠CEA=90°,∠CFD=90°,∵AC平分∠BAD,∴CF=CE(角平分线上的点到角的两边的距离相等),又∵BC=DC,∴△CFD≌△CEB(HL),∴DF=EB,同理可得△ACF≌△ACE,∴AF=AE,∴AD+DF=AB﹣BE,即9+DF=21﹣BE,。

小学二年级奥数17个专题之令狐文艳创作

小学二年级奥数17个专题之令狐文艳创作

小学二年级奥数教材令狐文艳一、比谁眼力好王牌例题 1 下面一组图中,有一个是不同的,你能找到它吗?叠一小部分。

而图④是两个完全一样的半圆拼成一个整圆,没有重叠。

这几组图形中,第4组图形与其他的不同。

疯狂操练11、下面一组图形,其中有一个是不相同的,你能找出来吗?2、找出与其他图形不同的那组图。

(1)(2)(3)(4)3、你能把与其他不同的找出来吗? 王牌例题2 根据规律接着画。

① ② ③ ④ ⑤【思路导航】仔细观察图可以发现,第一竖行是三个基本图形○、△、□,第二竖行是在○、△、□外面加了一个圆,第三竖行由上两个图形发现是在○、△外加上了一个方框,由此可推断第三个空格的图应该在□外加上一个方框。

所以图中疯狂操练21、按顺序仔细观察图,第三幅图“?”处该怎么填?2、按顺序仔细观察,在“?”处填图。

?3、接着画。

王牌例题3 在方框里填上适当的字母。

【思路导航】仔细观察这些字母,不难发现,每一横行、竖行都有字母A、B、C,只不过是排列顺序不同而已。

因此空格里横看、竖看,都应该填B。

疯狂操练31、按规律在空格里画上图形。

2、在空格里填上适当的图形。

3、接着画。

王牌例题 4 请你根据前三个图形的变化规律,画出第四个图形来。

【思路导航】通过观察可以发现这三幅图都是把完全一样的圆平均分成4份,把其中的一份涂上阴影。

第一幅图阴影部分在左上角,第二幅图阴影部分在左下角,第三幅图阴影部分在右下角,根据这个规律,第四幅图阴影部分应该转到右上角。

所以第四个方框里应填。

疯狂操练41、请你根据前三个图形的变化规律,画出第四个图形来。

○○○○○○○●○○●●○○○○○●○●○●●●○○○●○●○●●●●●2、接下去该怎样画?△△△△△△△△△△△▲△△△△△△△▲△△▲△△△△△△▲△△△▲△△3、仔细观察图,在第四幅中应画什么图形?第十幅图应画什么图形?王牌例题5 接着应该怎样画?请画在空格里。

※★★§§☆☆§※☆★※【思路导航】先观察※这朵花,⑴在左上角,⑵在左下角,⑶在右下角,由此可见这朵花按逆时针方向依次转动。

动点问题题型方法归纳之令狐文艳创作

动点问题题型方法归纳之令狐文艳创作

动点问题题型方法归纳令狐文艳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.图 B图 B 图 提2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.DAB=60° 当面积最大时,四边形BCPQ 的面积最小。

