高数求导与积分公式
高数微积分公式大全(总结的比较好)
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- (7)()x x e e '= (8)()ln x x a a a '= ⑽ (9)()1ln x x '=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =-⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu =七、基本积分公式⑴kdx kx c =+⎰⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰【特殊角的三角函数值】(1)sin 00= (2)1sin 62π= (3)sin 3π= (4)sin 12π=) (5)sin 0π= (1)cos 01= (2)cos 6π= (3)1cos 32π= (4)cos 02π=) (5)cos 1π=- (1)tan 00= (2)tan 63π=(3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot6π=(3)cot 33π=(4)cot 02π=(5)cot π不存在 十二、重要公式 (1)0sin lim 1x x x→= (2)()10lim 1x x x e →+= (3))1n a o >= (4)1n = (9)lim 0xx e →-∞= (10)lim x x e →+∞=∞ (11)0lim 1xx x +→= (12)00101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩ (系数不为0的情况) 十三、下列常用等价无穷小关系(0x →)sin x x tan x x a r c s i n x x arctan x x 211c o s 2x x - ()ln 1x x + 1x e x - 1l n x a x a - ()11x x ∂+-∂十四、三角函数公式2.二倍角公式sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 十五、几种常见的微分方程1.可分离变量的微分方程:()()dy f x g y dx= , ()()()()11220f x g y dx f x g y dy += 2.齐次微分方程:dy y f dx x ⎛⎫= ⎪⎝⎭3.一阶线性非齐次微分方程:()()dy p x y Q x dx+= 解为: ()()()p x dx p x dx y e Q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰。
(完整版)高数公式汇总
高数公式汇总经管学生会内部资料导数公式:(tgx) sec x(ctgx) csc x(secx) secx tgx(cscx) cscx ctgx(a x) a x l na(log a x) 1xl na基本积分表:tgxdxctgxdxsecxdxcscxdxdx~ 2a xdx~ 2x adx~ 2a xdx2a x 高等数学公式In cosx CIn sinx CIn secx tgx C In cscx ctgx C 1 x-arctg — Ca a1 x a —— C 2a x a1 a x —— C 2a a xarcs in仝C aI n2sin xdx cos x2 2 a 'x2 2 a 'a2x2dxdxdxo三角函数的有理式积分:2usin x 2, c osx1 u22u2,1 u(arcsin x)(arccos x)(arctgx)(arcctgx)dx2~ cosxdx~~~2-sin xxdxx 2—x22 ax 2—x22 ax 21 a2 xn2otg i,111 x211 x2sec2 xdx tgx C2csc xdx ctgx Csecx tgxdx secx Ccscx ctgxdx cscx Cxa x dx — CIn ashxdx chx Cchxdx shx C2 2----------- In( x 、x a ) C2 2 v 7 x aI n2 a —In( x22 a .一In x22a . x arcs in C2x2 a2) C、x2 a2dx2du1 u2高数公式汇总 经管学生会内部资料两个重要极限:sin x ’lim 1x 0 xlim(1 -)x e 2.718281828459045…xarchx In (x x 21)三角函数公式:•诱导公式:-和差角公式:sin( )sin COS COS sin COS ( )COSCOS sin sintg()汽tg1 tg tgCtg()CtgCtg 1Ctg Ctg-和差化积公式:sin sin 2 si nCOS 2 2sinsin2 COSsin22COS COS 2 COSCOS --2 2COS COS2 si nsin2 2一些初等函数: xe e x2xxe e2shx x