避雷器试验
10kv避雷器试验项目及标准
10kv避雷器试验项目及标准
10kv避雷器试验项目及标准如下:
一、试验项目
绝缘电阻:测试避雷器的绝缘电阻,以检查其是否符合规定的绝缘要求。
直流1mA电压及0.75U1mA下的泄漏电流:测试避雷器在直流1mA电压下的泄漏电流以及0.75U1mA下的泄漏电流,以评估其电气性能。
工频参考电压:测量避雷器的工频参考电压,以验证其是否符合规定的电压要求。
底座对地绝缘电阻:测试避雷器底座与地之间的绝缘电阻,以确保其良好的接地性能。
二、试验标准
绝缘电阻:避雷器的绝缘电阻应不低于2500MΩ(10kV及以上),不低于1000MΩ(10kV及以下)。
直流1mA电压及0.75U1mA下的泄漏电流:上节U1mA实测值与初始值或制造厂规定值比较,变化不应大于5%;0.75U1mA下的泄漏电流不应大于50μA。
工频参考电压:根据出厂值判断测量。
底座对地绝缘电阻:根据实际情况自行规定。
在进行10kv避雷器试验时,应遵循以上项目和标准,以确保避雷器的性能和安全性。
同时,试验过程中应注意安全,避免发生意外事故。
避雷器试验数据
避雷器试验数据引言:避雷器是一种用于保护电力设备和电力系统的重要装置,通过引导和分散雷电过电压,保护电力设备免受雷击损害。
为了确保避雷器的有效性和可靠性,进行避雷器试验是必不可少的。
本文将详细介绍避雷器试验数据的相关内容,包括试验目的、试验方法、试验数据分析以及试验结果等。
一、试验目的避雷器试验的主要目的是评估避雷器的性能和可靠性,以确保其能够在雷击事件发生时有效地保护电力设备。
具体的试验目的包括:1. 评估避雷器的放电能力:通过试验,确定避雷器在不同电压和电流条件下的放电能力,以验证其能够有效地吸收和分散雷电过电压。
2. 评估避雷器的耐受能力:通过试验,确定避雷器在长时间高电压和高电流作用下的耐受能力,以验证其能够长期稳定地工作。
3. 评估避雷器的动作特性:通过试验,确定避雷器在雷电过电压作用下的动作特性,包括动作电压、动作时间等,以验证其能够在雷击事件发生时及时动作。
二、试验方法避雷器试验通常采用以下几种方法进行:1. 静态放电试验:在试验中,将避雷器置于特定的电压下,观察其是否发生放电现象。
可以通过改变电压的大小和持续时间,评估避雷器的放电能力。
2. 耐受能力试验:在试验中,将避雷器置于长时间高电压或高电流作用下,观察其是否能够稳定工作。
可以通过改变电压或电流的大小和持续时间,评估避雷器的耐受能力。
3. 动作特性试验:在试验中,通过给避雷器施加雷电过电压,观察其是否能够及时动作。
可以通过改变雷电过电压的大小和波形,评估避雷器的动作特性。
三、试验数据分析试验完成后,需要对试验数据进行详细的分析,以评估避雷器的性能和可靠性。
试验数据分析的主要内容包括:1. 放电能力分析:根据静态放电试验数据,计算避雷器的放电电压和放电电流,并绘制放电特性曲线。
通过分析曲线的斜率和拐点,评估避雷器的放电能力。
2. 耐受能力分析:根据耐受能力试验数据,计算避雷器在不同电压或电流下的工作时间,并绘制耐受能力曲线。
通过分析曲线的变化趋势,评估避雷器的耐受能力。
避雷器试验的注意事项
避雷器试验的注意事项
一、试验前检查
在进行避雷器试验之前,应先进行详细的检查,确保试验的安全和准确性。
检查的内容包括:
1.避雷器的外观是否有明显的损坏或异常,如破裂、变形等;
2.避雷器的连接部分是否紧固,无松动;
3.试验仪器和设备是否完好,无故障;
4.试验场地是否安全,无妨碍试验进行的障碍物。
二、试验中操作
在试验过程中,应严格按照操作规程进行,确保试验的准确性和安全性。
具体注意事项如下:
1.正确连接试验线路,确保仪器和设备的连接无误;
2.严格按照试验程序进行操作,避免因操作不当导致设备损坏或人员伤亡;
3.在进行交流耐压试验时,应缓慢升压,避免电流过大导致设备损坏;
4.在进行泄露电流试验时,应正确读取数据,避免误差过大影响试验结果。
三、试验后处理
试验结束后,应进行妥善处理,避免对环境和设备造成损害。
具体注意事项如下:
1.断开试验线路,关闭试验电源;
2.对试验场地进行清理,确保无杂物妨碍其他设备的正常运行;
3.对试验设备和仪器进行检查和维护,确保其完好无损;
4.将试验数据整理归档,以便日后查阅和分析。
四、安全注意事项
在进行避雷器试验时,必须严格遵守安全规定,确保人员和设备的安全。
具体注意事项如下:
1.操作人员必须经过专业培训,熟悉试验设备和仪器的使用方法;
2.操作人员必须佩戴安全防护用品,如绝缘手套、绝缘鞋等;
3.在进行高压试验时,应设置安全警示标志和隔离措施,避免非操作人员进
入试验区域;。
高电压防雷设备测试—避雷器试验
生35kV接地故障。
(2)检修人员在检查、解剖故障电缆时发现。该电缆接线端至接地线间(内部)有一
道烧伤痕迹。根据电缆烧痕及现状分析,电缆在做电缆头时因热缩电缆头收缩不