如何培养小学生的数学阅读能力之令狐文艳创作

如何培养小学生的数学阅读能力之令狐文艳创作

如何培养小学生的数学阅读能力令狐文艳华店乡蓝天小学谷志勇数学是一门科学,也是一种文化,更是一种语言。

数学阅读是学生个体根据已有的知识经验,通过阅读数学材料建构数学意义和方法的学习活动,是学生主动获取信息,汲取知识,发展数学思维,学习数学语言的重要途径。

随着科学技术,特别是信息技术的飞速发展,要求人们不仅需要具备语文和外语的阅读能力,而且还需要具有一定的数学阅读能力。

阅读属于信息输入加工形式,是人类汲取知识的重要手段和认识世界的重要途经,是从书面材料中获取信息的过程,阅读能力是学生可持续发展能力的一个重要标志。

数学阅读能促进学生数学语言水平的发展,认知水平的发展,有助于学生探究能力的发展,也有助于学生自学能力的培养的提高。

数学语言发展水平低的学生,课堂上对数学语言信息的敏感性差,思维转换慢,从而数学理解能力差。

因此,重视数学阅读,作好与书本标准数学语言的交流,规范自己的数学语言,提高数学语言水平,丰富数学语言系统,有着重要而现实的教育意义。

提高学生的数学阅读能力是终身学习的需要,是信息化、数学化社会的需要。

实践证明,小学生数学阅读能力的不同直接影响了学生自主构建新知、解决数学问题的准确性和速度。

因此,作为一名数学老师必须高度重视小学生数学阅读能力的培养。

一、创设情境,激发阅读兴趣数学是一门比较抽象的基础科学,要想使儿童保持有强烈的求知欲,必须激发他们的兴趣,从而促进其思维发展。

课堂中我们要善于抓住契机,巧妙设疑,利用学生好胜的欲望,为读与思做好铺垫。

例如:在教完“三角形面积的计算”后,学生对用两个完全相同的三角形,可以拼成一个平行四边形的方法非常熟悉。

因此,在教学“梯形的面积计算”时,就可以先给学生看两个完全一样的梯形,引导学生思考可不可以用我们所学过的方法来推导出梯形的面积。

学生们在已有知识的基础上,很快就说出了自己的方法,并且急切想知道自己的看法是否正确。

在这个时候我们就可以让学生打开课本看看课本中是怎么说的?是否和自己所想的一样?学生们此时对数学课本产生了浓厚的兴趣,每个人都会认真阅读课本中的新知识,验证自己的想法是否正确。

小学二年级奥数题图形及答案之令狐文艳创作

小学二年级奥数题图形及答案之令狐文艳创作

一、计算题。

( 共101题)令狐文艳1.图2-26是由四个扁而长的圆圈组成的,在交点处有8个小圆圈.请你把1、2、3、4、5、6、7、8这八个数分别填在8个小圆圈中。

要求每个扁长圆圈上的四个数字的和都等于18。

答案:2.在图2-24中,三个圆圈两两相交形成七块小区域,分别填上1~7七个自然数,在一些小区域中,自然数3、5、7三个数已填好,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都是15。

答案:15=1+2+5+7,15=1+3+4+7,15=1+3+5+6,15=2+3+4+6 其中1和3用的次数最多,图中最中间的部分被三个圆包围,所以1和3应该填在里面。

但题目总3已填好,所以只能填1。

1填好后其他的也就好确定了。

答案见下图3.图2-23中有三个大圆,在大圆的交点上有六个小圆圈。

请你把1、2、3、4、5、6六个数分别填在六个小圆圈里,要求每个大圆上的四个小圆圈中的数之和都是14。

答案:案把14拆成4个自然数的和,如下14=1+2+5+6;14=1+3+4+6;14=2+3+4+5。

先把一个数填入,然后试一下确定其他数的位置。

答案如下图4.将2、4、6、8、10、12、14、16、18填在下面图表,使每一横行、竖行、斜行的三个数相加的和都相等。

答案:案九宫格填九数的方法,确定中间是10最关键了,然后我们对这些数加和除以3,就有了相等的和应该是30,图形如下(有很多种,但是中间那个肯定是10)5.仔细观察下面的图形,找出变化规律,猜猜在第3组的右框空白格内填一个什么样的图?答案:6.请看下图,共有多少个正方形?答案:30 个正方形。

小结小方格16 个,4 个小方格为一个正方形共 9 个,9 个小方格为一个正方形共 4 个,最大的(16 个小方格)是 1 个。

16+9+4+1=30(个)共计 30 个正方形。

7.仔细观察这些图案可以发现,他们是按照下面这5个图案为一组,循环往复排列的,请问第52个图形是什么?答案:8.把上面一排的立体图形剪开,可以剪成下面哪种图形的样子?动手试一试。

大学高数公式大全之令狐文艳创作

大学高数公式大全之令狐文艳创作

高等数学公式令狐文艳导数公式: 基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法:重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:0二阶常系数非齐次线性微分方程。

