最新人教版八年级数学上册 专题练习:因式分解

合集下载

人教版初二上册数学同步练习题:因式分解

人教版初二上册数学同步练习题:因式分解

人教版初二上册数学同步练习题:因式分解
学习是一个墨守成规的进程,也是一个不时积聚不时创新的进程。

下面小编为大家整理了人教版初二上册数学同步练习题:因式分解,欢迎大家参考阅读!
1、以下各式从左到右的变形,是因式分解的是( )
A、m(a+b)=ma+mb
B、ma+mb+1=m(a+b)+1
C、(a+3)(a-2)=a2+a-6
D、x2-1=(x+1)(x-1)
2、假定y2-2my+1是一个完全平方式,那么m的值是( )
A、m=1
B、m=-1
C、m=0
D、m=±1
3、把-a(x-y)-b(y-x)+c(x-y)分解因式正确的结果是( )
A、(x-y)(-a-b+c)
B、(y-x)(a-b-c)
C、-(x-y)(a+b-c)
D、-(y-x)(a+b-c)
4、-(2x-y)(2x+y)是以下哪一个多项式分解因式后所得的答案( )
A、4x2-y2
B、4x2+y2
C、-4x2-y2
D、-4x2+y2
5、m-n+ 是以下哪个多项式的一个因式( )
A、(m-n)2+ (m-n)+
B、(m-n)2+ (m-n)+
C、(m-n)2- (m-n)+
D、(m-n)2- (m-n)+
6、分解因式a4-2a2b2+b4的结果是( )
A、a2(a2-2b2)+b4
B、(a-b)2
C、(a-b)4
D、(a+b)2(a-b)2
小编再次提示大家,一定要多练习哦!希望这篇人教版初二上册数学同步练习题:因式分解可以协助你稳固学过的相关知识。

人教版八年级数学上册14.3因式分解过关练习题(含答案)(含知识点)

人教版八年级数学上册14.3因式分解过关练习题(含答案)(含知识点)

2021-2022学年度秋季八年级上学期人教版数学因式分解过关练习题(含答案)1.将下列各式分解因式(1)3p2﹣6pq(2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy(2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2 4.分解因式:(1)2x2﹣x(2)16x2﹣1(3)6xy2﹣9x2y﹣y3(4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a(2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x2y﹣2xy2+y3(2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy(2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a 的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).人教版八年级数学上册必须要记、背的知识点第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等. ②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质: ①等边三角形三边都相等. ②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.八年级上册练习题4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念: 1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()nm mn a a =⑶积的乘方:()nn nab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b ab -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:332()(a b a b a ab b+=+-+④立方差:332()(a b a b a ab b-=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:整式乘法整式除法 因式分解乘法法则等边三角形的性质人教版数学2020-2021八年级上册题 1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mnaa=(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。

人教版八年级上册数学因式分解训练题

人教版八年级上册数学因式分解训练题

14.3 因式分解训练题一、选择题1. 若 a 2+2b 2+2ab −b +14=0,则 a ,b 的值分别为 ( )A . −12,12B . 12,12C . −12,−12D . 12,−12 2. 下列多项式中,能用提取公因式法分解因式的是 ( )A . x 2−yB . x 2+2xC . x 2+y 2D .x 2−xy +y 2 3. 下列多项式中能用平方差公式分解因式的是 ( )A . a 2+(−b )2B . 5m 2−20mnC . −x 2−y 2D . −x 2+94. 下列各式中能用完全平方公式进行因式分解的是 ( )A . x 2+x +1B . x 2+2x −1C . x 2−1D .x 2−6x +9 5. 把多项式 (m +n )2−(m −n )2 因式分解的结果是 ( )A . 4n 2B . −4mnC . 4mnD .0 6. 下列多项式中能用平方差公式分解因式的是 ( )A . a 2+(−b )2B . 5m 2−20mnC . −x 2−y 2D . −x 2+97. 若 x +y =3,x −y =1,则 x 2−y 2 的值为 ( )A . 1B . 2C . 3D .−3 8. 若 x 为任意有理数,则多项式 4x −4−x 2 的值 ( )A .一定为正数B .一定为负数C .不可能为正数D .可能为任意有理数9. 下列各式中能用完全平方公式进行因式分解的是 ( )A . x 2+x +1B . x 2+2x −1C . x 2−1D .x 2−6x +9 10. 下列因式分解正确的是 ( )A . x 2+1=(x +1)(x −1)B . am +an =a (m −n )C . m 2+4m −4=(m −2)2D . a 2−a −2=(a −2)(a +1)二、填空题11. 分解因式:(x 2+4)2−16x 2= .12. 因式分解:2a −2b = .13. 分解因式:2a 2+ab = .14. 4x 2−36 因式分解的结果 .15. 分解因式:2a (b +c )−3(b +c )= .16.因式分解:2x2+x=.17.因式分解:ab−7a=.18.分解因式a3−a的结果是.19.分解因式:x2−9x=.20.分解因式:ab+bc=.三、解答题21.分解因式:(1) 9−a2.(2) 3x2−18x+27.22.把下列多项式因式分解.(1) 5x−5y+5z;(2) 3a2−9ab;(3) −5a2+25a−5a;(4) −4m3+16m2−26m.23.因式分解.(1) x2−y2.(2) ax2+4ax+4a.24.分解因式:−8x4y+6x3y2−2x3y.25.分解因式(1) 8a3b2+12ab3c.(2) a3−2a2+a.(3) (2x+y)2−(x+2y)2.答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】D4. 【答案】D5. 【答案】C6. 【答案】D7. 【答案】C8. 【答案】C9. 【答案】D10. 【答案】D二、填空题11. 【答案】(x+2)2(x−2)212. 【答案】2(a−b)13. 【答案】a(2a+b)14. 【答案】4(x+3)(x−3)15. 【答案】(b+c)(2a−3)16. 【答案】x(2x+1)17. 【答案】a(b−7)18. 【答案】a(a+1)(a−1)19. 【答案】x(x−9)20. 【答案】b(a+c)三、解答题21. 【答案】(1) 原式=(3+a)(3−a).(2) 原式=3(x2−6x+9)=3(x−3)2.22. 【答案】(1) 原式=5(x−y+z).(2) 原式=3a(a−3b).(3) 原式=−5a(a−5+1)=−5a(a−4).(4) 原式=−2m(2m2−8m+13).23. 【答案】(1) 原式=(x+y)(x−y).(2) 原式=a(x2+4x+4)=a(x+2)2.24. 【答案】−2x3y(4x−3y+1).25. 【答案】(1) 原式=4ab2(2a2+3bc).(2) 原式=a(a2−2a+1)=a(a−1)2.(3) 原式=(2x+y+x+2y)(2x+y−x−2y) =3(x+y)(x−y).。

人教版八年级数学因式分解计算题

人教版八年级数学因式分解计算题

人教版八年级数学因式分解计算题一、因式分解计算题20题及解析。

1. 题目:分解因式x^2 - 9- 解析:这是一个平方差的形式,x^2-9 = x^2-3^2=(x + 3)(x-3)。

2. 题目:分解因式4x^2-16- 解析:先提取公因式4,得到4(x^2-4),而x^2-4又是平方差形式,x^2-4=(x + 2)(x-2),所以4x^2-16 = 4(x + 2)(x-2)。

3. 题目:分解因式x^3-2x^2+x- 解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以x^3-2x^2+x=x(x - 1)^2。

4. 题目:分解因式9x^2-y^2- 解析:这是平方差形式,9x^2-y^2=(3x + y)(3x-y)。

5. 题目:分解因式x^2y - 4y- 解析:先提取公因式y,得到y(x^2-4),x^2-4=(x + 2)(x-2),所以x^2y-4y=y(x + 2)(x-2)。

6. 题目:分解因式2x^2-8- 解析:先提取公因式2,得到2(x^2-4),x^2-4=(x + 2)(x-2),所以2x^2-8 = 2(x + 2)(x-2)。

7. 题目:分解因式x^4-1- 解析:这是平方差形式,x^4-1=(x^2+1)(x^2-1),而x^2-1=(x + 1)(x-1),所以x^4-1=(x^2+1)(x + 1)(x-1)。

8. 题目:分解因式a^3-a- 解析:先提取公因式a,得到a(a^2-1),a^2-1=(a + 1)(a-1),所以a^3-a=a(a + 1)(a-1)。

9. 题目:分解因式16x^2-25y^2- 解析:这是平方差形式,16x^2-25y^2=(4x+5y)(4x - 5y)。

10. 题目:分解因式x^3+2x^2+x- 解析:先提取公因式x,得到x(x^2+2x + 1),x^2+2x + 1=(x + 1)^2,所以x^3+2x^2+x=x(x + 1)^2。

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》解答专项练习题(附答案)

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》解答专项练习题(附答案)

2022-2023学年人教版八年级数学上册《第14章整式乘法与因式分解》解答专项练习题(附答案)1.计算:(1)20222﹣2021×2023;(2)982+4×98+4.2.因式分解:(1)9a2(x﹣y)+4b2(y﹣x);(2)9(x+2y)2﹣4(x﹣y)2;(3)64x2y2﹣(x2+16y2)2;(4)(x2﹣x)(x2﹣x﹣8)+12.3.计算:(1)3x(x2﹣1)﹣5x(x2+)(2)(a﹣b)(x﹣y)+(b﹣a)(x+y)4.计算:(2a4b7﹣6ab2)÷2ab+(﹣ab2)3.5.如图,在长为3a+2,宽为2b﹣1的长方形铁片上,挖去长为2a+4,宽为b的小长方形铁片.(1)求剩余部分面积.(2)求出当a=3,b=2时的面积.6.如图,某校有一块长为(3a+b)m,宽为(2a+b)m的长方形空地,中间是边长(a+b)m的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.7.分解因式:(1)3x﹣12x2;(2)a2﹣4ab+4b2;(3)x2﹣2x﹣8;(4)(2x+y)2﹣(x﹣2y)2.8.计算:(1)计算:(x+2y﹣3)(x﹣2y﹣3);(2)因式分解:12ax2﹣12axy+3ay29.阅读:分解因式x2+2x﹣3.解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1),此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为“配方法”,此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在有理数范围内分解因式:4a2+4a﹣15.10.阅读下列材料:利用完全平方公式,可以将多项式a2x+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:===(x+8)(x+3),根据以上材料,解答下列问题:(1)用多项式的配方法将x2+8x﹣1化成(x+m)2+n的形式;(2)把多项式x2﹣3x﹣40进行分解因式.11.如图①是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②.请你直接写出下列三个式子:(a+b)2、(a﹣b)2、ab之间的等量关系式为;(2)若m、n均为实数,且m+n=﹣2,mm=﹣3,运用(1)所得到的公式求m﹣n的值;(3)如图③,S1、S2分别表示边长为x、y的正方形的面积,且A、B、C三点在一条直线上,若S1+S2=20,AB=x+y=6,求图中阴影部分的面积.12.如图,正方形ABCD与正方形CEFG的面积之差是6,求阴影部分的面积.13.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(2)若x2﹣9y2=12,x+3y=4,求x﹣3y的值;(3)计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).14.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.15.(1)请用两种不同的方法表示图中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=74,求(x﹣2022)2的值.16.一个图形通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)通过计算图2中阴影部分的面积可以得到的数学等式是;(2)利用图3解决下面问题若a+b+c=10,ab+ac+bc=32,则a2+b2+c2=.(3)如图4,四边形ABCD,NGDH,MEDQ是正方形,四边形PQDH和EFGD是长方形,其中EFGD的面积是200,AE=10,CG=20,求图中阴影部分的面积.17.分解因式:(1)(x2+25)2﹣100x2.(2)3(x﹣1)2﹣18(x﹣1)+27.18.阅读下列材料:小颖同学对多项式(x2﹣6x+3)(x2﹣6x+15)+36进行因式分解的过程中发现,如果把x2﹣6x看成一个整体,用一个新的字母代替,此多项式就可以运用公式法进行因式分解,以下是她的做法.解:设x2﹣6x=y,原式=(y+3)(y+15)+36=y2+18y+81=(y+9)2=(x2﹣6x+9)2.(1)小颖同学进行因式分解时,所得到的最后结果是否分解彻底?(填“是”或“否”);如果否,直接写出因式分解最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.19.阅读材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,可以得到:原式=(x+y+1)2.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.问题解决:(1)因式分解:1+4(x﹣y)+4(x﹣y)2;(2)因式分解:(a2﹣4a+1)(a2﹣4a+7)+9;(3)证明:若n为正整数,则代数式(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.20.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1)观察图2,写出所表示的数学等式:=.(2)观察图3,写出所表示的数学等式:=.(3)已知(2)的等式中的三个字母可以取任何数,若a=7x﹣5,b=﹣4x+2,c=﹣3x+4,且a2+b2+c2=37.请利用(2)中的结论求ab+bc+ac的值.参考答案1.解:(1)原式=20222﹣(2022﹣1)(2022+1)=20222﹣(20222﹣1)=20222﹣20222+1=1;(2)原式=982+2×98+22=(98+2)2=10000.2.解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)原式=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(5x+4y)(x+8y);(3)原式=(8xy+x2+16y2)(8xy﹣x2﹣16y2)=﹣(x+4y)2(x﹣4y)2;(4)原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x﹣2)(x+1)(x﹣3)(x+2).3.解:(1)3x(x2﹣1)﹣5x(x2+)=x3﹣3x﹣x3﹣2x=﹣5x;(2)(a﹣b)(x﹣y)+(b﹣a)(x+y)=ax﹣ay﹣bx+by+bx+by﹣ax﹣ay=﹣2ay+2by.4.解:(2a4b7﹣6ab2)÷2ab+(﹣ab2)3=a3b6﹣3b﹣a3b6=﹣3b.5.解:(1)由题意得:S阴影=S原长方形﹣S挖去的长方形=(3a+2)(2b﹣1)﹣(2a+4)b=6ab﹣3a+4b﹣2﹣2ab﹣4b=4ab﹣3a﹣2;(2)当a=3,b=2时,原式=4×3×2﹣3×3﹣2=24﹣9﹣2=13.6.解:(1)需要硬化的面积是(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab;(2)当a=5,b=2时,需要硬化的面积是5×52+3×5×2=155(m2).答:需要硬化的面积为155m2.7.解:(1)3x﹣12x2=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)a2﹣4ab+4b2=a2﹣2×a×2b+(2b)2=(a﹣2b)2;(3)x2﹣2x﹣8=(x﹣4)(x+2);(4)(2x+y)2﹣(x﹣2y)2=[(2x+y)+(x﹣2y)][(2x+y)﹣(x﹣2y)]=(3x﹣y)(x+3y).8.解:(1)原式=[(x﹣3)+2y][(x﹣3)﹣2y]=(x﹣3)2﹣(2y)2=x2﹣6x+9﹣4y2;(2)12ax2﹣12axy+3ay2=3a(4x2﹣4xy+y2)=3a(2x﹣y)2.9.解:4a2+4a﹣15=4a2+4a+1﹣1﹣15=(2a+1)2﹣16=(2a+1)2﹣42=(2a+1+4)(2a+1﹣4)=(2a+5)(2a﹣3).10.解:(1)x2+8x﹣1=x2+8x+16﹣17=(x+4)2﹣17.(2)x2﹣3x﹣40=x2﹣3x+﹣=(x﹣)2﹣()2=(x﹣+)(x﹣﹣)=(x+5)(x﹣8).11.解:(1)由图象可得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.(2)∵(m+n)2﹣(m﹣n)2=4mn,∴(m﹣n)2=(m+n)2﹣4mn,∵m+n=﹣2,mn=﹣3,∴(m﹣n)2=(﹣2)2﹣4×(﹣3)=16.(3)∵S1+S2=20,∴x+x=20,∴S阴影=S△ACF+S△BCD=x1•x2+x1•x2=x1•x2=[(x1+x2)2﹣(x+x)]=(62﹣20)=8.12.解:设正方形ABCD与正方形CEFG的边长分别为a和b,由题意得:b2﹣a2=6.由图形可得:S阴=a(b﹣a)+(b2﹣ab)=ab﹣a2+b2﹣ab=(b2﹣a2)=×6=3.故阴影部分的面积为3.13.解:(1)图1阴影部分的面积可以看作是两个正方形的面积差,即a2﹣b2,图2是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),由图1、图2阴影部分的面积相等可得,a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)∵x2﹣9y2=12,即(x+3y)(x﹣3y)=12,而x+3y=4,∴x﹣3y=12÷4=3,答:x﹣3y的值为3;(3)原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.14.解:(1)由图可得,S1=a2﹣b2,S2=a2﹣a(a﹣b)﹣b(a﹣b)﹣b(a﹣b)=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=20,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×20=40;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=30,∴S3=×30=15.15.解:(1)方法1:两个阴影部分的面积和就是边长为a的正方形,与边长为b的正方形的面积和,即a2+b2;方法2:两个阴影部分的面积和也可以看作从边长为a+b的正方形面积中减去两个长为a,宽为b的长方形面积,即(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由(1)得,a2+b2=(a+b)2﹣2ab;(3)①∵m+n=5,∴(m+n)2=25=m2+2mn+n2,∵m2+n2=20,∴2mn=5,即mn=;(m﹣n)2=m2﹣2mn+n2=20﹣5=15,答:mn=,(m﹣n)2=15;②设a=x﹣2021,b=x﹣2023,则a﹣b=2,a2+b2=(x﹣2021)2+(x﹣2023)2=74,所以ab===35,即(x﹣2021)(x﹣2023)=35,所以[(x﹣2022)+1][(x﹣2022)﹣1]=(x﹣2022)2﹣1=35,即(x﹣2022)2=36.16.解:(1)阴影部分的面积=(a﹣b)2=a2﹣2ab+b2,故答案为:(a﹣b)2=a2﹣2ab+b2;(2)由图可得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=32,∴a2+b2+c2=100﹣2×32=36,故答案为:36;(3)设阴影部分的面积为S,AB=x,则DE=x﹣10,EF=x﹣20,根据长方形的面积公式,得(x﹣10)(x﹣20)=200,∴S=MF•FN=(x﹣20+x﹣10)(x﹣10+x﹣20)=(x﹣20+x﹣10)2=(x﹣20﹣x+10)2+4(x﹣20)(x﹣10)=100+800=900,∴阴影部分的面积为900.17.解:(1)原式=(x2+25)2﹣(10x)2=(x2+25+10x)(x2+25﹣10x)=(x+5)2(x﹣5)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.18.解:(1)设x2﹣6x=y,原式=(y+3)(y+15)+36=y2+18y+81=(y+9)2=(x2﹣6x+9)2=(x﹣3)4,∴小颖同学进行因式分解时,所得到的最后结果没有分解彻底,故答案为:否,(x﹣3)4;(2)解:设x2﹣2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2﹣2x+1)2=(x﹣1)4.19.解:(1)令x﹣y=A,原式=1+4Α+4Α2=(1+2A)2=(1+2x﹣2y)2;(2)令a2﹣4a=B,则原式=(B+1)(B+7)+9=B2+8B+16=(B+4)2=(a2﹣4a+4)2=(a﹣2)4;(3)原式=(n2+3n+2)(n2+3n)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1为正整数.∴(n+1)(n+2)(n2+3n)=(n2+3n+1)2,即代数(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.20.解:(1)大矩形的面积=(a+2b)(a+b),各部分面积和=a2+3ab+2b2,∴(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b);a2+3ab+2b2;(2)正方形的面积可表示为(a+b+c)2;各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ca,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.故答案为:(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(3)由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∵(a+b+c)2=(7x﹣5﹣4x+2﹣3x+4)2=1,∴1=a2+b2+c2+2ab+2ac+2bc,∵a2+b2+c2=37,∴1=37+2(ab+bc+ac),∴2(ab+bc+ac)=﹣36,∴ab+bc+ac=﹣18.。