均,而遗留纵向间隙,经长期雨淋进入雨水或浸入潮气,使绝缘电阻下降,电缆
电流的导线应使用屏蔽线(3)升压, 始值或制造厂规定值
在直流泄漏电流超过200μA时,此
比较,变化不大于
±5%(3)75%U
时电压升高一点,电流将会急剧增
1mA下
大,此时应放慢升压速度,在电流
的泄漏电流不大于
50μA
达到1mA时,读取电压值Ua后,降
压至零(4)计算0.75倍U值(5)升
压至0.75 UIav 电压,测量泄漏电流
(5)厂家偷工减料等
避雷器耐压试验规程及案例
01
氧化锌避雷器的原理及耐压试验的定义
氧化锌避雷器的原理
氧化锌ZnO避雷器主要由氧化锌压敏电阻构成。
在正常的工作电压下,压敏电阻值很大,相当于绝缘状态;在过电压作用下,压敏电阻
呈低值被击穿,相当于短路状态。
然而压敏电阻被击状态,是可以恢复的;当高于压敏电压的电压撤销后,它又恢复了高
75%1 电流均超过规程规定的要求值50。解体检查,
避雷器三相上街的瓷套内部无明显异常。同年6月底,在例行
试验时也发现了该站3号主变220KV避雷器存在类似情况。通
过对MOA阀片现场进行烘干后,重新试验,数据合格。因此
判断该避雷器数据异常的原因是避雷器内部整体受潮。
案例二在2016年8月,进行例行试验时发现该
不多时另-路35kV线路出现过流掉闸。事故发生后分别对两条35kV线路及相应变
避雷器试验
避雷器试验避雷器在制造过程中可能存在缺陷而未被检查出来,如在空气潮湿的时候或季节装配出厂,预先带进潮气;在运输过程中受损,内部瓷碗破裂,并联电阻震断,外部瓷套碰伤或者在运输中受潮,瓷套端部不平,滚压不严,密封橡胶垫圈老化变硬,瓷套裂纹以及并联电阻和阀片在运行中老化等。
这些劣化都可以通过预防性试验来发现,从而防止避雷器在运行中的误动作和爆炸等事故。
避雷器按结构分为保护间隙和管式避雷器、阀式避雷器(配电型FS、变电所型FZ)磁吹阀式避雷器和金属氧化物避雷器。
其中保护间隙和管式避雷器、磁吹阀式避雷器等均被慢慢淘汰,阀式避雷器稍有使用。
对与阀式避雷器的试验项目主要有两种情况:不带并联电阻的阀式避雷器主要试验项目有:绝缘电阻试验(用2500V兆欧表)、工频放电电压试验。
带并联电阻的阀式避雷器(包括FZ型,FCZ型和FCD型磁吹避雷器)试验主要试验项目有:绝缘电阻试验、工频放电电压试验和电导电流试验,其中电导电流试验可停电试验,也可带电进行测量。
相对来说,金属氧化物避雷器目前得到越来越广泛的应用,下面就主要介绍一下金属氧化物的有关情况。
一、金属氧化物避雷器简介金属氧化物避雷器(MOA)又称氧化锌避雷器,是一种与传统避雷器概念有很大不同的新型避雷器,从80年代中期开始,它已在电力系统推广应用并已批量生产。
它主要由氧化锌压敏电阻构成,每一块压敏电阻从制成时就有它的一定开关电压(叫压敏电压),在正常的工作电压下(即小于压敏电压)压敏电阻值很大,相当于绝缘状态,但在冲击电压作用下(大于压敏电压),压敏电阻呈低值被击穿,相当于短路状态。
然而压敏电阻的被击穿状态是可以恢复的;当高于压敏电压的电压撤销后,它又恢复了高阻状态。
因此,在电力线上如安装氧化锌避雷器后,当雷击时,雷电波的高电压使压敏电阻击穿,雷电流通过压敏电阻流入大地,使电源线上的电压控制在安全范围内,从而保护了电器设备的安全。
MOA与其他传统避雷器的区别在于:其他类型避雷器,从羊角间隙到FCZ磁吹式避雷器,其内部空气间隙起着十分重要的作用,在正常运行时靠间隙将阀片与电源隔开,出现过电压间隙才被击穿,阀片放电泄流。
避雷器带电试验原理
避雷器带电试验原理
避雷器带电试验原理是通过在额定电压下对避雷器进行带电试验,以验证其在正常工作电压下的性能和安全可靠性。
该试验一般分为以下几个步骤:
1. 准备工作:确保带电试验仪器设备正常运行,试验人员佩戴好个人防护装备。
2. 连接带电试验电路:将带电试验仪器与待测避雷器连接,确保连接准确无误。
3. 施加额定电压:根据避雷器规格和额定电压,使用带电试验仪器施加逐渐增加的电压,从起始电压开始逐步提高到额定电压。
4. 持续观察:在电压逐步升高的过程中,持续观察避雷器的电流和电压响应情况,并记录下来。
5. 注意安全:在试验过程中要注意避雷器本身是否有异常,如有任何异常现象或发热等情况,需要立即停止试验并进行检查。
6. 试验结束:当达到额定电压并持续一定时间后,关闭带电试验设备,将电压降为零,结束带电试验过程。
通过以上步骤,可以判断避雷器在正常工作电压下的绝缘性能、承受能力和响应速度等指标,以确保其安全可靠地运行于实际应用环境中。
避雷器试验报告
避雷器试验报告一、引言避雷器是一种用来保护电力设备、电力线路和建筑物等免受雷击和过电压侵害的重要装置。
为了确保避雷器的工作性能和可靠性,需要对其进行试验,以验证其符合设计要求和标准。
本次试验旨在对一种特定型号的避雷器进行性能评估和验证,并撰写试验报告,以供相关部门参考。
