几种常见的励磁系统介绍
励磁系统结构
励磁系统结构励磁系统结构主要包括调节器、励磁电源、功率整流、灭磁回路等几部分。
交流励磁机-整流器励磁系统1、带永磁副励磁机的交流励磁机-静止硅整流器励磁系统:该系统俗称三机系统,主励磁机的交流输出,经硅整流器整流后,供给汽轮发电机励磁。
主励磁机的励磁,由永磁副磁机之中频输出经可控硅整流器整流后供给。
自动励磁调节器根据汽轮发电机之端电压互感器、电流互感器取得的调节信号,控制可控硅整流器输出的大小,实现机组励磁的自动调节。
2、交流励磁机-静止可控硅励磁系统:该系统俗称两机系统。
主励磁机的交流输出,经可控硅整流器整流后,供给汽轮发电机励磁。
主励磁机的励磁,采用自并励或他励方式。
自动励磁调节器根据汽轮发电机之端电压互感器、电流互感器取得的调节信号,控制发电机磁场整流桥输出的大小,实现机组励磁的自动调节。
自动励磁调节器同时控制励磁机恒电压输出。
3、交流励磁机-旋转硅整流器无刷励磁系统:发电机的励磁由交流励磁机的输出经不可控硅二极管整流后供给,而交流励磁机的励磁则由永磁机的输出经可控硅整流后供给。
这里,与一般旋转电机不一样的是,交流励磁机的直流励磁绕组固定不动,而交流励磁机的交流电枢绕组、硅整流器与发电机的转子绕组一起,在一根转轴上旋转,因而发电机的励磁绕组与硅整流器处于相对静止的位置,是直接电连接在一起的,没有了其他励磁方式中的将静止部件中的电流引入旋转部件的滑环—电刷结构,帮称为无刷励磁。
系统概述励磁系统可控硅桥由励磁电源供电,受控的可控硅桥经磁场断路器为发电机提供直流励磁电流。
自动励磁调节器以高速IPC工业控制机为主要硬件核心。
辅以外围调理电路及信号回路,发出同步脉冲,去触发可控硅桥,从而控制发电机磁场电流,达到励磁控制系统的各种控制目标。
为提高励磁调节器的可靠性,有时采用双通道冗余系统:双通道的模拟量、开关量输入信号及调节通道的硬件配置是完全独立的,结构一致。
双通道采取主、从方式运行,如果一个通道故障,自动切至备用通道:无论哪一通道均可作为主通道,并没有硬性规定某一通道优先于另一通道,备用通道自动跟踪主用通道。
励磁系统基本原理
电力系统稳定器(PSS)可以增加电力系统正阻尼,用于抑制电力系统低频振荡 。
ΔTs
ΔTD
ΔTE
Pe/ΔPe、Δδ
Δω
Pm、ΔPa
ΔTD′
ΔTE′
发电机电气功率Pe/ΔPe、机械功率Pm、加速功率ΔPa、同步转矩ΔTs、阻尼转矩ΔTD、电磁转矩ΔTE、转子角Δδ、转子角速度Δω的正方向相位关系如下图所示:
自动方式AVR控制的整体模型描述
励磁系统的组成:
自动电压调节器AVR、ECR/FCR(励磁调节器)
励磁电源(励磁机、励磁变压器)
整流器(AC/DC变换,SCR、二极管)
灭磁与转子过电压保护
按励磁电源分类:
直流励磁机励磁系统
交流励磁机励磁系统
无刷励磁系统
自并励励磁系统
按响应速度分类:
慢速励磁系统
快速励磁系统
高起始励磁系统
二、励磁系统的几种主要类型
功角稳定比喻
碗中放置一个球,且受到外部的一个小外力,它就偏离原来的位置。如果这个碗的高度很矮,像一个盘子,该球就有可能从碗中掉下来。此时,我们就说这个系统静稳不足。提高碗的高度最经济的办法就是采用自动电压调节器。 当碗中的球受到一个大的外力,怎样保证该球不飞出,最主要措施就是快速的继电保护。继保的作用就相当于减少这个外部力量的作用时间,继保越快,外力的作用时间就越短,这个球就不会一下子掉下来。自动电压调节器此时作用相当于自动改变这个碗的坡度,当这个球上升时增加坡度,当这个球下降时就减少这个坡度,使这个球在碗中滚动幅度迅速减小。 如果这个碗和球之间的摩擦很小,这个球受到扰动后在碗中来回滚动时间就很长,特别是,如果这个扰动的外力不断的来回施加,就比如我们不断的荡秋千,这个球就永远不停的来回滚动甚至掉下来,我们就说这个系统的动态稳定性差。这里的摩擦阻力相当于电力系统的阻尼,这个来回不断施加的外部力量就相当于自动电压调节器产生的负阻尼。一般来说,自动电压调节器在电力系统的动态稳定中起坏作用,产生负阻尼,使整个系统阻尼减少。当我们在自动电压调节器中增添PSS装置,PSS就把自动电压调节器原来所产生的负阻尼变为正阻尼,相当于增加碗和球的摩擦系数,使球的滚动幅度快速减小,于是这个系统的动态稳定性就满足要求。
各种励磁系统介绍
各种励磁系统介绍励磁系统是指用来产生磁场的一种系统。
它在许多领域都有应用,包括发电机、电动机和变压器等电力设备,以及医学成像设备、磁选机和磁共振成像仪等。
1.直流励磁系统直流励磁系统是最简单的励磁系统之一,它使用直流电源来供应磁场。
在直流发电机和直流电动机中,一个直流电源通过励磁线圈提供电流,产生一个稳定的磁场。
直流励磁系统具有响应速度快、控制简单、稳定性高等优点,但需要较大的电源容量。
2.交流励磁系统交流励磁系统是利用交流电源来供应磁场的一种励磁系统。
它适用于交流发电机、交流电动机和变压器等设备。
在交流励磁系统中,通常使用电力变压器将输入电压从高电压变成合适的低电压,然后通过整流电路将交流电转换为直流电。
此外,交流励磁系统可以通过改变输入电压的频率和幅度来调节输出磁场的强度。
3.永磁励磁系统永磁励磁系统是利用永磁体产生磁场的一种励磁系统。
