太原理工大学2014级概率论与数理统计试题
2012,2013,2014年概率论与数理统计期末考试试卷答案
2012年概率论与数理统计期末考试试卷一. 填空题(每题5分, 共30分)1. 设随机变量X 服从正态分布(1,4)N , 已知(1)a Φ=, 其中()x Φ表示标准正态分布的分布函数, 则{13}P X -≤≤=21a -.解: 111311{13}11(1)(1)2222(1)(1(1))2(1)12 1.X X P X P P a -----⎧⎫⎧⎫-≤≤=≤≤=-≤≤=Φ-Φ-=⎨⎬⎨⎬⎩⎭⎩⎭Φ--Φ=Φ-=- 2. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = 0.1 . 解: ()()()()0.2P AB P A P B P A B =+-+=,()()()0.30.20.1P AB P A P AB =-=-=.3. 设随机变量,X Y 的数学期望分布是-2, 1, 方差分别是1, 4, 两者相关系数是—0.5, 则由契比雪夫不等式估计(|2|6)P X Y +≥≤ 13/36 . 解: 由已知条件得, (2)2220E X Y EX EY +=+=-+=,(2)4()2(,2)4()4(,)D X Y DX D Y Cov X Y DX D Y Cov X Y +=++=++4()41164(1/2)213DX D Y ρ=++=++⋅-⋅=, 所以, 13(|2|6)36P X Y +≥≤. 4. 已知,X Y 是具有相同分布的两个独立随机变量, 且1(1)(1)2P X P Y =-==-=, 1(0)(0)2P X P Y ====, 则()P X Y == 1/2 . 解:()(0,0)(1,1)1(0)(0)(1)(1).2P X Y P X Y P X Y P X P Y P X P Y ====+=-=-===+=-=-=5. 设1216,,,X X X 是来自2(0,)N σ的样本, S 是样本均方差, 则1614ii XS=∑服从t (15).解: 由定理3(15)t ,161611(15)4i ii X X X t S ===∑∑.6. 设1281,,,(,9)X X X N μ, 要检验假设0:0H μ=, 则当0H 为真时, 用于检验的统计量3X 服从的分布是(0,1)N . 解: 由定理1(0,1)X N , 3(0,1)X N .二. 解答下列各题:7. (10分)已知男人中色盲人数所占比例是5%, 女人中色盲人数所占比例是0.25%. 现从男女人数各占一半的人群中随机选取一人, 求该人恰是色盲者的概率.解: 设A =“该人是色盲”, 1A =“该人是男人”, 2A =“该人是女人”.由全概率公式知, 2111()()()0.050.0025 2.625%22i i i P A P A P A A ===⨯+⨯=∑.8. (10分) 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i X ⎧=⎨⎩第次取出球第次取出白球,i 红i 1,2i =. 实在不放回模式下求12,X X 的联合分布律,4/7 3/7 j P因为1212{0,0}{0}{0}P X X P X P X ==≠==, 所以12,X X 不独立. 9. (10分)设随机向量(,)X Y 的联合概率密度函数为3,01,,(,)20,xx x y x f x y ⎧<<-<<⎪=⎨⎪⎩其他,求,X Y 的边缘概率密度函数. 解: 当01x <<时, 23()(,)32xX x xf x f x y dy dy x +∞-∞-===⎰⎰.所以,23,01,()0,.其他X x x f x ⎧<<=⎨⎩当10y -<<时, 1233()(1)24Y y x f y dx y -==-⎰;当01y ≤<时, 1233()(1)24Y y x f y dx y ==-⎰; 所以,23(1),11,()40,.其他Y y y f y ⎧--<<⎪=⎨⎪⎩10. (10分) 设,X Y 相互独立, 且(1)(1)0P X P Y p ====>, (0)(0)10P X P Y p ====->,令1,0,X Y Z X Y +⎧=⎨+⎩当为偶数,当为奇数,求Z 的分布律.解:{0}{0,1}{1,0}{0}{1}{1}{0}2(1)P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===- 22{1}{0,0}{1,1}{0}{0}{1}{1}(1).P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===+- 所以, Z11. (10分12,,X 是来自具有分布的总体的随机样本,试用中心极限定理计算()5P X >.(已知(2)0.508Φ=.)解: 由题知1()3i E X =,2()1i E X =,故()228()9i i i D X EX EX =-=. 由中心极限定理知,20012001600(,)39ii X N =∑. 所以, 11111()4014052005n i n n i i i i i X P X P P X P X ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪>=>=>=-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑1200200403311(2)(2)0.508404033n i i X P =⎛⎫-- ⎪ ⎪=-≤≈-Φ-=Φ= ⎪ ⎪⎝⎭∑. 12. (10分)设总体X 的密度函数为36(),0,(;)0,其他,xx x f x θθθθ⎧-<<⎪=⎨⎪⎩求θ的矩估计ˆθ并计算ˆD θ.解: 依题意,306()()2xE X xx dx X θθθθ=-==⎰,得参数θ的矩估计量为ˆ2X θ=. 4ˆ4D DX DX n θ==. 而2223063()()10x E X x x dx θθθθ=-=⎰,故22244ˆ()5D DX EX E X n n n θθ==-=.13. (10分) 某电器零件平均电阻一直保持在2.64Ω,使用新工艺后,测得100个零件平均电阻在2.62Ω,如改变工艺前后电阻均方差保持在0.06Ω,问新工艺对零件电阻有无显著影响?