二、试验目的1.验证避雷器的过电压保护能力2.测试避雷器的放电电流和放电能力3.评估避雷器的使用寿命和可靠性三、试验方法本次试验采用以下方法进行:1.室内试验:在实验室中使用专用设备对避雷器进行试验,以验证其基本性能参数。
2.室外试验:将避雷器安装在实际工作环境中,通过模拟雷电击中和过电压情况,测试避雷器的实际工作效果。
四、试验过程与结果1.室内试验(1)耐压试验:将避雷器连接到高压源上,施加额定工作电压并保持一定时间后进行观察,确认其绝缘性能符合设计要求。
试验结果显示,避雷器通过了耐压试验。
(2)击穿电压试验:逐渐增加避雷器施加的电压,观察击穿电压点。
经测试发现,避雷器在额定电压下能够正常工作,并未发生击穿现象。
(3)放电电流试验:通过给避雷器施加脉冲电流或模拟雷电过电压,观察避雷器的放电电流,并检查其是否满足设计要求。
试验结果显示,避雷器的放电电流符合设计标准。
2.室外试验(1)避雷器安装验证试验:将避雷器安装到电力设备或建筑物上,通过模拟雷击和过电压情况,观察避雷器的工作状态和效果。
试验结果显示,避雷器能够快速放电,并将过电压引入地下,确保设备和建筑物的安全。
(2)工作寿命试验:将避雷器长时间暴露在室外环境中,模拟多次雷击和过电压情况,观察避雷器的工作状态和能力是否受到影响。
试验结果显示,避雷器的工作寿命符合设计预期,并能持续可靠工作。
五、结论根据上述试验过程和结果,得出以下结论:1.该型号避雷器通过了室内试验中的耐压试验、击穿电压试验和放电电流试验。
2.在室外试验中,避雷器工作正常,能够迅速放电并将过电压引入地下,保护设备和建筑物免受雷击和过电压侵害。
避雷器试验(共10张PPT)
直流高压试验器
面板细节
避 雷 器 以 及 搭 线
制作人:王平
下 节
下端
直
流
接地
高
压
发
生
器Байду номын сангаас
1000 uA指针电流表
直流发 试 验 接 线
• 直流发 配套仪器
1000 uA指针电流表 1就0把00那u一A指节针的电上流、表下端接摇表即可 1就0把00那u一A指节针的电上流、表下端接摇表即可 连直接流发直流试发验高接压线输出端 连下接端(直也流是发下高节压的输上出端端) 25000KVV直兆流欧发表((直电流动高或压手发摇生)器) 下25端00(V 也兆是欧下表节(的电上动端或)手摇) 直避流雷发 器 试摇 验绝 接缘 线接 线 就10把00那u一A指节针的电上流、表下端接摇表即可 1000 uA指针电流表 2100K0 VuA直指流针高电压流发表生器 1连0接00 直uA流指发针高电压流输表出端 1直0流00发uA试指验针电接流线表 1连0接00 直uA流指发针高电压流输表出端 1000 uA指针电流表 就 下把端那(一 也节 是的 下上 节、 的下 上端接)摇表即可
避雷器试验
所需试验仪器
• 2500V 兆欧表(电动或手摇) • 200KV直流发(直流高压发生器) • 1000 uA指针电流表
参考样板
避雷器 摇 绝 缘 接 线
• 摇哪一节绝缘电阻 就把那一节的上、下端接摇表即可
《避雷• 器避雷》器上端
连接 直流发 高压输出端
200KV
上 节
下端(也是下节的上端)
避雷器试验报告模板
避雷器试验报告模板一、试验背景避雷器是用于保护电力设备和系统免受雷击伤害的重要设备,通过将雷电流引入地下,使设备和系统的电气耐受能力不受影响。
为了确保避雷器的性能和可靠性,需要进行一系列试验来评估其工作状态和保护能力。
二、试验目的本次试验的目的是评估避雷器的放电过程、击穿电压和击穿电流等性能参数,以验证其符合国家标准和设计要求。
三、试验设备和方法1.试验设备:包括避雷器、高压发生器、电流电压计等。
2.试验方法:(1)放电过程试验:通过将高压发生器输出的直流电压施加在避雷器上,观察和记录其放电过程的时间、放电电压和放电电流。
(2)击穿电压试验:通过逐渐增加高压发生器的输出电压,直到避雷器发生击穿为止,记录其击穿电压。
(3)击穿电流试验:通过逐渐增加高压发生器的输出电流,直到避雷器发生击穿为止,记录其击穿电流。
四、试验结果和分析1.放电过程试验结果:根据试验数据,避雷器的放电过程平稳可靠,其放电电压和电流在规定范围内波动较小,达到了设计要求。
2.击穿电压试验结果:根据试验数据,避雷器的击穿电压为XXXkV,符合国家标准要求,并达到了设计要求。
3.击穿电流试验结果:根据试验数据,避雷器的击穿电流为XXXA,符合国家标准要求,并达到了设计要求。
五、试验结论根据以上试验结果和分析,可以得出以下结论:避雷器的放电过程平稳可靠,其放电电压和电流在规定范围内波动较小,达到了设计要求;避雷器的击穿电压和击穿电流符合国家标准要求,并达到了设计要求。
六、试验建议基于本次试验结果,提出以下试验建议:持续进行定期试验,以保证避雷器的可靠性和稳定性;观察和记录更多的放电过程数据,以供后续分析和改进。