上海沪版初中数学目录之令狐文艳创作

上海沪版初中数学目录之令狐文艳创作

令狐文艳创作令狐文艳创作六年级第一学期 第一章令狐文艳第二章 数的整除 第1节 整数和整除1.1 整数和整除的意义1.2 因数和倍数1.3 能被2,5整除的数第2节 分解素因数1.4 素数、合数与分解素因数1.5 公因数与最大公因数1.6 公倍数与最小公倍数第三章 分数 第1节 分数的意义与性质2.1 分数与除法2.2 分数的基本性质2.3 分数的大小比较 第2节 分数的运算2.4 分数的加减法 2.5 分数的乘法 2.6 分数的除法2.7 分数与小数的互化拓展 无限循环小数与分数的互化2.8 分数、小数的四则混合运算2.9 分数运算的应用第四章 比和比例 第1节 比和比例 3.1 比得意义3.2 比得基本性质3.3 比例 第2节 百分比3.4 百分比的意义 3.5 百分比的应用 3.6 等可能事件 第五章 圆和扇形 第1节 圆的周长和弧长4.1 圆的周长 4.2 弧长 第2节 圆和扇形的面积4.3 圆的面积4.4 扇形的面积 六年级第二学期 第六章 有理数 第1节 有理数5.1 有理数的意义 5.2 数轴5.3 绝对值 第2节 有理数的运算 5.4 有理数的加法 5.5 有理数的减法 5.6 有理数的乘法 5.7 有理数的除法 5.8 有理数的乘方 5.9 有理数的混合运算5.10 科学计数法 第七章 一次方程和一次不等式(组)第1节 方程与方程的解6.1 列方程6.2 方程的解 第2节 一元一次方程 6.3 一元一次方程及其解法6.4 一元一次方程的应用 第3节 一元一次不等式(组)6.5 不等式及其性质6.6 一元一次不等式的解法6.7 一元一次不等式组 第4节 一次方程组6.8 二元一次方程 6.9 二元一次方程组及其解法6.10 三元一次方程组及其解法6.11 一次方程组的应用第八章 线段与角的画法第1节 线段的相等与和、差、倍7.1 线段的大小比较7.2 画线段的和、差、倍 第2节 角7.3 角的概念与表示7.4 角的大小的比较 画相等的角7.5 画角的和、差、倍7.6 余角、补角第九章 长方体的再认识第1节 长方体的元素 第2节 长方体直观图的画法第3节 长方体中棱与棱位置关系的认识第4节 长方体中棱与平面位置关系的认识第5节 长方体中平面与平面位置关系的认识七年级第一学期 第九章 整式第1节 整式的概念 9.1 字母表示数 9.2 代数式9.3 代数式的值 9.4 整式第2节 整式的加减 9.5 合并同类项 9.6 整式的加减 第3节 整式的乘法 9.7 同底数幂的乘法9.8 幂的乘方 9.9 积的乘方9.10 整式的乘法 第4节 乘法公式9.11 平方差公式 9.12 完全平方公式第5节 因式分解9.13 提取公因式法9.14 公式法9.15 十字相乘法 9.16 分组分解法 第6节 整式的除法 9.17 同底数幂的除法9.18 单项式除以单项式9.19 多项式除以单项式第十章 分式 第1节 分式10.1 分式的意义 10.2 分式的基本性质第2节 分式的运算 10.3 分式的乘除 10.4 分式的加减10.5 可以化成一元一次方程的分式方程10.6 整数指数幂及其运算第十一章 图形的运动 第1节 图形的平移 11.1 平移 第2节 图形的旋转 11.2 旋转11.3 旋转对称令狐文艳创作令狐文艳创作图形与中心对称图形11.4 中心对称 第3节 图形的翻折11.5 翻折与轴对称图形11.6 轴对称 七年级第二学期 第十二章 实数 第1节 实数的概念12.1 实数的概念 第2节 数的开方12.2 平方根和开平方12.3 立方根和开立方12.4 n 次方根 第3节 实数的运算12.5 用数轴上的点表示实数12.6 实数的运算 第4节 分数指数幂12.7 分数指数幂第十三章 相交线 平行线 第1节 相交线13.1 邻补角、对顶角13.2 垂线13.3 同位角、内错角、同旁内角 第2节 平行线13.4 平行线的判定13.5 平行线的性质第十四章 三角形 第1节 三角形的有关概念与性质14.1 三角形的有关概念 14,2 三角形的内角和 第2节 全等三角形14.3 全等三角形的概念与性质14.4 全等三角形的判定 第3节 等腰三角形14.5 等腰三角形的性质14.6 等腰三角形的判定14.7 等边三角形第十五章 平面直角坐标系 第1节 平面直角坐标系15.1 平面直角坐标系 第2节 直角坐标平面内点的运动15.2 直角坐标平面内点的运动 八年级第一学期第十六章 二次根式 第1节 二次根式的概念和性质16.1 二次根式 16.2 最贱二次根式和同类二次根式第2节 二次根式的运算16.3 二次根式的运算第十七章 一元二次方程 第1节 一元二次方程的概念17.1 一元二次方程的概念 第2节 一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程跟的判别式 第3节 一元二次方程的应用17.4 一元二次方程的应用第十八章 正比例函数和反比例函数 第1节 正比例函数18.1 函数的概念18.2 正比例函数 第2节 反比例函数18.3 反比例函数 第3节 函数表示法18.4 函数的表示法第十九章 几何证明 第1节 几何证明19.1 命题和证明19.2 证明举例 第2节 线段的垂直平分线与角的平分线19.3 逆命题和逆定理19.4 线段的垂直平分线19.5 角的平分线19.6 轨迹 第3节 直角三角形19.7 直角三角形全等的判定19.8 直角三角形的性质19.9 勾股定理 19.10 两点的距离公式八年级第二学期第二十章 一次函数第1节一次函数的概念20.1 一次函数的概念 第2节 一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质 第3节 一次函数的应用20.4 一次函数的应用第二十一章 代数方程 第1节 整式方程21.1 一元整式方程21.2 二项方程 第2节 分式方程21.3 可化为一元二次方程的分式方程第3节 无理方程21.4 无理方程 第4节 二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法 第5节 列方程(组)解应用题21.7 列方程(组)解应用题第二十二章 四边形 第1节 多边形22.1 多边形 第2节 平行四边形22.2 平行四边形22.3 特殊的平行四边形 第3节 梯形22.4 梯形令狐文艳创作令狐文艳创作22.5 等腰梯形 22.6 三角形、梯形的中位线 第4节 平面向量及其加减运算22.7 平面向量 22.8 平面向量的加法22.9 平面向量的减法第二十三章 概率初步第1节 事件及其发生的可能性23.1 确定事件和随机事件23.2 事件发生的可能性 第2节 事件的概率23.3 事件的概率23.4 概率计算举例九年级第一学期第二十四章 相似三角形 第1节 相似形24.1 放缩与相似形 第2节 比例线段24.2 比例线段 24.3 三角形一边的平行线 第3节 相似三角形24.4 相似三角形的判定24.5 相似三角形的性质 第4节 平面向量的线性运算24.6 实数与向量相乘24.7 向量的线性运算第二十五章 锐角的三角比第1节锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角形比的值 第2节 解直角三角形 25.3 解直角三角形25.4 解直角三角形的应用第二十六章 二次函数 第1节 二次函数的概念26.1 二次函数的概念 第2节 二次函数的图像26.2 特殊二次函数的图像 26.3 二次函数y=ax 2+bx+c 的九年级第二学期第二十六章 圆与多边形 第1节 圆的基本性质26.1圆的确定26.2圆心角、弧、弦、弦心距之间的关系26.3 垂径定理 第2节 直线与圆、圆与圆的位置关系26.4直线与圆的位置关系26.5 圆与圆的位置关系 第3节 正多边形与圆26.6正多边形与圆第二十七章 统计初步 第1节 统计的意义27.1 数据整理与表示27.2 统计的意义第2节 基本的统计量27.3 表示一组数据平均水平的量 27.4 表示一组数据波动程度的量 27.5 表示一组数据分布的量27.6 统计实习九年级 拓展Ⅱ第一章 一元二次方程与二次函数 第1节 一元二次方程的根与系数关系1.1 一元二次方程的根与系数关系 第2节 二次函数的解析式1.2 二次函数与一元二次方程1.3 二次函数解析式的确定第二章 直线和圆 第1节 圆的切线 2.1圆的切线第2节 与圆有关的角及比例线段2.2 与圆有关的角2.3 与圆有关的比例线段 第3节 园内接四边形2.4园内接四边形。

