(完整版)上海交通大学概率论与数理统计习题全解

(完整版)上海交通大学概率论与数理统计习题全解
(完整版)上海交通大学概率论与数理统计习题全解

习题1

解:(1){}1,2,3Ω=;

(2){}2,3,4,5,6,7,8,9,10,11,12Ω=; (3){}n n Ω=为自然数;

(4)()()()()()()()()()(){}1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5Ω=;

(5)()()(){}

,,,,,Ω=合格合格合格不合格不合格不合格;

(6)(){}

1

2

1

2,9,19t t t

t Ω=≥≤;

(7){}02,d d r r Ω=≤≤为圆半径; (8){}02l l Ω=<<。

解:(1)ABC 表示不是运动员的三年级男生;

(2)当所有三年级男生都是运动员时,ABC C =成立; (3)当运动员都是三年级学生时,C B ?是正确的。 (2)ABC ; (3)ABC ; (4)ABC ; (5)A B C ??; (6)AB BC CA ??; (7)ABC ABC ABC ??; (8)ABC ABC ABC ??; (9)ABC ; (10)ABC ;

(11)ABC ABC ABC ABC ???。 解:(1)ABC 表示非平装的中文数学书;

(2)若C B ?,则说明非平装图书都是中文图书; (3)A B A B =?=,即所有数学书都不是中文版的。

证:(1)()()()

,A B AB A A B A A B A A B AA AB AB AB -=-?=?=?=?=Φ?=,

所以()A B A A B -=-?。 (2) A B A B A B ?=?=?。

解:将5本书排列到书架上共有55!120P ==种排法,卷号自左向右或自右向左恰好为12345顺序共有2种排法,故所求概率为160。

解:从八张卡片中任取两张共有2828C =种取法,两个数字组成既约分数共有18种取法,故所求概率为914。

解:13个字母随机排列共有13!种排法,组成MATHEMATICAN 共有3!2!2!2!=48

种排法,故所求概率为

4813!。

解:7位乘客在2~10层的离开情况共有79种,没有2位乘客在同一层离开共有79P 种情况,故所求概率为7799P 。

解:把全班学生任意地分成人数相等的两组共有24n n C 种分法,每组中男女人数相

等共有22n n n n C C 种分法,故所求概率为()

2

224n n

n

n C C 。

解:从n 双鞋子中任取2r 只共有22r n C 种取法。

(1)所取2r 只鞋子应分属n 双中的2r 双,而每双中又可任取其中一只,即取法有222r r n C ,故所求概率为22222r r r n n C C 。

(2) 所取2r 只鞋子中有2只属于n 双中的某一双,其余22r -只分属1n -双

中的22r -双,,即取法有1222212r r n n C C ---,故所求概率为22222122r r r

n n nC C ---。

(3)将一双鞋子视为一个整体,则2r 只鞋子中恰成r 对共有r n C 种取法,故所求概率为22r r n n C C 。

解:将2n 根小棒接成n 根新棒共有()()()21233121!!n n n --?=-L 种接法。

(1)全部新棒都是原来分开的两根小棒相接的情况只有一种,故所求概率为

()121!!n -。

(2)全部新棒的长度都与原来的一样共有()121!n n n ?-?=L 种情况,故所求概率为()!21!!n n -。

1. 在三角形ABC 中任取一点P ,证明:ABP ?与ABC ?面积之比大于()1n n -的概率为21n 。

证明:

如图,由

1ABP ABC S n S n ??->,得''11

,A B C ABP ABC ABC h h n h n h n

????-><。 显然,当P 落在''A B C ?中时才满足上述要求,由几何概率知,上述事件发

生的概率为2

''''21

A B C A B C ABC ABC S h S h n

??????== ???