e x echx x e x ex 21)arthx llnl 双曲正弦:shx双曲余弦:chx双曲正切:thx高数公式汇总经管学生会内部资料sin 2 2sin cos cos2 2cos 2 1ctg2ctg 212ctgtg2 2tg 21 tg•倍角公式: 1 2si n 2-半角公式: 2cos 2sinsin3 3sin 4sin 3 cos3 4cos 3costg33tg tg 31 3tg 2tg 2sin — 2 1 cos 1 cos sin sin 1 cos-余弦定理:-正弦定理:a b sin A sinB c si nC2Rc 2 a 2 b 2 2ab cosC•反三角函数性质: arcs inx arccosx 2 arctgx arcctgx高阶导数公式 ------ 莱布尼兹( Leibniz )公式:2! k ! 中值定理与导数应用:拉格朗日中值定理: f(b) f(a) f ( )(b a) 柯西中值定理:丄型 f (a) f () F(b) F(a) F () n (n) k (n k) (k)(uv) C n u v k 0(n) (n 1) n(n 1) (n 2) n(n 1) (n k 1) (n k) (k)u v nu v u vu v当F(x) x 时,柯西中值定理就是 拉格朗日中值定理 曲率:uv(n)高数公式汇总 经管学生会内部资料弧微分公式:ds .1 y 2dx,其中y tg平均曲率:K .:从M 点到M 点,切线斜率的倾角变 化量;s : MM 弧长。
大学高数公式大全
向量在轴上的投影:Pr ju AB = AB cos,是AB与u轴的夹角。
Pr a
bju=(aa1
+
a2
)
=
Pr
ja1
+
b cos = axbx
Pr ja2 + ayby
+
azbz
,是一个数量,
两向量之间的夹角:cos =
axbx + ayby + azbz
ax 2 + ay 2 + az 2 bx 2 + by 2 + bz 2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
cos + cos = 2 cos + cos −
2
2
cos − cos = 2sin + sin −
i c = ab = ax
j ay
k az
,
c
=
a
b
sin .例:线速度:v
=
w r.
bx by bz
向量的混合积:[abc]
=
(a
b)
c
=
ax bx
ay by
az bz
=
a
b
c
cos
,为锐角时,
cx cy cz
代表平行六面体的体积。
4 / 12
高等数学公式
平面的方程: 1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 )
高数导数和积分大全
1 2
−1 1 1 2 2 = + ∫ 2(1− x ) d (1− x2 ) 12 2 0
π π
0
−∫
1 2
x 1− x
2
0
dx
=
12
1 1 + (1− x2 )2 2
3 = + −1 12 2
π
0
第三节 广义积分(反常积分)
及 x 轴所围成的开口曲
引例. 引例 曲线
和直线
边梯形的面积 可记作
x2 其含义可理解为 b b dx 1 − A = lim ∫ 2 = lim 1 x b→+∞ x 1 b→+∞
关键: 关键:
搞清复合函数结构, 由外向内逐层求导. 搞清复合函数结构, 由外向内逐层求导.
例3 设
求
解: 函数可以看作由函数 y = ln u 、 u = cos v
与 v = e x 复合而成
dy 1 du dv = = − sin v = ex du u dv dx dy 1 1 x x x (sin e )e = ( − sin v )e = − x dx u cos e
−a a
0
∫−a f (x) dx = ∫−a f (x) dx + ∫0 f (x) dx
= ∫ f (−t) d t + ∫ f (x) dx = ∫ [ f (−x) + f (x) ]dx
0 0 a 0 a a
令 x = −t
=
f (−x) = f (x)时 f (−x) = − f (x)时
a a
性质3 性质 若在区间 [ a , b ]上 f (x)≡k,则 上 ,
∫ ∫
高中数学18个求导公式
高中数学18个求导公式1. 一次函数求导公式:y' = ax + b2. 二次函数求导公式:y'' = 2ax + b3. 三次函数求导公式:y''' = 6ax² + 2bx + c4. 常数求导公式:y' = 05. 幂函数求导公式:dy/dx = a(x^(a-1))6. 对数函数求导公式:y' = 1/x7. 三角函数求导公式:sin x : y' = cos xcos x : y' = -sin xtan x : y' = sec² x8. 指数函数求导公式:y' = e^x9. 高次多项式求导公式:根据指数规律求导:(a_nx^n+a_(n-1)x^(n-1)+...+a_1x+a_0)' = n*a_nx^(n-1)+(n-1)*a_(n-1)x^(n-2)+...