七、试验总结本次试验验证了避雷器的放电过程、击穿电压和击穿电流等性能参数,证明其符合国家标准和设计要求。
避雷器作为保护电力设备和系统免受雷击伤害的重要设备,具有可靠性和稳定性,并能有效地引导和分散雷电流,保护设备和系统的安全运行。
10kv避雷器试验报告
10kv避雷器试验报告一、引言10KV避雷器是一种用于保护电力系统设备免受雷电过电压侵害的重要装置。
本次试验旨在对10KV避雷器的性能进行评估,并验证其在实际使用中的可靠性。
二、试验目的1.对10KV避雷器的基本参数进行测量和记录,包括额定电压、额定放电电流和残压。
2.对10KV避雷器在额定电压下进行放电试验,观察和记录其放电现象。
3.对10KV避雷器在重复放电试验中进行多次放电,以评估其耐受能力和性能稳定性。
4.对10KV避雷器的环境适应性进行测试,包括湿度、温度和污染等因素对其性能的影响。
三、试验装置和方法1.试验装置:使用标准的电力系统试验装置,包括高压电源、测量设备和数据记录仪等。
2.试验方法:a.将10KV避雷器连接至高压电源,并设置合适的试验电压。
b.测量和记录避雷器的额定电压、额定放电电流和残压。
c.连续进行多次放电试验,并记录每次放电的时刻和电流数值。
d.改变环境条件,如湿度、温度和污染等,并观察和记录避雷器的性能变化。
四、试验结果与分析1.基本参数测量结果:额定电压:10KV额定放电电流:5KA残压:≤2.5KV2.放电试验结果:在额定电压下进行放电试验,避雷器能够正常放电,放电电流稳定在额定放电电流值。
3.重复放电试验:连续进行多次放电试验,避雷器的性能保持稳定,放电电流及时切除并不会对避雷器造成损坏。
4.环境适应性测试:改变环境条件,并观察避雷器的性能变化。
在不同湿度、温度和污染环境下,避雷器的性能基本保持不变,仍能正常工作。
五、结论经过试验,我们可以得出以下结论:1.10KV避雷器的基本参数符合设计要求,具有良好的性能。
2.在额定电压下,10KV避雷器能够正常放电,放电电流稳定且不会对避雷器造成损坏。
3.10KV避雷器的重复放电试验结果表明其耐久性良好,能长期稳定工作。
4.10KV避雷器对不同环境条件具有较好的适应性,能在各种条件下正常工作。
六、建议基于本次试验结果,我们建议在实际应用中继续进行长期稳定性和环境适应性的监测和评估,以确保10KV避雷器的可靠性和性能稳定性。
避雷器试验(36页PPT)
二、接地装置的结构
接地装置是由接地体和接地引下线组成的,是埋设 于土壤中的一组金属导体。接地体是由n根垂直接地 极和n根水平接地极焊接为一体的组合电极,作成长 圆形或椭圆形网格状的接地网。在接地网上再焊接 出接地引下线(圆钢、扁钢或铜材)与电气设备的 外壳和架构相连接,称为接地装置。
一般水平接地极的埋设深度为0.6-0.8米;垂直接 地极的埋设深度是在水平接地体以下2.5米的深度 (接地规程要求),并与水平接地焊接牢固,
阀型避雷器的特点
• 当雷电电压作用在避雷器时,避雷器内间隙放 电,将雷电流泻放到大地(接地装置)散流。 • 雷电流泻放后工频电流引下来(称工频续流), • 在工频续流过零时电弧熄灭,避雷器完成一次 放电过程。它的特点是电压高时电阻小;
电压低时电阻大,主要是阀片非线性特 性决定的。类似于阀门一样。
阀型避雷器试验
用公式表示则为:U=CIa I--避雷器的电流 C-- 材料的常数,也和阀片的截面和高度有关; a--非线性系数,其值小于1,一般在0.2左右, a 愈小说明阀片的非线性程度愈高。(并联电阻的非线性 系数一般在0.3-0.5范围。 采用非线性电阻的另一个优点是阀片的伏安特性, 工频电压低时电阻大,冲击电压高时电阻小,很大的雷 电流I流过非线性电阻呈现很大的电导率,使避雷器上的 残压Uc不致过高。 当雷电流过去后,加在阀片电阻上的电压是工频电 压Ux时,非线性电阻变大,将工频续流Ix限制到很小的 数值,为工频续流过零时熄灭电弧创造条件,完成了一 次放电过程。非线性电阻像阀门一样,起着自动调节电 流的作用,这就是阀型避雷器的由来。
跨步电压和接触电压:
•
当地网中流过接地故障电流时(最大 31kA的短路电流),接地装置应将短路电流泻 放到大地土壤中散流时,在大地土壤中形成电 场分布,如图靠近短路电流最近的地点,电位 分布最大,如果人正在巡视时,人的两只脚步 之间的距离电位差,称为跨步电压。 • 在故障期间人正触摸接地引下线时,脚与 手之间的电位差,接触电压。
低压避雷器试验标准
低压避雷器试验标准一、绝缘电阻测试1. 目的:测试低压避雷器的绝缘性能,确保其电气性能稳定。
2. 方法:采用兆欧表对避雷器的绝缘电阻进行测量。
3. 要求:绝缘电阻值应大于等于规定值,以证明避雷器的绝缘性能良好。
二、直流参考电压试验1. 目的:测试低压避雷器的直流参考电压,确保其符合设计要求。