八年级数学上册 因式分解综合应用(习题及答案)(人教版)

八年级数学上册 因式分解综合应用(习题及答案)(人教版)

因式分解综合应用(习题)例题示范例1:因式分解22(22)(24)9x x x x ---++.【过程书写】解:令22x x t -=,则222(2)(4)928921(1)t t t t t t t =-++=+-+=++=+原式224(21)(1)x x x =-+=-即,原式例2:已知221x x ++是多项式32x x ax b -++的一个因式,求a ,b 的值,并将该多项式因式分解.【思路分析】①由已知可设32x x ax b -++= (221x x ++)( ___________ );②化简,对照系数即可.【过程书写】解:设322(21)()x x ax b x x x m -++=+++,则3232(2)(21)x x ax b x m x m x m -++=+++++∴2121m m a m b +=-⎧⎪+=⎨⎪=⎩解得533a b m =-⎧⎪=-⎨⎪=-⎩322253(21)(3)(1)(3)x x x x x x x x ---=++-=+-∴巩固练习1. 把下列各式因式分解.(1)222()8()12x x x x +-++;(2)22(24)(22)9x x x x -+--+++;(3)(1)(2)(3)(4)24x x x x -+-++;(4)32256x x x +--;(5)31x -;(6)3234x x +-;(7)222241x y x y xy +---.2. 方程2230x x --=的解为______________________.3. 若a ,b ,c 是△ABC 的三边长,且满足3222230a a b ab ac bc b -+-+-=,则△ABC 的形状是_____________________________.4. 若a ,b ,c 是△ABC 的三边长,且满足222a b c ab bc ac ++=++,则△ABC的形状是_______________________.5. 已知多项式3210x mx nx -++有因式2x -和1x +,求m 的值.【思路分析】①由已知可设3210x mx nx -++=(2x -)(1x +)( ___________ );②化简,对照系数即可.【过程书写】6. 已知关于x 的多项式23x x m ++因式分解以后,有一个因式为32x -,试求m的值,并将此多项式因式分解.7. 用试根法将多项式32252x x x ---因式分解.【思路分析】①将x =____代入多项式,发现322520x x x ---=,所以多项式中有因式___________;②设32252x x x ---=( __________ )( ________________ );③化简,对照系数即可.【过程书写】8. 对于一个图形,通过不同的方法计算其面积时,可得到一个数学等式,例如由图1可得到2232(2)()a ab b a b a b ++=++.图1 图2请根据上述内容解答下列问题: (1)由图2可得到的一个数学等式为___________________;(2)请用拼图的方法推出2223a ab b ++因式分解的结果,并画出你的拼图.【参考答案】巩固练习1. (1)(2)(1)(2)(3)x x x x +--+(2)4(1)x -(3)2(2)(3)(8)x x x x -++-(4)(1)(2)(3)x x x +-+(5)2(1)(1)x x x -++(6)2(1)(2)x x -+(7)(1)(1)x y xy x y xy -++---2. x =-1或x =33. 等腰三角形或直角三角形4.等边三角形5.①x+a②m=66.m=-2;2+-=-+32(32)(1)x x x x7.①2,(x-2);②2x x mx n-++(2)(2)32---=-++x x x x x x252(2)(1)(21) 8.(1)22++=++252(2)(2)a ab b a b a b(2)22++=++23()(2)a ab b a b a b。

【八年级上册】因式分解专项训练(30道)(含答案)

【八年级上册】因式分解专项训练(30道)(含答案)

因式分解专项训练(30道)1.(拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.2.(拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).3.(浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.4.(绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)因式分解专项训练(30道)【答案版】1.(2021春•拱墅区校级期中)因式分解(1)﹣a2+1;(2)2x3y+4x2y2+2xy3;(3)4(x+2y)2﹣25(x﹣y)2;(4)(a2+a)2﹣8(a2+a)+12.【解题思路】(1)逆用平方差公式进行因式分解.(2)先逆用平方差公式,再提公因式.(3)先逆用平方差公式,再提公因式.(4)运用十字相乘法进行因式分解,注意分解彻底.【解答过程】解:(1)﹣a2+1=(1+a)(1﹣a).(2)2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2.(3)4(x+2y)2﹣25(x﹣y)2=[2(x+2y)+5(x﹣y)][2(x+2y)﹣5(x﹣y)]=(2x+4y+5x﹣5y)(2x+4y﹣5x+5y)=(7x﹣y)(﹣3x+9y)=﹣3(7x﹣y)(x﹣3y).(4)(a2+a)2﹣8(a2+a)+12=(a2+a﹣2)(a2+a﹣6)=(a+2)(a﹣1)(a+3)(a﹣2).2.(2021秋•拜泉县期中)因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).【解题思路】(1)原式提取公因式3x,分解即可;(2)原式提取公因式m,再利用平方差公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式变形后,提取公因式(x﹣y),再利用平方差公式分解即可.【解答过程】解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).3.(2021秋•浠水县月考)分解因式:(1)3pq3+15p3q;(2)ab2﹣a;(3)4xy2﹣4x2y﹣y3;(4)(a2+1)2﹣4a2.【解题思路】(1)原式提取公因式3pq即可;(2)原式提取公因式a,再利用平方差公式分解即可;(3)原式提取公因式﹣y,再利用完全平方公式分解即可;(4)原式利用平方差公式,以及完全平方公式分解即可.【解答过程】解:(1)3pq3+15p3q=3pq(q2+5p2);(2)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(3)4xy2﹣4x2y﹣y3=﹣y(y2+4x2﹣4xy)=﹣y(2x﹣y)2;(4)(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.4.(2021秋•绿园区校级月考)把下列多项式分解因式.(1)3x2﹣3y2.(2)a2b+2ab2+b3.(3)(m﹣1)(m﹣3)+1.(4)2a2+4ab+2b2.【解题思路】(1)先提公因式,再利用平方差公式即可;(2)先提公因式,再利用完全平方公式即可;(3)先计算多项式乘多项式,整理后,再利用完全平方公式即可;(4)先提公因式,再利用完全平方公式即可;【解答过程】解:(1)原式=3(x2﹣y2)=3(x+y)(x﹣y);(2)原式=b(a2+2ab+b2)=b(a+b)2;(3)原式=m2﹣4m+4=(m﹣2)2;(4)原式=2(a2+2ab+b2)=2(a+b)2.5.(2021春•东昌府区期末)把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣15;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.【解题思路】(1)直接提取公因式;(2)先加上负括号,再利用十字相乘法;(3)先提取公因式2mn,再利用完全平方公式;(4)利用平方差公式因式分解.【解答过程】解:(1)2(x﹣y)﹣(x﹣y)2=(x﹣y)[2﹣(x﹣y)]=(x﹣y)(2﹣x+y);(2)﹣x2+8x﹣15=﹣(x2﹣8x+15)=﹣(x﹣5)(x﹣3);(3)8m3n+40m2n2+50mn3=2mn(4m2+20mn+25n2)=2mn(2m+5n)2;(4)a4﹣b4=(a2+b2)(a2﹣b2)=(a2+b2)(a+b)(a﹣b).6.(2021春•南山区校级期中)分解因式:(1)12ab2﹣6ab;(2)a2﹣6ab+9b2;(3)x4﹣1;(4)n2(m﹣2)+(2﹣m).【解题思路】(1)直接提取公因式6ab,进而分解因式即可;(2)直接利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式得出答案;(4)直接提取公因式(m﹣2),再利用平方差公式分解因式即可.【解答过程】解:(1)12ab2﹣6ab=6ab(2b﹣1);(2)a2﹣6ab+9b2=(a﹣3b)2;(3)x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x﹣1)(x+1);(4)n2(m﹣2)+(2﹣m)=n2(m﹣2)﹣(m﹣2)=(m﹣2)(n2﹣1)=(m﹣2)(n+1)(n﹣1).7.(2021春•邗江区期中)分解因式:(1)2x2﹣12x+18;(2)a3﹣a;(3)4ab2﹣4a2b﹣b3;(4)m3(a﹣2)+m(2﹣a).【解题思路】(1)首先提公因式2,再利用完全平方公式进行分解即可;(2)首先提公因式a,再利用平方差公式进行分解即可;(3)首先提公因式﹣b,再利用完全平方公式进行分解即可;(4)首先提公因式m(a﹣2),再利用平方差公式进行分解即可.【解答过程】解:(1)原式=2(x2﹣6x+9)=2(x﹣3)2;(2)原式=a(a2﹣1)=a(a+1)(a﹣1);(3)原式=﹣b(b2﹣4ab+4a2)=﹣b(b﹣2a)2;(4)原式=m(a﹣2)(m2﹣1)=m(a﹣2)(m﹣1)(m+1).8.(2020秋•丛台区期末)因式分解(1)(a﹣b)2+4ab;(2)x2﹣2x﹣8;(3)x4﹣6x3+9x2﹣16;(4)(x2+3x+5)(x2+3x+1)+3.【解题思路】(1)先根据完全平方公式展开,再根据完全平方公式分解因式即可;(2)根据十字相乘法分解因式即可;(3)先分组,根据完全平方公式进行计算,再根据平方差公式分解因式,最后根据“十字相乘法”分解因式即可;(4)把x2+3x当作一个整体展开,再根据“十字相乘法”分解因式即可.【解答过程】解:(1)(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2;(2)x2﹣2x﹣8=(x﹣4)(x+2);(3)x4﹣6x3+9x2﹣16=(x4﹣6x3+9x2)﹣16=x2(x﹣3)2﹣42=[x(x﹣3)+4][x(x﹣3)﹣4]=(x2﹣3x+4)(x2﹣3x﹣4)=(x2﹣3x+4)(x﹣4)(x+1);(4)(x2+3x+5)(x2+3x+1)+3=(x2+3x)2+6(x2+3x)+5+3=(x2+3x)2+6(x2+3x)+8=(x2+3x+2)(x2+3x+4)=(x+1)(x+2)(x2+3x+4).9.(2021春•江北区校级期中)因式分解:(1)﹣8ab2+6a2b﹣2ab;(2)4a2﹣(a2+1)2;(3)x4﹣8x2﹣9;(4)(2﹣x2)2+2x(x2﹣2)+x2.【解题思路】(1)原式提取﹣2ab,利用提公因式法因式分解即可;(2)原式利用平方差公式化简,再利用完全平方公式分解即可;(3)原式利用十字相乘法分解,再利用平方差公式分解即可;(4)利用完全平方公式变形,再利用提公因式分解即可.【解答过程】解:(1)原式=﹣2ab(4b﹣3a+1);(2)原式(2a)2﹣(a2+1)2=(2a+a2+1)(2a﹣a2﹣1)=﹣(a+1)2(a﹣1)2;(3)原式=(x2+1)(x2﹣9)=(x2+1)(x+3)(x﹣3);(4)原式=(x2﹣2)2+2x(x2﹣2)+x2=(x2+x﹣2)2=(x+2)2(x﹣1)2.10.(2021春•福田区校级期中)因式分解:(1)ab2﹣a;(2)2xy2﹣12x2y+18x3;(3)a4﹣8a2+16;(4)(x﹣4)(x+1)+3x.【解题思路】(1)提公因式后再利用平方差公式即可;(2)提公因式后再利用完全平方公式即可;(3)利用完全平方公式后再利用平方差公式;(4)根据多项式乘法计算,再利用平方差公式.【解答过程】解:(1)ab2﹣a=a(b2﹣1)=a(b+1)(b﹣1);(2)原式=2x(y2﹣6xy+9x2)=2x(y﹣3x)2;(3)原式=(a2﹣4)2=(a﹣2)2(a+2)2;(4)原式=x2﹣3x﹣4+3x=x2﹣4=(x+2)(x﹣2).11.(2021秋•姜堰区月考)因式分解:(1)a4﹣1;(2)x3﹣2x2y+xy2.【解题思路】(1)原式利用平方差公式分解即可;(2)原式提取公因式x,再利用完全平方公式分解即可.【解答过程】解:(1)原式=(a2+1)(a2﹣1)=(a2+1)(a+1)(a﹣1);(2)原式=x(x2﹣2xy+y2)=x(x﹣y)2.12.(2021春•平山区校级期中)分解因式:(1)x2(m﹣n)+y2(n﹣m);(2)3x2﹣18xy+27y2.【解题思路】(1)首先提取公因式(m﹣n),然后利用平方差公式继续进行因式分解;(2)先提取公因式,再利用完全平方公式把原式进行因式分解即可.【解答过程】解:(1)x2(m﹣n)+y2(n﹣m)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(2)3x2﹣18xy+27y2=3(x2﹣6xy+9y2)=3(x﹣3y)2.13.(2021春•鄄城县期末)因式分解:(1)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);(2)(x2+1)2﹣4x2.【解题思路】(1)用提取公因式法分解因式;(2)用平方差公式、完全平方公式分解因式.【解答过程】解:(1)原式=(a﹣b)(x﹣y)+(a﹣b)(x+y)=(a﹣b)[(x﹣y)+(x+y)]=2x(a﹣b),(2)原式=(x2+1)2﹣(2x)2=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.14.(2021春•福田区校级期中)分解因式:(1)4x2﹣(x2+1)2;(2)3(x﹣1)2﹣18(x﹣1)+27.【解题思路】(1)先选择平方差公式分解因式,再运用完全平方公式进行因式分解;(2)先运用提取公因式法分解因式,再运用完全平方公式分解因式.【解答过程】解:(1)原式=(2x)2﹣(x2+1)2=(2x+x2+1)(2x﹣x2﹣1)=﹣(x+1)2(x﹣1)2;(2)原式=3[(x﹣1)2﹣6(x﹣1)+9]=3[(x﹣1)﹣3]2=3(x﹣4)2.15.(2021春•凤翔县期末)分解因式:(1)9a2(x﹣y)+y﹣x;(2)(x2﹣2xy+y2)+(﹣2x+2y)+1.【解题思路】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答过程】解:(1)原式=9a2(x﹣y)﹣(x﹣y)=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1);(2)原式=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.16.(2021春•沈北新区期末)因式分解:(1)﹣10a2bc+15bc2﹣20ab2c;(2)(x2+1)2﹣4x2.【解题思路】(1)直接提公因式﹣5bc即可;(2)先利用平方差公式,将原式化为(x2+1+2x)(x2+1﹣2x),再利用完全平方公式得出答案.【解答过程】解:(1)原式=﹣5bc(2a2﹣3c+4ab);(2)原式=(x2+1+2x)(x2+1﹣2x)=(x+1)2(x﹣1)2.17.(2021春•平顶山期末)把下列各式因式分解:(1)x2+2xy+y2﹣c2;(2)b2(a﹣2)+b(2﹣a).【解题思路】(1)先分组,再分解.(2)先将b2(a﹣2)+b(2﹣a)变形为b2(a﹣2)﹣b(a﹣2),再运用提公因式法.【解答过程】解:(1)x2+2xy+y2﹣c2=(x+y)2﹣c2=(x+y+c)(x+y﹣c).(2)b2(a﹣2)+b(2﹣a)=b2(a﹣2)﹣b(a﹣2)=b(a﹣2)(b﹣1).18.(2021春•覃塘区期末)因式分解:(1)3x3﹣12x;(2)1﹣2x+2y+(x﹣y)2.【解题思路】(1)先提公因式,再用公式法进行因式分解.(2)先将1﹣2x+2y+(x﹣y)2变形为=1﹣(2x﹣2y)+(x﹣y)2,再用公式法进行因式分解.【解答过程】解:(1)3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).(2)1﹣2x+2y+(x﹣y)2=1﹣(2x﹣2y)+(x﹣y)2=1﹣2(x﹣y)+(x﹣y)2=[1﹣(x﹣y)]2=(1﹣x+y)2.19.(2021春•江宁区月考)分解因式:(1)4x2(x﹣y)+(y﹣x);(2)(x2﹣5)2+8(x2﹣5)+16.【解题思路】(1)可先将(y﹣x)变形为﹣(x﹣y),再根据因式分解的步骤进行分解即可;(2)将(x2﹣5)看作一个整体,利用完全平方公式进行因式分解,最后再利用平方差公式因式分解即可.【解答过程】解:(1)4x2(x﹣y)+(y﹣x)=4x2(x﹣y)﹣(x﹣y)=(x﹣y)(4x2﹣1)=(x﹣y)(2x+1)(2x﹣1);(2)(x2﹣5)2+8(x2﹣5)+16=(x2﹣5+4)2=(x2﹣1)2=(x+1)2(x﹣1)2.20.(2021春•汉寿县期中)分解因式:3x2﹣xy﹣2y2﹣x+y.【解题思路】先将3x2﹣xy﹣2y2﹣x+y分组整理,然后利用公式即可解答.【解答过程】解:原式=(3x2﹣xy﹣2y2)﹣(x﹣y)=(3x+2y)(x﹣y)﹣(x﹣y)=(x﹣y)(3x+2y﹣1).21.(2020秋•浦东新区期末)因式分解(1)5x2+6y﹣15x﹣2xy;(2)(1+ab)2﹣(a+b)2.【解题思路】(1)将原式分为两组:(5x2﹣15x)、﹣(2xy﹣6y),然后利用提取公因式法进行因式分解;(2)利用平方差公式进行因式分解.【解答过程】解:(1)原式=(5x2﹣15x)﹣(2xy﹣6y)=5x(x﹣3)﹣2y(x﹣3)=(x﹣3)(5x﹣2y);(2)原式=(1+ab﹣a﹣b)(1+ab+a+b)=[(1﹣a)﹣b(1﹣a)][(1+a)+b(1+a)]=(1﹣a)(1﹣b)(1+a)(1+b).22.(2020春•市南区校级期中)因式分解:4(x+y)2﹣16(x﹣y)2.【解题思路】首先提公因式4,再利用平方差公式进行分解即可.【解答过程】解:4(x+y)2﹣16(x﹣y)2=4[(x+y)2﹣4(x﹣y)2]=4(x+y+2x﹣2y)(x+y﹣2x+2y)=4(3x﹣y)(3y﹣x).23.(2020秋•宝山区期末)分解因式:2x3﹣2x2y+8y﹣8x.【解题思路】两两分组:先分别提取公因式2x2,8;再提取公因式2(y﹣x)进行二次分解;最后利用平方差公式再次进行因式分解即可求得答案.【解答过程】解:原式=2x2(x﹣y)﹣8(x﹣y)=2(x﹣y)(x2﹣4)=2(x﹣y)(x+2)(x﹣2).24.(2020秋•上海期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】先利用分组分解法进行恰当的分组,再利用提公因式法和公式法进行因式分解即可.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)﹣4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).25.(2020秋•松江区期末)因式分解:x3+3x2y﹣4x﹣12y.【解题思路】分为两组:(x3+3x2y)和(﹣4x﹣12y),然后运用完全平方公式和平方差公式进行因式分解.【解答过程】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).26.(2020秋•浦东新区期末)分解因式:a4+4b2c2﹣a2b2﹣4a2c2.【解题思路】利用加法的结合律和交换律,把整式的第一项和第三项,第四项和第二项分组,提取公因式后再利用公式.【解答过程】解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).27.(2020秋•浦东新区期末)因式分解:(x2+2x)2﹣7(x2+2x)﹣8.【解题思路】原式利用十字相乘法分解后,再利用完全平方公式分解即可.【解答过程】解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.28.(2021秋•浦东新区校级期中)分解因式:(x2+x+1)(x2+x+2)﹣12.【解题思路】将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.【解答过程】解:设x2+x=y,则原式=(y+1)(y+2)﹣12=y2+3y﹣10=(y﹣2)(y+5)=(x2+x﹣2)(x2+x+5)=(x﹣1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如令x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.故答案为(x﹣1)(x+2)(x2+x+5)29.(2020秋•海淀区校级期中)因式分解:64a6﹣48a4b2+12a2b4﹣b6.【解题思路】先利用分组分解法分解,再分别利用公式法和提取公因式法分解即可得出答案.【解答过程】解:64a6﹣48a4b2+12a2b4﹣b6=(64a6﹣b6)﹣(48a4b2﹣12a2b4)=(8a3+b3)(8a3﹣b3)﹣12a2b2(4a2﹣b2)=(2a+b)(4a2﹣2ab+b2)(2a﹣b)(4a2+2ab+b2)﹣12a2b2(2a+b)(2a﹣b)=(2a+b)(2a﹣b)[(4a2﹣2ab+b2)(4a2+2ab+b2)﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣4a2b2﹣12a2b2]=(2a+b)(2a﹣b)[(4a2+b2)2﹣16a2b2]=(2a+b)(2a﹣b)(4a2﹣b2)2=(2a+b)3(2a﹣b)3.30.(2020秋•海淀区校级期中)请用两种方法对多项式x3﹣4x2+6x﹣4进行因式分解.(拆添项算一种方法)【解题思路】分别利用拆添项及配方法和提取公因式法进行分解即可.【解答过程】解:方法一:x3﹣4x2+6x﹣4=(x3﹣2x2)﹣(2x2﹣4x)+(2x﹣4)=x2(x﹣2)﹣2x(x﹣2)+2(x﹣2)=(x﹣2)(x2﹣2x+2);方法二:x3﹣4x2+6x﹣4=x(x2﹣4x2+4+2)﹣4=x(x﹣2)2+2x﹣4=(x﹣2)(x2﹣2x+2).。