永磁励磁系统适用于小型发电机和电动机,具有体积小、质量轻、效率高等优点。
永磁材料可以分为强磁性永磁材料和软磁性永磁材料两类,前者适用于高速运动的设备,后者适用于低速设备。
永磁励磁系统的磁场强度可通过改变永磁体的形状和材料来调节。
4.感应励磁系统感应励磁系统利用电磁感应原理产生磁场。
在感应励磁系统中,通过交变磁场的作用,在导体中感应出涡流,从而产生磁场。
感应励磁系统广泛应用于感应加热设备和感应炉等领域。
感应励磁系统的磁场强度可通过改变交变磁场的频率、幅度和导体材料来调节。
5.分段励磁系统分段励磁系统是指将励磁线圈分成多个段落,每个段落通过控制电流来产生不同强度的磁场。
分段励磁系统可以根据需要调节每个段落的电流,从而改变整个励磁系统的磁场强度。
这种系统适用于电力变压器和磁选机等设备中,可以减少能量消耗和提高效率。
总结起来,励磁系统有直流励磁系统、交流励磁系统、永磁励磁系统、感应励磁系统和分段励磁系统等多种形式。
每种励磁系统都有各自的特点和应用领域,可以根据实际需求选择适合的励磁系统。
发电机励磁系统介绍
发电机励磁系统介绍励磁系统主要由励磁电源、励磁绕组、励磁控制器和励磁回路组成。
励磁电源是励磁系统的核心部分,它一般由稳压整流器组成。
稳压整流器通过将交流电转换成直流电,向励磁绕组提供稳定的励磁电流。
稳压整流器的工作原理主要是利用整流元件(如晶闸管、可控整流器等)将交流电变为直流电,并通过电压调节器(如电抗式调压器、电位器等)控制输出电压的大小。
励磁电源的稳定性直接影响着发电机的励磁能力和发电质量。
励磁绕组是发电机中的一部分线圈,一般位于发电机的转子极端。
励磁绕组的主要作用是通过激励电流形成磁场,使得转子产生电磁感应,进而发生电磁能量转换。
励磁绕组的设计和工艺技术对发电机的励磁能力和稳定性有着重要的影响。
一般情况下,励磁绕组采用的是多层绕组,以减少电磁感应的损失并提高转子的稳定性。
励磁控制器是励磁系统的智能控制部分,通过对励磁电源和励磁绕组的调节,实现对发电机励磁电流和磁场的控制。
励磁控制器一般具有自动调节功能,可以根据发电机的负荷情况动态调整励磁电流,确保输出电压和电流的稳定性。
同时,励磁控制器还可以监测发电机的运行状态,如温度、振动等参数,并及时报警,以保护发电机的安全运行。
励磁回路是连接励磁电源和励磁绕组的电路,它主要由导线、接线盒、开关等组成。
励磁回路的设计应考虑导线的导电性、抗干扰能力和散热能力等因素,以确保励磁电流的稳定传输。
此外,励磁回路还应具备可靠的保护装置,以防止因励磁电流过大或故障等原因对发电机造成损坏。
总体而言,发电机励磁系统是确保发电机能够持续稳定输出电能的关键系统。
它通过励磁电源、励磁绕组、励磁控制器和励磁回路等组成部分的协同工作,实现对发电机励磁能力的控制和调节。
只有励磁系统工作正常、稳定,才能保障发电机提供稳定的电力输出,并确保电力系统的安全和可靠运行。
(完整版)励磁基本原理
第2部分 无刷励磁系统
无刷励磁的主要优点
➢ 取消了集电环和碳刷,彻底解决了环火问题,并且根除了碳刷碳 粉的污染,省掉了换碳刷的工作,减少了维护工作量。 ➢ 无刷励磁系统特别适应于大容量(大励磁电流)的机组,由于全 部励磁功率取自轴系,所以励磁电源独立,不受电力系统电压波动影 响。 ➢ 无刷励磁系统的强励能力不受系统短路影响。 ➢ 无刷励磁的控制功率大大减小,有利于简化控制、保护线路,少 占用厂房场地(省去励磁变压器和大功率整流灭磁屏)。
直流励磁机励磁系统:
早期发电机单机容量小,大功率电力半导体技术还没有发展起来,绝 大多数采用同轴直流励磁机。采用滑环和电刷。慢速励磁系统。
交流励磁机励磁系统:
50-60年代,出现了大功率半导体整流元件,开始采用交流励磁机。随 着永磁材料不断进步,出现了永磁式副励磁机。采用滑环和电刷。慢 速励磁系统。
U1
0
ωt
图7-23三相整流电路发生同相不同组两只元件故障时的输出波形图
可控硅的检测
断开晶闸管阴极和控制极与脉冲变压器的 连接线,用万用表测量晶闸管阴极与控制极 电阻,阻值一般在10Ω左右。用对线灯在晶 闸管阳极和阴极之间加一个正电压,在晶闸 管控制极和阴极之间加一个短时的正电压, 晶闸管应保持导通,即连接在晶闸管阳极和 阴极的对线灯应保持亮的状态。
无刷励磁系统:
无刷励磁系统彻底革除了滑环、电刷等转动接触元件,提高了运行可 靠性和减少了机组维护工作量。
自并励励磁系统:
。
自并励静止励磁系统取代直流励磁机和交流励磁机励磁系统是技术发 展的必然。优点是结构简单,轴系短,快速响应,提高电网的稳定水 平。
第2部分 半导体变流技术
分类
现代发电机励磁系统中,从电源的变换到发电机励磁能量的提供,无处 不存在半导体变流技术的应用。
发电机励磁系统原理
发电机励磁系统原理
发电机的励磁系统是指用来激励电磁铁产生磁场的装置。
励磁系统的原理是通过外部直流电源对电磁铁进行电流供给,使其产生磁场。
在发电机的励磁系统中,有三种常见的励磁方式:直接励磁、直流励磁和交流励磁。
直接励磁是指直接将励磁电流来自发电机的一个分支。
这种方式简单、容易实现,但在应对大功率发电机时,励磁电流较大,会对发电机本身产生较大压力。
直流励磁是将外部直流电源的电流通过整流装置变为直流电源,然后再供给到发电机的励磁设备。
