2012年全新中考数学模拟试题二
2012年中考第二次模拟试卷数学试题及答案
11.若分式
2
| x | 1 的值为零,则 x 的值等于 x 1
.
12.方程 x =x 的解是
1 2
B.
1 2
C. 2
D.2 ( D.x≤4 ( ) )
13.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量 较稳定的是棉农 .(填“甲”或“乙”) 棉农甲 棉农乙 14.若 x 1 68 69 70 71 72 71 69 69 71 70
21.(本题满分 8 分) 已知:如图,在平行四边形 ABCD 中,E 是 CA 延长线上的点,F 是 AC 延长线上的点,且 AE=CF.试判断 BE 与 DF 之间有何关系,并说明理由.
E A D
24. (本题满分 10 分)如图,线段 AB 的端点在边长为 1 的 小正方形网格的格点上,现将线段 AB 绕点 A 按逆时 针方向旋转 90° 得到线段 AC. ⑴请你在所给的网格中画出线段 及点 经过的路径 ; ..AC . . ..B . ..... ⑵若将此网格放在一平面直角坐标系中,已知点 A 的坐 标为(1,3),点 B 的坐标为(-2,-1),则点 C 的坐标 为 域的面积为 ; ; .
第 24 题
⑶线段 AB 在旋转到线段 AC 的过程中,线段 AB 扫过的区 ⑷若有一张与⑶中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何 体底面圆的半径长为 25.(本题满分 10 分) 如图,在△ ABC 中,AB=AC,∠B=30° ,O 是 BC 上一点,以点 O 为圆心,OB 长为半径作圆,恰好经过点 A,并与 BC 交于点 D. (1)判断直线 CA 与⊙O 的位置关系,并说明理由; (2)若 AB=2 3 ,求图中阴影部分的面积(结果保留 π) . C
2012年广东省中考数学全真模拟试题(二)及答案
2012年广东省中考全真模拟试题(二)数学试卷学校:__________班别:__________姓名:__________分数:____________一.选择题(本大题共5小题,每小题3分,共15分):在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在题目后面的括号内。
1.在4-,-π,2-,2四个数中,最小的无理数是( ) A .4- B .-π C .2- D .2 2.函数12y x =+的自变量x 的取值范围是( ) A . 2x >-B . 2x <-C .2x ≠-D . 2x ≥-3.空气的体积质量是0.001239/厘米3,此数保留三个有效数字的近似数用科学记数法表示为( )A.1.239×10-3B.1.23×10-3C.1.24×10-3D.1.24×1034.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于 ( )A .2cmB .4cmC .6cmD .8cm5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积是( )A .6B .8C .12D .24二.填空题(本大题共5小题,每小题4分,共20分) :请把下列各题的正确答案填写在横线上。
6.因式分解:a ab 252-= .7.据某地气象部门2010年5月8日7时30分发布的天气预报,我国内地31个城市5月9日的最高气温(℃)统计如下表:1那么这些城市5月9日的最高气温的中位数和众数分别是 和 8.如图,已知AD AB =,DAC BAE ∠=∠,要使AB CDEA可).9=_________. 10.如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形 ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1s 为1,按上述方法所作的正方形的面积依次为2s ,3s …n s (n 为正整数),那么第8个正方形的面积8s = .三.解答题(本大题共5小题,每小题6分,共30分)11.已知二次函数215222y x x =+-, 12.先化简,后求值:()2111211x x x ⎛⎫+÷-- ⎪--⎝⎭, 求其顶点坐标及它与y 轴的交点坐标.其中x =13.如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆分别交AD 、BC 于F 、G,•延长B A 交圆于E.求证:EF=FG .14.四张质地相同的卡片如图所示. 将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率; (2)小贝和小晶想用以上四张卡片做游戏,游戏规则 见信息图.你认为这个游戏公平吗?请用列表法或画 树状图法说明理由,若认为不公平,请你修改规则, 使游戏变得公平.2362成绩(分)15.△ABC 在平面直角坐标系中的位置如图所示. (1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标;(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;(3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.四.解答题(本大题共4小题,每小题7分,共28分)16.某市七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:频 率 分 布 表请你根据不完整的频率分布表,解答下列问题: (1)补全频率分布表和频数分布直方图;(2)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”,这次15000名学生中约有多少人评为“D ”?(3)以(2)的等级为标准,如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A ”、17.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB , OB 交⊙O 于点D ,已知6OA OB ==,AB = (1)求⊙O 的半径;(2)求图中阴影部分的面积.18.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,求点B 的坐标.19.课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在A 处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为15,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30,求旗杆EG 的高度.23米C OABD五.解答题(本大题共3小题,每小题9分,共27分)20.(1)观察与发现小明将三角形纸片ABC(AB>AC),沿过点A的直线折叠,便得AC落在AB边上,折痕为AD,展开纸片(如图①),再次折叠该三角形纸片,使点A与点D重合,折痕为EF,展开纸片后得到△AEF(如图②),小明认为△AEF为等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③),再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④),再展开纸片(如图⑤),求图中∠α的大小.21.2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011年》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.22.如图,在梯形ABCD 中,A D ∥BC,BC=4,点M 是AD 的中点,MBC △是等边三角形. (1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中当y 取最小值时,判断PQC △的形状,并说明理由.ADCBP MQ60°。
2012数学中考模拟试卷2.
2012中考数学模拟试卷2考生须知:本科目试卷分试题卷和答题卷两部分 满分 分 考试时间 分钟答题前 必须在答题卷的密封区内填写姓名与准考证号所有答案都必须做在答题卷标定的位置上 务必注意试题序号和答题序号相对应考试结束后 只需上交答题卷试 题 卷一.仔细选一选☎本题有 个小题,每小题 分,共 分✆下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. .4-的算术平方根是 ☎ ✆ ✌ - .下列运算正确是( )✌.222()a b a b +=+ .325a a a ⋅=.632a a a ÷= .235a b ab += .把2y x =的图象向右平移两个单位,再向下平移一个单位得到的函数关系式是( )✌.2(2)1y x =+- .2(2)1y x =-- .2(2)1y x =++ .2(2)1y x =-+.若一个图形绕着一个定点旋转一个角α(0180α<≤)后能够与原来的图形重合,那 么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转 (如图),能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形的个数是( )输入x 2x ≤输出y22y x =-5y x=是 否第 题✌. . . ..如图,是一条高速公路隧道的横截面,若它的形状是以 为圆心的圆的一部分,圆的半径 ✌ 米,高 米,则路面宽✌ ( ) ✌. 米 . 米 . 米 . 米.如图是某几何体的三视图及相关数据,则下列判断正 确的是( )✌.a c > .b c >.2224a b c += .222a b c += .如图,将一个 ♦ ✌形状的楔子从木桩的底端点沿水平方向打入木桩底下,使木桩向上运动 已知楔子斜面的倾斜角为 ,若楔子沿水平方向前进 ♍❍(如箭头所示),则木桩上升了( )♍❍✌. ♦♓⏹ . ♍☐♦. ♦♋⏹ .5tan 20 如图,要使输入的x 值与输出的y 值相等,则这样的x 值有( ) ✌. 个 . 个 . 个 . 个 .如图, ☜是 ✌的中位线,☞是 ☜的中点, ☞的延长线交✌ 于点☝,则✌☝:☝等于( )✌. . . . 第 题✌第 题第 题✌♌♍主视图左视图第 题俯视图1B3A2B4A3B4BO✌第 题.如图,✌, , , 为圆 的四等分点,动点 从圆心 出发,沿 路线作匀速运动,设运动时间为⌧(♦). ✌ ⍓( ),右图函数图象表示⍓与⌧之间函数关系,则点 的横坐标应为( )✌. .2π.12π+二.认真填一填☎本题有 个小题 每小题 分 共 分✆要注意认真看清题目的条件和要填写的内容 尽量完整地填写答案.甲、乙两人进行射击比赛,在相同条件下各射击 次,他们的平均成绩均为环, 次射击成绩的方差分别是:2 1.5S =甲,21.2S =乙,那么,射击成绩较为稳定的是 .(填❽甲❾或❽乙❾)如图,直线12l l ∥,AB CD ⊥,135∠=,那么2∠的 度数是 ..一只口袋中有 只红球和 个白球,它们除颜色外,无其它差 别 现从袋中任意摸出一个球,则摸到红球的概率是.有一个二次函数的图象,三位学生分别说出了它的一些特点。
12年中考模拟数学试题2