(取0.01α=)(1.96)0.975,Φ=(1.64)0.95,Φ=(2.58)0.995Φ=. 解: 设X 为零件的平均电阻, 则2~(,0.06)X N μ. (1)假设0: 2.64H μ=; (2)取统计量~(0,1)X U N=;(3)由0.01α=, 确定临界值22.58u α=, , 使得2{||}0.01P U u α>=;(4)由样本值 2.62x =, 得统计量U 的观察值3.33x u ==≈-.(5)因为 2.58u >,所以拒绝原假设0H ,认为新工艺对零件电阻有显著影响.2013年概率论与数理统计期末考试试卷一. 填空题(每题4分, 共20分)1. 设随机变量,X Y 相互独立, 且同分布, {1}{1}0.5P X P X =-===,{1}{1}0.5P Y P Y =-===, 则{}P X Y == 1/2 .解: 1{}{1,1}{1,1}{1}{1}{1}{1}.2P X Y P X Y P X Y P X P Y P X P Y ===-=-+====-=-+===2.22x edx +∞-=⎰2. 解:因为221x +∞--∞=⎰,所以22xe +∞--∞=⎰即2202x e +∞-=⎰. 3. 设连续型随机变量X的密度函数22()2()x f x μσ--=, x -∞<<+∞, 则EX =μ, DX =2σ. 解:因为22()2()x X f x μσ--=, 所以2(,)X N μσ.4. 设总体(3,10)XN , 12100,,,X X X 为来自总体X 的简单随机样本, 则10011100i i X X ==∑1~(3,)10X N . 解: 由定理1知, 1~(3,)10X N . 5. 设袋中有8个红球, 2个黑球, 每次从袋中摸取一个球并且不放回, 那么第一次与第三次都摸到红球的概率是 28/45 . 解: 记i A =“第i 次摸到红球”, 1,2,3i =.13131223123123()()(())()P A A P A A P A A A A P A A A A A A =Ω=+=+123123121312121312()()()()()()()()P A A A P A A A P A P A A P A A A P A P A A P A A A =+=+876827281098109845=⨯⨯+⨯⨯=. 二. 解答题6. (12分) 某矿内有甲乙两个报警系统, 单独使用时甲的有效性为0.92, 乙为0.93, 且在甲失灵的条件下乙有效的概率为0.85, 求意外发生时, 甲乙至少有一个有效的概率, 以及乙失灵时甲有效的概率. 参考练习册反12第4题. 解: 设A =“甲有效”, B =“乙有效”.题目转为: 已知()0.92,()0.93P A P B ==, {}0.85P B A =, 求()P A B +和{}P A B . 因为()()()(){}0.851()1()()P BA P B A P B P AB P B A P A P A P A --====--, 所以, ()0.862P AB =.所以, ()()()()0.988P A B P A P B P AB +=+-=;()()()()0.920.862{}0.831()1()10.93()P AB P A B P A P AB P A B P B P B P B ---====≈---. 7. (12分)设连续型随机变量X 的分布函数为()arctan ()F x a b x x =+-∞<<+∞, 求常数,a b 以及随机变量X 的密度函数. 解: 根据分布函数的性质得()1,2()0,2b F a b F a ππ⎧+∞=+=⎪⎪⎨⎪-∞=-=⎪⎩ 所以1,21.a b π⎧=⎪⎪⎨⎪=⎪⎩X 的密度函数为21()(1)f x x π=+.8. (14分) 设某种类型人造卫星的寿命X (单位: 年)的密度函数为21,0,()20,0.xe xf x x -⎧>⎪=⎨⎪≤⎩若2颗这样的卫星同时升空投入使用, 试求:(1) 3年后这2颗卫星都正常运行的概率;(2) 3年后至少有1颗卫星正常运行的概率. 参考教材P37例3 解: 1颗卫星3年内正常运行的概率为32231{3}2x P X e dx e +∞--≥==⎰. 记Y 表示2颗卫星在3年内正常运行的颗数, 则32(2,)Y B e -.(1) 3年后这2颗卫星都正常运行的概率2332{2}P Y e e --⎛⎫=== ⎪⎝⎭;(2) 3年后至少有1颗卫星正常运行的概率232{1}1{0}11P Y P Y e -⎛⎫≥=-≥=-- ⎪⎝⎭.9. (14分) 设某高校英语考试成绩近似服从均值为72的正态分布, 96分以上的考生占总数的2.3%(已知满分为100, 合格线为60), 试求: (1) 考生成绩在60-84之间的概率;(2) 该校考生的合格率.((2)0.977,(1)0.8413)Φ=Φ= 解: 设某高校英语考试成绩为X , 则2(72,)XN σ.由题意知{96}0.023P X ≥=, 即7296720.023X P σσ--⎧⎫≥=⎨⎬⎩⎭, 所以241()0.023σ-Φ=, 即24()0.977(2)σΦ==Φ.因此, 12σ=.(1) 考生成绩在60-84之间的概率6072728472{6084}(1)(1)2(1)10.6826;121212X P X P ---⎧⎫≤≤=≤≤=Φ-Φ-=Φ-=⎨⎬⎩⎭(2) 合格率726072{60}1(1)(1)0.8413.1212X P X P --⎧⎫≥=≥=-Φ-=Φ=⎨⎬⎩⎭10. (14分) 一工厂生产的某种电池的寿命服从正态分布(25,100)N , 现在从这种电池中随机抽取16个, 测得平均寿命为23.8小时, 由此能否断定: 在显著性水平为0.05α=时, 该种电池的平均寿命小于25小时. ((1.96)0.975,(1.64)0.95)Φ=Φ= 解: 设X 为电池寿命, 则~(,100)X N μ.