这种方式比直接励磁更加灵活,能够适应不同功率的发电机,并且可以稳定控制励磁电流。
交流励磁是将外部交流电源的电流通过变压器降压,然后再通过整流装置变为直流电源供给到发电机的励磁设备。
这种方式可以根据需要调整变压器的输出电压来控制励磁电流,从而实现对发电机输出电压的调节。
总的来说,发电机的励磁系统通过对电磁铁供给电流,产生一定强度和方向的磁场,进而实现对发电机的励磁,调整发电机的输出电压。
不同的励磁方式具有不同的特点和适用范围,可以根据实际需求进行选择和调节。
励磁系统
谢谢!
励磁系统主要组成器件
名称
调节柜 功率柜 灭磁柜 起励回路 测量单元 励磁变
Байду номын сангаас
主要组成器件
三通道调节器,双总线,LOU,智能I/O,人机界面,电源系 统 每柜6个可控硅组件(硅元件,散热器),脉冲变,功率柜智 能板,脉冲功放板,风机,集中式阻容保护。 灭磁开关,BOD过压检测,厂用电切换回路,转子电压电流 测量单元,起励回路 电源开关,起励接触器,起励二极管,限流电阻 机端PT,CT,系统PT, 变压器本体,温控装置,测温电阻,高低压侧CT
• 功率柜风机电源消失,风机全停: • 处理:视情况减少励磁电流的输出,密切观察功 率柜温度,若满载输出,500A级功率柜不能超过 30分钟,1000A以上不能超过120分钟。 • 并网后因为误操作将灭磁开关分断: • 处理:立即紧急停机。 • 并网后稳定运行时出现无功突然大幅来回波动, 无法稳定: • 处理:检查电压给定有无变化,若有,则判断是 外部还是励磁系统内部的增减磁指令在作用。若 无,则检查PT及其他采集单元的问题,可以采取 切换通道来判断,切换后正常则通道有问题。若 切换后还是一样,则属于系统电压波动的可能。
灭磁装置
• 励磁系统装设自动灭磁装置及开关,灭磁 开关采用直流快速灭弧的断路器;机组正 常停机时励磁调节器自动进行逆变灭磁, 机组事故停机时跳灭磁开关灭磁,灭磁电 阻采用非线性电阻;转子回路过电压保护 采用氧化锌非线性电阻。
励磁系统监视和控制
• 系统故障是自动检测,自动报警,勿需人 为巡检。系统配有冗余系统(包括:励磁 调节、逻辑运算、功率整流等系统的冗 余),故障不一定导致跳闸。当过励/欠 励发生时,将分别通过减磁和增磁,使系 统回到调节范围 。 • 出现的故障按先入先出的原则,对故障内 容及发生时间作了详细记录,不受掉电影 响。
同步发电机励磁系统分类
同步发电机励磁系统分类
同步发电机励磁系统根据其工作原理和结构特点可分为以下几种类型:
1. 静止励磁系统
- 直流励磁系统
- 交流励磁系统
2. 旋转励磁系统
- 直流励磁系统
- 交流励磁系统
3. 无刷励磁系统
- 静止无刷励磁系统
- 旋转无刷励磁系统
静止励磁系统是最传统的励磁方式,其中直流励磁系统使用直流电机或硅整流器作为励磁电源,而交流励磁系统则使用变压器或旋转变流器作为励磁电源。
旋转励磁系统将励磁绕组安装在同步发电机的转子上,与主绕组一同旋转。
直流旋转励磁系统通常使用小型直流发电机作为励磁电源,而交流旋转励磁系统则采用旋转整流器。
无刷励磁系统是近年来发展起来的一种新型励磁方式,它利用功率半
导体器件代替传统的滑环和电刷,可以避免滑环和电刷带来的维护问题。
静止无刷励磁系统将半导体整流器安装在定子上,而旋转无刷励磁系统则将其安装在转子上。
不同的励磁系统各有优缺点,在实际应用中需要根据发电机的型号、容量和运行条件等因素来选择合适的励磁方式。
电厂励磁系统简介
电厂励磁系统简介火电厂励磁系统简介及应用励磁系统简介__厂发电机采用机端自并激静止可控硅有刷励磁系统,由励磁变、双通道励磁调节器、可控硅整流装置、灭磁装置、起励装置和转子过压保护装置等组成。
在汽机房0米层分为五个柜布置,由两个可控硅励磁功率柜、一个励磁控制柜、一个灭磁柜和一个进线柜组成。
励磁变压器单独布置在汽机房0米层,采用三相干式变压器,励磁系统的起励电源采用交流380V厂用电源和220V直流电源起励。
一|、自动电压励磁调节器(AVR)励磁调节器是武汉洪山电工科技有限公司于2000年开发研制的新一代HWJT-08DS微机励磁调节器,HWJT-08DS双通道微机励磁调节器采用的是双通道互为热备用方式――双通道并联运行方式。
该方式的最大特点是:在正常运行的方式下,双通道同时输出。
出现某通道故障,控制系统通过其自身的软、硬件诊断系统(*****G)及相互通讯,自动地将故障通道退出。
该方式的优点在于从根本上避免了主/备方式下的切换及判断所带来的一系列问题,系统的可靠性要高。
1、HWJT-08DS具备如下功能:1)具备自诊断功能和检验调试各功能用的软件及接口;2)具有串行口与发电厂计算机监控系统连接,接受控制和调节指令,提供励磁系统状态和量值;3)具有试验录波、故障录波及事件顺序记录功能。
4)智能化检测与操作功能:功率检测:系统设有功率检测功能,该功能主要用于检测系统主要功率器件的温度,实时显示;当温度高于设定值时,自动启动冷却风扇,并发报警信号;过流检测:实时检测并显示功率元件的电流;当出现过流时,自动跳该回路的出口开关,切除故障点,并发报警信号;脉冲检测:实时检测调节器的脉冲输出状况,一但出现脉冲丢失情况,发报警信号;调节器工作电源监视:正常运行时,调节器同时由厂用交直供电,火电厂励磁系统简介及应用一旦出现电源消失现象(或输入、输出越限),立即发报警信号;实时检测励磁变压器的温度,当其温度高于某一设定值时,自动启动冷却风扇,并发报警信号;2、当采用HWJT-08DS微机励磁调节器构成发电机励磁系统时,发电机励磁系统满足如下技术指标:励磁系统完全满足发电、调峰、调频、调相、同步并列、线路充电、进相运行和带线路零起升压要求。