2012年中考模拟试题数 学 试 题(考试时间:120分钟 满分:120分)命题人:马垅中学 王 进一、选择题(每小题3分,共24分)1.-3的相反数是( ) A.-3 B.3 C.31 D. 31- 2.下列运算正确的的是( )A. 223=-x xB. 624x x x =+ C. 336)2(x x -=- D. y x y y x 626=÷3.我国第六次人口普查显示,全国总人口为1370536875人,将这总人口数(保留四个有效数字)用科学记数法表示为( )A.910370.1⨯ B. 910371.1⨯ C. 910375.1⨯ D. 910376.1⨯ 4.方程)1(2)1(+=+x x x 的根为( )A. 2=xB.1-=xC. 2,121=-=x xD. 2,121-=-=x x5.如图,在矩形ABCD 中,对角线AC,BD 相交于点O ,∠AOB=60°,AB=6,则AD=( ) A. 33 B.12 C. 36 D. 346.如图,点D,E,F 分别是△ABC(AB >AC)各边中点,下列说法不正确的是( )A. AD 平分∠BACB.EF 与AD 相互平分C. 2EF=BCD. △DEF 是△ABC 的位似图形7.相交两圆的公共弦长为8,两圆半径分别为5和6,则圆心距为( ) A. 352+ B.352- C.352± D. 53±8.如图,图象描述了某汽车在行驶过程中速度与时间的函数关系,下列说法不正确的是( ) A.第6分钟时,汽车的速度为40千米/时 B.第12分钟时,汽车的速度为0千米/时C.从第9分钟到第12分钟,汽车从60千米/时减少到0千米/时D.从第3分钟到第6分钟,汽车行驶了120千米二、填空题(每小题3分,共24分)9. 41-的倒数为 .10.分解因式:x x x +-232= .11.若8,2022==+xy y x ,则=+y x.DA BCDEF12.化简分式:=---21442x x . 13.如图,已知在△ABC 中,DE ∥BC ,AD=3,BD=5,BC=16,则DE= . 14.圆锥的母线长与底面直径均为6,则圆锥的侧面展开图的圆心角为 度.15.如图,点P 为弦AB 上的一点,连接OP,过点P 作PC ⊥OP,PC 交⊙O 于C ,若AP=9,BP=4,则PC= .16.如图,直线y x b =+与y 轴交于点A ,与双曲线y =第一象限交于M 、N 两点,且AM ·AN=4,则k = .三、解答题(本大题共72分)17.(本题满分5分)解方程组27261x y x y -=⎧⎨-=-⎩18.(本题满分6分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)求该班共有多少名学生?(2)在图(1)中,将表示“步行”的部分补充完整;(3)在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数; (4)如果全年级共600名同学,请你估算全年级步行上学的学生人数?A B C DE25 20 15 乘车 步行 骑车 上学方式图⑴ 图⑵19.(本题满分6分)已知如图在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线。
2012年全新中考数学模拟试题(二)及答案
2012年全新中考数学模拟试题二一、选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是 【 】 A. 21-B. 21C. -2D. 22.2010年8月7日,甘南藏族自治州舟曲县发生特大山洪泥石流地质灾害,造成重大的经济损失。
就房屋财产损失而言,总面积超过4.7万平方米,经济损失高达212000000元人民币。
212000000用科学记数法应记为 【 】 A. 72.1210⨯ B. 82.1210⨯ C. 92.1210⨯ D. 90.21210⨯3. 下列运算正确的是 【 】 A .22a a a =⋅ B .33()ab ab = C .632)(a a = D .5210a a a=÷4.如图,直线l 1∥l 2,则α为 【 】A .150°B .140°C .130°D .120°5.二元一次方程组20x y x y +=⎧⎨-=⎩的解是 【 】A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩6.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边 OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为 (6-,4),则△AOC 的面积为 【 】 A .12 B .9 C .6 D .47.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足22(20)1558y x =--+,由于某种原因,价格只能15≤x ≤22,那么一周可获得最大利润是 【 】 A .20. B. 1508 C. 1550 D. 15588.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的 【 】第4题 第6题A. B. C. D.二、填空题 (本大题共8小题,每小题3分,共24分) 9.计算818-的结果是 。
2012年中考模拟考试数学试卷(含答案)
2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。
2012年中考数学模拟试卷(2)及答案.doc
OABC112题图2012年中考数学模拟试卷二一、选择题(本题有10小题,每小题3分,共30分)1. 3的倒数是( )A .13B .— 13C .3D .—32.如图所示的物体的主视图是( )3.下列计算正确的是( )A .2a +3b =5abB .x 2·x 3=x 6C .123=-a aD .()632a a=4.浙江在线杭州2012年1月8日讯:预计今年整个春运期间铁路杭州站将发送旅客342.78万人,与2011年春运同比增长4.7%。
用科学记数法表示342.78万正确的是( ) A .3.4278×107 B .3.4278×106 C .3.4278×105 D .3.4278×104 5.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( ) A.相交B.内切C.外切D.内含6.如图,直线l 1//l 2,则α为( )A .150°B .140°C .130°D .120° 7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 9.抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1) 10.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B.若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:ma+mb = . 12.如图,O 为直线AB 上一点,∠COB=30°,则∠1= . 13.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠AOD =50°,AD ∥OC ,则∠BOC = 度.14.三张完全相同的卡片上分别写有函数x y 2=、xy 3=、2x y =,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y 随x 的增大而增大的概率是 .15.如图,已知梯形ABCD 中,AD ∥BC ,BD 是对角线.添加下列条件之一:①AB =DC ;②BD 平分∠ABC ;③∠ABC =∠C ;④∠A +∠C =180°,能推得梯形ABCD 是等腰梯形的是 (填编号).16.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .BA图1 图2 图3三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)计算:()0|tan 45|122012π+-+o(2)当2x =-时,求22111x x x x ++++的值.18.(本题6分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)l 1l 2 50° 70° α 24y x = 12y x= ACD(第15题)19.(本题6分)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;20.(本题6分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆¼ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.21.(本题8分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(本题10分)产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销类别生产1千克成品茶叶所需鲜茶叶(千克)销售1千克成品茶叶所获利润(元)炒青 4 40毛尖 5 120(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?23.(本题10分)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.①若△DEF的面积为1000,当n为何值时,3<S n<4?(请用计算器进行探索,要求至少写出二次的尝试估算过程)②当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)BC A图甲24.(本题12分)已知:在矩形A0BC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.E 是边AC 上的一个动点(不与A ,C 重合),过E 点的反比例函数(0)ky k x=>的图象与BC 边交于点F .(1)若△OAE 、△OBF 的面积分别为S 1、S 2且S 1+S 2=2,求k 的值;(2)若OB=4,OA=3,记OEF ECF S S S =-△△问当点E 运动到什么位置时,S 有最大值,其最大值为多少?(3)请探索:是否存在这样的点E ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点E 的坐标;若不存在,请说明理由.2012年中考数学模拟试卷二参考答案题次 12345678 9 10 答案A C DB B DCACA二、填空题(本题有6小题,每小题4分,共24分) 11. m(a+b);12. 150°;13. 65;14.23;15. ①③④;16. 1+2 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)原式=1+23-1=23(2)解:原式=2221(1)111x x x x x x +++==+++ 当2x =-时,原式1211x =+=-+=- (说明:直接代入求得正确结果的给满分) 18.(本题6分)解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin30°=30CM BC CM =,∴CM=15cm .∵sin60°=BA BF ,∴23=40BF,解得BF=203,∴CE =2+15+203≈51.6cm .答:此时灯罩顶端C 到桌面的高度CE 是51.6cm .19.(本题6分)解:(1)y =x 2+2x +m=(x +1)2+m ﹣1,对称轴为x =﹣1,∵与x 轴有且只有一个公共点,∴顶点的纵坐标为0,∴C 1的顶点坐标为(﹣1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(﹣3,0)代入上式得(﹣3+1)2+k=0,得k=﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);20.(本题6分)(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2)解:四边形AOEC是菱形.∵OP⊥弦BC于点D且交⊙O于点E,∴»CE=»BE.∵C为半圆ACB¯的三等分点,∴»AC=»CE=»BE.∴∠ABC=∠ECB.∴AB∥CE.∵AB是⊙O的直径,∴AC⊥BC.又OP⊥弦BC于点D且交⊙O于点E,∴AC∥OE.∴四边形AOEC是平行四边形.又OA=OE,∴四边形AOEC是菱形.21.(本题8分)解:(1)20, 2 ,1;(2)如图(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P22.(本题10分)解:(1)设安排x人采“炒青”,20x;5(30-x).(2)设安排x人采“炒青”,y人采“毛尖”则30205(30)10245x yx x+=⎧⎪-⎨+=⎪⎩,解得:1812xy=⎧⎨=⎩,即安排18人采“炒青”,12人采“毛尖”.(3)设安排x人采“炒青”,205(30)11045205(30)10045x xx x-⎧+≤⎪⎪⎨-⎪+≥⎪⎩解得:17.5≤x≤20①18人采“炒青”,12人采“毛尖”.②19采“炒青”,11人采“毛尖”.③20采“炒青”,10人采“毛尖”.所以有3种方案.计算可得第(1)种方案获得最大利润.18×204×40+12×55×120=5040元最大利润是5040元.23.