部编数学八年级上册专题03运算方法之因式分解综合压轴题专练(解析版)(人教版)含答案

部编数学八年级上册专题03运算方法之因式分解综合压轴题专练(解析版)(人教版)含答案

专题03运算方法之因式分解综合压轴题专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、填空题1.△ABC的三边a,b,c为互不相同的整数,且abc+ab+ac+bc+a+b+c=119,则△ABC 的周长为__.【答案】12【分析】将原式变形后进行因式分解可得到(a+1)(b+1)(c+1)=120,再利用三角形的三边关系以及三边都是互不相同的整数这两个条件加以分析即可得出答案.【详解】解:∵abc+ab+ac+bc+a+b+c=119∴ab(c+1)+a(c+1)+b(c+1)+(c+1)=120(a+1)(b+1)(c+1)=120∵a,b,c为互不相同的整数,且是△ABC的三边∴a+1,b+1,c+1也是互不相同的正整数,且都大于1.故可分为以下6种情况:(1)120=3×4×10,即△ABC的三边长分别为2,3,9;由三角形的三边关系可知不合题意,舍去.(2)120=3×2×20,即△ABC的三边长分别为2,1,19;由三角形的三边关系可知不合题意,舍去.(3)120=3×8×5,即△ABC的三边长分别为2,7,4;由三角形的三边关系可知不合题意,舍去.(4)120=6×4×5,即△ABC的三边长分别为5,3,4;即a+1+b+1+c+1=6+4+5,a+b+c =12.(5)120=6×2×10,即△ABC的三边长分别为5,1,9;由三角形的三边关系可知不合题意,舍去.(6)120=12×2×5,即△ABC的三边长分别为11,1,4;由三角形的三边关系可知不合题意,舍去.(7)120=2×4×15,即△ABC的三边长分别为2,4,15;由三角形的三边关系可知不合题意,舍去.综上可知,△ABC 的周长为12.故答案为12.【点睛】本题主要考查因式分解的应用及三角形三边关系,掌握三角形三边关系并分情况讨论是解题的关键.2.多项式2222627a ab b b -+-+的最小值为________.【答案】18.【分析】利用公式法进行因式分解,根据非负性确定最小值.【详解】解:2222627a ab b b -+-+,=222)((269)18a ab b b b -+-+++,=22()(3)18a b b -+-+,∵22()(3)00a b b --³³,,∴22()(3)18a b b -+-+的最小值为18;故答案为:18.【点睛】本题考查了因式分解和非负数的性质,解题关键是熟练运用乘法公式进行因式分解,根据非负数的性质确定最值.3.若实数a ,b 满足1a b -=,则代数式2225a b b --+的值为_______________.【答案】6.【分析】将所求代数式中的22a b -因式分解,再把1a b -=代入,化简即可.【详解】解:2225()()25a b b a b a b b --+=+--+,把1a b -=代入得()25255a b b a b b a b +-+=+-+=-+,再把1a b -=代入得5156a b -+=+=;故答案为:6.【点睛】本题考查了求代数式的值和因式分解以及整式计算,解题关键是熟练利用因式分解把所求代数式变形,然后整体代入求值.4.如果一个两位数a 的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“跟斗数”,定义新运算:将一个“跟斗数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记()a ω,例如:a =13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以()134ω=.根据以上定义,回答下列问题:(1)计算:()23ω=____________.(2)若一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且()8b ω=,则“跟斗数”b =____________.(3)若m ,n 都是“跟斗数”,且m +n =100,则()()m n ωω+=____________.【答案】526 19 【分析】(1)根据题意直接将数值代入即可.(2)根据题意写出“跟斗数”是含有k 的式子,再利用()8b ω=,列方程求解即可.(3)根据m +n =100,解设未知数用还有x ,y 的式子表示m 、n 为m =10x +y , n =10(9-x )+(10-y ),根据题意列式子化简即可.【详解】解:(1)()233223511ω+==(2)∵一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且()8b ω=,∴[][]102(1)102(1)811k k k k +++⨯++=解得k =2,∴2(k +1)=6,∴b =26.(3)∵m ,n 都是“跟斗数”,且m +n =100,设m =10x +y ,则n =10(9-x )+(10-y ),∴[][]10(9)(10)+10(10)(9)(10)(10)()()1111x y y x x y y x m n ωω-+--+-++++=+10109010101001091111x y y x x y y x +++-+-+-+-=+111120*********x y x y +--=+1919x y x y =++--=【点睛】本题考查新定义的数,按照题意正确代入是关键,本题是中考的常见题型5.如图是 A 型卡片(边长a 的正方形)、B 型卡片(长为 a 、宽为 b 的长方形)、C 型卡片(边长为 b 的正方形).现有 4张 A 卡片,11张 B 卡片,7张 C 卡片,选用它们无缝隙、无重叠地拼正方形或长方形,下列说法正确的是__________.(只填序号)①可拼成边长为2+a b 的正方形;②可拼成边长为23a b +的正方形;③可拼成长、宽分别为24a b +、2a b +的长方形;④用所有卡片可拼成一个大长方形.【答案】①③④【分析】①②③利用完全平方公式和多项式乘多项式法则求出要拼成的图形的面积,各项系数即为各型号卡片的个数.④所有卡片面积和为4a 2+11ab +7b 2,将此多项式因式分解即可.【详解】①(a +2b )2=a 2+4ab +4b 2,要用A 型卡片1张,B 型卡片4张,C 型卡片4张,所以可拼成边长为a +2b 的正方形.②(2a +3b )2=224129a ab b ++,要用A 型卡片4张,B 型卡片12张,C 型卡片9张,因为B 型卡片只有11张,C 型卡片只有7张,所以不能拼成边长为2a +3b 的正方形.③(2a +4b )(2a +b )=222242844104a ab ab b a ab b +++=++,可得A 型卡片4张,B 型卡片10张,C 型卡片4张,所以可拼成长、宽分别为242a b a b ++、的长方形.④所有卡片面积和为4a 2+11ab +7b 2=(4a +7b )(a +b ).所以所有卡片可拼长长为(4a +7b ),宽为(a +b )的长方形.故答案为:①③④.【点睛】本题主要考查了整式乘法、分解因式与几何图形之间的联系,解题时注意利用数形结合和熟记公式是解题的关键.二、解答题6.代数中的很多等式可以用几何图形直观表示,这种思想叫“数形结合”思想.如:现有正方形卡片A 类、B 类和长方形C 类卡片若干张,如果要拼成一个长为2()a b +,宽为(2)a b +的大长方形,可以先计算22(2)(2)522a b a b a ab b ++=++,所以需要A 、B 、C 类卡片2张、2张、5张,如图2所示(1)如果要拼成一个长为(3)a b +,宽为()a b +的大长方形,那么需要A 、B 、C 类卡片各多少张?并画出示意图.(2)由图3可得等式:____________;(3)利用(2)中所得结论,解决下面问题,已知11a b c ++=,38ab bc ac ++=,222a b c ++的值;(4)小明利用2张A 类卡片、3张B 类卡片和5张长方形C 类卡片去拼成一个更大的长方形,那么该长方形的较长的一边长为________(用含a 、b 的代数式表示)【答案】(1)A 、B 、C 三类卡片各需要1张、3张、4张,图见解析;(2)2222()222a b c a b c ab ac bc ++=+++++;(3)45;(4)23a b+【分析】(1)首先计算出22(3)()43a b a b a ab b ++=++,再根据计算结果对应的卡片类型得出结论;(2)根据图形面积的就算方式2222()222a b c a b c ab ac bc ++=+++++即可得出结论;(3)根据题意找到2222()2()a b c a b c ab ac bc ++=++-++,再通过带值即可求出;(4)利用因式分解的计算过程可得,22235(23)()a b ab a b a b ++=++,即可得出结论.【详解】解:(1)如下图:A 、B 、C 三类卡片各需要1张、3张、4张;(2)2222()222a b c a b c ab ac bc++=+++++(3)2222()2()12123845a b c a b c ab ac bc ++=++-++=-⨯=Q (4)22235(23)()a b ab a b a b ++=++Q ,\较长的边为:23a b +.【点睛】本题考查了代数中的等式问题,解题的关键是掌握因式分解、具备数形结合的思想.7.若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P ,到点P 距离为1的点所对应的数分别记为a ,b .定义:若数K =a 2+b 2-ab ,则称数K 为“尼尔数”.例如:若P 所表示的数为3,则a =2,b =4,那么K =22+42-2×4=12;若P 所表示的数为12,则a =11,b =13,那么K =132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.【答案】(1)6不是尼尔数,39是尼尔数,证明见解析;(2)这两个尼尔数分别是228,39或1092,309.【分析】(1)根据“尼尔数”的定义,设P 表示的数为x (x 是能被3整除的自然数),则23K x =+,分别令236x +=,2339x +=,解方程,判断x 的解是不是能被3整除的自然数即可;证明所有“尼尔数”一定被9除余3时,可设P 表示的数为3m ,则K 可化为9m 2+3,由m 为整数得9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2,则K 1-K 2=9m 12-9m 22=189,m 12-m 22=21,再根据m 1,m 2都是整数,可解出m 1,m 2,从而得到K 1,K 2.【详解】(1)设P 表示的数为x (x 是能被3整除的自然数),则1a x =-,1b x =+,()()()()22211113K x x x x x =-++--+=+,令236x +=,得x =2339x +=,得6x =,∴6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1),K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴1212121272131m m m m m m m m +=+=ììíí-=-=îî或,∴1122m 5m 11m 2m 10==ììíí==îî或,∴1122k 228k 1092k 39k 309==ììíí==îî或. ∴这两个尼尔数分别是228,39或1092,309.【点睛】本题考查了因式分解的应用、方程的整数解问题、学生的阅读理解能力以及知识的迁移能力,理解“尼尔数”的定义是解题的关键.8.若一个四位自然数满足个位数字与百位数字相同,十位数字与千位数字相同,我们称这个四位自然数为“双子数”.将“双子数”m 的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到一个新的双子数'm ,记()221111m m F m ¢+=为“双子数”m 的“双11数”.例,2424m =,'4242m =,则()22424242422424121111F ⨯+⨯==(1)计算3636的“双11数”()3636F =__________.(2)已知两个“双子数”p 、q ,其中p abab =,q cdcd =(其中19a b £<£,19c ££,19d ££,c d ¹且a 、b 、c 、d 都为整数),若p 的“双11数”()F p 能被17整除,且p 、q 的“双11数”满足()()()24320F p F q a b d c +-+++=,令(),101p q G p q -=,求(),G p q 的值.【答案】(1)18;(2)G (p ,q )的值为51或17.【分析】(1)直接根据“双子数”m 的“双11数”的计算方法即可得出结论;(2)先根据“双11数”F (p )能被17整除,进而判断出p 为8989,求出F (q )=2(c +d ),再根据F (p )+2F (q )-(4a +3b +2d +c )=0,得出d =2532c -,进而求出c ,d ,即可得出结论.【详解】解:(1)由题意知,3636的“双11数”()()236366363236362636336361811111111F +⨯+⨯===,故答案为:18;(2)∵“双子数”p ,p abab =,∴F (p )=2(a +b ),∵“双11数”F (p )能被17整除,∴a +b 是17的倍数,∵1≤a <b ≤9,∴3≤a +b <18,∴a +b =17,∴a =8,b =9,∴“双子数”p 为8989,F (p )=34,∵“双子数”q ,q cdcd =,∴F (q )=2(c +d ),∵F (p )+2F (q )-(4a +3b +2d +c )=0,∴34+2×2(c +d )-(4×8+3×9+2d +c )=0,∴3c +2d =25,∴2532c d -=,∵1≤c ≤9,1≤d ≤9,c ≠d ,c 、d 都为整数,∴c 为奇数,1≤c <9,当c =1时,d =11,不符合题意,舍去,当c =3时,d =8,∴“双子数”q 为3838,∴898938385151(,)51101101101p q G p q --====,当c =5时,d =5,不符合题意,舍去,当c =7时,d =2,∴“双子数”q 为7272,∴898972721717(,)17101101101p q G p q --====,∴G (p ,q )的值为51或17.【点睛】本题是新定义题目,主要考查了完全平方数,整除问题,理解和运用新定义是解本题的关键.9.对于一个四位数n ,将这个四位数n 千位上的数字与十位上的数字对调,百位上的数字与个位上的数字对调后可以得到一个新的四位数n ¢,将交换后的数与原数求和后再除以101,所得的商称为原数的“一心一意数”,记作F (n )=101n n ¢+,如n =5678,对调数字后得n ¢=7856,所以F (n )=56787856101+=134.(1)直接写出F (2021)= ;(2)求证:对于任意一个四位数n ,F (n )均为整数;(3)若s =3800+10a +b ,t =1000b +100a +13(1≤a ≤5,5≤b ≤9,a 、b 均为整数),当3F (t )-F (s )的值能被8整除时,求满足条件的s 的所有值.【答案】(1)41;(2)见解析;(3)3816或3847或3829【分析】(1)根据题意列式计算即可;(2)设n =1000a +100b +10c +d ,则n ¢=1000c +100d +10a +b ,(a 、b 、c 、d 为整数且a ≠0),然后根据题意列式计算即可证明;(3)先求得F (s )=10a +b +38,F (t )=10b +a +13,进而可求得3F (t )-F (s )=29b -7a +1,再根据3F (t )-F (s )的值能被8整除,可得5b +a +1的值能被8整除,再根据1≤a ≤5,5≤b ≤9可得27≤5b +a +1≤51,进而可得5b +a +1=32,40,48,由此可求得16a b =ìí=î或47a b =ìí=î或29a b =ìí=î,最终即可求得满足条件的s 的所有值.【详解】解:(1)F (2021)=20212120101+=41,故答案为:41;(2)设n=1000a+100b+10c+d,则n¢=1000c+100d+10a+b,(a、b、c、d为整数且a≠0)所以F(n)=(100010010)(100010010)101a b c d c d a b+++++++=10101011010101101a b c d+++=10a+b+10c+d,∵a、b、c、d为整数且a≠0,∴10a+b+10c+d为整数,∴对于任意一个四位数n,F(n)均为整数;(3)∵s=3800+10a+b,t=1000b+100a+13(1≤a≤5,5≤b≤9,a、b均为整数),∴F(s)=(380010)(100010038)101a b a b+++++=10101013838101a b++=10a+b+38,F(t)=(100010013)(130010)101b a b a+++++=10101011313101b a++=10b+a+13,∴3F(t)-F(s)=3(10b+a+13)-(10a+b+38)=29b-7a+1,∵3F(t)-F(s)的值能被8整除,∴29b-7a+1的值能被8整除,∴24b-8a+5b+a+1的值能被8整除,∴5b+a+1的值能被8整除,∵1≤a≤5,5≤b≤9,∴27≤5b+a+1≤51,∵5b+a+1的值能被8整除,∴5b+a+1=32,40,48,∴16ab=ìí=î或47ab=ìí=î或29ab=ìí=î,∴s=3816或3847或3829.【点睛】本题考查了因式分解的应用以及有理数的整除,利用代数式的值进行相关分类讨论,得出结果是解决本题的关键.10.已知若干张正方形和长方形硬纸片如图1所示.(1)若用1张边长为a 的正方形,2张边长为b 的正方形,3张边长分别为a 和b 的长方形拼成一个新的长方形(如图2).请用两种不同的方法计算图2长方形的面积并根据你的计算结果可以得到怎样的等式;(2)请通过拼图的方式画出一个面积为22252a ab b ++的长方形示意图,并写出其因式分解的结果;(3)在(2)的条件下,若拼成的长方形周长为66,图1中小长方形的面积为24,则拼成的长方形面积是多少?【答案】(1)22()(2)23a b a b a b ab ++=++;(2)画图见解析,(2)(2)a b a b ++;(3)266.【分析】(1)用面积和差和长方形面积公式分别计算即可;(2)根据算式可知用2张边长为a 的正方形,2张边长为b 的正方形,5张边长分别为a 和b 的长方形拼成一个新的长方形即可,根据面积的不同求法可写成因式分解结果;(3)根据题意列出方程,求出22a b +即可.【详解】解:(1)用面积和差计算得:2223a b ab ++;用长方形面积公式计算得:()(2)a b a b ++;可得等式为:22()(2)23a b a b a b ab ++=++;(2) 根据算式可知用2张边长为a 的正方形,2张边长为b 的正方形,5张边长分别为a 和b 的长方形拼成一个新的长方形,如图所示:根据面积公式可得,22252(2)(2)a ab b a b a b ++=++;(3) (2)中拼成的长方形周长为66,则2(22)66a b a b +++=,解得,11a b +=,∴22()11a b +=,即222121a b ab ++=,图1中小长方形的面积为24,则24ab =,则2273a b +=,22252273524266a ab b ++=⨯+⨯=;拼成的长方形面积是266.【点睛】本题考查的是多项式乘多项式、因式分解的应用,树立数形结合思想,利用面积法列出等式是解题的关键.11.材料一:一个整数的各个数位上的数字之和能被9整除,则这个整数能被9整除;材料二:已知一个各位数字都不为零的四位数100010010m abcd a b c d ==+++,百位和十位上的数字之和是千位和个位上的数字之和的两倍,则称这个四位数为“双倍数”.将这个“双倍数”m 的各位数字颠倒过来就变成新的“双倍数”m dcba ¢=,记()111m m F m ¢+=.例如2461m =,()46212+¹⨯+,所以2461不是“双倍数”:2685m =,()68225+=⨯+,所以2685是“双倍数”, 5862m ¢=,()26855862268577111F +==(1)判断2997,6483是否为“双倍数”,并说明理由;(2)若s ,t 均为“双倍数”,s 的千位数字是5,个位数字大于2,t 的百位数字是7,且s 能被9整除,()()4F s F t +是完全平方数,求t 的最大值.【答案】(1)2997是“双倍数”,6483不是“双倍数”;理由见解析;(2)t 的最大值7791.【分析】(1)利用题干中“双倍数”定义计算即可求解;(2)设s 的个位数字是d ,十位数字是c ,则百位数字是10+2d -c (d >2),可得s =5000+100(10+2d -c )+10c +d 且5+10+2d -c +d +c =15+3d 能被9整除,依此可得d =4或d =7,利用“双倍数”的定义和F (m )的公式,分类讨论计算出F (s )和F (t ),依据已知和数位上数字的特征计算后,比较大小,取最大值即可.【详解】解:(1)∵()99227+=⨯+,∴2997是“双倍数”,∵()48236+¹⨯+,∴6483不是“双倍数”;(2)设s 的个位数字是d ,十位数字是c ,则百位数字是10+2d -c (d >2),∴s =5000+100(10+2d -c )+10c +d 且5+10+2d -c +d +c =15+3d 能被9整除,∵d >2,∴d =4或d =7,①d =4时,有10+2d =2×(5+4)=18,∴此时十位数,百位数均为9,∴s =5994,s ′=4995,F (s )=(s +s ′)÷111=99,设t =1000a +700+10b +72b +-a ,则t ′=1000(72+2b -a )+100b +70+a ,∴F (t )=(t +t ′)÷111=112b +772,则4F (s )+F (t )=4×99+112b +772=112b +8692,∵112b +8692,是完全平方数,且b 是整数,∴b =9,∴t 的十位数字是9,则7+9=16,∴千位和个位上的数字之和是8,∴t 的最大值是7791;②d =7时,有10+2d =2×(5+7)=24,∵百位和十位上的数字之和最大为18,∴不符合题意.综上所述,t 的最大值是7791.【点睛】本题主要考查了完全平方数,因式分解的应用,本题是阅读型题目,准确理解题意并能熟练应用题干中的定义和公式是解题的关键.12.对于一个三位正整数(各位数字均不为0),若满足十位数字是个位数字与百位数字之和,则称该三位正整数为“夹心数”.将“夹心数”m 的百位、个位数字交换位置,得到另一个“夹心数”m ¢,记()99m m F m ¢-=,()121m m T m ¢+=.例如:792m =,297m ¢=.792297()599F m -==,792297()9121T m +==.