+a_110. 复合函数求导公式:f(g(x))' = g'(x) * f'(g(x))11. 逆函数求导公式:y' = 1 / (f'(y))12. 隐函数求导公式:dy/dx = (dy/du) * (du/dx)13. 雅可比矩阵求导公式:y' = [dF/dx, dF/dy]14. 极坐标求导公式:y' = (x'*cosθ + y'*sinθ) / r15. 参数方程求导公式:dy/dt = [(dy/dx) * (dx/dt) + (dy/dy) * (dy/dt)]16. 椭圆方程求导公式:x' = -a*sinα / c17. 积分求导公式:dy/dx = f(x)18. 微分求导公式:y' = lim (h→0) (f(x+h)-f(x))/h。
高数知识点总结大一求导公式总结
高数知识点总结大一求导公式总结高数知识点总结:大一求导公式总结在大一学习的高数课程中,求导是一个重要的知识点。
通过求导,我们可以计算函数的导数,从而研究其变化规律。
下面我们将总结一些常用的求导公式,帮助大家掌握求导的方法以及应用。
一、基本求导公式:1. 变量幂指数幂公式:若y = x^n,则y' = nx^(n-1)。
2. 常数公式:若y = C (C为常数),则y' = 0。
3. 常函数公式:若y = kx (k为常数),则y' = k。
4. 和差法则:若y = u ± v,则y' = u' ± v'。
5. 积法则:若y = uv,则y' = u'v + uv'。
6. 商法则:若y = u/v,则y' = (u'v - uv')/v^2。
二、特殊函数求导公式:1. 正弦函数:若y = sin(x),则y' = cos(x)。
2. 余弦函数:若y = cos(x),则y' = -sin(x)。
3. 正切函数:若y = tan(x),则y' = sec^2(x)。
4. 指数函数:若y = e^x,则y' = e^x。
5. 对数函数:若y = ln(x),则y' = 1/x。
6. 反三角函数:若y = arcsin(x),则y' = 1/√(1-x^2)。
三、链式法则:链式法则适用于复合函数的求导,即一个函数中包含另一个函数作为内部的情况。
链式法则的表达式为:若y = f(g(x)),则y' = f'(g(x)) * g'(x)。
四、隐函数求导:隐函数是指函数表达式中未显式表示出的自变量,通过隐函数求导可以求得其导数。
具体求导方法如下:1. 对于含有一个未知函数y的方程,如F(x,y) = 0,可以对x进行求导得到F_x + F_y * y' = 0,然后解出y'。
考研数学公式大全--高数--线代--必背公式
数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。
高数微积分公式
高数微积分公式以下是一些高数微积分中常用的公式:1. 极限求导公式:- $\\displaystyle \\frac{d}{dx}(x^{n})=nx^{n-1}$- $\\displaystyle \\frac{d}{dx}(\\sin x)=\\cos x$- $\\displaystyle \\frac{d}{dx}(\\cos x)=-\\sin x$- $\\displaystyle \\frac{d}{dx}(\\ln x)=\\frac{1}{x}$ - $\\displaystyle \\frac{d}{dx}(e^{x})=e^{x}$2. 基本导数法则:- $\\displaystyle \\frac{d}{dx}(cf(x))=cf'(x)$ (常数的导数)- $\\displaystyle \\frac{d}{dx}(f(x)\\pmg(x))=f'(x)\\pm g'(x)$ (和差法则)- $\\displaystyle\\frac{d}{dx}(f(x)g(x))=f'(x)g(x)+f(x)g'(x)$ (乘积法则)- $\\displaystyle\\frac{d}{dx}\\left(\\frac{f(x)}{g(x)}\\right)=\\frac{f'(x)g( x)-f(x)g'(x)}{g^{2}(x)}$ (商法则)- $\\displaystyle \\frac{d}{dx}(f(g(x)))=f'(g(x))\\cdot g'(x)$ (链式法则)3. 积分公式:- $\\displaystyle \\intx^{n}dx=\\frac{1}{n+1}x^{n+1}+C$- $\\displaystyle \\int \\sin xdx=-\\cos x+C$- $\\displaystyle \\int \\cos xdx=\\sin x+C$- $\\displaystyle \\int \\frac{1}{x}dx=\\ln |x|+C$- $\\displaystyle \\int e^{x}dx=e^{x}+C$这些只是一些常用的公式,高数微积分中还有更多的公式和定理。
高等数学18个求导公式
高等数学18个求导公式高等数学的求导,是高等数学的重要的基本技能。