(本题10分)解:(1)正确画出分割线CD(如图,过点C作CD⊥AB,垂足为D,CD即是满足要求的分割线,若画成直线不扣分)理由:∵∠B = ∠B,∠CDB=∠ACB=90°∴△BCD ∽△ACB(2)①△DEF 经N阶分割所得的小三角形的个数为n41∴S =n41000,当n =3时,S3 =31000S≈15.62当n = 4时,S4 =41000S≈3.91 ∴当n= 4时,3 <S4<4②S 2 = S 1-n × S 1+n ,S 1-n = 4 S, S= 4 S 1+n 24.(本题12分)解:(1)∵点E 、F 在函数ky x=(k >0)的图象上, ∴设E (x 1,1k x ),F (x 2,2kx ),x 1>0,x 2>0, ∴111122k K S x x ==,S 2= 22122k K x x = , ∵S 1+S 2=2,∴22K K+=2,∴k =2; (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴1111432234ECF S EC CF k k ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭g △, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形 ∴11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△ ∴2112S k k =-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.此时,点E 坐标为(2,3),即点E 运动到AC 中点.(3)解:设存在这样的点E ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=o Q ,∴EMN MFB ∠=∠.又90ENM MBF ∠=∠=oQ ,∴ENM MBF △∽△.∴EN EM MB MF=,∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭, ∴94MB =. 222MB BF MF +=Q ,∴222913444k k ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.∴25438k EM EC ==-=,故AE=78. ∴存在符合条件的点E ,它的坐标为(78,3).。
2012年苏州中考数学模拟卷(二)含答案
2012年苏州中考数学模拟卷(二)(考试时间:120分钟 总分:130分)一、选择题:(每小题3分,共30分)1.今年一月的某一天,某市最高温度为5℃,最低温度是-9℃,那么这一天的最高温度比最低温度高 ( )A .7℃B .3℃C .-3℃D .-7℃ 2.计算(x 4)2的结果是 ( )A .x 6B .x 8C .x 10D .x 16 3.下列图形中,既是轴对称图形又是中心对称图形的是 ( )4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为S 甲2=0.56,S 乙2=0.60,S 丙2=0.50,S 丁2=0. 45,则成绩最稳定的是 ( ) A .甲 B .乙 C .丙 D .丁 5.如图,菱形ABCD 的周长为40 cm ,DE ⊥AB ,垂足为E , sinA =35,则下列结论正确的有 ( )①DE =6 cm ;②BE =2 cm ;③菱形面积为60 cm 2;④BD =cm A .1个 B .2个 C .3个 D .4个6.已知某反比例函数的图象经过点(m ,n),则它一定也经过点( ) A .(-2n ,-2m) B .(m ,-n) C .(-m ,n) D .(m ,n )7.关于x 的一元二次方程x 2-m x +2m -1=0的两个实数根分别是x 1,x 2,且2212x x =7,则(x 1-x 2)2的值是 ( )A .13或11B . 12或-11C .13D .128.如图,在等边AABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC .EF ⊥AB ,FD ⊥BC ,则△DEF 的面积 与△ABC 的面积之比等于 ( ) A .1:3 B .2:3C 2D 39.清晨,食堂师傅用小推车将煤炭运往锅炉间,已知小推车车厢的主视图和左视图如图所示,请你算一算,这辆推车一趟能运多少煤炭? ( )A .0. 15 m 3B .0.015 m 3C .0.012 m 3D .0.12m 3 10.如图,等腰Rt △ABC(∠ACB =90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点 D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为 止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是 ( )二、填空题:(本大题共8小题,每小题3分,共24分)11.函数y x 的取值范围是_______.12.一次函数y =(m -1)x +1-2m 的图象不经过第三象限,则m 的取值范围_______. 13.截至2011年某市绿化总面积达到4103.7万平方米,这个数据用科学记数法表示为_______平方米.14.二次函数y =(x +3)(2-x )的最大值是_______.15.在圆内接四边形ABCD 中,则∠A :∠B :∠C =2:3:4,则∠D =_______度. 16.已知抛物线y =ax 2+bx +c (a ≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a <0;②a +b +c>0;③-2ba>0.把正确结论的序号填在横线上_______. 17.数学家发明了一个魔术盒,当任意实数(a ,b )进入其中时,会得到一个新的实数;a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8.现将实数对(m ,-2m)放入其中得到实数4,则m =_______.18.如图,∠BAC =45°,AB =6,要使△ABC 唯一确定,那么BC 的长度x 满足的条件是_______.三、解答题:(本大题共11小题,共76分) 19.(4分)计算:()()2201201132sin 6012π-⎛⎫-⨯-+-+︒- ⎪⎝⎭20.(4分)先化简:245333x x x x -⎛⎫÷--- ⎪--⎝⎭,再取一个你喜爱的x 的值代入求值.21.(6分)解不等式组205121123x x x ->⎧⎪+-⎨+≥⎪⎩,并把解集在数轴上表示出来(如图).22.(6分)如图,要在一块形状为直角三角形(∠C 为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC 上,且与AB 、BC 都相切.(1)请你用直尺和圆规作出该半圆(要求保留作图痕迹,不要求写作法). (2)说明你所画的半圆与AB 、BC 都相切的理由.(3)若AC =4,BC =3,求半圆的半径. 23.(6分)20个家庭的收入情况,并绘制了统计图(如图).请你根据统计图给出的信息回答:(1)填写完成下表:这20个家庭的年平均收入为_______万元;(2)样本中的中位数是_______万元,众数是_______万元:(3)在平均数、中位数两数中,_______更能反映这个地区家庭的年收入水平.24.(7分)如图,一艘船以每小时40海里的速度向西南方向航行,在A处观测灯塔M在船的南偏西75°的方向,航行9分钟后到达B处,这时灯塔M恰好在船的正西方向°已知距离此灯塔9海里以内的海区有暗礁,这艘船继续沿西南方向航行是否有触礁的危险?为什么?(参考数据: 1.41,3≈1.73)25.(本题满分7分)在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是_______.(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.26.(8分)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC 上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE =x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=12m,要使△DEF为等腰三角形,m的值应为多少?27.(8分)为了进一步变化城市.某城市计划改建人民广场中心.一块边长为8米的正方形花圃,如图,AE=AF,点G、H、I分别是EE、CE、CF的中点,计划在△GHI内放置“奋进”大型塑像,在阴影部分种植荷花,其余部分种植茉莉。
2012年南宁中考数学模拟试卷及答案(二)
2012年南宁中考数学模拟试卷及答案(二)姓名一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.“比a 的45大2的数”用代数式表示是( ) A. 45a +2 B. 54a +2 C. 49a +2 D. 45a -22.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A .2,3,4B .5,5,6C .8,15,17D .9,12,133.计算tan 60452cos30︒-︒的结果是( )A .2B .C .1D4.已知⊙O 1的半径r 为8cm ,⊙O 2的半径R 为2cm ,两圆的圆心距O 1O 2为6cm ,则这两圆的位置关系是( )A .相交 B.内含 C.内切 D.外切5.甲、乙两人参加植树活动,两人共植树20棵,已知甲植树数是乙的1.5倍.如果设甲植树x 棵,乙植树y 棵,那么可以列方程组( ).A.⎩⎨⎧==+y x y x 5.2,20 B.⎩⎨⎧=+=y x y x 5.1,20 C.⎩⎨⎧==+y x y x 5.1,20 D.⎩⎨⎧+==+5.1,20y x y x6.如图△AOB 中,∠AOB =120°,BD ,AC 是两条高,连接CD ,若AB =4,则DC 的长为( )A .3B .2C .233 D .433 7. 若3a+2b=2,则直线y=kx+b一定经过点( ) A .(0,2) B .(3,2) C .(-32,2) D .(32,1)8. 若函数y =222x x x c--+ 的自变量x 的取值范围是全体实数,则c 的取值范围是A .c <1B .c =1C .c >1D .c≤1 二、填空题(每小题3分,共24分)9.若85b -互为相反数,则5()2ab-=___________。
10.以长为8,宽为6的矩形各边中点为顶点的四边形的周长为_________.11.一项工程,甲独做需12小时完成,若甲、乙合做需4小时完成,则乙独做需 小时完成。
2012中考数学模拟卷(三份)及预测卷-3.ppt
)
C.65°
D.70°
【解析】如下图所示,由l1∥l2得∠5=∠1=40°,∵∠4=∠2= 75°,∴∠3=180°-40°-75°=65°.
【答案】C
6.(2011· 陕西)在△ABC 中,若三边 BC、CA、AB 满足 BC∶ CA∶AB=5∶12∶13,则 cosB=________.( A. 5 12 B. 12 5 C. 5 12 D. 13 13 )
2 2
【答案】C
12.现给出下列四个命题:①无公共点的两圆必外离;②位似三角形 是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边 形是矩形.其中真命题的个数是( A .1 B .2 C .3 D .4 )
【解析】无公共点的两圆除外离,还有内含,故命题①是假命题;位 似三角形一定是相似三角形,命题②是真命题;菱形的面积等于两条对角 线乘积的一半,命题③是假命题;对角线相等的四边形不一定是矩形,命
【解析】 将阴影区域移至一起, 则有 P(针头扎在阴影区域) 1 = . 4
1 【答案】 4
17.(2011·佛山)如图,物体从点A出发,按照A→B(第1步)→C(第2 步)→D→A→E→F→G→A→B„的顺序循环运动,则第2 011步到达点
________处.
【解析】由题意知,每隔8步物体到达同一点,∵2 011÷8= 251„„3,所以第2 011步到达D点. 【答案】D
【解析】设 BC=5x,则 CA=12x,AB=13x.∵(5x)2+(12x)2 =169x2=(13x)2,∴△ABC 是直角三角形且∠C=90° ,∴cosB= BC 5 AB=13.