(1)假设00:25H μμ≥=; (2)取统计量~(0,1)X U N=;(3) 由0.05α=, 确定临界值 1.64u α-=-, 使得{}0.05P U u α<-=; (4)由样本均值23.8x =, 得统计量U 的观察值00.48u ===-.(5)因为00.48 1.64u =->-,此时没有充分理由说明小概率事件{ 1.64}u <-一定发生. 所以接受原假设0H , 认为这种电池的平均寿命不小于25小时. 注: 原假设不能设为00:25H μμ<=,此时μ取不到0μ,统计量X U =就没有意义了!11. (14分)设总体X 是离散型随机变量, 其所有可能的取值为0, 1, 2, 已知2(1)EX θ=-, 2{2}(1)P X θ==-, θ为参数. 对X 取容量为10的样本如下 1, 1, 0, 2, 2, 1, 1, 1, 0, 2.求参数θ的矩估计和极大似然估计.解:(1) 由2(1)X θ=-, 得θ的矩估计量为12Xθ=-; 结合 1.1x =, θ的矩估计值为10.452x θ=-=.(2) 构造似然函数为11912101210(){1,1,,2}{1}{1}{2}32(1)L P X X X P X P X P X θθθ=========-,取对数ln ()ln3211ln(1)9ln L θθθ=+-+,求导数(ln ())11901d L d θθθθ=-+=-, 得θ的极大似然估计值为920θ=.2014年概率论与数理统计期末考试试卷一. 填空题(共40分, 每空5分)1. 设~(,)X B n p , ~(,)Y B m p , 且X 与Y 独立, 则X Y +~(),(p m n B +)分布;2. 设2~(,)X N μσ, 则X 的密度函数()f x =(222)(21σμσπ--x e);3. 设总体X 的方差为2σ, 12,,,n X X X 为样本, X 为样本均值, 则期望211()n i i E X X n =⎛⎫-= ⎪⎝⎭∑(21σn n -); 4. 设12,,,n X X X 为样本, 则统计量211n i i X n =∑的名称为(样本2阶原点矩);5. 设总体~(,1)X N μ, 12,,,n X X X 为来自该总体的样本, 则21()ni i X μ=-∑服从()(2n χ)分布;6. 一批产品中有5个正品, 3个次品, 从中任取2个, 恰有1个次品, 1个正品的概率为(2815281315=C C C );7. 样本的特性是(独立、同分布且与总体分布相同);8. 在假设检验中, 可能犯两类错误. 其中第一类错误也称为弃真, 弃真的确切含义为(当原假设是真的时,拒绝了它). 二. 计算题(60分, 每题10分)1. 假设某贪官收受一次贿赂而被曝光的概率为0.05, 到目前为止共收受80次贿赂, 假设案发前每次收受贿赂是否曝光相互独立. 试用概率说明 “多行不义必自毙”. (取20190.3520⎛⎫≈ ⎪⎝⎭)解:记i A 为事件“第i 次收受贿赂而被曝光”(1,2,,80i),---------------------2 于是案发的概率为 )(801∑=i i A P ------------- ------------- -----------------4 )(1)(1801801∏∏==-=-=i i i i A P A P----------------------6985.035.01)2019(195.0148080=-=-=-=。
太原理工大学概率论与数理统计
(格式不对是因为这是经过整理后的)太原理工大学一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A与B是任意两个互不相容事件,则下列结论中正确的是()A. P(A)=1-P(B)B. P(A-B)=P(B)C. P(AB)=P(A)P(B)D. P(A-B)=P(A)2.设A,B为两个随机事件,且B包含于A,P(B)>0,则P(A/B)()A. 1B. P(A)C. P(B)D. P(AB)3.下列函数中可作为随机变量分布函数的是()A.B.C.D.4.设离散型随机变量X的分布律为则P{-1<X<=1)()A.0.3B.0.4C.0.6D.0.75.设二维随机变量(X,Y)的分布律为()且X与Y相互独立,则下列结论正确的是A.a=0.2,b=0.6B.a=-0.1,b=0.9C.a=0.4,b=0.4D.a=0.6,b=0.26.设二维随机变量(X,Y)的概率密度为则P{0>X<1,0<Y<1}=()A.1/4B.1/2C.3/4D.17.设随机变量X服从参数为的指数分布,则E(X)=()A. 1/4B.1/2C.2D.48.设随机变量X与Y相互独立,且X~N(0,9),Y~N(0,1),令Z=X-2Y,则D(Z)=()A.5B.7C.11D.139.设(X,Y)为二维随机变量,且D(X)>0,D(Y)>0,则下列等式成立的是()A.E(XY)=E(X)·E(Y)B.CovC.D(X+Y)=D(X)+D(Y)D.Cov(2X,2Y)=2Cov(X,Y)_10.设总体X服从正态分布N(U,@2),其中@2未知,x1,x2,…,x n为来自该总体的样本,X为样本均值,s为样本标准差,欲检验假设,则检验统计量为()A.B._C.(n-1)的开方乘(X-U0)_D. n的开方乘(x-u0 )二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
(完整word版)2014-2015概率论与数理统计A卷答案 (1)
系部 专业班级 学号 姓名 密封线 答题留空不够时,可写到纸的背面 注意保持装订完整,试卷折开无效 装订线二.填空题(每题2分,共10分)1.已知().P A =06, ()|.P B A =03, 则()P A B ⋂= ___0.18_______;2.甲、乙、丙3人独立地译出一种密码,他们能译出的概率分别为1/5,1/3,1/4,则能译出这种密码的概率为35; 3.一种动物的体重X 是一随机变量,设()(),E X D X ==334,10个这种动物的平均体重记作Y ,则()D Y =__ 0.4 _;4. 已知,36)(,25)(==Y D X D X 与Y 的相关系数为4.0=XY ρ,则)(Y X D -= 37 ;5. 设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从2()n χ分布.三.计算下列各题(共80分)1.(10分)例 1.某电子设备制造厂所用的元件是由三家元件制造厂提供的,根据以往的记录三家厂的次品率分别为0.02,0.01,0.03,三家厂所提供的份额分别为0.15,0.80,0.05。