(1)计算()693F =__________;()561T =__________.(2)对“夹心数”m ,令()()2294s T m F m =-,当36s =时,求m 的值.(3)若“夹心数”m 满足()2F m 与()2T m 均为完全平方数,求m 的值.【答案】(1)3,6;(2)m =121;(3)m =121,583,484.【分析】(1)根据题中的定义和例题提供的算法,即可算出结果;(2)设()1001011011m a a b b a b =+++=+,代入 ()()2294s T m F m =-,并进行化简后,根据 s =36的已知条件,求出a 、b 的值,即可求出m 的值;(3)结合(2)的相关结论,求出a 、b 的值,即可求出符合条件的m 的值.【详解】解:(1)()()6933965611656933561699121F T -+====,.故答案为:3;6.(2)设()1001011011m a a b b a b =+++=+,则()1001011110m b a b a a b =+++=+¢.∴()()()11011111109999999999a b a b m m a b F m a b +-+--====-¢,()()()1101111110121121121121a b a b a b T m a b ++++===+.()()()()()()()()()()22229494323255s T m F m a b a b a b a b a b a b a b a b éùéù\=-=+--=+--++-=++ëûëû.∵s =36,∴()()5536a b a b ++=.∵19,19,29,a b a b £££££+£且 a 、 b 、a +b 都是正整数,∴5656a b a b +³+³,.∴5656a b a b +=ìí+=î,解得, 11a b =ìí=î.∴1101111011121m a b =+=+=.(3)由(2)得,()()()()2222F m a b T m a b =-=+,,∵a 、b 、a +b 都是1到9的正整数,∴()()204218a b a b -³£+£,.∵()2a b +是完全平方数,∴()24916a b +=,,.又∵()2a b +是偶数,∴()29a b +=不合题意,舍去.∴28a b +=,.当a +b =2时,a =b =1,此时,()20a b -=,符合题意;当a +b =8时,若a =7,b =1,此时,()212a b -=,不合题意,舍去;若a =6,b =2,此时,()28a b -=,不合题意,舍去;若a =5,b =3,此时,()24a b -=,符合题意;若a =4,b =4,此时,()20a b -=,符合题意.∵11011m a b =+,∴符合条件的121583484m =,,.【点睛】本题考查了新定义运算、因式分解、方程组、不等式等知识点和分类讨论的数学思想,围绕新定义的运算法则进行计算是解题的基础,分类讨论时做到不重复不遗漏是关键.13.对任意一个三位数m ,如果m 满足各个数位上的数字互不相同,且都不为零,则称这个数为“特异数”,将m 的百位数字调到个位可以得到一个新的三位数,不断重复此操作共可得到两个不同的新三位数,把这两个新数与原数m 的和与111的商记为()F m .例如,123是“特异数”,不断将123的百位数字调到个位可得231,312,()1232313126661236111111F ++===.(1)求()456F ,()321F ;(2)已知10032s x =+,256t y =+(19x y £££,x ,y 为整数),若s 、t 均为“特异数”,且()()F s F t +可被6整除,求()()s F F t ×的最大值.【答案】(1)F (456)=15,F (321)=6;(2)F (s )•F (t )的最大值为384.【分析】(1)根据F (m )的定义式,分别将m =456和m =321代入F (n )中,即可求出结论.(2)由s =100x +32,t =256+y 结合F (s )+F (t )可被6整除,即可得出关于x ,y 的二元一次方程,解出x ,y 的值,再根据“特异数”的定义结合F (m )的定义式,即可求出F (s ),F (t )的值,求出最大值即可.【详解】解:(1)F (456)=(456+564+645)÷111=15,F (321)=(321+213+132)÷111=6;(2)∵s 、t 均为“特异数”, 10032s x =+,256t y =+,∴F (s )=(100x +32+320+x +203+x ) ÷111=5+x (19x ££),∵256t y =+,∴4y ¹,当13y ££时,F (t )=()()256502106100625y y y éù+++++++ëû÷111=13+y ,当59y ££时,F (t )=()()25660210610100610265y y y éù++++-++-+=ëû÷111=4+y (6y ¹),∴F (s )+ F (t )=()()181913919596x y x y x y x y y ì++££££ïí++££££¹ïî,,,,由于()()F s F t +可被6整除,y x ³,①当1913x y ££££,时,6x y +=或12x y +=,∴当且当3x y ==时成立,则F (s )•F (t )=(5+x )• (13+y )=816128⨯=;②当195x y ££=,、7、8、9时,3x y +=或9或15,∴当9x y +=时,4x =,5y =或2x =,5y =或1x =,8y =,此时F (s )•F (t )=81或77或72;当15x y +=时,7x =,8y =或6x =,9y =,此时F (s )•F (t )=384或143;综上,F (s )•F (t )的最大值为384,此时7x =,8y =.【点睛】本题考查了因式分解的应用以及二元一次方程的应用,解题的关键是:(1)根据F (m )的定义式,求出F (456),F (321)的值,(2)根据s =100x +32,t =256+y 结合F (s )+F (t )可被6整除,得出x ,y 的二元一次方程组.14.阅读理解:在教材中,我们有学习到2222()a ab b a b -+=-,又因为任何实数的平方都是非负数,所以2()0a b -³,即222a b ab +³.例如,比较整式24x +和4x 的大小关系,因为2244(2)0x x x +-=-³,所以244x x +³请类比以上的解题过程,解决下列问题:(初步尝试)比较大小:21x +______2x ;9-_____26x x-(知识应用)比较整式225210x xy y ++和2(2)x y -的大小关系,并请说明理由.(拓展提升)比较整式2222a ab b -+和12a -的大小关系,并请说明理由.【答案】[初步尝试]≥,≤;[知识应用]225210x xy y ++≥2(2)x y -;[拓展提升]221222a ab b a ³-+-【分析】[初步尝试]两式相减,仿照题干中的方法比较即可;[知识应用]两式相减,将结果因式分解,再比较即可;[拓展提升]两式相减,利用完全平方公式变形,再比较即可.【详解】解:[初步尝试]()221210x x x +-=-³,∴21x +≥2x ;()()222696930x x x x x ---=-+=-³,∴9-≤26x x -;[知识应用]2225(20)12x xy y x y +-+-=2222542104x y xyx xy y -+++-=2269xyx y ++=()23x y +≥0∴225210x xy y ++≥2(2)x y -;[拓展提升]221222a ab b a æö-+-çè-÷ø=221222a ab b a --++=22211122222a a a ab b +-+-+=()()22211144222a a a ab b -+-++=()()22111222a a b +--当a =1,b =12时,原式=0,∴()()22111222a a b +--≥0,∴221222a ab b a ³-+-.【点睛】此题考查了因式分解的应用,非负数的性质,以及整式的混合运算,熟练掌握公式和运算法则是解本题的关键.15.教科书中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题.例如:分解因式()22223214(1)(3)(-1)4(12)(12)x x x x x x x x x +-=++-=+-==++++-求代数式2246x x +-的最小值,()2222462232(1)8x x x x x +-=+-=+-.当1x =-时,22467x x +-有最小值,最小值是8-,根据阅读材料用配方法解决下列问题:(1)分解因式:245x x --=__________.(2)当x 为何值时,多项式2243x x --+有最大值?并求出这个最大值.(3)若221721202333a ab b b -+-+=,求出a ,b 的值.【答案】(1)(x +1)(x -5);(2)x =-1,最大值为5;(3)a =2,b =1【分析】(1)根据题目中的例子,可以将题目中的式子因式分解;(2)根据题目中的例子,先将所求式子变形,然后即可得到当x 为何值时,所求式子取得最大值,并求出这个最大值;(3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a 、b 的值.【详解】解:(1)x 2-4x -5=(x -2)2-9=(x -2+3)(x -2-3)=(x +1)(x -5),故答案为:(x +1)(x -5);(2)∵-2x 2-4x +3=-2(x +1)2+5,∴当x =-1时,多项式-2x -4x +3有最大值,这个最大值是5;(3)∵221721202333a ab b b -+-+=,∴2222172122202333a ab b b b b -+-+-+=,∴()()222114421023a ab b b b -++-+=,∴()()221121023a b b -+-=,∴a -2b =0,b -1=0,∴a =2,b =1.【点睛】本题考查非负数的性质、因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法和非负数的性质解答.16.下面是某同学对多项式()()2242464x x x x -+-++因式分解的过程.解:设24x x y -=,则原式()()264y y =+++(第一步)2816y y =++(第二步)()24y =+(第三步)()2244x x =-+(第四步)解答下列问题:(1)该同学第二步到第三步运用了因式分解的方法是()A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式()()222221x x x x --++进行因式分解.【答案】(1)C ;(2)因式分解不彻底,()42x -;(3)()41x -【分析】(1)先根据多项式乘以多项式计算,再用完全平方公式因式分解计算即可(2)利用完全平方公式因式分解即可(3)模仿给出的步骤,进行因式分解即可【详解】(1)∵()228164y y y ++=+,∴运用了两数和的完全平方公式.故选C .(2)∵()()()222424422x x x x éù-+=-=-ëû,∴因式分解不彻底.(3)设22x x y -=,则原式()()()()22222221211211y y y y y x x x éù=++=++=+=-+=-ëû()41x =-.【点睛】本题考查因式分解、完全平方公式、多项式乘以多项式、换元法是解题的关键17.定义:若一个整数能表示成a 2+b 2(a ,b 是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a 2+2ab +2b 2=(a +b )2+b 2,所以a 2+2ab +2b 2也是“完美数”.(1)请直接写出一个小于10的“完美数”,这个“完美数”是 ;(2)判断53 (请填写“是”或“否”)为“完美数”;(3)已知M =x 2+4x +k (x 是整数,k 是常数),要使M 为“完美数”,试求出符合条件的一个k 值,并说明理由;(4)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.【答案】(1)2或5或8;(2)是;(3)k =5,理由见解答过程;(4)见解析【分析】(1)2=12+12,5=22+12,8=22+22,这些数都是小于10的“完美数”;(2)利用53=22+72即可判断;(3)由M=x2+4x+k得M=(x+2)2+k-4,则使k-4为一个完全平方数即可;(4)设m=a2+b2,n=c2+d2,则mn=(a2+b2)(c2+d2),进行整理可得:mn=(ac+bd)2+(ad-bc)2,从而可判断.【详解】解:(1)根据题意可得:2=12+12,5=22+12,8=22+22,故2,5,8都是“完美数”,且都小于10,故答案为:2或5或8(写一个即可);(2)53=22+72,故53是“完美数”,故答案为:是;(3)k=5(答案不唯一),理由:∵M=x2+4x+k∴M=x2+4x+4+k-4M=(x+2)2+k-4则当k-4为完全平方数时,M为“完美数”,如当k-4=1时,解得:k=5.(4)设m=a2+b2,n=c2+d2,则有mn=(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=a2c2+b2d2+a2d2+b2c2+2abcd-2abcd=(ac+bd)2+(ad-bc)2故mn是一个“完美数”.【点睛】本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.18.一个三位或者三位以上的整数,从左到右依次分割成三个数,记最左边的数为a,最右边的数为b,中间的数记为m,若满足m=a2+b2,我们就称该整数为“空谷”数.例如:对于整数282.∵22+22=8,∴282是一个“空谷”数,又例如:对于整数121451,∵122+12=145∴121451也是一个“空谷”数.满足m=2ab,我们就称该整数为“幽兰”数;例如:对于整数481,∵2×4×1=8,∴481是一个“幽兰”数,又例如:对于整数13417,∵2×1×17=34,∴13417是一个“幽兰”数.(1)若一个三位整数十位数字为9,且为“空谷”数,则该三位数为 ;若一个四位整数为“幽兰”数,且中间的数为40,则该四位数为 ;(2)若586a b是一个“空谷”数,570a b是一个“幽兰”数,求a2﹣b2的值.(3)若一个整数既是“空谷”数,又是“幽兰”数,我们就称该整数为“空谷幽兰”数.请写出所有的四位“空谷幽兰”数.【答案】(1)390;4405或5404;(2)136或-136;(3)1021或2082或3183或4324或5505或6726或7987.【分析】(1)根据“空谷”数,“幽兰”数的特点进行分析并解答即可;(2)据题意可得:a2+b2=586,2ab=570,从而可求得a+b与a-b的值,进而可求a2-b2的值;(3)由题意可得:a2+b2=2ab,整理可得a=b,再由这个数是四位数,分析可得出结果.【详解】解:(1)∵这个三位数是“空谷”数,且十位数字为9,∴a2+b2=9,∴有3ab=ìí=î,3ab=ìí=î(不符合题意),∴这个三位数是390;∵这个四位数是“幽兰”数,且中间数为40,∴2ab=40,则ab=20,∴有45ab=ìí=î,54ab=ìí=î,210ab=ìí=î(不符合题意),102ab=ìí=î(不符合题意),∴这个四位数是:4405或5404;故答案为:390;4405或5404;(2)∵586a b是一个“空谷”数,570a b是一个“幽兰”数,∴a2+b2=586,2ab=570,∴(a+b)2=a2+b2+2ab=586+570=1156,则a+b=34,(a-b)2=a2+b2-2ab=586-570=16,则a-b=±4,∴a2-b2=(a+b)(a-b)=34×4=136或a2-b2=(a+b)(a-b)=34×(-4)=-136;(3)由题意得:222m a b m abì=+í=î,则有a 2+b 2=2ab ,整理得:(a -b )2=0,则有a =b ;∵这个整数是一个四位数,∴1≤a ≤9,1≤b ≤9,中间数是两位数,则有:a =b =1时,这个四位数是1021;a =b =2时,这个四位数是2082;a =b =3时,这个四位数是3183;a =b =4时,这个四位数是4324;a =b =5时,这个四位数是5505;a =b =6时,这个四位数是6726;a =b =7时,这个四位数是7987.综上,这个四位数是1021或2082或3183或4324或5505或6726或7987.【点睛】本题主要考查了因式分解的应用,解答的关键是理解清楚题意,灵活运用因式分解进行解答.19.材料一:一个正整数x 能写成22x a b =-(a ,b 均为正整数,且a b ¹),则称x 为“雪松数”,a ,b 为x 的一个平方差分解,在x 的所有平方差分解中,若22a b +最大,则称a ,b 为x 的最佳平方差分解,此时()22F x a b =+.例如:222475=-,24为雪松数,7和5为24的一个平方差分解,22223297,3262=-=-,因为22229762+>+,所以9和7为32的最佳平方差分解,()223297F =+.材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”,例如4334,5665均为“南麓数”.根据材料回答:(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;(2)试说明10不是雪松数;(3)若一个数t 既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t 的一个平方差分解,请求出所有满足条件的数t .【答案】(1)22112113=-,224073=-;(2)见解析;(3)2772,5445【分析】(1)根据雪松数的特征即可得到结论;(2)根据题意即可得到结论;(3)设(t abba a =,b 均为正整数,且09)a b <¹…,另一个“南麓数”为(t mnnm m ¢=,n 均为正整数,且09)n m <<…,根据“南麓数”的特征即可得到结论.【详解】解:(1)由题意可得:22112113=-,224073=-;(2)若10是“雪松数”,则可设2210(a b a -=,b 均为正整数,且)a b ¹,则()()10a b a b +-=,又1025101=⨯=⨯Q ,a Q ,b 均为正整数,a b a b \+>-,\52a b a b +=ìí-=î,或101a b a b +=ìí-=î,解得:7232a b ì=ïïíï=ïî或11292a b ì=ïïíï=ïî,与a ,b 均为正整数矛盾,故10不是雪松数;(3)设(t abba a =,b 均为正整数,且09)a b <¹…,另一个“南麓数”为(t mnnm m ¢=,n 均为正整数,且09)n m <<…,则2222(10)(10)99()99()()t m n n m m n m n m n =+-+=-=+-,99()()1000100101001110m n m n a b b a a b \+-=+++=+,整理得()()109a b m n m n a b ++-=++,a Q ,b ,m ,n 均为正整数,9a b \+=,经探究2786a b m n =ìï=ïí=ïï=î,5483a b m n =ìï=ïí=ïï=î,符合题意,t \的值分别为:2772,5445.【点睛】本题主要考查分解因式的应用,实数的运算,理解新定义,并将其转化为实数的运算是解题的关键.20.若一个四位正整数abcd 满足:a c b d +=+,我们就称该数是“交替数”,如对于四位数3674,∵3764+=+,∴3674是“交替数”,对于四位数2353,2533+¹+Q ,∴2353不是“交替数”.(1)最小的“交替数”是________,最大的“交替数”是__________.(2)判断2376是否是“交替数”,并说明理由;(3)若一个“交替数”满足千位数字与百位数字的平方差是12,且十位数字与个位数的和能被6整除.请求出所有满足条件的“交替数”.【答案】(1)1001,9999;(2)是,理由见解析;(3)满足条件的“交替数”是4224或4257.【分析】(1)根据新定义,即可得出结论;(2)根据新定义,即可得出结论;(3)根据题意知()()1216243a b a b +-=⨯=⨯=⨯,求得a 和b 的值,再根据题意c d +是6的倍数,结合a c b d +=+,取舍即可求得所有满足条件的“交替数”.【详解】(1)根据题意:一个四位正整数abcd 满足:a c b d +=+,我们就称该数是“交替数”,最小的正整数是1,最大的正整数是9,∵1001+=+,9999+=+,∴最小的“交替数”是1001,最大的“交替数”是9999,故答案为:1111,9999;(2)是,理由如下:∵2736+=+,∴2376是“交替数”;(3)设这个“交替数”为abcd ,k 为正整数,依题意得:2212a b -=,6c d k +=,且a c b d +=+,由2212a b -=,知()()1216243a b a b +-=⨯=⨯=⨯,且19a ££,19b ££,即121a b a b +=ìí-=î或62a b a b +=ìí-=î或43a b a b +=ìí-=î,解得:132112a b ì=ïïíï=ïî(舍去),或42a b =ìí=î或7212a b ì=ïïíï=ïî(舍去),∵19c ££,19d ££,2618c d k £+=£,∴k 取1或2或3,当k 取1时,即6c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴62c d c d +=ìí-=-î,解得:24c d =ìí=î,∴“交替数”是4224;当k 取2时,即12c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴122c d c d +=ìí-=-î,解得:57c d =ìí=î,∴“交替数”是4257;当k 取3时,即18c d +=,4a =,2b =,∵a c b d +=+,即42c d +=+,即2c d -=-,∴182c d c d +=ìí-=-î,解得:810c d =ìí=î(不合题意,舍去);综上,满足条件的“交替数”是4224或4257.【点睛】本题主要考查了新定义,倍数问题,二元一次方程的整数解的求解,平方差公式的应用,理解新定义是解本题的关键.21.很久以前,有一位老人临终前,准备将自己所养的7头牛全部分给两个儿子饲养,大儿先得一半,小儿再得剩余的四分之三,两儿正踌躇不决时,热心的邻居从自家牵了一头牛参与分配,给大儿分了四头牛,小儿分了三头牛,余下的一头牛邻居又牵回家了,皆大欢喜,聪明的邻居合理地解决了这个问题.初中数学里也有这种“转化”的思考方法.例如:先阅读下列多项式的因式分解:()()()()()2244222224444222222x x x x x x x x x x +=++-+-+=-++=按照这种方法分别把多项式分解因式:(1)464x +;。