中考数学 辅助线之令狐文艳创作

中考数学 辅助线之令狐文艳创作

几何辅助线(图)作法探讨令狐文艳一些几何题的证明或求解,由原图形分析探究,有时显得十分复杂,若通过适当的变换,即添加适当的辅助线(图),将原图形转换成一个完整的、特殊的、简单的新图形,则能使原问题的本质得到充分的显示,通过对新图形的分析,原问题顺利获解。

有许多初中几何常见辅助线作法歌诀,下面这一套是很好的:人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内切圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

在几何题的证明或求解时,需要构成一些基本图形来求证(解)时往往要通过添加辅助线(图)来形成,添加辅助线(图),构成的基本图形是结果,构造的手段是方法。

一升二数学暑期衔接课程之令狐文艳创作

一升二数学暑期衔接课程之令狐文艳创作

一升二数学暑假衔接目录令狐文艳No. 1看图列式1No. 2看图解决问题3No. 3解决问题的策略5No. 4比多少7No. 5提取有效信息9No. 6小括号10No. 7 同数连加11No. 8 同数连减13No. 9 探究实践——用小球摆出不同的数15No.10 找规律16No.11 综合练习(一)18No.12 综合练习(二)20No. 1 看图列式姓名等级_________相关知识链接一、自主练习:说一说图中告诉我们什么,要解决什么问题,再解答1.2.3.二、我的困惑No. 2 看图解决问题姓名等级_________相关知识链接一、自主练习:从图中你能提出数学问题并解答吗?二、拓展练习1.2.一共用了多少块积木?=(块)三、我的困惑No. 3 解决问题的策略姓名等级_________ 相关知识链接一、自主练习:二、拓展练习1.2.三、我的困惑No. 4比多少相关知识链接一、自主学习1.解决问题的时候,用画图的方式更直观,更容易理解。