【答案】C
7.如图是由四个完全相同的正方体组成的几何体,这个几何体的左 视图是( )
2012年河北省中考数学模拟试卷二(含答案)
2012年河北省中考数学模拟试卷卷Ⅰ(此卷不交,把答案写在答题纸上)一、选择题(共12小题,每小题2分,满分24分) 1、3的相反数是( ) A 、3 B 、13 C 、13- D 、-3 2、下列图形中,能肯定∠1>∠2的是( )3、2011年我市小商品成交额首次突破450亿元大关,请将450 亿元用科学记数法表示(单位:元)( )A 、4.05×102B 、0.45×103C 、4.5×1010D 、4.5×10114、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠2的度数是---------------------------------------------------------------------------------------( )A .60°B .30°C .25°D .65°5、抛物线()223y x =-+-的顶点坐标是( ) A 、()2,3 - B 、()2,3- C 、()2,3 D 、()2,3- -6、如图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是( )7、下列计算正确的是( )A 、236a a a = B 、()()22222a b a b a b +-=- C 、()2326aba b = D 、523a a -=8、某市为处理污水,需要铺设一条长为4000m 的管道.为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设10m ,结果提前20天 完成任务.设原计划每天铺设管道xm ,则可得方程( )4题图9、根据如图的程序计算,若输入的x值为1,则输出的y值为()A、-2B、10C、12D、2610、如图,将边长为2的正方形ABCD各边四等分,把一长度为34的绳子一端固定在点A处,并沿逆时针方向缠绕正方形ABCD,则另一端点E将落在下列哪条线段上()A、CR1B、R1R2C、R2R3D、R3D11、如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()12、如图,已知点A的坐标为(3,3),AB⊥x轴,垂足为B,连接OA,反比例函数y=kx(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA 的54长为半径作圆,则该圆与x轴的位置关系是填“相离”、“相切”或“相交”).二、填空题(共6小题,每小题3分,满分18分)13、因式分解:ab2-25a= .14、函数:11yx=+中,自变量x的取值范围是.15、如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于度16、如图,矩形OABC的顶点坐标分别是(0,0),(4,0),(4,1),(0,1),在矩形OABC的内部任取一点(x,y),则x<y的概率是.10题图11题图12题图17、如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的 倍.18.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2M ,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2和A 3B 3交于点M 3;…,依次类推,这样作的第n 个正方形对角线交点的坐标为M n .15题图16题图17题图18题图2012年河北省中考数学模拟试卷卷Ⅱ一、选择题(本大题共12个小题;每题2分,共24分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、选择题(本大题共6个小题;每题3分,共18分)13. ;14. ; 15. ;16. ;17. ;18. ; 三、解答题(本大题共8个小题;共76分) 19、计算:201202313(1)(3)27()2π--+-⨯--+20、如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上). (1)把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1; (2)把△A 1B 1C 1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A 1B 2C 2; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.21、某校开展了以“人生观、价值观“为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如右扇形统计图.(1)该班学生选择“和谐”观点的有人,在扇形统计图中,“和谐“观点所在扇形区域的圆心角是°.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐“和“感恩“观点的概率(用树状图或列表法分析解答).22、杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?23、如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF形成的锐角β.24、理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一点.(1)如图1:当点M与B重合时,S△DCM= ;(2)如图2,当点M与B与A均不重合时,S△DCM= ;(3)如图3,当点M在AB(或BA)的延长线上时,S△DCM= ;拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行于DC、AD,它们相交于点O,其中S四边形AMOP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、QD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.25、为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.(1)观察图象可知:a= ;b= ;m= ;(2)直接写出y1,y2与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?26、如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.备用图参考答案及评分标准 一、选择(1-10每小题2分,11-12每小题3分,共26分)二、填空(每小题3分,共18分)13. ()()55a b b +- 14. 1x ≠- 15. 65︒ 16. 1817.()103 18. 121,22n n n -⎛⎫ ⎪⎝⎭19. 520.(1)(2)图略(3)2222π+21.(1)5、36︒(2)420 (3)图略. 概率为11022.(1)600 (2)200 23.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D CCCDACDBDAB24.25.26.。
2012年中考数学模拟试卷(二)及答案
2012年中考数学模拟试卷二态度决定一切,细节决定成败!一、选择题(本题共10小题,每小题3分,共30分) 1.-3的相反数是( ▲ )A .3B . -3C .31D .31-2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ▲ )A.30°B. 40°C. 60°D. 70°3.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲ )4.若反比例函数ky x=的图象经过点(1,3),则此反比例函数的图象在( ▲ ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.计算2(2)3a a -⋅的结果是( ▲ )A. 26a - B. 36a - C. 312a D. 36a6.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 5 6 人 数25431则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )元A .3,3B .2,3C .2,2D .3,5 7.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2. 5米,底面半径为2米,则做这把遮阳伞需用布料的面积是( ▲ )平方米(接缝不计) A . π3 B .π4 C .π5 D .π4258.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ▲ )A .2(1)y x =- B . 2(1)y x =+ C .21y x =- D .21y x =+ 9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒AC BD E(第2题图)(第9题图)10.如图,在直角梯形ABCD中,AD∥BC,90C∠= ,cmBC10=,6cmCD=,2cmAD=,动点P、Q同时从点B出发,点P沿BA、AD、DC运动到点C停止,点Q沿BC运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为(s)t,BPQ△的面积为y2(cm).下图中能正确表示整个运动中y关于t的函数关系的大致图象是(▲)A. B. C. D.二、填空题(本题共6小题,每小题4分,共24分)11.比较大小:1-▲31(填“>”、“=”或“<”).12.若二次根式12-x有意义,则x的取值范围是▲.13.一元二次方程(3)0x x+=的解为▲.14.已知CBA,,是⊙O上不同的三个点,︒=∠60AOB,则=∠ACB▲15.已知双曲线2yx=,kyx=的部分图象如图所示,P是y轴正半轴上过点P作AB∥x轴,分别交两个图象于点,A B.若2PB PA=,则=k▲.16.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是▲。
2012年中考数学模拟试题(含答案)
2012年中考数学模拟试题考试时间:120分钟,满分150分一、选择题(每题2分,共30分)1、如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a2、如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影面积等于()A.2cm2B.1cm2C.1/2cm2D.1/4cm2第2题第3题3、如图,矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于().4、一元二次方程,中,c<0.该方程的解的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定5、如图,△ABC中,AB、AC边上的高CE、BD相交于P点,图中所有的相似三角形共有()A.4对B.5对C.6对D.7对6、等边△A1B1C1内接于等边△ABC的内切圆,则的值为()A. B. C. D.7、当45°<<90°时,下列各式中正确的是()A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan8、如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是()A.(,)B.()C.(,)D.()第8题第9题9、已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.10、在同一坐标系中一次函数和二次函数的图象可能为()11、若,,三点都在函数的图象上,则的大小关系是()A. B. C. D.12、如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的函数图象是()13、如图,正三角形内接于圆,动点在圆周的劣弧上,且不与重合,则等于()A. B. C. D.第13题第14题第15题14、如图,一次函数图象经过点,且与正比例函数的图象交于点,则该一次函数的表达式为()A. B. C. D.15、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cmB.4cmC.cmD.3cm二、填空题(每题3分,共36分)16、已知,则的值为___________.17、如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为___________.