人教版数学八年级上册:因式分解练习题附答案

人教版数学八年级上册:因式分解练习题附答案

因式分解练习题一、选择题1.下列等式从左到右的变形,属于因式分解的是( )A. x 2+2x−1=x(x +2)+1B. (a +b)(a−b)=a 2−b 2C. x 2+4x +4=(x +2)2D. ax 2−a =a(x 2−1)2.下列各式由左边到右边的变形中,是分解因式的为( )A. 8(x +y)=8x +8yB. (x−y )2=x 2−2xy +y 2C. 10x 2+5x =5x(2x +1)D. x 2−4+3x =(x +2)(x−2)+3x 3.因式分解(x +y )2−2(x 2−y 2)+(x−y )2的结果为( )A. 4(x−y )2B. 4x 2C. 4(x +y )2D. 4y 24.多项式36a 2bc−48ab 2c +24abc 中的各项的公因式是 ( )A. 12a 2b 2c 2B. 6 abcC. 12 abcD. 36a 2b 2c 25.多项式8a 3b 2+12a 3bc−4a 2b 中,各项的公因式是( )A. a 2bB. 4a 2bC. −4a 2bD. −a 2b 6.下列各式中,不能用完全平方公式分解的有( ) ①x 2−10x +25; ②4a 2+4a−1; ③x 2−2x−1; ④−m 2+m−14; ⑤4x 4−x 2+14.A. 1个B. 2个C. 3个D. 4个7.多项式a 2+2a−b 2−2b 分解因式的结果是( )A. (a−b)(a +2)(b +2)B. (a−b)(a +b +2)C. (a−b)(a +b)+2D. (a 2−2b)(b 2−2a)8.下列多项式中不能用平方差公式因式分解的是( )A. a 2−b 2B. 49x 2−y 2z 2C. −x 2−y 2D. 16m 2n 2−25p 29.因式分解b 2(a−3)+b(a−3)的正确结果是( )A. (a−3)(b2+b)B. b(a−3)(b+1)C. (a−3)(b2−b)D. b(a−3)(b−1)10.多项式x2−mxy+9y2能用完全平方公式因式分解,则m的值是().A. 3B. 6C. ±3D. ±611.已知a−b=3,a+c=−1,则代数式ac−bc+a2−ab的值为( )A. 4B. 3C. −3D. −412.已知{3x−1<a2x>6−b的解集为−1<x<2,则a2−b2的值为( )A. −39B. −3C. 3D. 39二、填空题13.分解因式:(2a−1)2+8a=________.14.因式分解:a2b−4ab+4b=______.15.若a+b=2,ab=−3,则式子a3b+2a2b2+ab3的值为_______.16.多项式−ab(a−b)2+a(b−a)2−ac(a−b)2因式分解时,所提取的公因式应是.三、计算题17.把下列各式分解因式:(1)a2−5a;(2)ab+ac;(3)4a3b2−10ab3c;(4)−3ma3+6ma2−12ma;(5)6p(p+q)−4q(p+q).四、解答题18.先分解因式,然后计算求值:(x+y)(x2+3xy+y2)−5xy(x+y),其中x=6.6,y=−3.4.19.已知a=12m+1,b=12m+2,c=12m+3,求a2+2ab+b2−2ac+c2−2bc的值(用含m的代数式表示).20.老师在黑板上写了三个算式:52−32=8×2,92−72=8×4,152−32=8×27.王华接着又写了两个具有同样规律的算式:112−52=8×12,152−72=8×22,….(1)请你再写出两个(不同于上面的算式)具有上述规律的算式;(2)用文字写出上述算式反映的规律;(3)证明这个规律的正确性.答案和解析1.【答案】C【解析】【分析】本题考查了因式分解的意义,解答本题的关键是掌握因式分解的意义即因式分解后右边是整式积的形式,且每一个因式都要分解彻底.根据因式分解的意义分别进行判断,即可得出答案.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C2.【答案】C【解析】【分析】此题主要考查了因式分解的意义,正确把握定义是解题关键.直接利用分解因式的定义分析得出答案.【解答】解:A.8(x+y)=8x+8y,是整式乘法运算,故此选项错误;B.(x−y)2=x2−2xy+y2,是整式乘法运算,故此选项错误;C.10x2+5x=5x(2x+1),是分解因式,符合题意;D.x2−4+3x=(x+2)(x−2)+3x,不符合分解因式的定义,故此选项错误.故选C.3.【答案】D【解析】解:原式=[(x+y)−(x−y)]2,=(x+y−x+y)2,=4y2,故选:D.利用完全平方进行分解即可.此题主要考查了公式法分解因式,关键是掌握完全平方公式a2±2ab+b2=(a±b)2.4.【答案】C【解析】【分析】此题主要考查了公因式的确定,根据公因式的定义确定是解决问题的关键,根据公因式的定义,找出数字的最大公约数,找出相同字母的最低次数,直接找出每一项中公共部分即可.【解答】解:多项式36a2bc−48ab2c+24abc各项的公因式是:12 abc.故选C.5.【答案】B【解析】【分析】本题考查了多项式,能熟记多项式的公因式的定义是解此题的关键.根据公因式的定义得出即可.【解答】解:多项式8a3b2+12a3bc−4a2b中各项的公因式是4a2b,故答案选B.6.【答案】C【解析】【分析】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.分别利用完全平方公式分解因式得出即可.【解答】 ①x2−10x+25=(x−5)2,不符合题意; ②4a2+4a−1不能用完全平方公式分解; ③x2−2x−1不能用完全平方公式分解; ④−m2+m−14=−(m2−m+14)=−(m−12)2,不符合题意; ⑤4x4−x2+14不能用完全平方公式分解.故选C.7.【答案】B【解析】【分析】本题考查用分组分解法、提取公因式法与公式法的综合运用.难点是采用两两分组还是三一分组.当被分解的式子是四项时,应考虑运用分组分解法进行分解.多项式a2+2a−b2−2b先变形为a2−b2+2a−2b可分成前后两组来分解.前两项组合利用平方差公式,后两项组合利用提公因式法,最后再次提公因式(a−b)即可.【解答】解:a2+2a−b2−2b=(a2−b2)+(2a−2b)=(a+b)(a−b)+2(a−b)=(a−b)(a+b+2).故选B.8.【答案】C【解析】【分析】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2−b2=(a+b)(a−b).根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A.a2−b2=(a+b)(a−b),能用平方差公式分解,故此选项不合题意;B.49x2−y2z2=(7x+yz)(7x−yz),能用平方差公式分解,故此选项不合题意;C.−x2−y2不能用平方差公式分解,故此选项符合题意;D.16m2n2−25p2=(4mn−5p)(4mn+5p),能用平方差公式分解,故此选项不合题意;故选C.9.【答案】B【解析】【分析】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.直接提取公因式b(a−3)即可.【解答】解:原式=b(a−3)(b+1).故选B.10.【答案】D【解析】【分析】本题考查因式分解的应用,完全平方公式.由多项式x2−mxy+9y2能用完全平方公式因式分解,得x2−mxy+9y2=(x±3y)2,再用完全平方公式展开,即可得x2−mxy+9 y2=x2±6xy+9y2,最后由多项式对应项系数相等即可得出答案.【解答】解:由题意,得x2−mxy+9y2=(x±3y)2,∴x2−mxy+9y2=x2±6xy+9y2,∴−m=±6,∴m=±6,故选D.11.【答案】C【解析】【分析】本题考查了因式分解的应用:用因式分解解决求值问题,利用因式分解简化计算问题.本题的关键是把所求代数式分解因式.先利用分组分解的方法把ac−bc+a2−ab因式分解为(a−b)(c+a),再利用整体代入的方法计算.【解答】解:∵ac−bc+a2−ab,=c(a−b)+a(a−b),=(a−b)(c+a),∵a−b=3,a+c=−1,∴ac−bc+a2−ab=3×(−1)=−3.故选C.12.【答案】A【解析】【分析】此题考查了因式分解−运用公式法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.表示出不等式组的解集,确定出a与b的值,即可求出所求.【解答】解:{3x−1<a2x>6−b,解得:{x<a+13x>6−b2,∵不等式的解集为为−1<x<2,∴6−b2=−1,a+13=2,解得:a=5,b=8,则原式=(a+b)(a−b)=13×(−3)=−39,故选A.13.【答案】(2a+1)2【解析】【分析】本题主要考查运用完全平方公式分解因式,先利用完全平方公式展开整理成多项式的一般形式是解题的关键.先根据完全平方公式展开,合并同类项后,再利用完全平方式分解因式即可.【解答】解:(2a−1)2+8a=4a2−4a+1+8a=4a2+4a+1=(2a+1)2.故答案为(2a+1)2.14.【答案】b(a−2)2【解析】【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2−4a+4)=b(a−2)2.故答案为:b(a−2)2.15.【答案】−12【解析】【分析】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【解答】解:∵a+b=2,ab=−3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=−3×4,=−12.故答案为:−12.16.【答案】−a(a−b)2【解析】【分析】此题主要考查了提公因式法分解因式,注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.首先把可把(b−a)2变成(a−b)2,再直接提取公因式−a(a−b)2即可.【解答】解:−ab(a−b)2+a(a−b)2−ac(a−b)2=−a(a−b)2(b+1−c),故答案为−a(a−b)2.17.【答案】解:(1)a2−5a=a(a−5);(2)ab+ac=a(b+c);(3)4a3b2−10ab3c=2ab2(2a2−5bc);(4)−3ma3+6ma2−12ma=−3ma(a2−2a+4);(5)6p(p+q)−4q(p+q)=2(p+q)(3p−2q).【解析】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.(1)提取公因式a,即可得出答案;(2)提取公因式a,即可得出答案;(3)提取公因式2ab2,即可得出答案;(4)提取公因式−3ma,即可得出答案;(5)提取公因式2(p+q),即可得出答案.18.【答案】(x+y)(x2+3xy+y2)−5xy(x+y)=(x+y)(x2+3xy+y2−5xy)=(x+y)(x2−2xy+y2)=(x+y)(x−y)2当x=6.6,y=−3.4时,原式=3.2×102=320.【解析】本题考查求代数式的值,关键是对待求式进行因式分解,然后将x与y的值代入计算即可19.【答案】解:a2+2ab+b2−2ac+c2−2bc=(a+b)2−2c(a+b)+c2=(a+b−c)2∵a =12m +1,b =12m +2,c =12m +3∴原式=(a +b )2−2c(a +b)+c 2=(a +b−c )2将a ,b ,c 的值代入得=[(12m +1)+(12m +2)−(12m +3)]2=14m 2【解析】此题考查代数式求值,注意利用完全平方公式因式分解,简化计算的方法与步骤.首先把代数式a 2+2ab +b 2−2ac−2bc +c 2利用完全平方公式因式分解,再代入求得数值即可.20.【答案】解:(1)112−92=8×5,132−112=8×6.(2)规律:任意两个奇数的平方差等于8的倍数.(3)证明:设m ,n 为整数,两个奇数可表示2m +1和2n +1,则(2m +1)2−(2n +1)2=4(m−n)(m +n +1).当m ,n 同是奇数或偶数时,(m−n)一定为偶数,所以4(m−n)一定是8的倍数.当m ,n 一奇一偶时,则(m +n +1)一定为偶数,所以4(m +n +1)一定是8的倍数所以,任意两奇数的平方差是8的倍数.【解析】通过观察可知,等式左边一直是两个奇数的平方差,右边总是8乘以一个数.根据平方差公式,把等式左边进行计算,即可得出结论任意两个奇数的平方差等于8的倍数.本题为规律探究题,考查学生探求规律解决问题的思维能力.。

人教版八年级数学上册《因式分解》练习题(含知识点)

人教版八年级数学上册《因式分解》练习题(含知识点)
5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.
6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.
7.分式的四则运算:
⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:
⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分
15、xn=5,yn=3,则(xy)2n=若2x=m,2y=n,则8x+y=.
16、已知x+y=1,那么 的值为_______.
17、在多项式4x2+1中添加,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是
18、若 且 , ,则 的值为______
19.计算: .(-2a)·( a3)=______
⑶经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章 轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相
重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一
个图形重合,那么就说这两个图形关于这条直线对称.
A. B. C. D.
10、计算1002-2×100×99+992的结果是( )
A、1 B、-1 C、2 D、-2
(二)填空题:
11、计算:(-x3y)2=(x2)3÷x5=
12、分解因式: x2+y2-2xy=
13、计算:(-8)2004(-0.125)2003=,22005-22004=.
14、若A=3x-2,B=1-2x,C=-5x,则A·B+A·C=.