同步发电机励磁系统
同步发电机励磁系统引言同步发电机是一种将机械能转换为电能的设备,它通过励磁系统来生成磁场,使得转子能够与电网同步运行。
励磁系统在同步发电机的运行中起着至关重要的作用,它对发电机的稳定运行和输出电能的质量产生着重要影响。
本文将介绍同步发电机励磁系统的原理、常见的励磁系统类型以及其在电能发电中的作用。
一、同步发电机励磁系统的原理同步发电机的励磁系统的主要作用是在转子上产生磁场,使得转子与电网的磁场同步,从而使得发电机可以向电网输出电能。
励磁系统的原理可以通过法拉第定律来解释,该定律表明磁场的变化会产生感应电动势。
在同步发电机中,励磁系统的磁场可以通过直流电流在转子上产生。
当通过励磁绕组的电流改变时,绕组周围的磁场也会发生变化,从而在转子内感应出电动势。
这个感应电动势会引起一定的电流流动,从而通过励磁绕组将转子磁场与电网磁场同步。
二、常见的励磁系统类型1. 直流励磁系统直流励磁系统是最常见的励磁系统类型之一。
在直流励磁系统中,励磁绕组通常由一组电枢绕组和磁极绕组组成。
电枢绕组通过直流电流产生磁场,并与磁极绕组相互作用,从而产生所需的磁场分布。
直流励磁系统具有调节灵活性好、响应速度快等优点,被广泛应用于各种类型的发电机。
2. 恒功率励磁系统恒功率励磁系统是一种在同步发电机中常用的励磁系统类型。
恒功率励磁系统通过自动调节输出的励磁电流,使得同步发电机在负载变化时能够保持输出功率不变。
该励磁系统利用负载的反馈信号对励磁电流进行调整,从而实现恒功率输出。
恒功率励磁系统在电能供应系统中起到了稳定电能输出的重要作用。
3. 智能励磁系统随着电力系统的发展,智能励磁系统逐渐成为同步发电机励磁系统的研究重点。
智能励磁系统利用现代控制技术和计算机技术,可以实现对励磁电流和磁场的精确控制,从而提高同步发电机的运行效率和稳定性。
智能励磁系统具有较高的灵活性和可扩展性,能够适应不同负载和电网变化的要求。
三、同步发电机励磁系统在电能发电中的作用1. 稳定发电机输出电压和频率同步发电机励磁系统是保证电力系统稳定运行的关键之一。
发电机励磁系统的分类及工作原理
发电机励磁系统是发电机中至关重要的一部分,它使得发电机能够产生稳定 的电流。本次演讲将介绍励磁系统的分类和工作原理。
直流励磁系统
电源供电
直流励磁系统通过外部的直流电源为励磁电路 提供电力。
电枢电流,磁场产生,感应电动势
通过电枢电流在电磁铁中产生磁场,并产生感 应电动势。
电刷、换向器、电枢、电磁铁
直流励磁系统的关键组成部分,包括电刷、换 向器、电枢和电磁铁。
维持磁场稳定
励磁系统通过控制电枢电流来维持磁场的稳定 性,确保发电机输出的电流稳定。
交流励磁系统
1 转子、定子、电枢线圈
交流励磁系统的主要组成部分,包括转子、 定子和电枢线圈。
2 交流电源供电
交流励磁系统通过外部的交流电源供电,使 得电枢线圈中产生电流。
总结
励磁系统是发电机中关键的一部分,通过分类和工作原理的介绍,我们了解 到直流励磁系统和交流励磁系统各自的特点和应用领域。选择合适的励磁系 统对于发电机的性能和效率至关重要。
3 感应电动势产生,使励磁电流加大
通过感应电动势的产生,使励磁电流增加, 进一步增强发电机的输出能力。
4 交、直流组成复合波
交流励磁系统通过将交、直流两种电流组成 复合波,进一步提高励磁效果。
系统的优缺点
直流励磁系统
优点: • 稳定性高 • 对负载变化响应快
缺点: • 设备成本高 • 维护要求高
交流励磁系统
优点:
• 设备成本低 • 易于维护 缺点: • 稳定性较低 • 对负载变化响应较慢
励磁系统的应用领域
1
发电厂
励磁系统在发电厂中用于调节发电机的输出电流,确保电网的稳定运行。
发电机各种励磁系统简介
发电机各种励磁系统简介发电机励磁系统概述励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统。
励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。
另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。
在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。
在电力系统正常运行的情况下,维持发电机或系统的电压水平;合理分配发电机间的无功负荷;提高电力系统的静态稳定性和动态稳定性,所以对励磁系统必须满足以下要求:图一1、常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。
2、应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。
3、励磁装置本身应无失灵区,以利于提高系统静态稳定,并且动作应迅速,工作要可靠,调节过程要稳定。