第17题第18题18、如图,在中,.将其绕点顺时针旋转一周,则分别以为半径的圆形成一圆环.则该圆环的面积为__________.19、已知关于x的不等式(1-a)x>2的解集为,则a的取值范围是__________.20、方程有实数根,则锐角的取值范围是______.21、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是__________.第21题第22题22、如图,一张长方形纸片ABCD,其长AD=a,宽AB=b(a>b),在BC边上选取一点M,将ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则a/b的值是_____________.23、已知二次函数的部分图象如图所示,则关于的一元二次方程的解为___________.第23题第24题24、如图所示的抛物线是二次函数的图象,那么的值是___________.25、在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于__________.26、如图,要使输出值大于100,则输入的最小正整数是____________.27、有5张写有数字的卡片(如左图所示),它们的背面都相同,现将它们背面朝上(如右图所示),从中翻开任意一张是数字2的概率为_________.三、解答题(每题5分,共20分)28、已知y=的定义域为R ,求实数a 的取值范围.29、计算:0.25×⎝⎛⎭⎫12-2+(3.14-π)0-2sin60°.30、先化简,再求值:⎝⎛⎭⎫a a -1-1÷a a2-2a +1,其中a = 2.31、解不等式组:()②①⎪⎩⎪⎨⎧-+≤+321234xxxx四、综合题(共64分)32、(本题满分9分)“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.(1)若代销点采取降价促销的方式,试建立每吨的销售利润(元)与每吨降价(元)之间的函数关系式.(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.DEA M NCB如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)求证:△ACE≌△DCB;(2)请你判断△ACM与△DPM的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC 上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积;(2)求四边形MEFN面积的最大值.(3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由.35、(本题满分10分)如图,⊙O经过点B、D、E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.(1)试证明直线AC是⊙O的切线;(2)当AE=4,AD=2时,求⊙O的半径及BC的长.(第35题)已知:如图,直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.(1)求A、C两点的坐标;(2)求出抛物线的函数关系式;(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;(4)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3,若存在,试求出点M的坐标;若不存在,试说明理由.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案选择题答案:D答案:B答案:D答案:B答案:C答案:A答案:C答案:A答案:C答案:A答案:A答案:C答案:B答案:A答案:A二、填空题16、答案:-3.17、答案:-1,0,1,218、答案:19、答案:a>120、答案:0°<≤30°.21、答案:22、答案:23、答案:,24、答案:-125、答案:226、答案:2127. 答案:三、解答题28、确定a的取值范围,使之对任意实数x都有ax2+4ax+3≠0.解:当a=0时,ax2+4ax+3=3≠0对任意x∈R都成立;当a≠0时,要使二次三项式ax2+4ax+3对任意实数x恒不为零,必须满足:其判别式,于是,0<a <.综上,.29. 原式=14×4+1-2×32(4分)=2- 3.(8分)30. 原式=a -a +1a -1·-a (3分)=a -1a .(6分)当a =2时,原式=2-12=2-22.(8分)31.解:由 ① 得 23≤-x x , 1-≥x由 ② 得 ()x x 213 - ,323 x x -, 3 x∴ 31 x ≤-四、综合题32.(1)依题意,得……………………………………3分 (2)依题意,得………………………………………… 4分 解得…………………………………………1分…………………………………………1分答:每吨水泥的实际售价应定为元时,每天的销售利润平均可达720元. 1分34. (1)连接OE.[来源:学科网ZXXK]∵BE是∠ABC的平分线,∴∠1=∠2.∵OE=OB,∴∠1=∠3.∴∠2=∠3.∴O E∥AC.又∠C=90°,∴ ∠AEO =90°.[来源:学科网]∴ AC 是⊙O 的切线.(6分)(2)设⊙O 的半径为r ,在Rt △AEO 中,由勾股定理可得OA2=OE2+AE2.∵ AE =4,AD =2,∴ (2+r)2=r2+42.∴ r =3.∵ OE ∥AC ,∴ AO AB =OE BC .∴ 2+32+6=3BC. ∴ BC =245.(10分)35 .① A(-6,0),C(0,6) ………………………………………………………2分② …………………………………………………………………3分 ③相切,BD=6 ………………………………………………………………………3分 ④存在这样的点M ,M()或() ……………3分36 .解:(1)在矩形OABC 中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5 ……………………………… 3分(2)连结O ′D在矩形OABC 中,OC=AB ,∠OCB=∠ABC=90°,CE=BE=∴ △OCE ≌△ABE ∴EA=EO ∴∠1=∠2在⊙O ′中, ∵ O ′O= O ′D ∴∠1=∠3∴∠3=∠2 ∴O ′D ∥AE ,∵DF ⊥AE ∴ DF ⊥O ′D又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径 ,∴DF 为⊙O ′切线. ……………………………………………………………………4分(3)不同意.理由如下:①当AO=AP 时,以点A 为圆心,以AO 为半径画弧交BC 于P1和P4两点过P1点作P1H ⊥OA 于点H ,P1H=OC=3,∵AP1=OA=5∴AH=4, ∴OH=1 求得点P1(1,3) 同理可得:P4(9,3) ……………3分 ②当OA=OP 时,同上可求得:P2(4,3),P3(4,3) …………………………2分因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. ……………………1分。
2012年中考数学第二次模拟考试卷
2012年初三第二次模拟考试卷数 学本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.下列各数中,最小的数是( )A .0B .1C .1-D .2-2.2011年11月3日,“神州八号”与“天宫一号”成功交会对接,两个航天器组合体的连接主要依靠对接面上12把对接锁,每把对接锁的拉力3吨,共36吨,36吨用科学记数法表示为( )A .1106.3⨯千克B .31036⨯千克C .4106.3⨯千克D .41036.0⨯千克 3.下列三视图所对应的直观图是( )A .B .C .D .4.下列计算正确的是( )A .235a a a +=B .623a a a ÷= C .()326a a = D .236a a a ⨯=5.分解因式2ab a -的结果是( )A .)1)(1(b b a -+B .2)1(b a + C .2)1(b a - D .)1)(1(b b +- 6.为了了解我校学生的身体素质状况,对初三(1)班 的50名学生进行了排球、跳绳和50米三个项目的 测试,每个项目满分为10分.如图是将该班学生所 得的三项成绩(均为整数)之和进行整理后,分成 5组画出的频数分布直方图.已知从左至右前4个 小组的频率分别为0.02、0.1、0.12、0.46,分数人数EDBCA下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内; ③学生成绩的中位数在第四小组X 围内.其中 正确的说法是( )A .①②B .②③ C.①③ D.①②③ 7.分式方程11222x x x-+=--的解是( ) A .2x =B .4x =C .3x =D .无解8.如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =23,∠AOC 为( ) A .120°B.130°C.140°D.150°第8题图 第9题图 第10题图9.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连接DF 交BE 的延长线于点H ,连接OH 交DC 于点G ,连结HC .则以下四个结论中正确的个数为() ①OH =21BF ;②∠CHF =45°;③GH =41BC ;④HB HE DH ⨯=2 A .1个 B .2个 C .3个 D .4个10.如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且30CDE ∠=︒.设AD=x , BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )ABCDF OG HE ACBO二、填空题(本题共4小题,每小题5分,满分20分)11.若2(2)0m n m ++-=,则m n -的值是.12.不等式组⎪⎩⎪⎨⎧≤-->+,1312)1(223x x x 的解集是. 13.如图,⊙O 半径是1,A 、B 、C 是圆周上的三点,∠BAC=30°,则劣弧 ⌒BC 的长是. 14.在平面直角坐标系xOy 中,正方形111A B C O 、2221A B C B 、3332A B C B ,…,按图中所示的方式放置.点1A 、2A 、3A ,…和1B 、2B 、3B ,…分别在直线y kx b =+和x 轴上.已知1(1C ,1)-,27(2C ,3)2-,则点n A 的坐标是___________________. 三、(本题共2小题,每小题8分,满分16分) 15.计算:201201)1()1(30tan 3)60(cos ---+︒-︒-π.16.据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我校某数学课外小组的几个同学想尝试用自己所学的知识检测车速,宁芜高速公路某路段的限速是:每小时100千米(即最高时速不超过100千米),如图,他们将观测点设在到公路l 距离为的P 处.这时,一辆轿车由某某向某某匀速直线驶来,测得此车从A 处行驶到B 处所用的时间为3秒,并测得∠APO=60°,∠BPO =45°.试计算线段AB 的长度并判断此车是否超速?(线段AB 的长度精确到01).(参考数据:732.13≈)第13题图綦庆lPAB O四、(本题共2小题,每小题8分,满分16分)17.我市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.求平均每次下调的百分率.18.如图,将▱ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F . (1)求证:△ABF ≌△ECF ;(2)若∠AFC =2∠D ,连接AC 、BE ,求证:四边形ABEC 是矩形.五、(本题共2小题,每小题10分,满分20分)19(1)若将ABC ∆111C B A ∆; (2)画出111C B A ∆得到的222C B A ∆;(3)'''C B A ∆与ABC ∆(4)顺次连结C 、1C 、20.2012年1月15日,某某龙河发生重金属镉严重污染事件.