2. 方法:在规定的直流电压下,测量避雷器的泄漏电流。
3. 要求:泄漏电流应小于规定值,以证明避雷器的直流参考电压性能良好。
三、泄漏电流试验1. 目的:测试低压避雷器的泄漏电流,确保其符合设计要求。
2. 方法:在规定的交流电压下,测量避雷器的泄漏电流。
3. 要求:泄漏电流应小于规定值,以证明避雷器的泄漏电流性能良好。
四、工频参考电压试验1. 目的:测试低压避雷器的工频参考电压,确保其符合设计要求。
2. 方法:在规定的工频电压下,测量避雷器的泄漏电流。
3. 要求:泄漏电流应小于规定值,以证明避雷器的工频参考电压性能良好。
五、脉冲电流耐受能力试验1. 目的:测试低压避雷器对脉冲电流的耐受能力,确保其在使用过程中能够安全运行。
2. 方法:采用脉冲发生器对避雷器施加脉冲电流,观察其性能变化。
3. 要求:避雷器在脉冲电流作用下的性能稳定,无异常现象发生。
六、底座和连接件机械强度试验1. 目的:测试低压避雷器的底座和连接件的机械强度,确保其在使用过程中能够保持稳定。
2. 方法:采用拉力计对底座和连接件进行拉伸试验,观察其变形情况。
3. 要求:底座和连接件的变形量应小于规定值,以证明其机械强度良好。
七、温度升试验1. 目的:测试低压避雷器在不同温度下的性能变化,确保其在使用过程中能够适应环境温度的变化。
2. 方法:将避雷器置于不同的温度环境下,观察其性能变化。
3. 要求:避雷器在不同温度下的性能稳定,无异常现象发生。
八、泄漏电流干燥试验1. 目的:测试低压避雷器在干燥条件下的泄漏电流性能,确保其在使用过程中能够保持干燥状态。
避雷器试验报告
避雷器试验报告避雷器试验报告1. 概述本报告旨在对避雷器试验结果进行详细说明和分析,以确保避雷器在实际使用中能够有效地发挥作用,并保障设备和人员的安全。
2. 试验目的•验证避雷器的过流放电能力•测试避雷器的耐压性能•测量避雷器的泄漏电流以及响应时间3. 试验装置及参数•试验装置:模拟雷电冲击发生器、高电压发生器、放电电流测量装置•试验参数:放电电流、工频耐压电压、泄漏电流、响应时间等4. 试验过程过流放电能力试验•调整模拟雷电冲击发生器的放电电流参数•经过多次试验,记录避雷器的过流放电能力参数•结果显示,避雷器能够正常放电,保护外部设备免受雷击的影响耐压性能试验•使用高电压发生器施加工频耐压电压•观察避雷器是否发生击穿现象•试验结果表明,避雷器能够稳定地承受工频耐压电压,不发生电击穿现象泄漏电流和响应时间试验•通过放电电流测量装置测量避雷器的泄漏电流•对避雷器进行多次放电测试,记录其响应时间•实验数据显示,避雷器的泄漏电流极低,且响应时间迅速,保证了设备的安全性能5. 试验结果通过以上试验,我们得出以下结论: - 避雷器具备良好的过流放电能力,能保护外部设备免受雷击的影响 - 避雷器的耐压性能稳定可靠,能承受工频耐压电压 - 避雷器的泄漏电流极低,响应时间快速,有效保护设备的安全性能。
6. 结论根据试验结果,避雷器在各项指标上均达到设计要求,具备良好的保护性能。
因此,该避雷器适合在实际工程中使用,并可有效保障设备和人员的安全。
以上是对避雷器试验结果的详细报告,请相关部门对报告内容进行认真审查,并采取相应的措施以确保避雷器的运行效果和安全性能。
7. 建议事项基于对避雷器试验结果的分析,我们提出以下建议事项:•定期进行避雷器的维护和检测,确保其在长期使用过程中仍然具备良好的保护能力;•避雷器安装位置应合理选择,避免受到建筑物阴影、大树等遮挡物的影响;•相关人员应接受避雷器的使用培训,了解其工作原理和维护方法;•遇到特殊气象条件(如雷暴天气)时,加强对设备的检查和保护措施,确保避雷器的有效工作;•避雷器的运行数据需要定期记录和分析,以便对其性能进行监测和改进。
避雷器试验报告范文
避雷器试验报告范文一、实验目的本次实验旨在对避雷器进行测试,检测其性能指标以及其在雷击过程中的作用。
二、实验器材与装置1.避雷器:选取一种常用的避雷器进行试验。
2.避雷器测试仪:用于对避雷器进行测试,并记录测试数据。
三、实验步骤1.准备工作:将避雷器连接好,并保证电气接口符合要求。
2.避雷器自检:打开避雷器测试仪,进行自检,确保测试仪正常工作。
3.避雷器放电特性试验:将避雷器接通正常工作电源,进行放电特性试验。
在一定时间间隔内,通过不同电流和电压对避雷器进行测试,记录相关数据。
4.雷击电流阈值测试:通过模拟雷击电流对避雷器进行测试,找到避雷器的雷击电流阈值,并记录。
5.逆变特性测试:在一定时间间隔内,通过逆变电压对避雷器进行测试,记录逆变时间和逆变电流。
四、实验结果分析1.避雷器放电特性试验结果显示,避雷器在不同电流和电压下均能正常放电,并且放电时间短,放电电流大,符合相关的规范要求。
2.雷击电流阈值测试显示,避雷器的雷击电流阈值为XXA,可承受较大的雷击电流。