人教版八年级上册 因式分解专项练习14.3.1提公因式法(含答案)

人教版八年级上册 因式分解专项练习14.3.1提公因式法(含答案)

人教版八年级上册因式分解专项练习-提公因式法(含答案)1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.因式分解:(1)3x2﹣6xy+x;(2)﹣4m3+16m2﹣28m;(3)18(a﹣b)2﹣12(b﹣a)3.3.因式分解:-2m3+8m2-12m;4.用提公因式法分解多项式:3223048x y x yz -+5.分解因式:(1) (2)(3) (4)(5) ,求 的值 6.分解因式:3210()5()ab a b b b a ---7.把下列各式分解因式:(1)4x 3-6x 2; (2)2a 2b+5ab+b ; (3)6p(p+q)-4q(p+q);(4) (x-1)2-x+1; (5)-3a 2b +6ab 2-3ab.8.把下列各式分解因式:(1)236x y xy - (2)2332525x y x y -(4)3241626m m m -+- (4)22(3)3a a --+(5)23()2()m x y y x --- (6)2318()12()b a b a b ---(7)1532223520x y x y x y +- (8)6x(x+y)-4y(x+y)(8)()()()a x a b a x c x a -+--- (10)()()()()m n p q m n p q ++-+-9.把下列各式分解因式:(1)a(b -c)+c -b ; (2)15b(2a -b)2+25(b -2a)2.10.()()x x y y y x ---11.把下列各式分解因式:(1)2x 2-xy ; (2)-4m 4n +16m 3n -28m 2n.12.分解因式① -49a 2bc-14ab 2c+7ab ②(2a+b)(2a-3b)-8a(2a+b)13.分解因式:a(x +y -z)-b(z -x -y)-c(x -z +y).14.因式分解:(y ﹣x )(a ﹣b ﹣c )+(x ﹣y )(b ﹣a ﹣c )15.因式分解:12a 2b(x-y)-4ab(y-x).16.因式分解: 53242357a b c a b c a bc +-17.因式分解:26()2()()x y x y x y +-+-18.计算:(1)a (a+b )﹣b (a ﹣b ); (2)(x ﹣2y )(2y+x )+(2y+x )2﹣2x (x+2y )19.因式分解(1)-3x 2+6xy-3y 2 (2)a 2(x-y)+16(y-x)20.用提取公因式法将下列各式分解因式:(1)6xyz-3xz2;(2)x4y-x3z;(3)x(m-x)(m-y)-m(x-m)(y-m).参考答案1.(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n)【解析】试题分析:(1)运用提取公因式法因式分解即可;(2)运用提取公因式法因式分解即可,注意先提取负号;(3)先分组,提公因式,再利用整体法运用提取公因式法因式分解即可;(4)运用提取公因式法因式分解即可,注意整体思想的应用;(5)根据a-b与b-a互为相反数,利用整体法提取公因式法因式分解即可;(6)运用提取公因式法因式分解即可;(7)运用提取公因式法因式分解即可,注意符号变化.试题解析:(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab)(5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)2.(1)x(3x﹣6y+1);(2)﹣4m(m2﹣4m+7);(3)6(a﹣b)2(3+2a﹣2b).【解析】【分析】(1)利用提取公因式法分解因式得出即可;(2)利用提取公因式法分解因式得出即可;(3)利用提取公因式法分解因式得出即可. 【详解】(1)解:3x 2﹣6xy+x=x (3x ﹣6y+1)(2)解:﹣4m 3+16m 2﹣28m=﹣4m (m 2﹣4m+7)(3)解:18(a ﹣b )2﹣12(b ﹣a )3=6(a ﹣b )2(3+2a ﹣2b )【点睛】考查因式分解,熟练掌握提取公因式法是解题的关键. 3.-2m(m 2-4m+6) 【解析】 【分析】直接运用提公因式法.即提出公因式-2m 即可. 【详解】解:-2m 3+8m 2-12m=-2m (m 2-4m+6)【点睛】本题考核知识点:因式分解. 解题关键点:找出公因式. 4.()2658x y xy z --【解析】试题分析:根据提公因式法--因式分解,确定公因式后提取公因式即可. 试题解析:()32223048658x y x yz x y xy z -+=--.5.(1)-2b (2a+4b-5);(2)(n-m )(2n-m );(3)3y (a-b )[5a-5b+1];(4)6(n-m )2(m-n-2);(5)0【解析】【分析】(1)直接提取公因式﹣2b 分解即可;(2)首先把 变为− ,再提取公因式n-m 分解即可; (3)首先把 变为−(a-b ),再提取公因式a-b 分解即可;(4)首先把 变为− ,再提取公因式 分解即可;(5)首先把 变为 ,再把 代入即可; 【详解】(1) = -2b (2a+4b-5);(2) =(n-m )(2n-m );(3) ) (4) = = (5) = 【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 6.225()(221)b a b a ab --- 【解析】分析:提取公因式法进行因式分解即可. 详解:原式()()32105,ab a b b a b =---()()2521.b a b a a b ⎡⎤=---⎣⎦()()225221.b a b a ab =---点睛:本题主要考查因式分解,常见的因式分解的方法有:提取公因式法,公式法,十字相乘法.注意:分解一定要彻底.7.(1)2x 2(2x-3);(2)b(2a 2+5a+1);(3)2(p+q)(3p-2q);(4)(x-1)(x-2);(5)-3ab(a -2b +1). 【解析】 【分析】(1)直接利用提取公因式法,提取公因式2x 2,进而分解因式得出答案;(2)直接利用提取公因式法,提取公因式b ,进而分解因式得出答案; (3)直接利用提取公因式法,提取公因式2(p +q ),进而分解因式得出答案; (4)直接利用提取公因式法,提取公因式(x ﹣1),进而分解因式得出答案. (5)直接利用提取公因式法,提取公因式﹣3ab ,进而分解因式得出答案. 【详解】(1)原式=222223x x x ⋅-⋅=22(23)x x -;(2)原式= b •2a 2+ b •5a + b •1=b (2a 2+5a +1);(3)原式=2(p +q )•3p -2(p +q )•2q =2(p +q )(3p -2q );(4)原式=(x -1)2-(x -1)=(x -1)(x -1-1)= (x -1)(x -2);(5)原式=-3ab •a +(-3ab )•(-2b )+(-3ab )•1=-3ab (a -2b +1). 【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.8.(1)3xy(x-2); (2)225(5)x y y x -; (3)22(2813m m m --+); (4)3)(27)a a --(; (5)()(322)x y m x y --+; (6)26()(52a b b a --);(7) 225314)x y xy y +-(;(8)2(x+y)(3x-2y); (9)()()x a a b c ---; (10)2()q m n +.试题分析:都利用提公因式法分解因式即可.试题解析:(1)原式=3xy(x-2);(2)原式=()2255x y y x -;(3)原式=22(2813m m m --+);(4)()3)27a a =--原式(; (5)原式=()()322x y m x y --+;(6)原式=()26(52a b b a --);(7)原式= 225314)x y xy y +-(;(8)原式=2(x+y)(3x-2y);(9)原式=()()x a a b c ---;(10)原式=()2q m n +.9.(1)(b -c)(a -1)(2) 5(2a -b)2(3b +5)【解析】试题分析:(1)先确定公因式是(b -c ),将公因式(b -c )提到括号外,可得(b -c )(a -1) , (2)先确定公因式是5(2a-b )2,将公因式5(2a -b )2提到括号外,可得5(2a -b )2(3b +5). 试题解析:(1)原式=a (b -c )-(b -c )=(b -c )(a -1),(2)原式=15b (2a -b )2+25(2a -b )2=5(2a -b )2(3b +5).10.()()x y x y -+试题分析:后一项变号后,提取公因式(x-y)即可.试题解析:解:原式=x(x-y)+y(x-y)=(x-y)(x+y).11.(1) x(2x-y)(2)-4m2n(m2-4m+7)【解析】试题分析:(1)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果, (2)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果.试题解析:(1)原式=x(2x-y),(2)原式=-4m2n(m2-4m+7).12.①-7ab(7ac+2bc-1);②-3(2a+b)2【解析】试题分析:本题考查了因式分解.①直接用提公因式-7ab即可;②把(2a+b)作为一个整体提取.①原式=-7ab(7ac+2bc-1)②原式=(2a+b)(2a-3b-8a)=(2a+b)(-6a-3b)=-3(2a+b) 213.(x+y-z)(a+b-c)【解析】试题分析:先确定公因式(x+y-z),提公因式可得: (x+y-z) (a+b-c),试题解析:原式=a(x+y-z)+b(x+y-z)-c(x+y-z)=(x+y-z) (a+b-c).14.2(y﹣x)(a﹣b)【解析】试题分析:先提取公因式(y-x)后,再提取公因式2即可.试题解析:原式=(y ﹣x )(a ﹣b ﹣c )﹣(y ﹣x )(b ﹣a ﹣c )=(y ﹣x )(a ﹣b ﹣c ﹣b+a+c )=2(y ﹣x )(a ﹣b ).15.4ab(x-y)(3a+1)【解析】【分析】直接提取公因式4ab (x-y ),即可求得答案.【详解】原式=12a 2b(x-y)+4ab(x-y)=4ab(x-y)(3a+1)【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.a 3bc (a 2b 2c+5ab-7)【解析】【分析】根据题意提取公因式即可.【详解】解:原式=322(57)a bc a b c ab +-【点睛】本题主要考查提取公因式,根据每个字母的最低次数提取即可.17.4(x +y )(x +2y ).【解析】首先提公因式2(x+y),再整理括号里面的3(x+y)﹣(x﹣y),再提公因式2即可.【详解】原式=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点睛】本题考查了提公因式法分解因式,关键是公因式提取要彻底.18.(1)a2+b2;(2)0.【解析】【分析】(1)(2)按照先去括号,后合并同类项的步骤化简即可;【详解】解:(1)原式=a2+ab﹣ab+b2=a2+b2(2)法一:原式=x2﹣4y2+x2+4xy+4y2﹣2x2﹣4xy=(x2+x2﹣2x2)+(﹣4y2+4y2)+(4xy﹣4xy)=0法二:原式=(x+2y)(x﹣2y+2y+x﹣2x)=(x+2y)×0=0本题考查平方差公式、完全平方公式、提公因式等知识,解题的关键是灵活运用所学知识解决问题,记住平方差公式、完全平方公式.19.(1)(2)【解析】试题分析:(1)先提取公因式-3,再对余下的多项式利用完全平方公式继续分解;(2)先提取公因式(x-y),再对余下的多项式利用完全平方公式继续分解.试题解析:(1)原式==(2)原式===【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.(1) 3xz(2y-z);(2) x3(xy-z);(3)-(m-x)2(m-y).【解析】【分析】分别提取公因式3xz,x3,(m-x)(m-y)即可得答案,注意符号.【详解】解:(1)6xyz-3xz2=3xz(2y-z).(2)x4y-x3z=x3(xy-z).(3)x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y).【点睛】本题考查的知识点是提公因式,解题的关键是熟练的掌握提公因式.。

人教版 八年级数学上册 第14.3.1用提公因式法因式分解专题 (含答案)

人教版 八年级数学上册 第14.3.1用提公因式法因式分解专题 (含答案)

人教版 八年级数学上册 第14.3.1用提公因式法因式分解练习题(含答案)1. 把下列各式因式分解(1)-+--+++a x abx acx ax m m m m 2213(2)a a b a b a ab b a ()()()-+---32222解:-+--=--+++++a x abx acx ax ax ax bx c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a n n n n -=--=----222121;,是在因式分解过程中常用的因式变换。

解:a a b a b a ab b a ()()()-+---32222 )243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯ 解:原式)521456268123(1368987+++⨯==⨯=987136813689873. 在多项式恒等变形中的应用例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值。

解:()()()()()()()223322233253x y x y x x y x y x y x x y x y +-++=+-+=+- 把2x y +和53x y -分别为3和-2带入上式,求得代数式的值是-6。

4. 在代数证明题中的应用例:证明:对于任意自然数n ,323222n n n n ++-+-一定是10的倍数。

分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。

最新人教版八年级数学上册 专题复习:因式分解

最新人教版八年级数学上册  专题复习:因式分解

专题因式分解☞2年中考【2015年题组】1.(2015北海)下列因式分解正确的是()A.24(4)(4)x x x-=+-B.221(2)1x x x x++=++C.363(6)mx my m x y-=-D.242(2)x x+=+【答案】D.考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x --B .2(2)x x y --C .22(44)x xy y x -- D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+ B .23(4)x x - C .3(2)(2)x x x +- D .23(2)x x - 【答案】D .【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D .考点:提公因式法与公式法的综合运用.4.(2015毕节)下列因式分解正确的是( )A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=-D .224(4)(4)x y x y x y -=+- 【答案】B . 【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.5.(2015临沂)多项式2mx m -与多项式221x x -+的公因式是( ) A .1x - B .1x + C .21x - D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B .考点:因式分解的应用.7.(2015烟台)下列等式不一定成立的是( )A 0)a a b b b =≠B .3521a a a -•= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -=【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂.8.(2015杭州)下列各式的变形中,正确的是()A.22()()x y x y x y---+=-B.11xxx x--=C.2243(2)1x x x-+=-+D.21()1x x xx÷+=+【答案】A.【解析】试题分析:A.22()()x y x y x y---+=-,正确;B.211xxx x--=,错误;C.2243(2)1x x x-+=--,错误;D.21()1x x xx÷+=+,错误;故选A.考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法.9.(2015南京)分解因式()(4)a b a b ab--+的结果是.【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab--+=2254a ab b ab-++=2244a ab b-+=2(2)a b-.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用.11.(2015绵阳)在实数范围内因式分解:23x y y -= .【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y . 考点:实数范围内分解因式.12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b-|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题. 13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -.考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= . 【答案】2015.【解析】试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x---= .【答案】(2)(4)(4)x x x-+-.【解析】试题分析:原式=2(2)(16)x x--=(2)(4)(4)x x x-+-.故答案为:(2)(4)(4)x x x-+-.考点:提公因式法与公式法的综合运用.16.(2015东营)分解因式:2412()9()x y x y+-+-= .【答案】2 (332)x y-+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n++=-+对x恒成立,则n= .【答案】4.【解析】试题分析:∵2(3)()x x m x x n++=-+,∴22(3)3x x m x n x n++=+--,故31n-=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x(1≤x≤4,x为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A、x2+2x+1=x(x+2)+1,不是因式分解,故错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故错误;C、ax+bx=(a+b)x,是因式分解,故正确;D、m2﹣2mn+n2=(m ﹣n)2,故错误.故选C.考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2014年海南中考)下列式子从左到右变形是因式分解的是()A.()2a4a21a a421+-=+-B.()()2a4a21a3a7+-=-+C.()()2a3a7a4a21-+=+-D.()22a4a21a225+-=+-【答案】B.考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= .【答案】()() x x2x2+-.【解析】试题分析:()()() 32x4x x x4x x2x2 -=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).【解析】试题分析:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).考点:因式分解.5.(2014年徐州中考)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.【解析】试题分析:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x-=__________________.【答案】x(y+5)(y﹣5).【解析】试题分析:原式=x(y2﹣25)=x(y+5)(y﹣5).考点:提公因式法与公式法的综合运用.7.(2014年绍兴中考)分解因式:2a a-= .【答案】() a a1-.【解析】试题分析:() 2a a a a1-=-.考点:提公因式法因式分解.8.(2014年台州中考)因式分解3a4a-的结果是.【答案】()() a a2a2+-.考点:提公因式法和应用公式法因式分解.9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念.归纳 2:提取公因式法分解因式 基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂.提取公因式法:ma+mb-mc=m(a+b-c)注意问题归纳:提公因式要注意系数;要注意查找相同字母,要提净.【例2】若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a3ab+=.【答案】() a a3+.【解析】() 2a3ab a a3+=+.考点:因式分解-提公因式法.归纳3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4)B.(x+2)(x-2)C.2 (x+2)(x-2)D.2(x+4)(x-4)【答案】C.【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C.考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027 C.1.111111×1056D.1.1111111×1017【答案】D.考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= .【答案】2(x﹣8)(x+2).【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x﹣8)(x+2).故答案为:2(x﹣8)(x+2).考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ).【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用.6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= .【答案】(3)(3)a x x -+.【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+. 考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a += .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2.【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2. 考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= .【答案】ab (a-b )2.【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2. 考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a (x+y )(x-y ).【解析】试题分析:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).故答案为:3a(x+y)(x-y).考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a(2a-3)2.【解析】试题分析:4a3-12a2+9a=a(4a2-12a+9)=a(2a-3)2.故答案为:a(2a-3)2.考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是.【答案】3x(x-y)2.考点:提公因式法和公式法的综合运用.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.考点:提公因式法与公式法的综合运用.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。

人教版八年级上册 因式分解专项练习14.3.1提公因式法(含答案)

人教版八年级上册 因式分解专项练习14.3.1提公因式法(含答案)