据专家介绍,重金属镉具有毒性,长期过量接触会引起慢性中毒,影响人体肾功能.为了解这次镉污染程度,国务院派驻龙江河的调查组抽取上层江水制成标本为1a ,2a ,抽取中层江水制成标本为1b ,2b ,抽取下层江水制成标本为1c ,2c .(1)若调查组从抽取的六个样本中选送两个样本到国家环境监测实验室进行检验,求刚好选送一个上层江水样本和一个下层江水样本的概率;(2)若每个样本的质量为500克,监测出镉的含量分别为(单位:毫克):0.3,0.2,0.7,0.5,0.3,0.4,请算出每500克河水样本中金属镉的平均含量?(3)据估计受污染的龙江河水共计500万吨,请根据第(2)小题的计算结果,估算出500万吨河水中含镉量约为多少吨?六、(本题满分12分)21.如图,一次函数y=kx+b与反比例函数y=mx的图象相交于A(2,3),B(3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>mx的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.七、(本题满分12分)22.如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图②,已知R t△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B 作BE丄CD,垂足为E.试说明E是△ABC的自相似点;(2)在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(不写作法,但保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.八、(本题满分14分)23.如图,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于点D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少? (3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.数学二模参考答案及评分标准一、选择题(本题共10小题,每小题4分,满分40分)1.D ; 2.C ; 3.C ; 4.C ; 5.A ; 6.C ; 7.D ; 8.A ; 9.C ; 10.C . 二、填空题(本题共4小题,每小题5分,满分20分) 11.4; 12.24≤<-x ; 13.3π; 14.()1129933(,);5()4,()4422n n --⨯-。
徐州市2012年中考数学模拟试题及答案(2)
徐州市2012年初中毕业、升学模拟考试(2)数 学 试 题本卷满分:120分 考试时间:120分钟 总分 题号 一 二 三得分一 选择题(本大题共8小题,每小题2分,共16分) 1. -7的相反数的倒数是 ( ) A .7 B .-7 C .17D .-172.计算a 3²a 4的结果是( )A .a 5B .a 7C .a 8D .a 123. 右图中几何体的正视图是( )4. 一方有难、八方支援,截至5月26日12时,徐州巿累计为某地震灾区捐款约为11180万元,该笔善款可用科学记数法表示为()A. 11.18³103万元 B. 1.118³104万元 C. 1.118³105万元 D. 1.118³108万元5.已知半径分别为3 cm 和1cm 的两圆相交,则它们的圆心距可能是( ) A .1 cm B .3 cm C .5cm D .7cm6. 某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是( )AB CD7. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是 --------( )A.B.C.D.(第3题)A.203525-=x x B.x x 352025=- C.203525+=x xD.xx 352025=+8. 抛物线c bx axy ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数a b cy x++=在同一坐标系内的图像大致为( )第15题图二 填空题(每题2分,共20分) 9. 分解因式:=-a ax162.10. 一次考试中7名学生的成绩(单位:分)如下:61,62,71,78,85,85,92,这7名学生的极差是 分,众数是 分。
12年中考模拟考试数学试题
浠水县关口镇中考模拟考试(二)数学试题命题人:胡河中学数学教研组一.单项选择题(每小题3分,共24分) 1. 3)2(-等于( )A .6-B .6C .8-D .8 2.下列运算中,正确的是( )A.2352x x x +=B. 236()x x =C. 222()m n m n -=-D. 824m m m ÷= 3.下列图形中,由AB C D ∥,能得到12∠=∠的是( )4.使x x x x --=--6)4()4)(6(2成立的条件是( )A .x<6B .x ≤6C .4≤x≤6D .x≤45.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成 这个几何体的小正方体的个数是 ( ) A .4 B .5 C .6 D .76.将一块形状如右图的直角梯形木板从一个圆钢圈中穿过,那么这个园钢圈的最小直径是( )A. 1B.C.D. 27.如图,9030A O B B ∠=∠=°,°,A O B ''△可以看作是由A O B △绕点O 顺时针旋转α 角度得到的.若点A '在A B 上,则旋转角α的大小可以是( ). A .30° B .45° C .60° D .90°8.如图,在R t ABC △中,9068C A C B C O ∠===°,,,⊙为A B C △的内切圆,点D 是斜边A B 的中点,则tan O D A ∠=( ) A.2B.3CD .2A CB D 1 2A CB D 1 2A .B . 1 2 AC DC .B CA D .12 7题图OBA 'B 'A 8题图第8题9二.填空题(每小题3分,共24分)9. 钓鱼诸岛自古以来就是中国的领土,它和台湾一样是中国领土不可分割的一部分。
中国对钓鱼诸岛及其附近海域拥有无可争辩的主权。
:钓鱼岛列岛(Fishing Islands )由钓鱼岛(主岛)、黄尾屿、赤尾屿、南小岛、北小岛和3块小岛礁,即大北小岛、大南小岛、飞濑岛等8个无人岛礁组成。
2012年中考二模数学试题及答案
2012年初中升学考试模拟测试(二)数学试卷一、选择题(每小题3分.共计30分) 1.-5的相反数是( ). (A)15 (B)15- (C)5 (D)-5 2.下列运算中,正确的是( ).(A)224347a a a += (B 55534a a a -=-(C)2364312a a a ∙= (D)(33a )2÷43a =234a 3.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( ).4.下列四个点,不在函数y=12x图像上的点是( ). (A)(2,6) (B)(-2,-6) (C)(3,4) (D)(-3,4)5.在一次中学生田径运动会上,参加男子跳高的l5名运动员的成绩如下表所示:成绩/m 1.55 1.60 1.65 1.70 1.75 1.80 人数23234l则这些运动员成绩的中位数是( ).(A)1.80 (8)1.75 (C)1.70 (D)1.65 6.如图所示的几何体的主视图是( ).7.如果正五边形绕着它的中心旋转a 角后与它本身重合。
那么a 角的大小可以是( ). (A)36 (B)45 (C)720 (D)9008.关于x 的一元二次方程x 2+bx-7=0的根的情况是( ). (A)没有实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)由于不知道b 的值,不能确定根的情况 9.已知菱形的周长为40,一条对角线长为l2,那么这个菱形的面积是( ). (A)96 (B)72 (C)48 (D)40.1 0.从A 地向B 地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元, 若通话时间为x(单位:分,x ≥3且x 为整数),则通话费用y(单位:元)与通话时间x(分)函数关系式是( ).(A)y=0.8x(x≥3且x 为整数) (B)y=2.4+x(x≥3且x 为整数) (C)y=x-0.6(x≥3且x 为整数) (D)y=x(x≥3且x 为整数)二、填空题(每小题3分,共计30分)11.据报道,哈西路桥建设叉一重要工程一哈西和谐大道跨线桥开工建设.总投资250 000 000 元将250 000 000用科学记数法表示为 . 12.在函数y=12x -中,自变量x 的取值范围是 .13.把多项式3a b ab -分解因式的结果为14.如图,AB ∥CD ,CF 交AB 于点E ,∠C=520,则∠AEF= 度. 15.不等式组{x+1≤3,2x-1>0 的解集是——.16.用一个圆心角为l200,半径为6的扇形作—个圆锥的侧面,则这个 圆锥的底面圆的半径为 .17.如图,AB 是⊙0的直径,CB 是⊙0的切线,B 为切点,0C ⊥BD ,点E 为 垂足,若BD=45,EC=5,则直径AB 的长为 .18.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m) 之间的关系是: y=-21251233x x ++,那么这个男生推出铅球的距离是 m . 19.已知AABC 中,AB=1,AC=3,∠BCA=300,则∠BAC 的度数是 度.20.如图,△ABC 中,AB=10,∠B=2∠C ,AD 是高线,AE 是中线,则线段DE 的长为三、解答题(21-24题各6分.25-26题各8分。
2012年中考模拟质量测试题数学试题及答案
浙江省宁波市2012年初中毕业生学业考试模拟试卷数学试题考生须知: 1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题.满 分为120分,考试时间为120分钟.2.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为24()24--b ac b aa,. 试 题 卷 Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.如图,已知AB ∥CD ,∠A =80°,则∠1的度数是( ▲ ) A .100° B .110° C .80° D .120° 2.下列计算正确的是( ▲ )3= B.020=C.331-=-=3.2011年七月颁布的《国家中长期教育改革和发展规划纲要》中指出“加大教育投入.提高国家财政性教育经费支出占国内生产总值比例,2012年达到4%.”如果2012年我国国内生产总值为435 000亿元,那么2012年国家财政性教育经费支出应为(结果用科学记数法表示)( ▲ ) A .4.35×105亿元 B.1.74×105亿元 C. 1.74×104亿元 D.174×102亿 4.在ABC △中,︒=∠90C ,2=AB ,3=AC ,那么B cos 的值是( ▲ )A .21 B .22 C .23D .3 5.已知两圆的半径分别是2 cm 和4 cm ,圆心距是2cm ,那么这两个圆的位置关系是( ▲ ) A .外离 B .外切 C .相交 D .内切 6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是( ▲ )A .12B .14C .34 D .17.由二次函数1)3(22+-=x y ,可知( ▲ )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大0.16—32 D BAC 1第1题图8.如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是( ▲ ) A .不存在 B .等腰三角形C .直角三角形D .等腰三角形或直角三角形 9.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( ▲ ) A .3 B .4 C .6 D .910.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A 、B 的距离,他们设计了如图所示的测量方案:从树A 沿着垂直于AB 的方向走到E ,再从E 沿着垂直于AE 的方向走到F ,C 为AE 上一点,其中3位同学分别测得三组数据:(1) AC ,∠ACB (2) EF 、DE 、AD (3) CD ,∠ACB ,∠ADB 其中能根据所测数据求得A 、B 两树距离的有 ( ▲ ) A..0组 B .一组 C .二组 D .三组11.如图,在△ABC 中,AB =AC =5,BC =8。