求导的基本定义是求出一个函数的变化率,也就是求函数的导数。
下面给出18个求导公式:1.常数项求导公式:若y = c,其中c为常数,则y′ = 0;2.幂函数求导公式:若y = x^n,其中n为正整数,则y′ = nx^{n-1};3.多次幂函数求导公式:若y = x^n + a^n,其中n为正整数,则y′ = nx^{n-1} + na^{n-1};4.指数函数求导公式:若y = a^x,其中a为正数,则y′ = a^xln a;5.对数函数求导公式:若y = lnx,则y′ = \frac{1}{x};6.三角函数求导公式:若y = sin x,则y′ = cos x;若y = cos x,则y′ = -sin x;若y = tan x,则y′ = \frac{1}{cos^2 x};7.反三角函数求导公式:若y = arcsin x,则y′ =\frac{1}{\sqrt{1-x^2}};若y = arccos x,则y′ = \frac{-1}{\sqrt{1-x^2}};若y = arctan x,则y′ = \frac{1}{1+x^2};8.指数函数的导数:若y = e^x,则y′ = e^x;9.乘法公式求导公式:若y = f(x)g(x),则y′ = f'(x)g(x) +f(x)g'(x);10.链式法则求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);11.求和求导公式:若y = \sum_{i=1}^{n} f(x_i),则y′ =\sum_{i=1}^{n} f'(x_i);12.积分求导公式:若y = \int f(x)dx,则y′ = f(x);13.极限求导公式:若y = \lim_{x \to a} f(x),则y′ =\lim_{x \to a} f'(x);14.复合函数求导公式:若y = f(g(x)),则y′ = f'(g(x))g'(x);15.乘方公式求导公式:若y = (f(x))^n,其中n为正整数,则y′ = n(f(x))^{n-1}f'(x);16.幂函数的导数:若y = x^n,则y′ = nx^{n-1};17.对数函数的导数:若y = lnx,则y′ = \frac{1}{x};18.三角函数的导数:若y = sinx,则y′ = cosx;若y = cosx,则y′ = -sinx;若y = tanx,则y′ = \frac{1}{cos^2 x}。
大一高数知识点公式总结
大一高数知识点公式总结在大一高数学习中,掌握各种数学公式是非常重要的,它们可以帮助我们解决各种复杂问题。
下面将为您总结一些大一高数常见的知识点和相关公式。
1. 代数运算1.1 加法和减法公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2(a + b)(a - b) = a^2 - b^21.2 乘法公式:(a + b)(c + d) = ac + ad + bc + bd1.3 平方差公式:a^2 - b^2 = (a + b)(a - b)1.4 分式运算:a/b + c/d = (ad + bc)/(bd)a/b - c/d = (ad - bc)/(bd)2. 数列与级数2.1 等差数列公式:第n项公式:an = a1 + (n - 1)d前n项和公式:Sn = n/2(a1 + an)2.2 等比数列公式:第n项公式:an = a1 * r^(n-1)前n项和公式:Sn = a1 * (1 - r^n) / (1 - r)2.3 等差数列和公式:Sn = n/2(a1 + an)3. 极限与导数3.1 极限的定义:lim(x->a) f(x) = L,表示当x无限接近a时,f(x)无限接近L 3.2 常见极限:lim(x->0) sin(x)/x = 1lim(x->∞) (1 + 1/x)^x = e3.3 导数的定义:f'(x) = lim(h->0) (f(x+h) - f(x))/h3.4 常见导数公式:(常数C)' = 0(x^n)' = nx^(n-1)(e^x)' = e^x(sin(x))' = cos(x)4. 积分4.1 定积分的定义:∫[a,b] f(x)dx表示从x=a到x=b的f(x)函数的积分 4.2 常见积分公式:∫x^n dx = (1/(n+1)) x^(n+1) + C (n≠-1)∫k f(x) dx = k ∫f(x) dx∫(f(x)±g(x)) dx = ∫f(x) dx ± ∫g(x) dx5. 空间解析几何5.1 空间坐标表示:三维直角坐标系中,点P的坐标表示为P(x, y, z)5.2 点与线段距离公式:点P(x1, y1, z1)到直线Ax + By + Cz + D = 0的距离公式为:d = |Ax1 + By1 + Cz1 + D| / sqrt(A^2 + B^2 + C^2)通过掌握以上知识点和公式,我们可以更好地应对大一高数中的复杂问题。
高数的基本公式大全
高数的基本公式大全高等数学(简称高数)是大多数理工科专业的重要学科之一,其理论基础和应用广泛深入。
在学习高数的过程中,熟练掌握各类基本公式是非常关键的。