3.逆变特性测试结果显示,避雷器在逆变电压下能迅速逆变,逆变时间短,逆变电流小,符合相关的规范要求。
五、实验结论通过对避雷器的测试可以得出以下结论:1.避雷器的放电特性良好,能有效地将雷击电流引入地下,保护设备和构筑物的安全。
2.避雷器的雷击电流阈值较高,能承受较大的雷电冲击。
3.避雷器的逆变特性良好,能迅速逆变并分散逆变电流,避免电流过大对设备的损坏。
六、实验存在问题与改进措施1.实验过程中,需要更加精确的测试仪器来获取更准确的数据。
2.后续可以对避雷器的寿命进行测试,以验证其长期可靠性。
3.可以增加对避雷器的耐压测试,以验证其在高电压环境下的安全性能。
七、实验总结通过本次实验,对避雷器进行了综合性能测试,并得出了一些结论。
在今后的工程实践中,将会更加重视避雷器的选用和性能测试,以确保电气设备和构筑物的安全。
10kv避雷器耐压试验标准
10kv避雷器耐压试验标准
根据相关标准,10kv避雷器耐压试验通常包括以下几个方面:
1. 额定电压测试:将10kv避雷器连接到测试电源,逐渐增加电压至额定电压水平,并保持一段时间。
2.直流1mA下电压及75%该电压下泄漏电流的测量:该项试验有利于检查氧化锌避雷器直流参考电压及氧化锌避雷器在正常运行中的荷电率,对确定阀片片数,判断额定电压选择是否合理及老化状态都有十分重要的作用。
3.运行电压下交流泄漏电流及阻性分量的测量:判断氧化锌避雷器是否发生老化或受潮,通常以观察正常运行额定电压下流过氧化锌避雷器阻性电流的变化,即观察阻性泄漏电流是否增大作为判断依据。
4.全绝缘试验电压: 二次绕组试验电压2kV(可用2500V兆欧表1min代替合格标准:耐压试验期间,不应发生放电和击穿现象。
避雷器试验
避雷器试验避雷器试验一.实验目的:了解阀型避雷器的种类、型号、规格、工作原理及不同种类避雷器的结构和适用范围,掌握阀型避雷器电气预防性试验的项目、具体内容、试验标准及试验方法。
二.实验项目:1.FS-10型避雷器试验(1).绝缘电阻检查(2).工频放电电压测试2.FZ-15型避雷器试验(1).绝缘电阻检查(2).泄漏电流及非线性系数的测试三.实验说明:阀型避雷器分普通型和磁吹型两类,普通型又分FS型(配电型)和FZ型(站用型)两种。
它们的作用过程都是在雷电波入侵时击穿火花间隙,通过阀片(非线性电阻)泄导雷电流并限制残压值,在雷电过后又通过阀片减小工频续流并通过火花间隙的自然熄弧能力在工频续流第一次过零时切断之,避雷器实际工作时的通流时间≯10ms(半个工频周期)。
FS型避雷器的结构最简单,如图4-1所示,由火花间隙和非线性电阻(阀片)串联组成。
FZ型避雷器的结构特点是在火花间隙上并联有均压电阻(也为非线性电阻),如图4-2所示,增设均压电阻是为了提高避雷器的保护性能,因为多个火花间隙串联后将引起间隙上工频电压分布不均,并随外瓷套电压分布而变化,从而引起避雷器间隙恢复电压的不均匀及不稳定,降低避雷器熄弧能力,同时其工频放电电压也将下降和不稳定。
加上均压电阻后,工频电压将按电阻分布,从而大大改善间隙工频电压的分布均匀度,提高避雷器的保护性能。
非线性电阻的伏安特性式为:U=CIα,其中C 为材料系数,α即为非线性系数(普通型阀片的α≈0.2、磁吹型阀片的α≈0.24、FZ型避雷器因均压电阻的影响,其整体α≈0.35~0.45),其伏安特性曲线如图4-3所示。
可见流过非线性电阻的电流越大,其阻值越小,反之其阻值越大,这种特性对避雷器泄导雷电流并限制残压,减小并切断工频续流都很有利。
另外,FS型避雷器的工作电压较低(≤10kv),而FZ型避雷器工作电压可做到220kv。
FZ型避雷器中的非线性电阻(均压电阻和阀片)的热容量较FS型为大,因其工作时要长期流过工频漏电流(很小、微安级)。
避雷器交接试验项目及标准
避雷器交接试验项目及标准
一、绝缘电阻测试
目的:检测避雷器电气性能是否正常,以及是否存在内部缺陷。
标准:避雷器的绝缘电阻应不小于2500MΩ。
二、直流参考电压测试
目的:评估避雷器的保护性能。
标准:在直流参考电流下,避雷器的直流参考电压应不低于规定的值。
三、泄漏电流测试
目的:检测避雷器在正常工作电压下的电流泄漏情况。
标准:避雷器的泄漏电流应不大于规定值。
四、工频放电电压测试
目的:确定避雷器在工频电压下的放电性能。
标准:在工频电压下,避雷器的放电电压应不高于规定的值。
五、雷电冲击放电电压测试
目的:评估避雷器在雷电冲击下的保护性能。
标准:避雷器的雷电冲击放电电压应不低于规定的值。
六、操作冲击放电电压测试
目的:确定避雷器在操作过电压下的保护性能。
标准:避雷器的操作冲击放电电压应不低于规定的值。
七、绝缘件耐压测试
目的:检验避雷器内部绝缘件的电气强度。
标准:绝缘件应能承受规定的耐压试验而不发生击穿或闪络现象。
八、环境适应性测试
目的:检验避雷器在不同环境条件下的性能稳定性。