我热电分厂现共有三期工程,5台同步发电机采用了3种励磁方式: 1、图二为一期两台QFG-6-2型发电机的励磁系统方框图。
图二2、图三为二期两台QF2-12-2型发电机的励磁系统方框图。
图三3、图四为三期一台QF2-12-2型发电机的励磁系统方框图图四一、三种发电机励磁系统的组成一期是交流励磁机旋转整流器的励磁系统,即无刷励磁系统。
如图二所示,它的副励磁机是永磁发电机,其磁极是旋转的,电枢是静止的,而交流励磁机正好相反,其电枢、硅整流元件、发电机的励磁绕组都在同一轴上旋转,不需任何滑环与电刷等接触元件,这就实现了无刷励磁。
二期是自励直流励磁机励磁系统。
如图三所示,发电机转子绕组由专用的直流励磁机DE供电,调整励磁机磁场电阻Rc可改变励磁机励磁电流中的IRC从而达到调整发电机转子电流的目的。
各种励磁系统介绍
各种励磁系统介绍励磁系统是指在电力系统中提供电磁场的设备或装置,用于激励发电机产生电能。
不同类型的励磁系统适用于不同的发电机类型和工作条件。
下面将介绍几种常见的励磁系统。
1.直流励磁系统:直流励磁系统是最常见的励磁系统类型,适用于大多数发电机。
它由直流发电机和励磁电源组成。
励磁电源通常由电枢绕组和励磁电流控制器组成。
励磁电流控制器用于调节励磁电流大小,以控制发电机的电压和功率输出。
2.恒功率励磁系统:恒功率励磁系统是一种高级的励磁系统,能够在负载变化时自动调节发电机的电压和功率输出。
它通过测量发电机的电压和功率输出来调节励磁电流的大小。
当负载增加时,励磁电流增加,以保持发电机输出的恒定电压和功率。
3.无刷励磁系统:无刷励磁系统是一种先进的励磁系统,适用于无刷发电机。
它使用电子器件代替传统的刷子和电刷,从而消除了刷子摩擦和电刷磨损带来的问题。
无刷励磁系统具有高效率、低噪音和长寿命的优点,广泛应用于现代发电机。
4.永磁励磁系统:永磁励磁系统是一种利用永磁体产生磁场的励磁系统。
它不需要外部电源,可以直接产生励磁电流。
永磁励磁系统具有结构简单、可靠性高和功耗低的优点,适用于一些小型发电机和特殊应用。
5.感应励磁系统:感应励磁系统是一种利用感应电流产生磁场的励磁系统。
它通过将励磁线圈接入到发电机的绕组中,利用感应电流产生磁场。
感应励磁系统适用于一些特殊的发电机类型,如感应发电机和同步电机。
6.变磁励磁系统:变磁励磁系统是一种通过改变励磁电流的方向和大小来控制发电机的电压和功率输出的系统。
它使用可调的励磁变压器或励磁电感器来改变励磁电流的大小和相位。
变磁励磁系统具有灵活性和精确性,适用于一些对发电机电压和功率输出要求较高的应用。
总结起来,励磁系统是电力系统中不可或缺的一部分,它能够提供稳定的电磁场,使发电机能够产生稳定的电能输出。
不同类型的励磁系统适用于不同的发电机类型和工作条件,选择合适的励磁系统能够提高发电机的性能和可靠性。
同步发电机励磁系统介绍
智能控制技术的应用
要点一
智能控制算法
随着智能控制算法的发展,如模糊控制、神经网络等,励 磁系统的智能化水平得到了显著提升。这些算法可以对励 磁系统进行自适应控制,自动调整励磁电流的参数,提高 发电机的运行效率和稳定性。
要点二
应用优势
智能控制技术的应用,使得励磁系统的自适应能力和鲁棒 性得到了增强。同时,通过智能控制算法,可以实现对励 磁系统的优化控制,降低发电机的运行成本和维护成本。
系统的寿命也得到了延长。
数字化控制技术的应用
数字化控制器
随着数字信号处理器(DSP)和可编程逻辑控制器(PLC)等数字化控制技术的发, 励磁系统的控制精度和响应速度得到了显著提升。数字化控制器可以对励磁电流进行快
速、准确的调节,提高发电机的动态性能和稳定性。
应用优势
数字化控制技术的应用,使得励磁系统的控制策略更加灵活和智能化。通过数字化控制 器,可以实现对励磁系统的远程监控和故障诊断,提高励磁系统的可靠性和可维护性。
高性能永磁材料的应用
永磁材料
随着高性能永磁材料的出现,如稀土永磁材 料,励磁系统的性能得到了显著提升。这些 材料具有高磁能积和矫顽力,可以替代传统 的电磁铁,减小励磁系统的体积和重量,提 高励磁系统的效率和可靠性。
应用优势
高性能永磁材料的应用,使得励磁系统在小 型化和高效化方面取得了重要突破。同时, 由于永磁材料的耐腐蚀和抗氧化性能,励磁
励磁系统的组成
励磁电源
提供励磁电流的电源设备,通常为直流电源 或交流电源。
励磁线圈
安装在发电机转子上的线圈,用于产生励磁 磁场。
励磁控制器
用于控制励磁电流的调节器,根据发电机运 行状态和电网需求进行自动调节。
发电机励磁系统分类与工作原理
发电机励磁系统分类与工作原理一、直流励磁系统直流励磁系统是指通过外部直流电源为发电机提供直流电源进行励磁的一种方式。
根据外部直流电源的不同,直流励磁系统可以分为恒定电流励磁、恒定电压励磁和恒定磁通励磁三种类型。
1.恒定电流励磁恒定电流励磁是指通过恒定电流激励线圈,使发电机产生固定的电磁场,从而实现稳定的发电功率输出。
该励磁方式适用于低容量的发电机,因为其在负载变化时,会出现电流无法稳定的问题。
2.恒定电压励磁恒定电压励磁是指通过恒定电压激励线圈,控制发电机输出电压的一种方式。
该励磁方式适用于大容量的发电机,因为其可以根据负载变化自动调节电流。