本文将为大家总结并介绍一些高数中常用的基本公式,希望能对广大学生有所指导和帮助。
一、导数公式1. 基本导数:常数导数为0,幂函数求导是将幂次降低一次并乘以原幂次系数。
2. 乘积法则:$(u * v)' = u' * v + u * v'$3. 商法则:$\left(\frac{u}{v}\right)' = \frac{u' * v - u * v'}{v^2}$4. 复合函数求导法则:$(f(g(x)))' = f'(g(x)) * g'(x)$5. 反函数求导法则:$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$6. 指数函数求导法则:$(a^x)' = a^x * \ln(a)$7. 对数函数求导法则:$(\log_a{x})' = \frac{1}{x *\ln(a)}$8. 三角函数求导法则:$(\sin{x})' = \cos{x}$,$(\cos{x})' = -\sin{x}$,$(\tan{x})' = \sec^2{x}$9. 反三角函数求导法则:$(\arcsin{x})' = \frac{1}{\sqrt{1- x^2}}$,$(\arccos{x})' = -\frac{1}{\sqrt{1 - x^2}}$,$(\arctan{x})' = \frac{1}{1 + x^2}$二、积分公式1. 基本积分:幂函数的积分是将幂次升高一次并除以新的幂次。
2. 基本定积分:$\int_a^b{f(x)dx} = F(b) - F(a)$,其中$F(x)$为$f(x)$的一个原函数。
高等数学积分导数公式
高等数学积分导数公式高等数学中的积分和导数是两个重要的概念,它们在微积分中起着至关重要的作用。
积分和导数的公式是我们研究和解决各种数学问题的基础工具。
本文将介绍一些高等数学中常用的积分和导数公式,帮助读者更好地理解和掌握微积分的核心概念和方法。
一、基本积分公式1.常数函数积分公式:∫kdx=kx+C,其中k为常数,C为常数项。
2.幂函数积分公式:∫x^ndx=1/(n+1)x^(n+1)+C,其中n不等于-13.指数函数积分公式:∫e^xdx=e^x+C。
4.三角函数积分公式:(1)∫sinxdx=-cosx+C。
(2)∫cosxdx=sinx+C。
(3)∫sec^2xdx=tanx+C。
(4)∫csc^2xdx=-cotx+C。
(5)∫secxdxtanxdx=secx+C。
二、基本导数公式1.常数函数导数公式:d/dx(k)=0,其中k为常数。
2.幂函数导数公式:d/dx(x^n)=nx^(n-1),其中n是任意实数。
3.指数函数导数公式:d/dx(e^x)=e^x。
4.对数函数导数公式:d/dx(lnx)=1/x。
5.三角函数导数公式:(1)d/dx(sinx)=cosx。
(2)d/dx(cosx)=-sinx。
(3)d/dx(tanx)=sec^2x。
(4)d/dx(cotx)=-csc^2x。
(5)d/dx(secx)=secxtanx。
(6)d/dx(cscx)=-cscxcotx。
三、基本积分和导数公式的应用1.利用基本积分公式计算确定积分的值。
例如,∫(2x+3)dx=x^2+3x+C。
2.利用基本导数公式计算函数在特定点的导数。
例如,求函数f(x)=3x^2-8x+5在x=2的导数,可使用f'(2)=6(2)-8=43.应用积分和导数来求解各种数学问题。
例如,利用导数和积分来计算曲线的切线和曲线下面积,求解极值点等。
四、基本积分和导数公式的拓展1.利用线性公式,可以把求和的情况化为求一个个积分,例如∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx。
高数的全部公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰++-+==CCctgx C tgx xdx x dx sec cos 22Cx ctgxdx C x tgxdx +=+-=⎰sin ln cos ln ⎰++-=-Cax a x a x dx x a arcsin 2222222一些初等函数: 两个重要极限:三角函数公式:2sin2sin 2cos cos 2cos22cosβαβαβαβαβα-=----xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααα2cos 1sin sin cos 1cos 1cos 122cos 2cos 12sin =+=-=+-±==-±=ctg tg ·正弦定理:R CcB b A a 2sin sin sin ===)()()(n k uv v ++.1;0.)1(lim M s 320aK a K y y ds d s K M M s =='+''==∆∆='∆→∆的圆:半径为直线:点的曲率:弧长。
自考高等数学一(微积分)常用公式表[2]