设这三家厂的产品在仓库中是均匀混合的,且无区别的标志.(1)在仓库中随机取一只元件,求它是次品的概率;(2)在仓库中随机取一只元件,若已知取到的是次品,求出此次品由第一家工厂生产的概率是多少?解:设A 表示“取到的是一只次品”,(i=1,2,3)表示“所取到的产品是由第i 家工厂提供的”,则P()=0.15 P()=0.80 P()=0.05P(=0.02 P(=0.01 P(=0.03 (3分)1>.由全概率公式()112233(|)()(|)()(|) ?()A B B A B B B A A B =++P P P P P P P 0.0125= (5分) 2>.由贝叶斯公式P() = = = 0.24 (10分)桂林理工大学考试试卷 (2014--2015 学年度第 一 学期)课 程 名 称:概率统计 A 卷 命 题:基础数学教研室 题 号 一二三总 分得 分一. 单项选择题(每小题2分,共10分)1.如果 1)()(>+B P A P ,则 事件A 与B 必定( C ))(A 独立 )(B 不独立 )(C 相容 )(D 不相容2.设随机变量X 服从二项分布(,)B n p ,且()()2.1 1.47==E X D X ,则二项分布的参数,n p 的值为( A ) ()70.3==A n p ()30.7==B n p ()210.1==C n p ()40.6==D n p3.设随机变量X 服从)1,0(N 分布,12+=X Y ,则~Y ( B ) ()(0,1)()(1,4)()(1,2)()(0,4)A N B N C N D N4. 已知X 服从泊松分布,则()D X 与()E X 的关系为( C ) )(A ()()D X E X > )(B ()()D X E X < )(C ()()D X E X = )(D 以上都不是5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( D ))(A 32112110351ˆX X X ++=μ)(B 3212949231ˆX X X ++=μ)(C 3213216131ˆX X X ++=μ)(D 32141254131ˆX X X ++=μX-1-1 0.12将联合分布表每行相加得-10.6将联合分布表每列相加得-10.30,1,;0θ<<!!n e X , (4分)()1ln !!!n X X θ- n ,令ln 0,d d θ=得1n θ= (10000,0.005b49.75, ()2.84Φ-Φ。
2014(上)《数理统计》考试题(A卷)及参考解
2014(上)《数理统计》考试题(A 卷)及参考解答三、(本题10分)设总体21(,)XN μσ、22(,)Y N μσ,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X YS S 、分别是它们的样本均值和样本方差,证明12(2)X Y t n n +-,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知1221212(,)X YN n n σσμμ--+,(0,1)X Y U N =.由定理可知22112(1)(1)Xn S n χσ--,22222(1)(1)Yn S n χσ--.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-.四、(本题10分)已知总体X 的概率密度函数为1, 0(),0, xe xf x θθ-⎧>⎪=⎨⎪⎩其它其中未知参数0θ>,12(,,,)n X X X 为取自总体的一个样本,求θ的矩估计量,并证明该估计量是无偏估计量.解:(1)()101()xv E X xf x dx xe dx θθθ-∞∞-∞====⎰⎰,用111ni i v X X n ===∑代替,所以 ∑===ni iX Xn11ˆθ.(2)11ˆ()()()()n i i E E X E X E X n θθ=====∑,所以该估计量是无偏估计. 五、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x θθθ=+<<,其中未知参数1θ>-,12(,,)n X X X 是来自总体X 的一个样本,试求参数θ的极大似然估计.解:1 (1)() , 01() 0 , nn i i i x x L θθθ=⎧+∏<<⎪=⎨⎪⎩其它当01i x <<时,1ln ()ln(1)ln ni i L n x θθθ==++∑,令1ln ()ln 01ni i d L nx d θθθ==+=+∑,得1ˆ1ln nii nxθ==--∑.六、(本题10分)设总体X 的密度函数为e ,>0;(;)0,0,x x f x x λλλ-⎧=⎨≤⎩ 未知参数0λ>,12(,,)n X X X 为总体的一个样本,证明X 是1λ的一个UMVUE .证明:由指数分布的总体满足正则条件可得222211()ln (;)I E f x E λλλλλ⎡⎤∂-⎛⎫=-=-= ⎪⎢⎥∂⎝⎭⎣⎦,1λ的的无偏估计方差的C-R 下界为2221221[()]11()nI n n λλλλλ-⎡⎤⎢⎥'⎣⎦==.另一方面()1E X λ=, 21V a r ()Xn λ=, 即X 得方差达到C-R 下界,故X 是1λ的UMVUE .七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=α下, 可否认为该批苹果重量标准差达到要求? (2)如果调整显著性水平0.025α=,结果会怎样?参考数据: 023.19)9(2025.0=χ, 919.16)9(205.0=χ, 535.17)8(2025.0=χ, 507.15)8(205.0=χ.