人教版八年级上册因式分解专项练习-提公因式法(含答案)1.请把下列各式分解因式(1)x(x-y)-y(y-x) (2)-12x3+12x2y-3xy2(3)(x+y)2+mx+my (4)a(x-a)(x+y)2-b(x-a)2(x+y)(5)15×(a-b)2-3y(b-a)(6)(a-3)2-(2a-6)(7)(m+n)(p-q)-(m+n)(q+p)2.因式分解:(1)3x2﹣6xy+x;(2)﹣4m3+16m2﹣28m;(3)18(a﹣b)2﹣12(b﹣a)3.3.因式分解:-2m3+8m2-12m;4.用提公因式法分解多项式:3223048x y x yz -+5.分解因式:(1)−4ab −8b 2+10b (2)2(n −m)2−m(m −n)(3)15y(a −b)2−3y(b −a) (4)6(m −n)3−12(n −m)2(5)x 2+3x +1=0,求2x 2010+6x 2009+2x 2008的值 6.分解因式:3210()5()ab a b b b a ---7.把下列各式分解因式:(1)4x 3-6x 2; (2)2a 2b+5ab+b ; (3)6p(p+q)-4q(p+q);(4) (x -1)2-x+1; (5)-3a 2b +6ab 2-3ab.8.把下列各式分解因式:(1)236x y xy - (2)2332525x y x y -(4)3241626m m m -+- (4)22(3)3a a --+(5)23()2()m x y y x --- (6)2318()12()b a b a b ---(7)1532223520x y x y x y +- (8)6x(x+y)-4y(x+y)(8)()()()a x a b a x c x a -+--- (10)()()()()m n p q m n p q ++-+-9.把下列各式分解因式:(1)a(b -c)+c -b ; (2)15b(2a -b)2+25(b -2a)2.10.()()x x y y y x ---11.把下列各式分解因式:(1)2x 2-xy ; (2)-4m 4n +16m 3n -28m 2n.12.分解因式① -49a 2bc -14ab 2c+7ab ①(2a+b)(2a -3b)-8a(2a+b)13.分解因式:a(x +y -z)-b(z -x -y)-c(x -z +y).14.因式分解:(y ﹣x )(a ﹣b ﹣c )+(x ﹣y )(b ﹣a ﹣c )15.因式分解:12a 2b(x -y)-4ab(y -x).16.因式分解: 53242357a b c a b c a bc +-17.因式分解:26()2()()x y x y x y +-+-18.计算:(1)a (a+b )﹣b (a ﹣b ); (2)(x ﹣2y )(2y+x )+(2y+x )2﹣2x (x+2y )19.因式分解(1)-3x 2+6xy -3y 2 (2)a 2(x -y)+16(y -x)20.用提取公因式法将下列各式分解因式:(1)6xyz-3xz2;(2)x4y-x3z;(3)x(m-x)(m-y)-m(x-m)(y-m).参考答案1.(1)(x-y)(x+y);(2)-3x(2x-y)2;(3)(x+y)(x+y+m);(4)(x-a)(x+y)(ax+ay-bx+ab);(5)3(a-b)(5ax-5bx+y);(6)(a-3)(a-5);(7)-2q(m+n)【解析】试题分析:(1)运用提取公因式法因式分解即可;(2)运用提取公因式法因式分解即可,注意先提取负号;(3)先分组,提公因式,再利用整体法运用提取公因式法因式分解即可;(4)运用提取公因式法因式分解即可,注意整体思想的应用;(5)根据a-b与b-a互为相反数,利用整体法提取公因式法因式分解即可;(6)运用提取公因式法因式分解即可;(7)运用提取公因式法因式分解即可,注意符号变化.试题解析:(1)x(x-y)-y(y-x)=(x-y)(x+y)(2)-12x3+12x2y-3xy2=-3x(4x2-4xy+y2)=-3x(2x-y)2(3)(x+y)2+mx+my=(x+y)2+m(x+y)=(x+y)(x+y+m)(4)a(x-a)(x+y)2-b(x-a)2(x+y)=(x-a)(x+y)[a(x+y)-b(x-a)]=(x-a)(x+y)(ax+ay-bx+ab)(5)15x(a-b)2-3y(b-a)=15x(a-b)2+3y(a-b)=3(a-b)(5ax-5bx+y);(6)(a-3)2-(2a-6)=(a-3)2-2(a-3)=(a-3)(a-5);(7)(m+n)(p-q)-(m+n)(q+p)=(m+n)(p-q-q-p)=-2q(m+n)2.(1)x(3x﹣6y+1);(2)﹣4m(m2﹣4m+7);(3)6(a﹣b)2(3+2a﹣2b).【解析】【分析】(1)利用提取公因式法分解因式得出即可;(2)利用提取公因式法分解因式得出即可;(3)利用提取公因式法分解因式得出即可. 【详解】(1)解:3x 2﹣6xy+x=x (3x ﹣6y+1)(2)解:﹣4m 3+16m 2﹣28m=﹣4m (m 2﹣4m+7)(3)解:18(a ﹣b )2﹣12(b ﹣a )3=6(a ﹣b )2(3+2a ﹣2b ) 【点睛】考查因式分解,熟练掌握提取公因式法是解题的关键. 3.-2m(m 2-4m+6) 【解析】 【分析】直接运用提公因式法.即提出公因式-2m 即可. 【详解】解:-2m 3+8m 2-12m=-2m (m 2-4m+6) 【点睛】本题考核知识点:因式分解. 解题关键点:找出公因式. 4.()2658x y xy z --【解析】试题分析:根据提公因式法--因式分解,确定公因式后提取公因式即可. 试题解析:()32223048658x y x yz x y xy z -+=--.5.(1)-2b (2a+4b -5);(2)(n -m )(2n -m );(3)3y (a -b )[5a -5b+1];(4)6(n -m )2(m -n -2);(5)0 【解析】【分析】(1)直接提取公因式﹣2b 分解即可;(2)首先把m −n 变为−(m −n),再提取公因式n -m 分解即可; (3)首先把b −a 变为−(a -b ),再提取公因式a -b 分解即可;(4)首先把6(m −n)3变为−6(n −m)3,再提取公因式6(n −m)2分解即可;(5)首先把2x 2010+6x 2009+2x 2008变为2x 2008(x 2+3x +1) ,再把x 2+3x +1=0代入即可; 【详解】(1)−4ab −8b 2+10b = -2b (2a+4b -5);(2)2(n −m)2−m (m −n )=2(n −m )2+m (n −m )=(n -m )(2n -m );(3)15y(a −b)2−3y (b −a )=15y (a −b )2+3y (a −b )=3y (a −b )[5a −5b )+1] (4)6(m −n)3−12(n −m)2=6(m −n)3−12(m −n)2=6(m −n)2(m −n −2) (5)2x 2010+6x 2009+2x 2008=2x 2008(x 2+3x +1)=0 【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 6.225()(221)b a b a ab --- 【解析】分析:提取公因式法进行因式分解即可. 详解:原式()()32105,ab a b b a b =---()()2521.b a b a a b ⎡⎤=---⎣⎦ ()()225221.b a b a ab =---点睛:本题主要考查因式分解,常见的因式分解的方法有:提取公因式法,公式法,十字相乘法.注意:分解一定要彻底.7.(1)2x 2(2x -3);(2)b(2a 2+5a+1);(3)2(p+q)(3p -2q);(4)(x -1)(x -2);(5)-3ab(a -2b +1). 【解析】 【分析】(1)直接利用提取公因式法,提取公因式2x 2,进而分解因式得出答案; (2)直接利用提取公因式法,提取公因式b ,进而分解因式得出答案; (3)直接利用提取公因式法,提取公因式2(p +q ),进而分解因式得出答案; (4)直接利用提取公因式法,提取公因式(x ﹣1),进而分解因式得出答案. (5)直接利用提取公因式法,提取公因式﹣3ab ,进而分解因式得出答案. 【详解】(1)原式=222223x x x ⋅-⋅=22(23)x x -; (2)原式= b •2a 2+ b •5a + b •1=b (2a 2+5a +1); (3)原式=2(p +q )•3p -2(p +q )•2q =2(p +q )(3p -2q ); (4)原式=(x -1)2-(x -1)=(x -1)(x -1-1)= (x -1)(x -2);(5)原式=-3ab •a +(-3ab )•(-2b )+(-3ab )•1=-3ab (a -2b +1). 【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.8.(1)3xy(x -2); (2)225(5)x y y x -; (3)22(2813m m m --+); (4)3)(27)a a --(; (5)()(322)x y m x y --+; (6)26()(52a b b a --);(7) 225314)x y xy y +-(;(8)2(x+y)(3x -2y); (9)()()x a a b c ---; (10)2()q m n +.试题分析:都利用提公因式法分解因式即可.试题解析:(1)原式=3xy(x -2);(2)原式=()2255x y y x -;(3)原式=22(2813m m m --+);(4)()3)27a a =--原式(; (5)原式=()()322x y m x y --+;(6)原式=()26(52a b b a --);(7)原式= 225314)x y xy y +-(;(8)原式=2(x+y)(3x -2y);(9)原式=()()x a a b c ---;(10)原式=()2q m n +.9.(1)(b -c)(a -1)(2) 5(2a -b)2(3b +5)【解析】试题分析:(1)先确定公因式是(b -c ),将公因式(b -c )提到括号外,可得(b -c )(a -1) , (2)先确定公因式是5(2a -b )2,将公因式5(2a -b )2提到括号外,可得5(2a -b )2(3b +5).试题解析:(1)原式=a (b -c )-(b -c )=(b -c )(a -1),(2)原式=15b (2a -b )2+25(2a -b )2=5(2a -b )2(3b +5).10.()()x y x y -+试题分析:后一项变号后,提取公因式(x-y)即可.试题解析:解:原式=x(x-y)+y(x-y)=(x-y)(x+y).11.(1) x(2x-y)(2)-4m2n(m2-4m+7)【解析】试题分析:(1)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果, (2)先确定公因式,将公因式提到括号外,括号里为原多项式中每一项除以公因式所得结果.试题解析:(1)原式=x(2x-y),(2)原式=-4m2n(m2-4m+7).12.①-7ab(7ac+2bc-1);①-3(2a+b)2【解析】试题分析:本题考查了因式分解.①直接用提公因式-7ab即可;①把(2a+b)作为一个整体提取.①原式=-7ab(7ac+2bc-1)①原式=(2a+b)(2a-3b-8a)=(2a+b)(-6a-3b)=-3(2a+b) 213.(x+y-z)(a+b-c)【解析】试题分析:先确定公因式(x+y-z),提公因式可得: (x+y-z) (a+b-c),试题解析:原式=a(x+y-z)+b(x+y-z)-c(x+y-z)=(x+y-z) (a+b-c).14.2(y﹣x)(a﹣b)【解析】试题分析:先提取公因式(y-x)后,再提取公因式2即可.试题解析:原式=(y ﹣x )(a ﹣b ﹣c )﹣(y ﹣x )(b ﹣a ﹣c )=(y ﹣x )(a ﹣b ﹣c ﹣b+a+c )=2(y ﹣x )(a ﹣b ).15.4ab(x -y)(3a+1)【解析】【分析】直接提取公因式4ab (x -y ),即可求得答案.【详解】原式=12a 2b(x -y)+4ab(x -y)=4ab(x -y)(3a+1)【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.a 3bc (a 2b 2c+5ab -7)【解析】【分析】根据题意提取公因式即可.【详解】解:原式=322(57)a bc a b c ab +-【点睛】本题主要考查提取公因式,根据每个字母的最低次数提取即可.17.4(x +y )(x +2y ).【解析】首先提公因式2(x+y),再整理括号里面的3(x+y)﹣(x﹣y),再提公因式2即可.【详解】原式=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点睛】本题考查了提公因式法分解因式,关键是公因式提取要彻底.18.(1)a2+b2;(2)0.【解析】【分析】(1)(2)按照先去括号,后合并同类项的步骤化简即可;【详解】解:(1)原式=a2+ab﹣ab+b2=a2+b2(2)法一:原式=x2﹣4y2+x2+4xy+4y2﹣2x2﹣4xy=(x2+x2﹣2x2)+(﹣4y2+4y2)+(4xy﹣4xy)=0法二:原式=(x+2y)(x﹣2y+2y+x﹣2x)=(x+2y)×0=0本题考查平方差公式、完全平方公式、提公因式等知识,解题的关键是灵活运用所学知识解决问题,记住平方差公式、完全平方公式.19.(1)−3(x−y)2(2)(x−y)(a−4)(a+4)【解析】试题分析:(1)先提取公因式-3,再对余下的多项式利用完全平方公式继续分解;(2)先提取公因式(x-y),再对余下的多项式利用完全平方公式继续分解.试题解析:(1)原式= −3(x2−2xy+y2)= −3(x−y)2(2)原式=a2(x−y)−16(x−y)=(x−y)(a2−16)=(x−y)(a−4)(a+4)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.(1) 3xz(2y-z);(2) x3(xy-z);(3)-(m-x)2(m-y).【解析】【分析】分别提取公因式3xz,x3,(m-x)(m-y)即可得答案,注意符号.【详解】解:(1)6xyz-3xz2=3xz(2y-z).(2)x4y-x3z=x3(xy-z).(3)x(m-x)(m-y)-m(x-m)(y-m)=x(m-x)(m-y)-m(m-x)(m-y)=(m-x)(m-y)(x-m)=-(m-x)2(m-y).【点睛】本题考查的知识点是提公因式,解题的关键是熟练的掌握提公因式.。

2024-2025学年人教版八年级上册数学 第十四章 整式的乘法与因式分解 测试卷(含答案)

2024-2025学年人教版八年级上册数学   第十四章  整式的乘法与因式分解  测试卷(含答案)

第十四章测试卷一、选择题1.计算(a³)²÷a² 的结果是 ( )A. a³B. a⁴C. a⁷D. a⁸2.若(x−4)⁰=1,则x的取值范围是 ( )A. x≠4B. x>4C. x<4D. x≥43.下列因式分解正确的是( )A.2ax²−4ax=2a(x²−2x)B.−ax²+4ax−4a=−a(x−2)²C.x²+2xy+4y²=(x+2y)²D.−m²+n²=(−m+n)(−m−n)4.已知x+1x =5, 那么x2+1x2=( )A.10B.23C.25D.275.化简(a+b+c)²−(a−b+c)² 的结果为( )A.4ab+4bcB.4acC.2acD.4ab--4bc6.不等式(x+1)(x-2)>x(x+2)的解集是( )A.x>23 B.x>−23C.x<23 D.x<−237.已知((10x-31)(13x-17)-(13x-17)(3x-23)可因式分解成( ax+b)(7x+c),其中a,b,c均为整数,则a-b+c的值为( )A.-12B.-4C.22D.388.长方形的面积是9a²−3ab+6a³,一边长是3a,则它的另一边长是( )A.3a²−b+2a²B.b+3a+2a²C.2a²+3a−bD.3a²−b+2a9.已知a²−2a−1=0, 则a⁴−2a³−2a+ 1 等于( )A.0B.1C.2D.310.如图,两个正方形的边长分别为a、b,如果a+b=18, ab=60,则图中阴影部分的面积为( )A.144B.72C.68D.36二、填空题11.计算: (18x3y2−12x2y3+x2y2)÷(−6x2y2)=12.分解因式:a²b+ab²-a-b= .13.若规定 a⊗b=10ᵃ×10ᵃ,如 2⊗3=10²×10³=10⁵,则 4⊗8为 .14.若a-b=2,a-c=1.则(2a−b−c)²+(c−a)²=.15.多项式 x²+y²−4x+6y+15的最小值是 .三、解答题16.(8分)计算:(1)[(m+n)(m−n)+(m−n)2−4m(m−n)]÷(2m);(2)(m+n+2)(m+n-2)-m(m+4n).17.(9分)把下列各式分解因式:(1)(x−1)+b²(1−x);(2)−3x⁷+24x⁵−48x³;(3)(x+3)(x+4)+(x²−9).18.(9分)化简并求值:(2a−b)²−(4a+b)(a−b)−2b²,其中 a=12,b=−13.19.(9分)如图,一块长为 (6a²+4b²)m,宽为 5a ⁴m 的长方形铁皮,在它的四个角上各剪去一个边长为 2a³m的小正方形,然后将剩余部分折成一个无盖的盒子,则这个盒子的表面积是多少?20.(9分)已知 2ⁿ=a,5ⁿ=b,20ⁿ= c.试探究a ,b ,c 之间有什么关系.21.(10分)已知 2⁴⁸−1可以被 60 至 70 之间的某两个数整除,求这两个数.22.(10分)阅读材料:常用的分解因式方法有提公因式法、公式法等,但有的多项式只用上述方法是无法分解的,如 x²−4y²+2x −4y,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程:x²−4y²+2x −4y=(x²−4y²)+(2x −4y )=(x+2y)(x-2y)+2(x-2y)=(x-2y)(x+2y+2).这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式: x²−6xy +9y²−3x +9y;(2)△ABC 的三边长a,b,c 满足 a²−b²−ac +bc =0,判断 △ABC 的形状.^23.(11分)在《乘法公式》中我们学习了完全平方公式:(a±b)²=a²±2ab +b².类比此公式,我们把( (a+b)ⁿ写成如下形式:(a+b)n=Ca n b0+C1a n−1b1+C2a n−2b2+⋯+C n−1ab n−1+C n a0b n,右边的多项式叫做(a+b)ⁿ的二项展开式.把C0,C1,C2,⋯,Cn−1,Cn叫做二项式的系数,C+C1+C2+⋯+Cn−1+Cn的和叫做二项式的系数之和.(1)仔细观察下列各式中系数的规律,并填空:①(a+b)¹的二项式的系数之和为,((a+b)²的二项式的系数之和为,((a+b)³的二项式的系数之和为;②请写出(a+b)¹⁰的二项式的系数之和: .(2)设(x+1)17=a17x17+a16x16+⋯+a1x+a0,求a1+a2+a3+⋯+ a₁₆+a₁₇的值;(3)你能在(2)的基础上求出a2+a4+a6+⋯+a14+a16的值吗? 若能,请写出过程,若不能,请说明理由.第十四章测试卷1、B2、A3、B4、B5、A6、D7、C8、C9、C 10、B11、-3x+2y-1612、(a+b)(ab-1)13、101214、10 15、216、(1)解:原式=(m²−n²+m²−2mn+n²−4m²+4mn)÷(2m)=(−2m²+2mn)÷(2m)=-m+n.(2)解:原式= (m+n)²−2²−m²−4mn=m²+2mn+n²−4−m²−44mn =n²−2mn−4.17、(1)解:原式= (x−1)−b²(x−1)=(x−1)(1−b²)=(x−1)(1−b)(1+b).(2)解:原式=−3x³(x⁴−8x²+16)=−3x³(x²−4)²=−3x³(x+2)(x−2)².(3)解:原式= (x+3)(x+4)+(x+3)(x−3)=(x+3)(x+4+x−-3) =(x+3)(2x+1). 18、解:原式=4a²−4ab+b²−(4a²−3ab−b²)−2b²=−ab,当 a=12,b=−13时,原式=−12×(−13)=16.19、解:由题意,得这个盒子的表面积为(6a²+4b²)⋅5a⁴−4×(2a³)²=30a⁶+20a⁴b²−16a⁶=(14a⁶+20a⁴b²)(m²).20、解:因为 c=20ⁿ=(4×5)ⁿ=4ⁿ×5ⁿ=(2²)ⁿ×5ⁿ=(2ⁿ)²×5ⁿ=a²b,所以a,b,c之间的关系是 c=a²b.21、解:248−1=(224+1)(224−1)=(224+1)(2¹²+1)(2¹²−1)=(224+1)) (2¹²+1)(2⁶+1)(2⁶−1)=(224+1)(2¹²+1)×65×63,所以这两个数为63和65.22、解:(1)x²−6xy+9y²−3x+9y=(x²−6xy+9y²)−(3x−9y)=(x−3y)²-3(x-3y)=(x-3y)(x-3y-3).(2)∵a²−b²−ac+bc=0,(a²−b²)−(ac−bc)=0,∴(a+b)(a−b)−c(a−b)=0,∴(a−b))[(a+b)-c]=0,∵a,b,c是△ABC的三边长,∴(a+b)−c>0,∴a− b=0,得 a=b,∴△ABC是等腰三角形.23.解:(1) ①2¹、 2²、2³ ② 2¹⁰ .(2)由(1)①得( (x+1)¹⁷的二项式的系数之和为2¹⁷,即 a₀+a₁+a₂+a3+⋯+a16+a17=217,当x=0时, 1=a0,∴a1+a2+a3+⋯+a16+a17=2¹⁷−1.(3)当x=1时, (1+1)17=217=a17×1+a16×1+⋯+a1×1+a=a17+a16+⋯+a1+a①,当x=-1 时, (−1+1)¹⁷=0=−a17+a16−⋯+a2−a1+a0②,①+②)得 2(a0+a2+a4+a6+⋯+a14一a16=1,∴a2+a4+a6+⋯+a14+a16=216−1.。