2. 两艘船都要停靠同一泊位,它们都可能在一昼夜内的任意时刻到达。设两船停靠泊位的时间分别为1小时与2小时,求两艘船都不需要等候泊位空出的

概率。

解:

设两艘船的到达时刻为,x y,则0,24

x y

<<,两船相会的条件为01

x y

<-<,02

y x

<-<。如图,由几何概率知,所求概率为

22

2

11

2322

220.879

24

+

=。

3.两人约好在某地相会,两人随机地在下午1点与2点之间到达相会地点,求

一个至少要等候另一个人十分钟的概率。

解:

设两人的到达时刻分别为,x y,则0,1

x y

<<,一人至少等候十分钟的条件为16

x y

->。如图,由几何概率知,所求概率为

2

2

1

1

25

6

136

??

-

?

??=。

4.圆内有一内接正方形,随机地向圆内投10点,求其中4点落在正方形内,3

点落在一个弓形内,其余3点分别落在其他3个弓形内的概率。

解:不妨设圆半径为1,则圆面积为π,内接正方形的面积为2,弓形面积为()24

π-,点落在内接正方形内的概率为2π,点落在一个弓形内的概率为()24

ππ

-。

符合题意的点的落法有许多方式,在一种方式中,概率显然为

46

22

4

π

ππ

-

????

? ?

????

概率论与数理统计考试试卷

2011 ~2012 学年第一学期《概率论与数理统计》考试试题A卷班级(学生填写): 姓名: 学号: 命题: 审题: 审批: --------------------------------------------------- 密 ---------------------------- 封 ----------------------- ---- 线 -------------------------------------------- ----- (答题不能超出密封线) 使用班级(老师填写):数学09-1,3班可以普通计算器 题号一二三四五六七八九总分得分 阅卷 人 一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填 在括号中) (本大题共 11 小题,每小题2分,总计 22 分) 1、设A,B为随机事件,则下列各式中不能恒成立的是(C ). A.P) B.,其中P(B)>0 C. D. 2、为一列随机事件,且,则下列叙述中错误的是(D ). A.若诸两两互斥,则 B.若诸相互独立,则 C.若诸相互独立,则 D. 3、设有个人,,并设每个人的生日在一年365天中的每一天的可能性为均 等的,则此个人中至少有某两个人生日相同的概率为( A ). A. B. C. D. 4、设随机变量X服从参数为的泊松分布,且则的值为( B ). A. B. C. D.. 解:由于X服从参数为的泊松分布,故.又故,因此 5、设随机变量X的概率密度函数为的密度函数为(B ). A. B. C. D. 解:这里,处处可导且恒有,其反函数为,直接套用教材64页的公式(5.2),得出Y的密度函数为 6、若,且X,Y相互独立,则( C ). A. B.

西安交通大学计算方法B上机报告

计算方法上机报告

姓名: 学号: 班级:能动上课班级:

题目及求解: 一、对以下和式计算: ∑ ∞ ? ?? ??+-+-+-+=0681581482184161n n n n S n ,要求: ① 若只需保留11个有效数字,该如何进行计算; ② 若要保留30个有效数字,则又将如何进行计算; 1 算法思想 (1)根据精度要求估计所加的项数,可以使用后验误差估计,通项为: 1421114 16818485861681 n n n a n n n n n ε??= ---<< ?+++++??; (2)为了保证计算结果的准确性,写程序时,从后向前计算; (3)使用Matlab 时,可以使用以下函数控制位数: digits(位数)或vpa(变量,精度为数) 2 算法结构 ;0=s ?? ? ??+-+-+-+= 681581482184161n n n n t n ; for 0,1,2,,n i =??? if 10m t -≤ end; for ,1,2,,0n i i i =--??? ;s s t =+ 3 Matlab 源程序 clear; %清除工作空间变量 clc; %清除命令窗口命令 m=input('请输入有效数字的位数m='); %输入有效数字的位数 s=0;

for n=0:50 t=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); if t<=10^(-m) %判断通项与精度的关系break; end end; fprintf('需要将n值加到n=%d\n',n-1); %需要将n值加到的数值 for i=n-1:-1:0 t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s=s+t; %求和运算 end s=vpa(s,m) %控制s的精度 4 结果与分析 若保留11位有效数字,则n=7,此时求解得: s =3.1415926536; 若保留30位有效数字时,则n=22, 此时求解得: s =3.8。 通过上面的实验结果可以看出,通过从后往前计算,这种算法很好的保证了计算结果要求保留的准确数字位数的要求。 二、某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。已探测到一组等分点位置的深度数据(单位:米)如下表所示:

概率论与数理统计期末试卷+答案

一、单项选择题(每题2分,共20分) 1.设A 、B 是相互独立的事件,且()0.7,()0P A B P A ?==则 ()P B = ( A A. 0.5 B. 0.3 C. 0.75 D. 0.42 2、设X 是一个离散型随机变量,则下列可以成为X 的分布律的是 ( D ) A. 10 1p p ?? ?-??( p 为任意实数) B. 123450.1 0.3 0.3 0.2 0.2x x x x x ?? ??? C. 3 3()(1,2,...) ! n e P X n n n -== = D. 3 3()(0,1,2,...) ! n e P X n n n -== = 3.下列命题 不正确的是 ( D ) (A)设X 的密度为)(x f ,则一定有?+∞ ∞-=1 )(dx x f ; (B)设X 为连续型随机变量,则P (X =任一确定值)=0; (C)随机变量X 的分布函数()F x 必有01)(≤≤x F ; (D)随机变量X 的分布函数是事件“X =x ”的概率; 4.若()()() E XY E X E Y =,则下列命题不正确的是 ( B ) (A)(,)0Cov X Y =; (B)X 与Y 相互独立 ; (C)0=XY ρ; (D)()()D X Y D X Y -=+; 5. 已知两随机变量X 与Y 有关系0.80.7Y X =+,则X 与Y 间的相关系数 为 ( B ) (A)-1 ( B)1 (C)-0.8 (D)0.7 6.设X 与Y 相互独立且都服从标准正态分布,则 ( B ) (A)(0)0.25P X Y -≥= (B)(min(,)0)0.25P X Y ≥=

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

计算方法教学大纲-致远学院-上海交通大学

上海交通大学致远学院2014年秋季学期 《随机过程》课程教学说明 一.课程基本信息 1.开课学院(系):致远学院 2.课程名称:《随机过程》(Stochastic Processes) 3.学时/学分:64学时/4学分 4.先修课程:概率论 5.上课时间:周二、四,3-4节课 6.上课地点:中院207 7.任课教师:韩东(donghan@https://www.360docs.net/doc/5c1700541.html,) 8.办公室及电话:数学楼1206,54743148-1206 9.助教:张登(zhangdeng@https://www.360docs.net/doc/5c1700541.html,) 10.Office hour:周四下午3-5点,数学楼1206 二.课程主要内容(中英文) 随机过程是定量研究随机现象(事件)统计规律的一门数学分支学科。学习《随机过程》的主要目的是:了解、认识随机现象的统计性质;知道如何构造随机模型并且能计算和分析随机事件随时间发生变化的的概率及其相关性质。《随机过程》主要包括:Poisson过程、Markov过程、鞅过程、Bronian 运动、随机分析基础(Ito积分与随机微分方程)、平稳过程等。 Stochastic Processes are ways of quantifying the dynamic relations of sequences of random events. It is a branch of mathematics. The main content of this course includes: General theory of stochastic processes; Poisson process and renewal theorems; Martingales; Discrete-time Markov Chains; Continuous-time Markov Chains; Brownian motion; Introduction to stochastic analysis; Stationary processes and ARMA models. 第一章概率论精要 主要内容:概率公理化,全概率公式和Bayes 公式,随机变量及其数字特征、条件期望、极限定理。重点与难点:条件期望和极限定理。 第二章随机过程的基本概念 主要内容:随机过程的定义、随机过程的存在性、随机过程的数字特征。 重点与难点:随机过程的存在性。 第三章Poisson 过程 主要内容:Poisson过程的定义及性质,首达时间与其间隔的分布,Poisson过程的极限定理。 重点与难点:首达时间间隔与Poisson过程的关系。 第四章Markov过程