解:(1)()()2222021:0.005,~8n S H σχχσ-≤=,则应有: ()()2220.050.0580.005,(8)15.507P χχχ>=⇒=, 具体计算得:22280.00715.6815.507,0.005χ⨯==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求.(2)新设 20:0.005,H σ≤ 由2220.025280.00717.535,15.6817.535,0.005χχ⨯=⇒==< 则接受假设,即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X 和212(,,,)n Y Y Y 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间.解:设22, X YS S 分别表示总体X Y ,的样本方差,由抽样分布定理可知 221121(1)(1)Xn S n χσ--,222222(1)(1)Yn S n χσ--,由F 分布的定义可得211222121222221222(1)(1)(1,1)(1)(1)XX YY n S n S F F n n n S S n σσσσ--==----.对于置信度1α-,查F 分布表找/212(1,1)F n n α--和1/212(1,1)F n n α---使得 []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 即22222121/2122/212//1(1,1)(1,1)X Y X Y S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭, 所求2221σσ的置信度为α-1的置信区间为 22221/212/212//, (1,1)(1,1)X Y X Y S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.。
大学概率论与数理统计习题及参考答案
P A P AB1 AB2 P AB1 P AB2 P B1 P A B1 P B2 P A B2
2 1 0.97 0.98 有9个是新的。第一次比赛从中任取3个来用, 比赛后仍放回盒中,第二次比赛再从盒中任取3个,求第二次取出的球都是 新球的概率。 解: 设 Bi 表示事件“第一次取出了 i 个新球”i, =0,1,2,3.
从而P( A B) 1 P( AB) 1 0.012 0.988.
10
三、为防止意外, 在矿内同时设有两种报警系统A与B, 每种系统单独使用时, 其有
效的概率系统A为0.92,系统B为0.93, 在A失灵的条件下, B有效的概率为0.85, 求 (1)发生意外时, 这两个报警系统至少有一个有效的概率; (2) B失灵的条件下, A有效的概率.
解
设事件A表示“报警系统A有效”,事件B表示“报警系统B有效”,由已知
P ( A) 0.92, P ( B) 0.93, P ( B A) 0.85,
则 P ( AB ) P ( A) P ( B A) 0.08 0.85 0.068 , 故 P( AB) P( B) P( AB) 0.93 0.068 0.862,
AB 6 ; A B 1 ,5 .
1
四、写出下面随机试验的样本空间: (1)袋中有5只球,其中3只白球2只黑球,从袋中 任意取一球,观察其颜色; (2) 从(1)的袋中不放回任意取两次球(每次取出一个)观察其颜色; (3) 从(1)的袋中不放回任意取3只球,记录取到的黑球个数; (4) 生产产品直到有10件正品为止,记录生产产品的总件数; 解 (1)设
i
表示抛掷一颗骰子,出现i点数,i=1,2,3,4,5,6. 则样本空间
《概率论与数理统计》期末考试试卷(A)答案
2013-2014学年《概率论与数理统计》期末考试试卷 (A)一、 填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ______________. 3.设随机变量 X的分布函数为,2,1 21 ,6.011 ,3.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} =_________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ________, D (X ) = ___________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) = _________.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) =σ2, 则由切比雪夫不等式有P{|X -μ| < 3σ} ≥_________________.8.从正态总体N(μ, 0.12) 随机抽取的容量为16 的简单随机样本, 测得样本均值5=x,则未知参数μ的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示).二、选择题(只有一个正确答案,每小题3分,共18分)1.设A, B, C是三个随机变量,则事件“A, B, C不多于一个发生”的逆事件为( ).(A) A, B, C都发生(B) A, B, C至少有一个发生(C)A, B, C都不发生(D)A, B, C 至少有两个发生2.设随机变量X的概率密度为f (x), 且满足f (x) = f (-x), F(x) 为X 的分布函数, 则对任意实数a, 下列式子中成立的是( ).(A)(B)(C)(D)3.设随机变量 X , Y 相互独立, 与 分别是X 与 Y 的分布函数, 则随机变量 Z = max{X ,Y } 分布函数 为 ( ).(A) max{,} (B)+ -(C)(D)或4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N (0, 1) 和 N (1, 1), 则 ( ).21}0{ )A (=≤+Y X P 21}1{ )B (=≤+Y X P 21}0{ )C (=≤-Y X P21}1{ )D (=≤-Y X P 5.