标准:避雷器应能在规定的温度、湿度、气压等环境条件下正常工作,无异常现象发生。
避雷器试验报告范文
避雷器试验报告范文一、试验目的本次试验的目的是为了验证避雷器在发生雷电过电压时的放电能力以及其是否满足相关国家标准的要求。
二、试验准备1.设备准备:本次试验所需的设备包括避雷器、电源、安全工具等。
2.场地准备:试验场地应具备良好的通风环境,并配备相应的电源、安全措施。
3.人员准备:试验人员应对试验的目的、流程和安全注意事项进行充分了解,并配备必要的安全防护装备。
三、试验过程1.试验前的准备工作(1)检查避雷器是否有损坏,如无损坏则可进行试验。
(2)根据所需电压设置电源电压,并确保电源正常运行。
2.试验步骤(1)连接避雷器与电源:将避雷器与电源连接,确保连接牢固、接触良好。
(2)开启电源:开启电源,将电源电压调至所需设置。
(3)观察避雷器放电情况:在电源加压的过程中,观察避雷器是否能够及时地放电,并将过电压通过地线排除。
(4)记录数据:记录避雷器的放电电压和放电时间等相关数据。
四、试验结果及分析根据试验数据的统计和分析,得到以下结论:1.避雷器能够在电压过高时及时地放电,将过电压通过地线排除,有效实现了防雷保护的功能。
2.避雷器的放电电压和放电时间等技术指标符合相关国家标准的要求。
五、结论与建议通过本次试验,证明了避雷器的设计和制造质量符合相关标准的要求,具备较好的防雷保护能力。
本报告认为,在安装和使用避雷器时,应严格遵守相关的规范和标准,确保设备及系统的安全可靠性,避免雷击事故的发生。
六、安全措施为确保试验过程的安全性,本次试验采取了以下安全措施:1.试验人员应穿戴符合规定的安全防护装备,确保自身的人身安全。
2.试验前应对试验设备和试验场地进行全面的安全检查,确保设备的正常运行和场地的安全性。
3.在试验过程中,应有专人负责观察和记录试验数据,确保设备的正常运行。
4.试验结束后,应及时关闭电源,撤离现场,并对设备进行清理和检查,确保设备的良好状态。
2.DL/T1508-2024高压变电设备避雷器试验导则以上为本次试验的报告,通过对避雷器的放电能力进行测试,确保其符合相关的标准和要求,从而提供有效的防雷保护措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、电导电流的测定及检查串联组合 元件的非线性系数差值
• 每年雷雨季节前或在避雷器解体大修后 进行此项实验。
• 同一相内串联组合元件的非线性系数差 值,不应大于0﹒05;电导电流相差值不 应大于30%。
• 仅对有并联电阻的阀型避雷器进行此项 试验。如:FZ、FCZ、FCD
FS型避雷器的电导电流值
FZ型避雷器的电导电流值和工 频放电电压
FCZ型避雷器的电导电流值和 工频放电电压
FCD避雷器电导电流值
测量阀型避雷器电导电流试验接线图
三、测量工频放电电压
• FS型避雷器工频放电电压范围
• FCD型避雷器工频放电电压范围
氧化锌避雷器的型号说明
氧化锌避雷器试验
一、测量绝缘电阻
测量氧化锌避雷器的绝缘电阻,可以初步了解其内部 是否受潮,还可以检查低压氧化锌内部熔丝是否断掉, 从而及时发现缺陷。
35千伏及以下 2500伏兆欧表 阻值不低于10000兆欧 35千伏以上 5000伏兆欧表 阻值不低于30000兆欧
二、测量直流1MA时的临界动作电压u1MA
大气过电压:由直击雷或雷电感应突然
加到电力系统中,使电气设备所承受的 电压远远超过其额定值。分为直击雷过 电压和感应雷过电压。电力系统遭受大 气过电压后,可使输配电线路及电气设 备的绝缘发生击穿或闪络,造成停电以 致危害人的生命安全。特点是持续时间 短暂,冲击性强,与雷击活动强度有直接关 系,与设备电压等级无关。
• 中的操作过电压,对绝缘是有危害的,所以需 要用无间隙金属氧化物避雷器进行保护。(炭 化硅避雷器不能保护操作过电压,只能保护雷 电过电压,因为雷电过电压时间短微秒级,操 作过电压是毫秒级,时间长、能量大,磁吹避 雷器也可以保护操作过电压。)
• 无间隙金属氧化物避雷器保护的特点是:系统 出现的各种过电压只要超过氧化锌避雷器的起 始动作电压(拐点电压是工频参考电压),避 雷器就动作,将雷电冲击或操作冲击的电压幅 值限制在设备绝缘耐受的水平。
FS避雷器试验
• FS避雷器没有并联电阻做工频放电电压 试验实验接线图如下,有并联电阻的只 能在解体大修时才测量工频放电电压
• 四、在对避雷器解体大修后,应检查密 封情况。
管型避雷器检查
一、测量灭弧管内径 二、检查灭弧管内部间隙 三、检查开口端的星型电极齿孔 四、检查灭弧管及外部漆层 五、检查灭弧管两端连接 六、检查排气 七、检查外部间隙
避雷器试验
—、避雷器的作用 二、避雷器的型式、基本结构
三、避雷器在运行中的预防性试验
一、避雷器的作用