人教版八年级上册因式分解练习100道题

人教版八年级上册因式分解练习100道题
100.)把 分解因式是()
成绩:家长签字:日期:
☆昨天的努力就是今天的实力☆
93.)若 ,则x=_______,y=________
94.)若 ,则 _________
95.)计算 ________
96.)运用平方差公式分解: -_______=(a+7)(a-_____)
97.)完全平方式 。
98.)若a、b、c,这三个数中有两个数相等,则 _________
99.)若 ,则 __________
66.)把(a+b)²−4(a²−b²)+4(a−b)²分解因式为()
67.)
68)已知x,y为任意有理数,记M = x²+y²,N = 2xy,则M与N的大小关系为()
69)对于任何整数m,多项式( 4m+5)²−9都能( )
A.被8整除Bቤተ መጻሕፍቲ ባይዱ被m整除
C.被(m−1)整除D.被(2m−1)整除
70.)将−3x²n−6xn分解因式,结果是()
9.)(x+y)(a-b-c)+(x-y)(b+c-a)
10.)a²-a-b²-b
11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²
12.)(a+3)²-6(a+3)
13.)(x+1)²(x+2)-(x+1)(x+2)²
14.)16x²-81
15.)9x²-30x+25
16.)x²-7x-30
71.)多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )
72.)若 是完全平方式,则 的值等于_____。
73.) 则 =____ =____
74.) 与 的公因式是_

部编数学八年级上册专题07因式分解的六种方法大全(解析版)(人教版)含答案

部编数学八年级上册专题07因式分解的六种方法大全(解析版)(人教版)含答案

专题07 因式分解的六种方法大全题型一、提取公因式法与公式法综合例.分解因式:32214a ab ab -+=______.【答案】21()2a ab -【详解】解:32214a a b ab -+=221()4a a ab b -+=21()2a ab -.故答案是:21()2a ab -.【变式训练1】因式分解:322882x x y xy -+=________________.【答案】22(2)x x y -【详解】解:原式=2x (4x 2−4xy +y 2)=2x (2x −y )2故答案为:2x (2x −y )2.【变式训练2】因式分解:21222a b ab b -+=_________.【答案】21(2)2b a -【详解】22211122(44)(2)222a b ab b b a a b a -+=-+=-故答案为:21(2)2b a -.【变式训练3】分解因式:a 4﹣3a 2﹣4=_____.【答案】(a 2+1)(a +2)(a ﹣2)【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2),故答案为:(a 2+1)(a +2)(a ﹣2).【变式训练4】小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.现将()()2222ac x y bc x y ---因式分解,结果呈现的密码信息可能是( )A .抗疫胜利B .抗疫必胜C .我必胜利D .我必抗疫【答案】B【详解】解:原式=()()22x y ac bc --()()()c a b x y x y =-+-Q x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.x y \-对应抗,x y +对应疫,c 对应必,-a b 对应胜故结果呈现的密码信息可能是为:抗疫必胜故选:B题型二、十字相乘法例.将多项式()211a a --+因式分解,结果正确的是( )A .1a -B .()()12a a --C .()21a -D .()()11a a +-【答案】B【详解】解:()211a a --+=2211a a a -+-+=232a a -+=()()12a a --.故选B .【变式训练1】多项式239514x x +-可因式分解成(3)()x a bx c ++,其中a 、b 、c 均为整数,求2a c +之值为何?( )A .12-B .3-C .3D .12【答案】A【详解】解:利用十字相乘法,把239514x x +-多项式因式分解,可得,239514(32)(137)x x x x +-=+-∵多项式239514x x +-可因式分解成(3x +a )(bx +c )∴ 2a =,13b =,7c =-∴222(7)12a c +=+´-=-故选:A .【变式训练2】分解因式:321024a a a +-=____.【答案】()()122a a a +-【详解】解:()()()32210241024122a a a a a a a a a +-=+-=+-.故答案为:()()122a a a +-【变式训练3】因为()()22331x x x x +-=+-,这说明多项式223x x +-有一个因式为1x -,我们把1x =代入此多项式发现1x =能使多项式223x x +-的值为0.利用上述阅读材料求解:(1)若()3x +是多项式212x kx ++的一个因式,求k 的值;(2)若()3x -和()4x -是多项式3212x mx x n +++的两个因式,试求m ,n 的值.(3)在(2)的条件下,把多项式3212x mx x n +++因式分解.【答案】(1)7k =;(2)7m =-,0n =;(3)(3)(4)x x x --【解析】(1)解:Q 3x +是多项式212x kx ++的一个因式,\当3x =-时,21293120x kx k ++=-+=,解得7k =;(2)Q (3)x -和(4)x -是多项式3212x mx x n +++的两个因式,\3232331230441240m n m n ì+´+´+=í+´+´+=î,解得70m n =-ìí=î.\7m =-,0n =.(3)解:由(2)得3212x mx x n +++即为32712x x x -+,\32712x x x-+2(712)x x x =-+(3)(4)x x x =--.题型四、分组法例.分解因式:4322221x x x x ++++【答案】22(1)(1)x x ++【详解】解:4322221x x x x ++++423(21)(22)x x x x =++++,222(1)2(1)x x x ++=+,22(1)(1)2x x x +=++22(1)(1)x x =++【变式训练1】已知221m a b =+-,4614n a b =--,则m 与n 的大小关系是()A .m n ³B .m >nC .m n £D .m <n【答案】A【详解】解:∵221m a b =+-,4614n a b =--,∴()()2214614b a m b n a -=---+-2246114b b a a =+--++()()224469a a b b =-++++()()2223a b =-++0³m n \³,故选A【变式训练2】分解因式:224b 12c 9c -++.【答案】()()23c b 23c b +++-【详解】解:224b 12c 9c -++=()22412c 9c b ++-=()2223c b +-=()()23c b 23c b +++-【变式训练3】分解因式:2244x y y -+-=__________.【答案】(2)(2)x y x y +--+【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【变式训练4】阅读理解:把多项式am an bm bn +++分解因式.解法:()()am an bm bn am an bm bn +++=+++()()a m nb m n =+++()()m n a b =++观察上述因式分解的过程,回答下列问题:(1)分解因式:222mb mc b bc -+-.(2)ABC V 三边a 、b 、c 满足2440a bc ac ab -+-=,判断ABC V 的形状.【答案】(1)(2)()b c m b -+;(2)等腰三角形【解析】(1)解:222mb mc b bc-+-()2(2)2mb mc b bc =-+-(2)(2)m b c b b c =-+- (2)()b c m b =-+(2)解:∵2440a bc ac ab -+-=,∴2440a ab ac bc -+-=,∴()()40a a b c a b -+-=,∴()()40a b a c -+=,∵40a c +>,∴0a b -=,∴a b =,∴ABC V C 的形状是等腰三角形.题型四、添项、拆项法例.分解因式;.x 3﹣3x 2﹣6x +8=_______.【答案】(x ﹣4)(x ﹣1)(x +2)【详解】解:x 3﹣3x 2﹣6x +8=3232268x x x x x -+--+=()()323288x x x x -+--=()()()1281x x x x ----=()()128x x x ---éùëû=()()2128x x x ---=(x ﹣4)(x ﹣1)(x +2),故答案为:(x ﹣4)(x ﹣1)(x +2).【变式训练1】把多项式分解因式:x 3﹣2x 2+1=_________________.【答案】(x ﹣1)(x 2﹣x ﹣1)【详解】解:原式=x 3﹣x 2﹣x 2+1=x 2(x ﹣1)﹣(x +1)(x ﹣1)=(x ﹣1)(x 2﹣x ﹣1)故答案为:(x ﹣1)(x 2﹣x ﹣1)【变式训练2】因式分解:a a a 32+3+3+2【答案】()()a a a 2=+2++1【详解】原式()a a a 32=+3+3+1+1()a 33=+1+1()()()a a a 2éù=+1+1+1-+1+1ëû()()a a a 2=+2++1.故答案为:()()a a a 2=+2++1【变式训练3】添项、拆项是因式分解中常用的方法,比如分解多项式21a -可以用如下方法分解因式:①()()()()22111111a a a a a a a a a -=-+-=-+-=-+;又比如多项式31a -可以这样分解:②()()()()()3322221111111a a a a a a a a a a a a a a -=-+-+-=-+-+-=-++;仿照以上方法,分解多项式51a -的结果是______.【答案】()()43211a a a a a -++++【详解】解:51a -54433221a a a a a a a a a =-+-+-+-+-()()()()43211111a a a a a a a a a =-+-+-+-+-()()43211a a a a a =-++++,故答案为:()()43211a a a a a -++++题型五、换元法(整体思想)例.因式分解:()()()()222222261516121x x x x x x ++++++++【答案】()()229411x x x +++【解析】解:()()()()222222261516121x x x x x x ++++++++()()2222212216122x x x x x x =++++++++()()2294121x x x x =++++()()229411x x x =+++【变式训练1】分解因式:()()()222241211y x y x y +--+-【答案】()2221x y x y -++【详解】()()()222241211y x y x y +--+-=()()()()222412111y x y y x y +-+-+-=()()2211y x y éù+--ëû=()2221x y x y -++【变式训练2】因式分解:(x 2+4x )2﹣(x 2+4x )﹣20.【答案】2(5)(1)(2)x x x +-+【详解】解:原式=(x 2+4x ﹣5)(x 2+4x +4)=(x +5)(x ﹣1)(x +2)2.【变式训练3】因式分解:(1)2223238x x x x +-+-()() (2)421x x x --+【答案】(1)()()()()1241x x x x +++-;(2)()()3211x x x -+-.【详解】解:(1)原式=()()223234x x x x +++-=()()()()1241x x x x +++-;(2)原式=()()2211xx x ---=()()()2111x x x x +---=()()2111x x x éù-+-ëû=()()3211x x x -+-.题型六、主元法例.分解因式:2222372x y z xy yz xz --+++.【答案】(2)(3)x y z x y z =+--+【详解】解:2222372x y z xy yz xz--+++222(2)(273)x y z x y yz z =++--+=2(2)(2)(3)x y z x y z y z ++---∴原式(2)(3)x y z x y z =+--+.【变式训练1】因式分解:(1)a b c ab ac bc abc1+++++++(2)()()a a b b b 6+11+4+3-1-2(3)()()()y y x x y y 22+1+1+2+2+1【答案】(1)()()()a b c =+1+1+1;(2)()()b b 3+2-1;(3)()()yx y yx x y =++1++【详解】(1)把a 视为未知数,其它视为参数.原式a ab ac abc b c bc =++++1+++()()a b c bc b c bc =1++++1+++()()a b c bc =+11+++()()()a b c =+1+1+1;(2)原式=()a b a b b 226+11+4+3--2,b b 23--2=()()b b 3+2-1,再次运用十字相乘法可知原式()()a b a b =2+3+23+-1;(3)选x 为主元,原式()()yx y yx x y =++1++.【变式训练2】因式分解:(1)a b ab bc ac222--++2(2)()x a b x a ab b 222+2+-3+10-3【答案】(1)()()a b b c 2+-+;(2)()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3【详解】(1)首先将原式按a 的降幂排列,写成关于a 的二次三项式()a c b a bc b 222+2-+-,此时的“常数bc b 2-”提取公因式b 即可分解成()b c b -,再运用十字相乘法便可很快将原式分解成()()a b a b c 2+-+;(2)这是x 的二次式,“常数项”可分解为()()a ab b a b a b 22-3+10-3=-3--3再对整个式子运用十字相乘()()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3.【变式训练3】因式分解:a b ab a c ac abc b c bc 222222-+--3++【答案】()()a b c ab ac bc =--+-【详解】原式()()()b c a b c bc a b c bc 22222=+-++3++()()()b c a b c bc a bc b c 222=+-++3++[()][()]a b c b c a bc =-++-()()a b c ab ac bc =--+-.课后作业1.如果2240m m +-=,那么20182019202032m m m --的值为( )A .2018m B .2018m -C .1D .-1【答案】B【详解】解:∵2m 2+m -4=0,∴-2m 2-m =-4,∴3m 2018-m 2019-2m 2020=m 2018×(3-m -2m 2)=m 2018×(3-4)=m 2018×(-1)=-m 2018,故选:B .2.如图,有一张边长为b 的正方形纸板,在它的四角各剪去边长为a 的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M 表示其底面积与侧面积的差,则M 可因式分解为( )A .()()62b a b a --B .()()32b a b a --C .()()5b a b a --D .()22b a -【详解】解:底面积为(b ﹣2a )2,侧面积为a •(b ﹣2a )•4=4a •(b ﹣2a ),∴M =(b ﹣2a )2﹣4a •(b ﹣2a ),提取公式(b ﹣2a ),M =(b ﹣2a )•(b ﹣2a ﹣4a ),=(b ﹣6a )(b ﹣2a )故选:A .3.已知250x y -+=,则224201x y y -+-=______.【答案】24【详解】解:250x y -+=Q ,25x y \-=-,224201x y y \-+-()()22201x y x y y =+-+-()52201x y y =-++-5101x y =-+-()521x y =--- 251=-24=,故答案为:24.4.分解因式:2232x y xy y -+=____________.【答案】2()y x y -【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -5.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.22216x xy y -+-()216x y =--()()44x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+;(3)△ABC 三边a 、b 、c 满足2222220a c b ab bc ++--=,判断△ABC 的形状并说明理由.【答案】(1)()()3535a b a b ---+;(2)()()222x y x y -+-;(3)△ABC 是等边三角形,理由见解析【解析】(1)解:226925a ab b -+-()2325a b =--()()3535a b a b =---+;(2)解:22424x y x y--+()()()2222x y x y x y =-+--()()222x y x y =-+-;(3)解:△ABC 是等边三角形,理由如下:∵2222220a c b ab bc ++--=,∴()()2222220a ab b c bc b -+-++=,∴()()220a b b c -+-=,∵()20a b -³,()20b c -³,∴a -b =0,且b -c =0,∴a =b ,且b =c ,∴a =b =c ,∴△ABC 是等边三角形.6.把下列各式因式分解:(1)2416x -;(2)23216164a b a ab --.【答案】(1)4(2)(2)x x +-(2)24(2)a a b --【解析】(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b éù=--+ëû24(2)a a b =--.7.(1)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.(2)已知ABC V 的三边长为a ,b ,c ,且满足220a b ac bc --+=,请判断ABC V 的形状.【答案】(1)答案见解析(2)ABC V 是等腰三角形【详解】(1)拼接如图:拼接成的长方形的面积还可以表示为一个正方形和三个长方形的面积之和:22212132x x x x x +++´=++g g ;拼接成的长方形的面积:长´宽()()21x x =++;∴据此可得到因式分解的式子为:()()23221++=++x x x x .故答案为:()()23221++=++x x x x .(2)∵220a b ac bc --+=,∴()()()0a b a b c a b +---=,∴()()0a b a b c -+-=.∵ABC V 的三边长为a ,b ,c ,∴a b c +>,∴0a b c +->,∴0a b -=,∴a b =,V是等腰三角形.∴ABCV是等腰三角形.故答案为:ABC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题练习:因式分解
一、选择题(每小题6分,共30分)
1.(衡阳中考)下列因式分解中正确的个数为( C)
①x3+2xy+x=x(x2+2y);
②x2+4x+4=(x+2)2;
③-x2+y2=(x+y)(x-y).
A.3个B.2个C.1个D.0个
2.(广东中考)把x3-9x分解因式,结果正确的是( D)
A.x(x2-9) B.x(x-3)2
C.x(x+3)2D.x(x+3)(x-3)
3.(台湾中考)下列四个选项中,哪一个为多项式8x2-10x+2的因式( A)
A.2x-2 B.2x+2
C.4x+1 D.4x+2
解析:8x2-10x+2=2(4x2-5x+1)=2(x-1)(4x-1),有因式2(x-1),即2x-2 4.若实数x,y,z满足(x-z)2-4(x-y)(y-z)=0,则下列式子一定成立的是( D) A.x+y+z=0 B.x+y-2z=0
C.y+z-2x=0 D.z+x-2y=0
解析:左边=[(x-y)+(y-z)]2-4(x-y)(y-z)=(x-y)2-2(x-y)(y-z)+(y-z)2=[(x-y)-(y-z)]2,故(x-y)-(y-z)=0,x-2y+z=0
5.(宜宾中考)将代数式x2+6x+2化成(x+p)2+q的形式为( B)
A.(x-3)2+11 B.(x+3)2-7
C.(x+3)2-11 D.(x+2)2+4
二、填空题(每小题6分,共24分)
6.(泸州中考)分解因式:3a2+6a+3=__3(a+1)2__.
7.(潍坊中考)分解因式:2x(x-3)-8=__2(x-4)(x+1)__.
8.(呼和浩特中考)把多项式6xy2-9x2y-y3因式分解,最后结果为__-y(3x-y)2__.9.(宜宾中考)已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y的值为__2__.
三、解答题(共46分)
10.(15分)分解因式:
(1)3x2-3;
3(x+1)(x-1)
(2)x2-4x-12;
x2-4x-12=x2-4x+4-16=(x-2)2-16=(x-2+4)(x-2-4)=(x+2)(x-6)
(3)8(x2-2y2)-x(7x+y)+xy.
8(x2-2y2)-x(7x+y)+xy=8x2-16y2-7x2-xy+xy=x2-16y2=(x+4y)(x-4y)
11.(10分)若△ABC的三边长分别为a,b,c,且a+2ab=c+2bc,判断△ABC的形状.解:∵a+2ab=c+2bc,∴a-c+2ab-2bc=0,(a-c)+2b(a-c)=0,∴(1+2b)(a -c)=0.∵1+2b≠0,∴a-c=0,a=c,∴△ABC是等腰三角形
12.(10分)有足够多的长方形和正方形的卡片,如下图.
如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.
这个长方形的代数意义是__或a 2+3ab +2b 2=(a +b )(a +2b )__.
13.(11分)设a =12m +1,b =12m +2,c =12
m +3.求代数式a 2+2ab +b 2-2ac -2bc +c 2的值.
解:原式=(a 2+2ab +b 2)-(2ac +2bc )+c 2=(a +b )2-2(a +b )c +c 2=(a +b -c )2=
[(12m +1)+(12m +2)-(12m +3)]2=(12m )2=14
m 2。

相关文档
最新文档