对任意两个随机变量 X 和 Y , 若 E (XY ) = E (X )E (Y ), 则 ( ).(A) X 和 Y 独立 (B) X 和 Y 不独立(C) D (XY ) = D (X )D (Y ) (D) D (X + Y ) = D (X ) + D (Y )6.设 X 1, X 2, …, X n (n ≥ 3) 为来自总体 X 的一个简单随机样本, 则下列估计量中不是总体期望 μ 的无偏估计量的是 ( ). (A)X(B) 0.1⨯ (6X 1 + 4X 2) (C)(D) X 1 + X 2 - X 3三、解答(本题 8 分)某大型连锁超市采购的某批商品中, 甲、乙、丙三厂生产的产品分别占45%、35%、20%,各厂商的次品率分别为4%、2%、5%,现从中任取一件产品,(1) 求这件产品是次品的概率; (2) 若这件产品是次品, 求它是甲厂生产的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧<<= ,0 0,sin )(πx x A x f求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F (x ); (3)}.23{ππ≤≤X P五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为X k -1 0 2 4 P k0.10.50.30.1求 E (X ), D (X ).七、(本题6分)设某供电区域中共有10000 盏电灯,夜晚每盏灯开着的概率均为 0.7,假设各灯开、关时间彼此独立,求夜晚同时开着的灯的数量在6800 至 7200 间的概率.(其中999999.0)36.4()2120(=≈ΦΦ).八、(10分) 设总体 X 的概率密度为,其他⎩⎨⎧<<+= ,010 ,)1()(x x x f θθ其中θ > -1 是未知参数, X 1,X 2, …, X n 为来自总体的一个简单随机样本,x 1, x 2, …, x n 为样本值, 求 θ 的矩估计量和极大似然估计量.参考答案: 一、填空题 1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-详解:4.因为0.5+0.2+a=1,所以 a=0.3 Y = 2X + 3所以P {Y > 5} =0.2+0.3=0.5二、选择题1. D2. A3. C4. B5. D6. C 详解:2. 因为⎰∞-=xtt f x F d )()( 故⎰-∞-=-att f a F d )()( 令u =-t⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=at t f 0d )(21 (21d )(0=⎰+∞t t f ) 详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P三、解答题解:设A 事件表示“产品为次品”,B 1事件表示“是甲厂生产的产品”,B 2事件表示“是乙厂生产的产品”,B 3事件表示“是丙厂生产的产品”(1) 这件产品是次品的概率:)()()()()()()(332211B P B A P B P B A P B P B A P A P ++= 035.02.005.035.002.045.004.0=⨯+⨯+⨯=(2) 若这件产品是次品,求它是甲厂生产的概率:3518035.045.004.0)()()()(111=⨯==A PB P B A P A B P 四、解答题 解:(1) A x x A x x f 2d sin d )(10===⎰⎰∞∞-π21=∴A (2) ⎰∞-=xt t f x F d )()(0d 0d )()(0===≤⎰⎰∞-∞-xxt t t f x F x 时,当)cos 1(21d sin 210d d )()(00x t t t t t f x F x xx-=+==<<⎰⎰⎰∞-∞-时,当π 10d d sin 210d d )()(0=++==≥⎰⎰⎰⎰∞-∞-x xt t t t t t f x F x πππ时,当 所以⎰∞-=xt t f x F d )()(=⎪⎩⎪⎨⎧≥<<-≤ππx x x x ,10),cos 1(210,0(3)414121)3()2(}23{=-=-=≤≤ππππF F X P 五、解答题 (1)⎪⎩⎪⎨⎧≤≤-=-==⎰⎰∞∞-其它,020),2(21d )2(d ),()(10x x y y x y y x f x f X ⎪⎩⎪⎨⎧≤≤=-==⎰⎰∞∞-其它,010,2d )2(d ),()(20y y x y x x y x f y f Y因为 ),()()(y x f y f x f Y X =⋅,所以X 与Y 是相互独立的.(2)247d )1)(2(21d )2(d }1{1021010=--=-=≤+⎰⎰⎰-x x x y y x x Y X P x六、解答题1.043.025.001.01)(⨯+⨯+⨯+⨯-=X E =0.9 1.043.025.001.0)1()(22222⨯+⨯+⨯+⨯-=X E =2.9 2229.09.2])([)()(-=-=X E X E X D =2.09七、解答题解:设X 为夜晚灯开着的只数,则X ~)7.0,10000(b}72006800{≤≤X P }3.07.0100007.010********.07.0100007.0100003.07.0100007.010*******{⨯⨯⨯-≤⨯⨯⨯-≤⨯⨯⨯-=X P}21203.07.0100007.010*******{≤⨯⨯⨯-≤-=X P 1)2120(2)]2120(1[)2120()2120()2120(-Φ=Φ--Φ=-Φ-Φ≈999998.01999999.02=-⨯=八、解答题 解:(1) 矩估计法21d )1()(101++=+==⎰θθθμθx x x X E 11112μμθ--=∴∑===ni iX n X A 111 所以θ的矩估计量∧θXX --=112(2) 最大似然法似然函数θθi ni x L )1(1+∏==,10<<ixθθi ni x L )1(1+∏==θθi n i n x 1)1(=∏+=∑=++=ni ix n L 1ln )1ln(ln θθ∑=++=ni ix nL 1ln 1d ln d θθ 令0d ln d =θL得θ的最大似然估计值 ∧θ1ln 1--=∑=ni ixnθ的最大似然估计量 ∧θ1ln 1--=∑=ni iXn。