2012年历年初三数学中考模拟试卷二及答案
2012年数学中考模拟试卷一、选择题(每小题2分,共16分) 1.下列计算正确的是( )A .(a 2)3=a 6B .a 2+a 2=a 4C .(3a )·(2a )2=6aD .3a -a =3 2.在学雷锋活动中,我市青少年积极报名争当“助人为乐志愿者”,仅一个月时间就有107000人报名,将107000用科学记数法表示为 ( ) A .4107.10⨯B .51007.1⨯C .60.10710⨯D .61.0710⨯3.将左图所示的Rt △ABC 绕直角边AB 旋转一周,所得几何体的主视图为( )A .B .C .D .4.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,9,10,10,8,8,这组数据的众数与中位数分别为( ) A .9与8B .8与9C .8与8.5D .8.5与95.在平面直角坐标系xoy 中,点P 的坐标是(2,-m 2-1),其中m 表示任意实数,则点P 在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知函数c x x y +-=22(c 为常数)的图象上有两点),(11y x A ,),(22y x B ,若211x x <<且221>+x x ,则1y 与2y 的大小关系是( )A.21y y >B. 21y y <C. 21y y =D. 1y 与2y 的大小不确定 7.如图,正方形ABCD 内接于⊙O ,点E 为DC 的中点,直线BE 交⊙O 于点F ,如果⊙O 的半径为2,则点O 到BE 的距离OM 是( ) A .21 B .52C .65 D .558.如右图,在平面直角坐标系xOy中,点A的坐标为(3-,1),点B是x轴上的一动点,以AB为边作等边三角形ABC. 当),(yxC在第一象限内时,下列图象中,可以表示y与x的函数关系的是()A. B. C. D.二、填空题(本大题第9小题4分,其余每小题2分,共20分)9.计算:____51=⎪⎭⎫⎝⎛--;____51=-;___510=⎪⎭⎫⎝⎛-;____511=⎪⎭⎫⎝⎛--.10.分解因式:24ax a-=;函数12+=xy中自变量x的取值范围是.11.方程4)4(-=-xxx的解是=1x,=2x.12.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是53,则盒子中黄球的个数是.13.已知圆锥的底面半径为5 cm,侧面积为60πcm2,则这个圆锥的母线长为cm,它的侧面展开图的圆心角是°.14.如图,弦AB和CD相交于点P,︒=∠30B,︒=∠80APC,则BAD∠的度数为°.15. 已知一个直角三角形的周长是264+,斜边上的中线长是2,则这个三角形的面积是 .Oyx1-1-11CABPDCBA16.如图直线l 交y 轴于点C ,与双曲线()0<=k xky 交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、P 、Q (Q 在直线l 上)分别向x 轴作垂线,垂足分别为D 、E 、F ,连接OA 、OP 、OQ ,设△AOD 的面积为S 1,△POE 的面积为S 2,△QOF 的面积为S 3,则S 1、S 2、S 3的大小关系为 .(用“<”连接) 17. 在平面直角坐标系xOy 中,正方形O C B A 111、1222B C B A 、2333B C B A ,…,按右图所示的方式放置.点1A 、2A 、3A ,…和点1B 、2B 、3B ,…分别在直线b kx y +=和x 轴上.已知1C (1,1-),2C (27,23-),则点3A 的坐标是 ,点n A 的坐标是_______________. 三、解答题(共18)18.(本题满分8分)(1)计算:()1260tan 112012-︒-+-(2)化简:1b -a-a -b a ÷a 2-2ab +b 2 a19(本小题10分)(1)解不等式组⎩⎪⎨⎪⎧6-2x 3 ≥0,2x >x +1, (2)解分式方程: 32121=-+--x x x .四、解答题(共15分)20.(本小题7分)2012年我市春季房地产展示交易会期间,某公司对参加本次房交会的消费者的年收入和打算购买住房面积这两项内容进行了随机调查,共发放100份问卷,并全部收回.统计相关数据后,制成了如下的统计表和统计图:消费者年收入统计表 消费者打算购买住房面积统计图请你根据以上信息,回答下列问题:(1)统计表中的a = ,并补全统计图; (2)打算购买住房面积小于100平方米的消费者人数占被调查人数的百分比为 ; (3)求被调查的消费者平均每人年收入为多少万元?第17题l CS 3S 2S 1 yxOQ PFE DBAO A 1 A 2A 3B 1 B 2 B 3C 1 C 2C 3xyy=kx+b年收入(万元)4.8 69 12 24 被调查的消费者数(人) 10a30 91第20题21.(本小题8分)如图,有A 、B 两个转盘,其中转盘A 被分成4等份,转盘B 被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A 转盘指针指向的数字记为x ,B 转盘指针指向的数字记为y ,从而确定点P 的坐标为P (x ,y ). (1)请用列表或画树状图的方法写出所有可能得到的点P 的坐标; (2)计算点P 在函数y=6x 图象上的概率.五、解答题(共12分) 22.(本小题5分)已知:如图,△ABC 中,点E 在AB 上,∠ACE=∠B ,AF 平分∠CAB 交CE 于F ,过F 作FD ∥BC 交AB 于D . 求证:AC=AD .23.(本小题7分)已知:如图,在梯形ABCD 中,AD∥BC,AB=AD ,∠BAD 的平分线AE 交BC 于点E ,连接DE .求证:四边形ABED 是菱形;1 32 4 6 A B 5 7 (第21题)六.探究与画图(共13分) 24.(本题满分5分)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4), 矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b ,则满足条件的k 的值可以是 .(只须写两个.....)CB A D图3P EF DA B C 图1 P EF DA B C 图2图4备用25.(本题满分8分)我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形. (1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题,并说明理由; (2)在Rt △ABC 中,∠C =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt △ABC 是奇异三角形,求a :b :c ; (3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A 、B 重合),D 是半圆弧ADB 的中点,C 、D 在直径AB 的两侧,若在⊙O 内存在点E ,使AE =AD ,CB =CE .试说明△ACE 是奇异三角形.七、解答题(共3小题,共26分)26.(本题满分7)如图,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线 43-=x y 经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线xk y =也经过A 点.(1) 求点A 的坐标和k 的值;(2)若点P 为x 轴上一动点.在双曲线上是否存在一点Q ,使得△P AQ 是以点A 为直角顶点的等腰三角形.若存在,求出点Q 的坐标,若不存在,请说明理由.AB O PC yxAB O·Pyx备用图27.(本小题9)将右图所示的长方体石块(a > b > c )放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm 3/s ,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图1 ~ 图3所示.在这三种情况下,水槽内的水深h cm 与注水时间 t s 的函数关系如图4 ~ 图6所示.根据图象完成下列问题:(1)请分别写出三种放置方式的示意图和与之相对应的函数关系图象(只须填序号):图1与图 ,图2与图 ,图3与图 ;(2)水槽的高= cm ;石块的长a = cm ;宽b = cm ;高c = cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .s图4图5图6图2图1图328.(本题满分10)如图,二次函数452+-=x x y 的图象与x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C ,有一个动点E 从点B 出发以每秒一个单位向点A 运动,过E 作y 轴的平行线,交ABC ∆的边BC 或AC 于点F ,以EF 为边在EF 右侧作正方形EFGH ,设正方形EFGH 与ABC ∆重叠部分面积为S ,E 点运动时间为t 秒.(1)求顶点C 的坐标和直线AC 的解析式;(2)求当点F 在AC 边上,点G 在BC 边上时t 的值;(3)写出点E 从点B 向点A 运动过程中,S 关于t 的函数关系式及相应t 的取值范围.备用图1备用图22012年数学中考模拟试卷参考答案一、选择题(本大题共8小题,每小题2分,共16分) 题号 1 2 3 4 5 6 7 8 答案ABCCDBDA二、填空题(每题2分,共20分)9.51,51,1,-5; 10.)12)(12(-+x x a ,1-≠x ; 11.=1x 1,=2x 4; 12.6; 13.12,150; 14.50; 15.25; 16.S 3<S 1<S 2; 17.()1129933(,);5()4,()4422n n --⨯-18.(本小题满分8分)(1)解:原式32-1-31+= ……3分 3-= ……………4分 (2)解:原式=1b -a -a -b a ·a(a -b )2………2分=1b -a -1a -b ………………………3分=-2a -b .……………………………4分19.(本小题满分10分)(1)解:解不等式①,得x ≤3.……………………2分解不等式②,得x >1.……………………4分 所以不等式组的解集是1<x ≤3. ………5分(2)解:去分母得 x-1+1=3(x-2)……………2分解得 x=3. ………………4分 经检验:x=3是原方程的根.所以原方程的根为x=3.………………5分 20.(本小题满分7分)解:(1)a =50…1分,如图;…2分(2)52%;…4分 (3)100124912309506108.4⨯+⨯+⨯+⨯+⨯=7.5(万元)故被调查的消费者平均每人年收入为7.5万元. …7分 21. (本小题满分8分)解:(1树状图参照给分,若有个别错误,酌情扣分………………………4分 (2)共有12个等可能的结果,其中在函数y =6x图象上(记为事件A )的结果有2个:(1,6),(3,2).…………………………………………6分 ∴P (A )=212=16……………………………………………………8分22. (本题满分5分)证明:∵FD ∥BC ,∴∠B=∠ADF ……1分∵∠B=∠ACE ,∴∠ACE=∠ADF ……2分∵AF 平分∠CAB ,∴∠CAF=∠DAF ,……3分∵在△ACF 和△ADF 中∠ACE=∠ADF ,∠ACE=∠ADF ,AF=AF ∴△ACF ≌△ADF ,……4分 ∴AC=AD .……5分23.(本小题满分7分)证明:∵AE 平分∠BAD ,∴∠BAE=∠DAE ,……1分∵AB=AD ,AE=AE ,∴△BAE ≌△DAE ,……2分 ∴BE=DE ,……3分∵AD ∥BC ,∴∠DAE=∠AEB ,……4分 ∴∠BAE=∠AEB ,∴AB=BE ,……5分 ∴AB=BE=DE=AD ,……6分∴四边形ABED 是菱形.……7分24.(本小题满分5分) 解:(1)如右图;……2分 (2)23458 k .……5分 (写出58得1分,另一个得2分)F EDABCMP25.(本小题满分8分)解:(1)设等边三角形的一边为a,则a2+a2=2a2,∴符合“奇异三角形”的定义.