当负载增加时,发电机电流增大,电压保持不变;当负载减小时,电流减小,电压保持不变。
3.恒定磁通励磁恒定磁通励磁是指通过恒定磁通激励线圈,控制发电机输出电压的一种方式,也是较为常用的励磁方式。
通过调节磁通大小,可以实现对电压的调节。
当负载增加时,电压下降,调节磁通以增加输出电压;当负载减小时,电压上升,调节磁通以减小输出电压。
二、交流励磁系统交流励磁系统是指通过交流电源为发电机提供激励电源,进而产生电磁场的一种方式。
根据交流电源的不同,交流励磁系统可以分为同步励磁和异步励磁两种类型。
1.同步励磁同步励磁是指通过同步发电机自身产生的交流电源来为其他发电机提供励磁电源的一种方式。
同步发电机的励磁线圈接通后,通过自身的额外励磁功率产生电磁场,进而激励其他发电机产生电功率。
2.异步励磁异步励磁是指通过变压器将工程电网的交流电源转化为励磁电源来为发电机提供激励的一种方式。
变压器将工程电网的电压升高,然后通过整流装置将高压交流转换为直流电源,最后通过励磁线圈激励发电机产生电磁场。
不同于直流励磁系统,交流励磁系统可以实现多发电机联网运行,其中一个发电机提供励磁电源,而其他发电机则由该发电机提供激励电源进行励磁。
总结起来,发电机励磁系统的分类与工作原理主要可以从直流励磁系统和交流励磁系统两个方面来考虑。
同步发电机励磁系统介绍
同步发电机励磁系统分类介绍1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。
励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。
发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。
电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。
2直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。
其中直流发电机称为直流励磁机。
直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。
直流励磁机励磁系统又可分为自励式和它励式。
自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。
采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。
目前大多数中小型同步发电机仍采用这种励磁系统。
长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。
缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。
近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。
因此,直流励磁机励磁系统愈来愈不能满足要求。
目前,在100MW及以上发电机上很少采用。
3半导体励磁系统半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。
各种励磁系统介绍
7.5 静止励磁系统
1. 自并励(自并激)励磁系统 发电机的励磁功率电源取自发电机端,经励磁变压器降压、 可控整流器整流后给发电机励磁。由于励磁变压器是并联在发电 机端的,且发电机向自己提供励磁功率,所以这种系统叫做自并 励励磁系统。发电机的励磁电流通过励磁调节器直接通过控制可 控整流器中整流元件直接控制发电机的励磁电流。 这是自励系统中接线最简单的励磁方式,目前被普遍采用的 励磁系统。 其特点如下: ◆ 励磁系统接线和设备非常简单,无转动部分,可靠性高, 造价低,维护费用省。 ◆ 无同轴励磁机,缩短了主轴长度,减少基建投资,改善 了发电机轴系稳定性。 ◆ 直接用可控硅控制转子电压,获得很快励磁电压响应速度,近似认为像阶跃函数那样的响应速度。 ◆ 由发电机机端取得励磁能量,甩负荷时机组过电压低。 ◆ 在故障情况下,强励不能充分发挥,发电机不能向系统提供充分的无功功率,这对整个系统的反 事故能力是十分有害的。
◆ 励磁系统由与主机同轴的主交流励磁机、中频交流副励磁机和调节器等组成,因交流励磁机的励磁电流不是由它 自己供给的,所以称这种励磁机为他励交流励磁机系统。 ◆ 副励磁机可以是自励式和他励式,自励式其磁场绕组由副励磁机机端电压经整流后供电。也有用永磁发电机作副 励磁机的,亦称三机它励励磁系统。
7.4 交流励磁机励磁系统
7.3 直流励磁机励磁系统
3. 自励与他励直流励磁机励磁系统的比较 ◆ 他励比自励多用了一台副励磁机。 ◆ 他励方式励磁单元的时间常数就是励磁机励磁绕组的时间常数,与自励方式相比,时间常数减小 了,即提高了励磁系统的电压增长速率。 ◆ 他励直流励磁机励磁系统一般用于水轮发电机组。 4. 对直流励磁机励磁系统的基本评价 ◆ 结构简单、运行可靠。 ◆ 直流励磁机有电刷、整流子等转动接触部件,运行维护繁杂,从可靠性来说,它又是励磁系统中 的薄弱环节。机组容量越大,励磁电流也越大,当发电机容量大于100MW时,直励机供给励磁换向问题 难以解决。 ◆ 与同容量的交流励磁机或变压器相比,直流励磁机体积大,造价高。 ◆ 励磁调节器常采用电磁型调节器,反应速度慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机的心脏——励磁系统发电机励磁系统概述励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统。