《概率论与数理统计(本科)》期末考试复习题答案
《概率论与数理统计(本科)》期末考试复习题一、选择题1、以A 表示甲种产品畅销,乙种产品滞销,则A 为( A).(A) 甲种产品滞销,乙种产品畅销 (B) 甲、乙产品均畅销(C) 甲种产品滞销 (D) 甲产品滞销或乙产品畅销2、假设事件,A B 满足(|)1P B A =,则( C).(A) A 是必然事件 (B) (|)0P B A =(C) A B ⊃ (D) A B ⊂3、设()0P AB =, 则有( D ).(A) A 和B 不相容 (B) A 和B 独立 (C) P(A)=0或P(B)=0 (D) P(A-B)=P(A)4、设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是( D)(A )A 与B 不相容 (B )A 与B 相容(C )()()()P AB P A P B = (D )()()P A B P A -=5、设,A B 为两个随机事件,且0()1P A <<,则下列命题正确的是( A )。
(A) 若()()P AB P A = ,则B A ,互不相容;(B) 若()()1P B A P B A += ,则B A ,独立;(C) 若()()1P AB P AB +=,则B A ,为对立事件;(D) 若()()()1P B P B A P B A =+=,则B 为不可能事件;6、设A,B 为两随机事件,且B A ⊂,则下列式子正确的是( A )(A )()()P A B P A ⋃=; (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -7、设A ,B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( B )(A )B)|()(A P A P < (B )B)|()(A P A P ≤(C )B)|()(A P A P > (D )B)|()(A P A P ≥8、设A 和B 相互独立,()0.6P A =,()0.4P B =,则()P A B =( B )(A )0.4 (B )0.6 (C )0.24 (D )0.59、设(),(),()P A a P B b P A B c ==⋃=,则()P AB 为( B ).(A) a b - (B) c b - (C) (1)a b - (D) b a -10、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球,则第二人在第一次就取到黄球的概率是 ( B )(A )1/5 (B )2/5 (C )3/5 (D )4/511、一部五卷的选集,按任意顺序放到书架上,则第一卷及第五卷分别在两端的概率是(A ). (A) 110 (B) 18 (C) 15 (D) 16 12、甲袋中有4只红球,6只白球;乙袋中有6只红球,10只白球.现从两袋中各取1球,则2球颜色相同的概率是( D ). (A) 640 (B) 1540 (C) 1940 (D) 214013、设在10个同一型号的元件中有7个一等品,从这些元件中不放回地连续取2次,每次取1个元件.若第1次取得一等品时,第2次取得一等品的概率是( C ). (A) 710 (B) 610 (C) 69 (D) 79 14、在编号为1,2,,n 的n 张赠券中采用不放回方式抽签,则在第k 次(1)k n ≤≤抽到1号赠券的概率是( B ). (A) 1n k + (B) 11n k -+ (B) 1n (D) 11n k ++ 15、随机扔二颗骰子,已知点数之和为8,则二颗骰子的点数都是偶数的概率为( A )。
2014-2015《概率论与数理统计》试卷答案
12014学年第一学期《概率率与数理统计》(A 卷)标准答案和评分标准 一、选择题1. D2. C3. A4. D5. D6. C7. B8. B9. D 10. B 二、填空题1. 0.12. 0.73. 2e -,,0()0,0x e x f x x -⎧≥=⎨<⎩ 4. 4/5或0.85. 2(2)1Φ-或(2)(2)Φ-Φ-6. 4,127. 7, 8三、1.解:设123,,A A A 分别表示被保险人为“谨慎型”、“一般型”和“冒失型”,B 表示被保险人在一年内出了事故。
(1分)依题意,有 123()0.2,()0.5,()0.3P A P A P A ===, 111(|)0.05,(|)0.1,(|)0.3P B A P B A P B A ===, (2分)所以,由贝叶斯公式可得 (1分)1111112233()()(|)(|)()()(|)()(|)()(|)P A B P A P B A P A B P B P A P B A P A P B A P A P B A ==++ (4分) 0.20.0510.06670.20.050.50.10.30.315⨯===⨯+⨯+⨯ (2分) 2.解:根据题意,X 可能的取值有1,2,3, (1分)取值的概率分别为13241(1)2C P X C ===,12241(2)3C P X C ===,2411(3)6P X C ===故X (6分)11113(21)(211)(221)(231) 4.332363E X +=⨯+⨯+⨯+⨯+⨯+⨯== (3分)3.