∴是真命题;……2分(2)∵∠C=90°,∴a2+b2=c2①,∵Rt△ABC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=2a,c=3a,∴a:b:c=1:2:3……5分(3)∵①AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,AC2+BC2=AB2,在Rt△ADB中,AD2+BD2=AB2,∵点D是半圆弧ADB的中点,∴弧AD=弧DB,∴AD=BD,∴AB2=AD2+BD2=2AD2,∴AC2+CB2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2,∴△ACE是奇异三角形; (8)分26.(本小题满分7分)(1)过点A分别作AM⊥y轴于M点,AN⊥x轴于N点,∵△AOB是等腰直角三角形,∴AM=AN.设点A的坐标为(a,a),点A在直线y=3x-4上,∴a=3a-4,解得a=2,则点A的坐标为(2,2)……2分,∴k = 4 ……3分(2)假设双曲线上存在一点Q,使得△P AQ是等腰直角三角形.过B作BQ⊥x轴交双曲线于Q点,连接AQ,过A点作AP⊥AQ交x轴于P点,则△APQ为所求作的等腰直角三角形.…4分理由:在△AOP与△ABQ中,∠OAB-∠P AB=∠P AQ-∠P AB,∴∠OAP=∠BAQ,AO=BA,∠AOP=∠ABQ=45°,∴△AOP≌△ABQ(ASA),…5分∴AP=AQ,∴△APQ是所求的等腰直角三角形.∵B(4,0),∴Q(4,1)…6分经检验,在双曲线上存在一点Q(4,1),使得△P AQ是以点A为直角顶点的等腰三角形.…7分说明:应有4种情况,其他3种情况不符合27.(本小题满分9分) (1)图4;图6;图5…………………2分(对2个得1分,全对得2分)(2)水槽的高= 10 cm ;石块的长a = 10 cm ;宽b = 9 cm ;高c = 6 cm ;………4分(每对2个得1分)(3)由题意可知C 点的坐标为(45,9),D 点的坐标为(53,10)设直线CD 的函数关系式为y kx b =+,∴945,1053.k b k b =+⎧⎨=+⎩ 解得1,827.8k b ⎧=⎪⎪⎨⎪=⎪⎩∴直线CD 的函数关系式为127.88y x =+ …………………………6分 (4)石块的体积为abc =540 cm 3,根据图4和图6可得:10540(106)535321S S --=-, 解得S=160 cm 2.………………………………………………9分28.(本小题满分10分)(1)452+-=x x y =49)25(2--x ,顶点C 的坐标为(49,25-)…1分452+-=x x y =)4)(1(--x x ,故点A (1,0)B (4,0) …2分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全新中考数学模拟试题二题号一二三四五六总分得分一、选择题(本大题共8小题,每小题3分,共24分)1.-2的倒数是【】A. B. C. -2 D. 22.2010年8月7日,甘南藏族自治州舟曲县发生特大山洪泥石流地质灾害,造成重大的经济损失。
就房屋财产损失而言,总面积超过4.7万平方米,经济损失高达212000000元人民币。
212000000用科学记数法应记为【】A. B. C. D.3. 下列运算正确的是【】A.B.C.D.4.如图,直线l1∥l2,则α为【】A.150°B.140°C.130°D.120°5.二元一次方程组的解是【】A.B.C.D.6..如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为【】A.12 B.9 C.6 D.47.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是【】A.20. B. 1508 C. 1550 D. 15588.如图,矩形中,,,是的中点,点在矩形的边上沿运动,则的面积与点经过的路程之间的函数关系用图象表示大致是下图中的【】A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.计算的结果是。
10. (在下面两题中任选一题完成填空,若两题都做按第一小题计分)(Ⅰ). 不等式的解集为.(Ⅱ). 用计算器计算:3sin25°= (保留三个有效数字).在直角坐标系中,点P(-3,2)关于X轴对称的点Q的坐标是.11. 因式分解:.12.已知方程的两个解分别为、,则的值为.13.如图,现有一个圆心角为90°,半径为16cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.14.如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线经过C、D两点,则图中阴影部分的面积是cm2.15.将正方形纸片ABCD按下图所示折叠,那么图中∠HAB的度数是.16.如图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是(多填或错填得0分,少填酌情给分)三、(本大题共3个小题,第17小题6分,第18、19小题各7分,共20分)17.计算:18.解分式方程19.有3张背面相同的纸牌A,B,C,其正面分别画有三个不同的几何图形(如图).将这3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)求出两次摸牌的所有等可能结果(用树状图或列表法求解,纸牌可用A,B,C表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.四、(本大题共2个小题,每小题各8分,共16分)20. 统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布直方图(部分未完成):(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比;(3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.上海世博会前20天日参观人数的频数分布表组别(万人)组中值(万人) 频数频率7.5~14.5 11 5 0.2514.5~21.5 6 0.3021.5~28.5 25 0.3028.5~35.5 32 321.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?五、(本大题共2个小题,第22小题8分,第23小题9分,共17分)22. 如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km).(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)23. 如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B两点重合),过点C作CP的垂线CD交PB的延长线于D点.(1)求证:AC•CD=PC•BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求出这个最大面积S。
六、(本大题共2个小题,第24小题9分,第25小题10分,共19分)24. 如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.25. (1)探究新知:①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.求证:△ABM与△ABN的面积相等.②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标,若不存在,请说明理由.参考答案:一、1.A 2. B 3. C 4.D 5.C 6.B 7.D 8.A二、9. 10. (Ⅰ) (Ⅱ)0.845 11. 12.3 13.4 14.15. 16.①②③三、17. 18. 19.解:(1)9种(图略)(2)四、20. (1)(2)日参观人数不低于22万有9天,所占百分比为45%.(3)世博会前20天的平均每天参观人数约为=20.45(万人).20.45×184=3762.8(万人)∴估计上海世博会参观的总人数约为3762.8万人.21.解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗尾,由题意得:,解这个方程,得:∴答:甲种鱼苗买4000尾,乙种鱼苗买2000尾.(2)由题意得:,解这个不等式,得:,即购买甲种鱼苗应不少于2000尾.(3)设购买鱼苗的总费用为y,则,由题意,有,解得:,在中,∵,∴y随x的增大而减少.∴当时,.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.五、22.(1)相等,证明:∵∠BEQ=30°,∠BFQ=60°,∴∠EBF=30°,∴EF=BF.又∵∠AFP=60°,∴∠BFA=60°.在△AEF与△ABF中,EF=BF,∠AFE=∠AFB,AF=AF,∴△AEF≌△ABF,∴AB=AE.(2)作AH⊥PQ,垂足为H,设AE=x,则AH=xsin74°,HE=xcos74°,HF=xcos74°+1.Rt△AHF中,AH=HF•tan60°,∴xcos74°=(xcos74°+1)•tan60°,即0.96x=(0.28x+1)×1.73,∴x≈3.6,即AB≈3.6 km.答:略.23.(1)由题意,AB是⊙O的直径;∴∠ACB=90。
,∵CD⊥CP,∴∠PCD=90。
∴∠ACP+∠BCD=∠PCB+∠DCB=90。
,∴∠ACP=∠DCB,又∵∠CBP=∠D+∠DCB,∠CBP=∠ABP+∠ABC,∴∠ABC=∠APC,∴∠APC=∠D,∴△PCA∽△DCB;∴,∴AC•CD=PC•BC(2)当P运动到AB弧的中点时,连接AP,∵AB是⊙O的直径,∴∠APB=90。
,又∵P是弧AB的中点,∴弧PA=弧PB,∴AP=BP,∴∠PAB=∠PBA=45.,又AB=5,∴PA= ,过A 作AM⊥CP,垂足为M,在Rt△AMC中,∠ACM=45 ,∴∠CAM=45,∴AM=CM= ,在Rt△AMP中,AM2+AP2=PM2,∴PM= ,∴PC=PM+ = 。
由(1)知:AC•CD=PC•BC ,3×CD=PC×4,∴CD=(3)由(1)知:AC•CD=PC•BC,所以AC:BC=CP:CD;所以CP:CD=3:4,而△PCD的面积等于•= ,CP是圆O的弦,当CP最长时,△PCD的面积最大,而此时CP就是圆O的直径;所以CP=5,∴3:4=5:CD;∴CD= ,△PCD的面积等于•= = ;六、24.解:(1)由题意,可设所求抛物线对应的函数关系式为∴∴∴所求函数关系式为:(2)在Rt△ABO中,OA=3,OB=4,∴∵四边形ABCD是菱形∴BC=CD=DA=AB=5 ∴C、D两点的坐标分别是(5,4)、(2,0).当时,当时,∴点C和点D在所求抛物线上.(3)设直线CD对应的函数关系式为,则解得:.∴∵MN∥y轴,M点的横坐标为t,∴N点的横坐标也为t.则,,∴∵,∴当时,,此时点M的坐标为(,).25. 解:﹙1﹚①证明:分别过点M,N作ME⊥AB,NF⊥AB,垂足分别为点E,F.∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形.∴AB∥CD.∴ME=NF.∵S△ABM=,S△ABN=,∴S△ABM=S△ABN.②相等.理由如下:分别过点D,E作DH⊥AB,EK⊥AB,垂足分别为H,K.则∠DHA=∠EKB=90°.∵AD∥BE,∴∠DAH=∠EBK.∵AD=BE,∴△DAH≌△EBK.∴DH=EK.∵CD∥AB∥EF,∴S△ABM=,S△ABG=,∴S△ABM=S△ABG.﹙2﹚答:存在.解:因为抛物线的顶点坐标是C(1,4),所以,可设抛物线的表达式为.又因为抛物线经过点A(3,0),将其坐标代入上式,得,解得.∴该抛物线的表达式为,即.∴D点坐标为(0,3).设直线AD的表达式为,代入点A的坐标,得,解得.∴直线AD的表达式为.过C点作CG⊥x轴,垂足为G,交AD于点H.则H点的纵坐标为.∴CH=CG-HG=4-2=2.设点E的横坐标为m,则点E的纵坐标为.过E点作EF⊥x轴,垂足为F,交AD于点P,则点P的纵坐标为,EF∥CG.由﹙1﹚可知:若EP=CH,则△ADE与△ADC的面积相等.①若E点在直线AD的上方﹙如图③-1﹚,则PF=,EF=.∴EP=EF-PF==.∴.解得,.当时,PF=3-2=1,EF=1+2=3.∴E点坐标为(2,3).同理当m=1时,E点坐标为(1,4),与C点重合.②若E点在直线AD的下方﹙如图③-2,③-3﹚,则.∴.解得,.当时,E点的纵坐标为;当时,E点的纵坐标为.∴在抛物线上存在除点C以外的点E,使得△ADE与△ACD的面积相等,E点的坐标为E1(2,3);;莲山课件原文地址:/shti/cusan/103643.htm。