励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。
另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。
在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。
在电力系统正常运行的情况下,维持发电机或系统的电压水平;合理分配发电机间的无功负荷;提高电力系统的静态稳定性和动态稳定性,所以对励磁系统必须满足以下要求:图一1、常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。
2、应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。
3、励磁装置本身应无失灵区,以利于提高系统静态稳定,并且动作应迅速,工作要可靠,调节过程要稳定。
我热电分厂现共有三期工程,5台同步发电机采用了3种励磁方式:1、图二为一期两台QFG-6-2型发电机的励磁系统方框图。
图二2、图三为二期两台QF2-12-2型发电机的励磁系统方框图。
图三3、图四为三期一台QF2-12-2型发电机的励磁系统方框图图四一、三种发电机励磁系统的组成一期是交流励磁机旋转整流器的励磁系统,即无刷励磁系统。
如图二所示,它的副励磁机是永磁发电机,其磁极是旋转的,电枢是静止的,而交流励磁机正好相反,其电枢、硅整流元件、发电机的励磁绕组都在同一轴上旋转,不需任何滑环与电刷等接触元件,这就实现了无刷励磁。
二期是自励直流励磁机励磁系统。
如图三所示,发电机转子绕组由专用的直流励磁机DE供电,调整励磁机磁场电阻Rc可改变励磁机励磁电流中的IRC从而达到调整发电机转子电流的目的。
三期采用的是静止励磁系统。
这类励磁系统不用励磁机,由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。
二、励磁电流的产生及输出一期励磁系统原理图如图五所示。
其中主励磁机的励磁图五励磁系统原理图电源由永磁机的定子绕组经三相可控硅整流桥或三相不可控硅整流桥提供,同时直流稳压单元的交流电源也取自永磁机。
发电机端电压的变化通过调差单元、放大单元后去控制可控硅的导通角,以此来调节主励磁机的磁场电流,达到是发电机稳定运行的目的。
另外,为了提高主励磁机供电的可靠性还设有手动控制,通过调整调压器来调节整流桥的输出直流电压达到调整磁场电流的小的目的。
两种控制方式通过DZA、DZB来进行切换。
二期励磁系统如图六所示。
整流励磁机与发电机同轴,由剩磁建立电压,通过整流子整流经电刷送出。
手动状态下经磁场变阻器、KFD-3励磁调节器、碳刷、滑环给转子提供励磁电流。
三期采用双微机单模拟的励磁控制系统,取消了励磁机。
期励磁系统原理图如图七所示。
发电机的励磁电流由机端励磁变压器经可控硅整流桥提供。
其可控硅的导通角可由微机或模拟方式控制,在正常情况下,只有一台微机处于在线状态,能发出控制信号,其它则处于离线热备用状态,其给定值、在线参数、控制信号均处于跟踪工作状态。
在线通道一旦故障,其发出的控制信号将被闭锁转为离线通道;离线通道自动投入转为在线状态,发出信号,当两套微机通道均出现故障,在正常运行情况下,只有一台微机处于在线状态,其给定值、在线参数、控制信号均处于跟踪工作状态。
在线通道一旦故障,其发出的控制信号将被闭锁转为离线通道;离线通道自动投入转为在线状图六KFD-3 快速励磁调节器原理图图七HWLT-4励磁系统原理图态,发出控制信号,当两套微机通道均出现故障时,模拟通道自动投入。
为了保证励磁电源的可靠性,采用了电力专用电源为调节器提供+24VDC电源,每个电源由交、直流两路输入。
它们分别来自三种独立的电源:厂用220VAC、厂用220VDC、自用电220VAC,同时采用厂用电380VAC经三相桥式整流为发电机提供励磁电流,以便发生故障时有足够的调节容量及较高的响应速度。
三、励磁系统的控制部分一期的自动励磁调节器由可控硅整流功率单元、移相触发单元、直流放大单元、电压反馈单元、调差单元、直流电源单元和电源监视单元组成。
整流功率单元采用的是三相桥式全控整流电路,主要是将交流电压变成直流电供给励磁机的励磁绕组;移相触发单元由六个完全相同的触发器插件组成,其构成环节如下图所示:本单元根据输入控制信号Usm的大小,改变晶闸管的控制角,以控制整流电路的输出,从而调节发电机的励磁电流;直流放大单元由两级直流放大器组成,是PID放大器和综合放大器。
其调节的过程是指当发电机受到无功扰动电压产生变化的开始瞬间,PID便输出一个与变化率(dv/dt)成正比的信号去改变励磁,以阻止电压的变化。