2.注意在画图解决比大小、比多少的问题时,上下两图一一对应,更方便观察。

3.求多几或少几,有什么规律?二、自主练习:先画图,再列式并解答1.小林家养了15只兔和9只羊。

兔比羊多几只?羊比兔少几只?2.平平和芳芳都很喜欢集邮,原来芳芳的邮票比平平的多几枚?原来平平的邮票比芳芳的少几枚?No. 5 提取有效信息姓名等级_________相关知识链接一、自主学习1.解决问题需要找出有效的信息,删去干扰条件2.仔细阅读题目,找出与需要解决的问题不相关的条件,并且不受它干扰。

二、自主练习:先画图,再列式并解答1.小明家有14只鸡和5只鸭。

公鸡有6只,母鸡有几只?2.3.二、拓展练习:先画图,再列式并解答1.小军和小月一起折纸船,小月折了几只?三、我的困惑No. 6 小括号姓名等级_________相关知识链接一、自主学习1.解决还剩多少的问题,可以用连减的算式,也可以先加后减,借助小括号列综合算式。

数学逻辑思维之令狐文艳创作

数学逻辑思维之令狐文艳创作

逻辑思维令狐文艳逻辑思维的重要性人类的活动离不开思维,思维能力的发展程度是整个智力发展的缩影和标志。

由于数学自身的特点,数学教育承载着“发展儿童的思维”的重任,现代教育观点认为,数学教学就是指数学思维活动的教学,数学教学实质上就是学生在教师指导下,通过数学思维活动,学习数学家思维活动的成果,并发展数学思维,使学生的数学思维结构向数学家的思维结构转化的过程。

逻辑思维对学习的影响《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。

”这一条规定是很正确的。

下面试从两方面进行一些分析。

首先从数学的特点看。

数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。

并且借助逻辑推理由一些判断形成一些新的判断。

而这些判断的总和就组成了数学这门科学。

小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。

再从小学生的思维特点来看。

他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。

这里所说的抽象逻辑思维,主要是指形式逻辑思维。

因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。

由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。

值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。

一个时期内,大家谈创造思维很多,而谈逻辑思维很少。

殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。

就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。

因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。

《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。

例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。

二次函数最大利润求法经典之令狐文艳创作

二次函数最大利润求法经典之令狐文艳创作

一、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件。

已知商品的进价为每件40元,如何定价才能使利润最大?令狐文艳分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价涨了多少元?可表示为 (x-60) 问题3:售价为x 元,销售数量会减少,减少的件数为 -60202x ⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯=30010(60)x --=10900x -+ 因为0600x x ⎧⎨-≥⎩自变量x 的取值范围是 60x ≥问题4:售价为x 元,销售数量为y (件),销售总利润为W(元),那么W 与x 的函数关系式为=(40)(10900)x x --+=210130036000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅=(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦=210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元二、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价降了多少元?可表示为 (60-x ) 问题3:售价为x 元,销售数量会增加,增加的件数为60402x -⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为60300402x y -=+⨯=30020(60)x +-=201500x -+ 因为0600x x ⎧⎨-≥⎩所以,自变量x 的取值范围是 060x ≤≤问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为=(40)x -(201500x -+)=220230060000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅=(40)x -(201500x -+)=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量根据题目内容,完成下列各题:1、涨价时(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯=30010(60)x --=10900x -+ 因为0600x x ⎧⎨-≥⎩自变量x 的取值范围是 60x ≥(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为=(40)(10900)x x --+=210130036000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?1W =(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦=210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元2、降价时:(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为60300402x y -=+⨯=30020(60)x +-=201500x -+ 因为0600x x ⎧⎨-≥⎩所以,自变量x 的取值范围是 060x ≤≤(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为2W =(40)x -y=(40)x -(201500x -+)=220230060000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为2W =(40)x -(60300402x -+⨯) =(40)x -(201500x -+)=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元本题解题过程如下:解:设售价为x 元,利润为W(1)涨价时,1W =(40)x -(300 --60202x ⨯) =(40)(10900)x x --+=210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦=210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时,2W =(40)x -(300+60402x -⨯) =(40)x -(201500x -+)=220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。

五年级下册智慧数学修订稿之令狐文艳创作

五年级下册智慧数学修订稿之令狐文艳创作

第一讲关于方程令狐文艳最近的数学课堂上我们探索了等式的性质,说说看,什么是等式的性质?学习了等式的性质可以帮助我们解方程,应用一个算式各部分之间的关系也可以解方程,等式的性质还有其他一些应用,让我们一起来研究吧。