避雷器主要用来保护电器设备免遭 雷电过电压的损坏。当大气过电压 出现时,它就发生放电,将过电压 限制在一定的数值内,以保护电气 设备。当过电压消失后,避雷器能 迅速可靠的灭弧,自动将工频续流 截断,恢复到电网的正常运行状态。
主要是检查避雷器阀片是否受潮,确定其动作性能能是 否符合要求
测量中应注意的问题
(1)准确读取U1MA。因为泄露电流大于200微 安以后,随电压的升高,电流急剧增大,故应 仔细的升压,当电流达到1毫安时,准确地读取 相应的电压值U1MA。 (2)防止表面泄露电流的影响。测量前应将瓷 套表面擦拭干净。
。
阀型避雷器的预试周期为一年。试验项目及分类
氧化锌避雷器的预试周期为一年。 氧化锌避雷器的试验项目及分类
阀型避雷器试验
普阀型避雷器试验项目:
一、绝缘电阻测试(2500伏摇表) FS型交接时大于2500兆欧,运行中大于2000兆欧
FZ、FCD、FCZ没有明确标准,但与前一次或 同一型式的测量数据相比,应没有显著变化。
氧化锌避雷器的基本结构是阀片,以氧化锌为主要成分, 具有优良的非线性和大的通流容量。氧化锌阀片在运行电 压下呈绝缘状态,通过的电流很小(一般为10~15μA)当 阀片承受电压升高,电流也随之增加,达到1mA时,则认 为它开始动作,此时的电压称为起始动作电压,用U1mA 表示,氧化锌避雷器限制过电压的作用就是由此开始,随 后逐渐加强。 氧化锌避雷器具有下列优点: (1)无间隙。对波头陡的冲击波能迅速响应,放电无延 迟,限制过电压效果很好,即提高了对电力设备保护的可 能性,又降低了作用于电力设备上的过电压,从而降低电 力设备的绝缘水平。 (2)无续流。由于无续流,使动做后通过的能量很小, 对重复雷击等短时间可能重复发生的过电压保护特别适用
氧化锌避雷器的伏安特性曲线
氧化锌避雷器特性参数
• 1、持续运行电压(kV)有效值; • 2、氧化锌避雷器额定电压(kV)有效值
。 • 3、雷电冲击残压(kV)峰值; • 4、工频参考电流(mA)峰值; • 5、工频参考电压(kV)有效值; • 6、 1mA直流参考电压(kV)和
75%U1 mA下的泄漏电流。
• 防止大气过电压,通常采取装设避雷针、 避雷线、避雷器,合理提高线路绝缘水 平,采用自动重合闸装置等措施。
二、避雷器的型式、基本结构、工作原理
避雷器的型式:管型避雷器 阀型避雷器:配电型FS、变电站型FZ、磁吹 型阀式避雷器FCZ、保护旋转电机的FCD 金属氧化物避雷器(Zn0)Y5W-100/260 从结构看:普通阀型避雷器是由串联间隙、并 联电阻和阀片电阻组装在密封的瓷套内,应有良 好的密封。 阀型避雷器的放电电压由火化间隙决定的。续 流由阀片和间隙的弧道决定的。阀型避雷器的冲 击放电电压和残压是它的两个重要指标
管型避雷器有内外间隙串联组成。内间隙装在有产气材料组成的 灭弧管内,外间隙装于灭弧管的接地地端与带电导体之间。灭弧 能力是由通过避雷器的电流大小决定的。上限电流由灭弧管的管 径及其机械强度来决定。下限电流由灭弧管的内径和产期能力来 决定。 管型避雷器切断电流的选择,应使切断电流的上限大于使用地点 的最大短路电流,应使切断电流的下限小于使用处的最小短路电 流。当在管型避雷器的内外间隙配合适当的条件下,有高于被保 护设备绝缘水平的雷电波侵入时,管型避雷器立即动作,将雷电 流泄入大地,起到限制过电压的作用,从而使被保护的设备免遭 过电压的损害。
金属氧化物避雷器(zNo)
• 金属氧化物避雷器一般是无间隙的,内部 结构是由金属氧化物阀片电阻以串联和并联的 方式,组装在密封的纯瓷套中或硅橡胶的外绝 缘瓷套。串联是指阀片串成一个圆柱体型,放 在瓷套内,顶部和低部用弹簧压紧阀片不能松 动(不能偏离圆柱体)。如果放电容量很大, 需要进行双柱或多柱阀片并联使用,并联多柱 的阀片必须进行多柱的搭接,使其每柱阀片流 过的电流均匀。多柱阀片的避雷器大部分使用 在电压等级较高的系统中,因为在超高压系统
(3)气温的影响。温度每增高10度,U1MA约 降低1%。 U1MA与初始值比较,变化应不大于±5%。
三、测量0.75U1mA直流电压下的泄露电流
由于0.75U1mA直流电压值一般比最大工作相电压 峰值要高一些,因此,测量此电压下的泄露电流 主要是检查长期允许工作电流是否符合规定,一 般在同一温度下,此电流与寿命成反比。 规定0.75U1mA下的泄露电流值应不大于50微安。
TBP型过电压保护器
由四组放电间隙-氧化锌非线性电 阻组成。四组结构 对称,可以选任意3个分别接入A、B、C三相,另一 个接地。
主要用于保护变压器、开关、母线、和 电动机,可限制大气压过电压及各种真 空开关引起的操作过电压,对相间和相 对地的过电压均能起到可靠地限制作用 。
•
阀型避雷器的特点接地装置)散流。
• 雷电流泻放后工频电流引下来(称工频续流), • 在工频续流过零时电弧熄灭,避雷器完成一次
放电过程。它的特点是电压高时电阻小; 电压低时电阻大,主要是阀片非线性特 性决定的。类似于阀门一样。