华东师范大学末试卷(概率论与数理统计)复习题

华东师范大学期末试卷 概率论与数理统计 一. 选择题(20分,每题2分) 1. 已知随机变量X ~N(0,1),则2X 服从的分布为: A .)1(χB 。)1(2 χC 。)1,0(N D 。)1,1(F 2. 讨论某器件的寿命,设:事件A={该器件的寿命为200小时},事件B={该器件的寿 命为300小时},则: A . B A =B 。B A ? C 。B A ? D 。Φ=AB 3.设A,B 都是事件,且1)(,0)(,1)(≠>=A P A P B A P ,则=)(A B P () A.1 B.0 C.0.5 D.0.2 4.设A,B 都是事件,且2 1 )(= A P ,A, B 互不相容,则=)(B A P () B.41 C.0 D. 5 1 5.设A,B 都是事件,且2 1 )(= A P , A, B 互不相容,则=)(B A P () B. 41 C.0 D. 5 1 B 。若A,B 互不相容,则它们相互独立 C .若A,B 相互独立,则它们互不相容 D .若6.0)()(==B P A P ,则它们互不相容 7.已知随机变量X ~)(λπ,且}3{}2{===X P X P ,则)(),(X D X E 的值分别为: A.3,3 B.9,9 C.3,9 D.9,3 8.总体X ~),(2 σμN ,μ未知,4321,,,X X X X 是来自总体的简单随机样本,下面估计量中的哪一个是μ的无偏估计量:、

A.)(31 )(21T 43211X X X X +++= C.)432(5 1 T 43213X X X X +++= A.)(4 1 T 43214X X X X +-+= 9.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,下列μ的无偏估计量哪一个是较为有效的估计量: A.54321141)(81)(41T X X X X X ++++= B.)(61 )(41T 543212X X X X X ++++= D.)2(6 1 T 543214X X X X X ++++= 10.总体X ~),(2 σμN ,μ未知,54321,,,,X X X X X 是来自总体的简单随机样本,记 ∑==n i i X n X 1 1, 21 21 )(11X X n S n i i --=∑=, 2 1 22 )(1X X n S n i i -=∑=, 21 23 )(1μ-=∑=n i i X n S ,21 24)(1μ-= ∑=n i i X n S ,则服从自由度为1-n 的t 分布的 1X t 2 --=n S μ C.n S 3X t μ-= D .n S 4 X t μ -= 11.如果存在常数)0(,≠a b a ,使1}{=+=b aX Y p ,且+∞<<)(0X D ,则Y X ,

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

上海交通大学计算方法作业答案.docx

P50-1 %%牛顿插值多项式 function [ c, d] = newpoly ( x,y ) %这里X为n个节点的横坐标所组成的向量,y为纵坐标所组成的向量。%c为所求的牛顿插值多项式的系数构成的向量。 n=length(x); d=zeros (n, n); d(: , l)=y*; for j=2 : n for k= j : n d(k, j) = (d(k, j-1) - d (k-l z j-1)) / (x(k)-x(k-j + l)); end end c = d (n, n); for k=(n-1) : - 1 : 1 c =conv (c z poly (x (k))); m=length (c); c (m) =c (m) + d (k, k); end >> X ==0.2 : 0.2 :1 ; >> y =[ 0.98,0.92,0.81,0.64,0.38]; >> c= newpoly(x, y ) c =-0.5208 0.8333 -1-1042 0.1917 0.9800 % %三次样条插值 x=[0.2,0.4,0.6,0.8,1.0]; y=[0.98, 0.92z 0.81,0.64,0.38]; x0 = [0.2,0.28,1.0,1.08]; pp=csape(x A y, 1 variational1); %%三次样条函数表达式 disp(pp?coefs); -1-3393-0.0000-0.24640.9800 0 ?4464-0.8036-0.40710.9200 -1.6964-0.5357-0.67500.8100 2.5893-1.5536-1.09290.6400