导学启思例1【思路导航】第一个方程,我们可以把2x看作减数,因为减数=被减数-差,因此可以先求出2x=1,再根据一个因数=积÷另一个因数,求出x=0.5。

对于方程2x-10+8=8,我们既可以用等式的性质解方程,也可以仿照刚才的想法,先把2x-10看作一个加数,算出2x-10=0,再把2x看作被减数,算出2x=10,最后解出x=5,当然,方程2x-10+8=8也可以转化成2x-(10-8)=8来求出方程的解。

2-2x=1解: 2x=2-12x=1x=0.52x-10+8=8 2x-10+8=8 2x-10+8=8解:2x-10+8-8+10=8-8+10 解:2x-10=8-8解:2x-(10-8)=82x=10 2x-10=0 2x-2=8X=5 2x=10 2x=8+2X=5 2x=10X=5试一试1:解方程10-0.5x=5 2x-18-8=26例2:根据下面两个算式,求○与△各代表多少?○-△=8△+△+△=○【思路导航】合作讨论:*根据其中的一道等式可以解决问题吗?*○与△有哪些关系?想一想怎样利用这些关系解决问题。

分析:如果把○=△+△+△,代入第一道等式,可以发现△+△=8所以△=4,○=12.如果发现○=△+8,并代入第二道等式,可以知道△+△+△=△+8,即△+△=8,所以△=4,○=12.试一试2:根据下面两个算式,求○与△各代表多少?△-○=2○+○+○=△+△例3:根据下面两个算式,求△与○各代表多少?△+△+△+○+○=78△+△+○+○+○=72【思路导航】合作讨论:*想一想△+○等于多少?*你还有什么发现?分析:如果把两道等式左右两边分别相加,可以得到:△+△+△+○+○+△+△+○+○+○=78+725×(△+○)=150△+○=30因为△+○=30所以△+△+○+○=60比较△+△+○+○=60和△+△+△+○+○=78可以发现78比60多的就是一个△,所以△=18把△=18代入原来的等式,可以求○的值。