由于PID放大器自身带负荷的能力较差,故还需在PID和触发器之间设一综合放大器,对PID放大器的输出信号进行反相和功率放大;无功调差单元是指当发电机并联运行时能使个机组间无功电流分配稳定,当发电机经升压变压器与电网并联时,能克服升压变压器的电抗压降;无功调差单元是将发电机端电压的变化转变为一交流电压信号,而PID的输入端要直流电压反馈信号,因此在此二单元之间加一电压反馈单元,将交流电压信号转为直流电压信号;直流电源单元为励磁调节器提供+24V直流电压;本调节器所选用的集成元件工作电源为+15V,故需设+15V的稳定电源;电源监视单元起对两套工作电源进行监视的作用,当任一组电源发生故障时均能报警。
二期所采用的是KFD-3型快速励磁调节器。
如图六所示。
调节器由电流互感器及电压互感器供电,包括可控相复励变压器和电压校正器。
可控相复励变压器BKF是调节器的主要元件,它是一个有直流磁化的、双初级绕组的变压器或磁放大器。
第一个串联绕组由电流互感器LH供电;第二个并联绕组由电压互感器YH供电。
次级绕组的感应电势是这两个绕组磁化安匝的感应电势的几何和。
次级电流经过输出整流器组ZC整流后输送至励磁机励磁绕组。
电压校正器由三相测量变压器BC及磁放大器FC组成,三相测量变压器BC由电压互感器YH经调整自藕变压器TBZ供电。
他是一个三相饱和变压器,初级电流具有非线性的特性,而次级电流是线性的,在经非线性整流器ZFL、线性整流器ZXL整流后而输出至磁放大器FC的两个极性相反的直流控制绕组,磁放大器输出电流的大小由这两个电流差来控制。
当发电机电压增加时,测量机构输出的线性与非线性电流差迅速增加,相应地磁放大器的输出电流也急剧增加,因此由测量机构与磁放大器所组成的电压校正器具有反接的特性。
在正常工作时,校正器由一定的磁化电流送至BKF的控制绕组,使BKF的铁芯工作于较饱和的程度从而控制BKF的输出,达到控制发电机励磁的目的。
三期所采用的是HWLT-4型微机励磁调节器。
它提高了发电机运行的自动化程度。
各功能均实现了模块化,通过不同功能的组合来满足不同用户的要求。
在硬件方面,该调节器由两套独立的微机通道和一套独立的模拟通道组成。
每个微机通道分为:电压环和电流环。
模拟通道为电流环。
电压环是取自机端电压信号进行闭环的,亦称为自动环;电流环是取转子电流信号进行闭环的,亦称为手动环。
为了保证调节的快速性,系统连续采样即在一个工频周期内完成各种运算,其操作回路的动作由工业控制机和继电器共同完成的。
在软件上调节器的控制方式分为四种:1、自动电压调节(AVR)2、磁场电流调节(FCR)3、恒无功调节4、恒功率因数调节在正常情况下,可由AVR方式手动切换至FCR方式,在故障情况下自动切换。
后两种控制方式只能在AVR方式下投入使用。
另外,本调节器还具有四种限制功能:1、定子电流限制2、磁场电流限制3、欠励限制4、伏特赫兹限制调节器通过控制功能、限制功能及其它的一些辅助功能来控制发电机的励磁电流,使发电机工作在最佳状态。
四、三种励磁系统的强行励磁情况三种励磁系统均具有强励功能。
一期强励是由电子开关和PID放大器一起控制的。
电子开关原理图如图所示。
在运算放大器FD2图八电子开关原理图反相端输入一个负电压VR≈-8V,当反馈电压|Vi|<8V时(反馈电压8V相当于机端电压85%)FD2输出为正电位,二极管D3截止,场效应管导通,积分电容C2被短接,使PID 放大器失去积分功能;当|Vi|>|Vr|时,FD2输出为负电位场效应管截止,使PID恢复积分功能。
通过PID的有差积分调节可维持电压恒定不变,即当发电机电压出现偏差时,如负的偏差,积分调节逐渐给一个强励信号,使发电机电压回升,这时负偏差减小,输出信号减小,减小强励信号直到电压恒定不变。
出现正偏差时,其过程和上相反。
二期的励磁系统还采用了继电强行励磁装置。
当机端电压下降到额定电压的80%~85%时,强行励磁装置动作,短接磁场变阻器的部分电阻使励磁电流猛增到最大值,励磁电压升到额定值的1.8~2倍,实现继电强行励磁。
三期强励主要是通过软件来实现的。
由高可靠智能励磁调节器完成励磁系统所需的各种功能。
在自动电压调节下,对于自并励励磁系统采用PID控制算法,以稳定发电机机端电压。
五、三种励磁系统的运行情况一期发电机自一九八四年投运以来,无刷励磁系统运行正常,自动励磁调节器经常投入而且维护量很小。
二期发电机自一九九四年投入运行以来,直流励磁系统多次发生故障。
两台机调试时均发生过转子滑环处短路事故,严重的影响了生产运行,且在正常运行时需经常检查和调整滑环及更换整流子碳刷,运行维护工作量很大,费用很高,其自动励磁调节器由于不能长期稳定运行而经常退出不用。
随着对二期运行经验的积累及运行维护的加强还是能保证正常运行的。
三期采用了微机控制励磁调节系统。
该调节系统自投运以来运行稳定可靠,性能优良,特别是全部汉化的人机界面,为现场运行检修人员提供了方便。
通过对这三期发电机励磁系统结构、原理和运行情况的比较可以看出:一期的无刷励磁系统运行可靠,维护量和检修量大大优于二期直流励磁系统,但是一期的励磁系统在开机调试时比二期难。
三期采用了静止励磁系统,由HWLT-4微机励磁调节器进行控制,取消了励磁机,缩短了主轴长度,降低了制造费用和土建费用,且微机控制是工业发展的趋势,其生产技术水平逐渐成熟,是未来励磁系统发展的主流。