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计试卷及答案

概率论与数理统计 答案 一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2 ()E ξ=29、4. 0.94、5. 3/4 三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P (A )=5/625=1/125------------------------------------------------------5 分 (2) 5个盒子中选一个放两个球,再选两个各放一球有 302415=C C 种方法----------------------------------------------------7 分 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故 125 72625360)(== B P --------------------------------------------------10分 四.解:(1) ?? ∞∞-==+=3 04ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)? ==+=<10 212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3 300()()[ln(1)]1Ax E xf x dx dx A x x x ξ∞-∞= ==-++?? 13(3ln 4)1ln 4ln 4 =-=-------------------------------------10分 五.解:(1)ξ的边缘分布为 ??? ? ??29.032.039.02 1 0--------------------------------2分 η的边缘分布为 ??? ? ??28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη?的分布列为

科学计算-致远学院-上海交通大学

上海交通大学致远学院计算机班 《科学计算》教学大纲 一、课程基本信息 课程名称(中文):科学计算 课程名称(英文):Scientific Computing 课程代码:MA235 学分 / 学时:3学分 / 48学时 适用专业:致远学院计算机班 先修课程:数学分析,线性代数 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周四14:00—16:00,地点:数学楼1204 二、课程性质和任务 科学计算的兴起是20世纪最重要的科学进步之一,其核心主要为利用计算机高效求解来源于科学研究和工程设计中的各类问题。随着高性能计算机的飞速发展,科学计算在国民经济与国防建设的许多重要领域都取得很大成功,因此,实验、理论、计算被公认为科学与工程领域中不可或缺的三大基本研究方法。本课程的主要任务是通过算法设计、理论分析和上机实算“三位一体”的教学方法,使学生能掌握科学计算领域算法设计的一些基本方法和基本原理,能对算法进行有效的收敛性、稳定性和复杂度分析,进一步提升同学们利用计算机解决实际问题的能力。本课程将着重介绍插值与逼近、数值积分与数值微分、非线性方程与线性方程组的数值解法,简要介绍矩阵的特征值与特征向量计算和常微分方程初值问题数值解法等内容。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 1 绪论 1.1计算机数值计算基本原理 1.2 误差的基本概念与估计 1.3 避免算法失效的基本原则

1.4 MATLAB语言简介 2 函数的多项式插值与逼近 2.1 函数插值与逼近问题的提法 2.2 Lagrange插值方法 2.3 Newton插值方法 2.4 Hermite插值方法 2.5 分段低次多项式插值 2.6 最佳平方逼近 2.7 正交多项式 2.8 变分原理简介 2.9 函数拟合的正则化方法 3 数值积分与数值微分 3.1 数值积分概论 3.2 Newton-Cotes公式 3.3 复化求积公式 3.4 Romberg求积公式与自适应求积方法3.5 Gauss求积公式 3.6 数值微分 4 非线性方程求根 4.1 方程求根与二分法 4.2 不动点迭代法及其收敛性 4.3 迭代收敛的加速算法 4.4 Newton法及收敛性分析

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计试卷及答案(1)

模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = , P(B) = , P(B|A ) = , 则P(A|B ) = P( A ∪B) = 2、设事件A 与B 独立,A 与B 都不发生的概率为1 9 ,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:,0 ()1/4, 020,2 x Ae x x x x ??为未知参数,12,, ,n X X X 为其样本,1 1n i i X X n ==∑为样本均值, 则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置 信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶 3 发,事件表示“击中i发”,i = 0, 1, 2, 3。那么事件 表示 ( )。 ( A ) 全部击中; ( B ) 至少有一发击中; ( C ) 必然击中; ( D ) 击中 3 发 2.设离散型随机变量x 的分布律为则常数 A 应为( )。 ( A ) ; ( B ) ; (C) ; (D) 3.设随机变量,服从二项分布B ( n,p ),其中 0 < p < 1 ,n = 1, 2,…,那么,对于任一实数x,有等于 ( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时每人需用台秤的概率 为,则4人中至多1人需用台秤的概率为: __________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于 ___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查到次品时为止,用x表示检查次数,求的分布函数:

五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为 20%,不胖不瘦者患高血压病的概率为 10% ,瘦者患高血压病的概率为5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量, 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化? ( 分别取和 0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在 100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

相关文档
最新文档