高 数 常 用 公 式 表常用公式表(一)1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ² (3)(a+b)(a-b)=a ²-b ²(4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²) 2、指数公式:(1)a 0=1 (a ≠0) (2)a P -=P a 1(a ≠0) (3)a m n=m n a(4)a m a n =a n m + (5)a m ÷a n =n ma a =a n m - (6)(a m )n =a mn(7)(ab )n =a n b n(8)(b a)n =n nb a (9)(a )2=a(10)2a =|a| 3、指数与对数关系:(1)若a b =N ,则N b a log = (2)若10b=N ,则b=lgN (3)若b e =N ,则b=㏑N 4、对数公式:(1)b a b a =log , ㏑e b=b (2)N a aN =log ,e Nln =N(3)aNN a ln ln log = (4)a b b e a ln = (5)N M MN ln ln ln +=(6)N M N Mln ln ln -= (7)M n M n ln ln = (8)㏑n M =M n ln 1 5、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)² (4)αααtan cos sin = (5)αααcot sin cos =(6)ααtan 1cot = (7)ααcos 1csc = (8)ααcos 1sec =6、特殊角三角函数值:7.倍角公式:(1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-= 8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cos α)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +9、三角函数与反三角函数关系:(1)若x=siny ,则y=arcsinx (2)若x=cosy ,则y=arccosx(3)若x=tany ,则y=arctanx (4)若x=coty ,则y=arccotx 10、函数定义域求法:(1)分式中的分母不能为0, (a 1α≠0)(2)负数不能开偶次方, (a α≥0) (3)对数中的真数必须大于0, (N a log N>0) (4)反三角函数中arcsinx ,arccosx 的x 满足:(--1≤x ≤1) (5)上面数种情况同时在某函数出现时,此时应取其交集。
高数的全部公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高中常用微积分公式表
高中常用微积分公式表微积分可以被认为是数学的核心部分,高中的学生在学习高数的过程中,微积分公式是学习的重要组成部分。
下面我们来了解一些常见的高中数学微积分公式。
首先,让我们来看看一些基础的微积分公式。
1、求导公式:$frac{d}{dx}(u(x)cdot v(x))=u(x)cdotv(x)+u(x)cdot v(x)$2、求积分公式:$int u(x)cdot v(x);dx=u(x)cdot v(x)-int u(x)cdot v(x);dx$3、泰勒公式:$f(x)=f(a)+frac{f(a)}{1!}(x-a)+frac{f(a)}{2!}(x-a)^2+frac{f ^{(3)}(a)}{3!}(x-a)^3+cdots$4、微分中值定理:如果在$[a,b]$区间内,函数$f(x)$连续,则存在一个$cin[a,b]$使得$f(c)=frac{f(b)-f(a)}{b-a}$。
接下来,看看一些更复杂的微积分公式。
1、三角函数的偏导公式:$frac{partial}{partialx}Sin(x)=Cos(x)$、$frac{partial}{partial x}Cos(x)=-Sin(x)$2、极限公式:$lim_{xrightarrow a}f(x)=L$3、改变变量公式:$int f(x)dx=int f(x(t))x(t)dt$4、泰勒展开公式:$f(x)=f(a)+frac{1}{1!}f(a)(x-a)+frac{1}{2!}f(a)(x-a)^2+frac {1}{3!}f^{(3)}(a)(x-a)^3+cdots$最后,我们来看看一些极端的微积分公式。
1、极限的运算公式:$lim_{xrightarrow 0}frac{Sin(x)}{x}=1$2、Stoke公式:$int_{C}overrightarrow{F}cdot doverrightarrow{s}=iint_{S}(ablatimesoverrightarrow{F})cdot doverrightarrow{S}$3、有界分的定公式:$int_{a}^{b}f(x);dx=F(b)-F(a)$4、微分的运算公式:$frac{d^2y}{dx^2}=frac{d}{dx}frac{dy}{dx}$通过以上介绍,相信大家都能够更加熟悉高中常用的微积分公式了。