图形的平移翻折与旋转13之令狐文艳创作

图形的平移翻折与旋转13之令狐文艳创作

4.1图形的平移令狐文艳例1 2015年泰安市中考第15题如图1,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2, 0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′B′A′的位置,此时点A′的横坐标为3,则点B′的坐标为().) B.(3,)C.(4,D.(3,A.(4,图1 图2动感体验请打开几何画板文件名“15泰安15”,拖动点A'运动的过程中,可以体验到,△A′OC保持等边三角形的形状.答案A.思路如下:如图2,当点B的坐标为(2, 0),点A的横坐标为1.当点A'的横坐标为3时,等边三角形A′OC的边长为6.在Rt△B′CD中,B′C=4,所以DC=2,B′D=时B′(4,.例2 2014年江西省中考第11题如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC 沿射线BC方向平移2个单位后,得到△A′B′C′,联结A′C,则△A′B′C的周长为_______.动感体验请打开几何画板文件名“14江西11”,拖动点B′运动,可以体验到,△A′B′C′向右移动2个单位后,△A′B′C是等边三角形.答案12.4.2图形的翻折例1 2015年上海市宝山区嘉定区中考模拟第18题如图1,在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G .如果AD =3GD ,那么DE =_____.图1动感体验请打开几何画板文件名“15宝山嘉定18”,拖动点E 在DC 上运动,可以体验到,△ADE 与△AFE 保持全等,△AMF 与△FNE 保持相似(如图2所示). 答案.思路如下:如图2,过点F 作AD 的平行线交AB 于M ,交DC 于N . 因为AD =15,当AD =3GD 时,MF =AG =10,FN =GD =5. 在Rt △AMF 中,AF =AD =15,MF =10,所以AM =设DE =m ,那么NE =m .由△AMF ∽△FNE ,得AM FNMF NE =,即10=.解得m =. 图2例2 2014年上海市中考第18题如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为______________(用含t 的代数式表示).图1动感体验请打开几何画板文件名“14福州10”,拖动点F 在AD 上运动,可以体验到,当点C ′、D ′、B 在同一条直线上时,直角三角形BCE 的斜边BE 等于直角边C ′E 的2倍,△BCE 是30°角的直角三角形,此时△EFG 是等边三角形(如图2). 答案.思路如下:如图2,等边三角形EFG 的高=AB =t ,.图24.3图形的旋转例1 2015年扬州市中考第17题如图1,已知Rt△ABC中,∠ABC=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF= .图1 图2动感体验请打开几何画板文件名“15扬州17”,拖动点D绕着点C旋转,可以体验到,当旋转角为90°时,FH是△ECD的中位线,AF是直角三角形AHF的斜边.答案5.思路如下:如图2,作FH⊥AC于H.由于F是ED的中点,所以HF是△ECD的中位线,所以HF=3.由于AE=AC-EC=6-4=2,EH=2,所以AH=4.所以AF=5.例2 2014年上海市黄浦区中考模拟第18题如图1,在△ABC中,AB=AC=5,BC=4,D为边AC上一点,且AD=3,如果△ABD绕点A逆时针旋转,使点B与点C重合,点D旋转至D',那么线段DD'的长为.图1动感体验请打开几何画板文件名“14黄浦18”,拖动点B'绕点A逆时针旋转,可以体验到,两个等腰三角形ABB'与等腰三角形ADD'保持相似(如图2)..思路如下:如图3,由△ABC∽△ADD',可得.5∶4=答案1253∶DD'.图 2 图34.4三角形例1 2015年上海市长宁区中考模拟第18题如图1,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6.△ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF与AC边交于点M,当△AEM是等腰三角形时,BE=_________.图1动感体验请打开几何画板文件名“15长宁18”,拖动点E 在BC 上运动,可以体验到,△AEM 有三个时刻成为等腰三角形,其中一个时刻点E 与点B 重合. 答案116或1.思路如下: 设BE =x .由△ABE ∽△ECM ,得AB EA EC ME =,即56EA x ME=-. 等腰三角形AEM 分三种情况讨论:①如图2,如果AE =AM ,那么△AEM ∽△ABC . 所以5566EA ME x ==-.解得x =0,此时E 、B 重合,舍去.②如图3,当EA =EM 时,516EA x ME ==-.解得x =1. ③如图4,当MA =ME 时,△MEA ∽△ABC .所以6556EA ME x ==-.解得x =116. 图 2 图 3图4例2 2014年泰州市中考第16题如图1,正方形ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE =30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ =AE ,则AP 的长等于__________cm .图1动感体验请打开几何画板文件名“14泰州16”,拖动点P 在AD 上运动,观察度量值,可以体验到,存在两个时刻PQ =AE . 答案 1或2.思路如下:如图2,当PQ =AE 时,可证PQ 与AE 互相垂直.在Rt △ADE 中,由∠DAE =30°,AD =3,可得AE =. 在Rt △APM 中,由∠PAM =30°,AMAP =2. 在图3中,∠ADF =30°,当PQ =DF 时,DP =2,所以AP =1.图2 图34.5四边形例1 2015年安徽省中考第9题如图1,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( ).A ...5D .6图1动感体验请打开几何画板文件名“15安徽09”,拖动点E 在AB 上运动,可以体验到,当EF 与AC 垂直时,四边形EGFH 是菱形(如图2).答案C .思路如下:如图3,在Rt △ABC 中,AB =8,BC =4,所以AC =由cos ∠BAC =AB AOAC AE =AE =.所以AE =5.图2 图3例2 2014年广州市中考第8题将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当∠B =90°时,如图1,测得AC =2.当∠B =60°时,如图2,AC 等于( ). (A); (B)2; (C); (D).图 1图2动感体验请打开几何画板文件名“14广州08”,拖动点A 绕着点B 旋转,可以体验到,当∠B =90°时,△ABC 是等腰直角三角形;当∠B =60°时,△ABC 是等边三角形(如图3). 答案(A).思路如下:4.6圆例1 2015年兰州市中考第15题如图1,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为__________. A. 4π B. 2π C. 6π D.3π 图1动感体验请打开几何画板文件名“15兰州15”,拖动点P 在圆周上运动一周,可以体验到,当点P 沿着圆周转过45°时,点Q 走过的路径是圆心角为45°半径为1的一段弧.答案A .思路如下:如图2,四边形PMON 是矩形,对角线MN 与OP 互相平分且相等,因此点Q 是OP 的中点.如图3,当∠DOP =45°时,'D Q 的长为121=84ππ⨯⨯. 图2 图3例2 2014年温州市中考第16题如图1,在矩形ABCD 中,AD =8,E 是AB 边上一点,且AE =14AB ,⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线相交于另一点F ,且EG ∶EF∶2.当边AD 或BC 所在的直线与⊙O 相切时,AB 的长是________.图1动感体验请打开几何画板文件名“14温州16”,拖动点B 运动,可以体验到,⊙O 的大小是确定的,⊙O 既可以与BC 相切(如图3),也可以与AD 相切(如图4).答案12或4.思路如下:如图2,在Rt △GEH 中,由GH =8,EG ∶EF∶2,可以得到EH =4.在Rt △OEH 中,设⊙O 的半径为r ,由勾股定理,得r 2=42+(8-r )2.解得r =5.设AE =x ,那么AB =4x .如图3,当⊙O 与BC 相切时,HB =r =5.由AB =AE +EH +HB ,得4x =x +4+5.解得x =3.此时AB =12.如图4,当⊙O 与AD 相切时,HA =r =5.由AE =AH -EH ,得x =5-4=1.此时AB =4.图 2 图 3图44.7函数图像的性质例1 2015年青岛市中考第8题如图1,正比例函数11y k x =的图像与反比例函数22k y x=的图像相交于A 、B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( ).A .x <-2或x >2B . x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2图1动感体验请打开几何画板文件名“15青岛08”,拖动点D 在x 轴上运动,观察线段EF 的两个端点E 、F 的位置关系,可以体验到,当-2<x <0或x >2时,点E 在点F 的上方.答案D .如图2所示.图2例2 2014年苏州市中考第18题如图1,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,联结PA .设PA =x ,PB =y ,则(x -y )的最大值是_____.图1动感体验请打开几何画板文件名“14苏州18”,拖动点P 在圆上运动一周,可以体验到,AF 的长可以表示x -y ,点F 的轨迹象两叶新树丫,当AF 最大时,OF 与AF 垂直(如图2). 答案2.思路如下:如图3,AC 为⊙O 的直径,联结PC .由△ACP ∽△PAB ,得AC PA AP PB =,即8x x y =.所以218y x =.因此2211(4)288x y x x x -=-=--+. 所以当x =4时,x -y 最大,最大值为2.图2 图3。

《数与代数》领域教材解读之令狐文艳创作

《数与代数》领域教材解读之令狐文艳创作

《数与代数》领域教材解读令狐文艳霍家街小学五年级数学组一、数与代数在教学中的地位和编排结构数与代数的内容直是义务教育阶段教学课程的重要组成部分,它的重要性和基础性是显而易见的。

本节内容丰富,头绪较多,本领域教材编写的基本结构:(出示编排结构图)数的认知数的运算数与代数式与方程常见的量比和比例数学思考(选学)这些内容是数学知识体系的基础,也是学生认知数量关系,探索数学规律以及建立数学模型的基石。

它可以帮助学生从数学思维的角度,更准确、更清晰地认识、描述和把握现实世界。

二、数与代数编写的主要特点1、重视回顾与整理方法的指导,每一块内容,都提供了本块知识的主要内容,以问题的形式出现,提供复习的思路和线索,便于学生以此为依据进行自主复习,并通过合作交流,加深对复习内容的理解。

2、重视引导学生自主练习整理活动教材以小精灵提出问题,引导孩子以活动交流为形式,启示教师引导学生自主参与整理活动,增强学生与数学的信心。

三、复习目标知识技能:1、在具体情境中,回顾和整理小学阶段所学习的数,构建数的认知和知识网络,进一步理解自然数、小数、分数、负数的意义及表示方法;总结整数、小数、分数比较大小的方法,并进行比较。

2、回顾四则运算的意义,进一步理解四则运算在现实生活中的应用;复习整数运算、小数运算、分数运算等的法则和混合运算的顺序,通过解决实际问题,提高运用数的运算解决实际问题的能力。

3、在回顾交流中,进一步体会估算的作用,总结估算的方法,并能进行应用。

4、会使用学过的简便方法,合理、灵活地进行计算。

5、回顾和整理小学阶段有关代数的初步知识:用字母表示数、方程、正反比例、看图找关系。

6、在运用方程解决问题的过程中,再次体会到方程解决问题在某些情况下的优越性,并巩固解简单方程的方法。

7、回顾正比例、反比例的意义,在正比例、反比例、看图找关系的回顾与反思中,体会函数的思想。

8、在具体情境中,整理常见的量以及量的单位,体会各个量的单位的实际意义,复习计量单位之间的换算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

令狐文艳
数学四格漫画——分苹果
令狐文艳
小白兔碰到了小熊猫,它说:“亲爱的小熊猫,妈妈给我买来了12个苹果,我想请你和我一起分享,好吗?”小熊猫高兴地答应了。

“让我和你们一起分享,好吗?”小花猫走了过来。

小白兔费了好大劲儿,把12个苹果平均分成3份,每位分4个苹果。

就在这时,小猴子蹦蹦跳跳走了过来。

这可怎么办呢?
小白兔、小熊猫、小花猫和小猴子围成圈坐下来,它们商量该如何平均分配。

小猴子鼻子一翘,说:“这还不简单,把12个苹果平均分成4份,不多不少,恰好每位3个。

”小兔、小熊猫和小花猫都拍手叫好。

当它们来到桌子旁,气得都睁大了眼睛!
怎么回事呢?狐狸正在盆里伸懒腰,苹果全被它吃完了。

令狐文艳。

相关文档
最新文档