解:(1)由120()d d 13cf x x cx x +∞-∞===⎰⎰ 知3c =; (2分)(2)当0x ≤ 时,()()d 0d 0x xF x f x x x -∞-∞===⎰⎰;当01x <≤ 时,230()()d 3d xxF x f x x x x x -∞===⎰⎰;当1x > 时,120()()d 3d 1x F x f x x x x -∞===⎰⎰;所以30,0,(),0 1.1, 1.x F x x x x ≤⎧⎪=<≤⎨⎪>⎩(4分)2(3)1203()()30.754E X xf x dx x x dx +∞-∞==⋅==⎰⎰ (2分)1222203()()30.65E X x f x d x x x d x +∞-∞==⋅==⎰⎰ (2分) 223()()[()]0.37580D XE X E X =-== (2分)(4)解法一:因为1Y X =-是严格单调的函数,所以 当01y <<时,即,01x <<时,2()(1)(1)3(1)Y X f y f y y y '=--=- 当Y 为其他值时, ()(1)(1)0Y X f y f y y '=--= 所以,1Y X =-的密度函数为:⎩⎨⎧<<-=其他,010,)1(3)(2y y y f Y (4分)解法二:1Y X =-的分布函数()Y F y 为()()(1)(1)Y F y P Y y P X y P X y =<=-<=>-1(1)1(1),X P X y F y =-≤-=--而其它100)1(3)1()]1(1[)()(2<<⎪⎩⎪⎨⎧-=-=--==y y y f y F dy d dy y dF y f X X Y Y (4分)四、1. 解:矩法估计,因为1()xxxxE X xe dx xdexee dx θθθθμθ+∞+∞+∞----+∞===-=-+⎰⎰⎰0xeθθθ-+∞=-=或因为1XE θ⎛⎫⎪⎝⎭,所以()E X μθ== (4分) 由矩法估计ˆX μ= ,所以ˆX θ=。
(完整word版)2013-2014学年第一学期概率论与数理统计期末考试试卷(A卷)答案
北京交通大学2013〜2014学年第一学期概率论与数理统计期末考试试卷( A 卷)某些标准正态分布的数值X 0.34 0.53 0.675 1.16 1.74 1.96 2.33 2.58 Q(x )0.66310.70190.750.8770.95910.9750.990.995其中①[X 是标准正态分布的分布函数.一.(本题满分8分)某人钥匙丢了,他估计钥匙掉在宿舍里、教室里以及路上的概率分别为0.4、0.35和0.25,而钥匙在上述三个地方被找到的概率分别为 0.5、0.65和0.45 •如果钥匙最终被找到, 求钥匙是在路上被找到的概率.解:设B = “钥匙被找到”.A 二“钥匙掉在宿舍里”,A ?二“钥匙掉在教室里”,A 3二“钥匙掉在路上”.由Bayes 公式,得PA 3B = 3PA 3PBA3Z P (A P (B A )i 10.25 0.450.2083 .0.4 0.5 0.35 0.65 0.25 0.45二.(本题满分8分)抛掷3枚均匀的硬币,设事件A 」「至多出现一次正面 \B =「正面与反面都出现1判断随机事件 A 与B 是否相互独立(4分)?如果抛掷 4枚均匀的硬币,判断上述随机事件 A 与B 是否相互独立(4分)?100解:⑴如果抛掷3枚硬币,则样本点总数为21 2 3=8 .P A 丄丄,P B 丄丄,P AB ,8 28 4 8所以有 P AB =- =1 3二PAPB ,因此此时随机事件A 与B 是相互独立的. 8 2 4⑵ 如果抛掷4枚硬币,则样本点总数为24=16.514 74 1P A , P B, P AB 二1616 8 16 4P AB — - =P A P B ,因此此时随机事件 A 与B 不是相互独立的. 416 8.(本题满分8分)设随机变量X 的密度函数为0 : x :: 1其它E X (4 分);⑵ plx E X / (4 分).解::: 1E (X )= J xf (x dx = J x 4(1 - x j dx1⑵ P 〈XE X [;-P a 0.2 ; = j 41 -x 3dx0.2所以有 求:⑴ 1=4 x - 3x 2 3x 3ddx=4 丄1 3」124 5 丿 10.2.52013-2014学年第一学期概率论与数理统计学期末考试试卷( A 卷)答案 Page 2 of 9100四.(本题满分8分) 某加油站每周补给一次汽油,如果该加油站每周汽油的销售量 度函数为0 : x :: 100 其它1=4 1 _3x 3x 2dx =40.2 X-3X 2x 」x 2 4 0.2 25 60.409662 5 X (单位:千升)是一随机变量,其密试问该加油站每次的储油量需要多大,才能把一周内断油的概率控制在2%以下?解:设该加油站每次的储油量为a •则由题意,a应满足0 ::: a ::: 100 ,而且P X a <0.02 .而P(X > a )= [ f (x dx = [ f (x dx + [ f (x )dx = [—x 1 -a 20 I 100丿1」100100所以,应当有,1」兰0.02.、一 100 丿 所以,得 1 一上 <V0.02,即 1 —1002 兰 2 , 100 100 因此有 a -100 1 -5 0.02 =54.2694948因此可取a = 55 (千升),即可使一周内断油的概率控制在5%以下.五.(本题满分8分)设平面区域D 是由双曲线 , x 0以及直线y =x , x =2所围,二维随机变量 xX, Y 服从区域D 上的均匀分布.求:⑴ 二维随机变量 X, Y 的联合密度函数f x, y (4分);⑵随机变量丫的边缘密度函数 f Y y (4分).解:⑴区域D 的面积为2* 1 2 A = J x-— dx =(2x 2- In x ) = 6- In 2 ,x 丿 r 1所以,二维随机变量 X, Y 的联合密度函数为10 (x, y 弹 D1 ⑵当丄"£1时,2-be 2 / 、 1 1 1fY (y )— J f (X, ydx- f dx -2——“ h —1— (x, y )^ D f (x ,y )=【6-l n2y6—1 n2 ;6—In 2 I y 丿y所以,随机变量Y 的边际密度函数为必求出Y 的密度函数,只需指出Y 是哪一种分布,以及分布中的参数即可.)解:由于X 1 ~ N 0,匚2 , X 2~N0,-2,而且X 1与X 2相互独立,所以X 1 X 2 ~ N 0,2;「2 , X 1—X 2~N0,2匚2 .-be卜八f x.y dx =16 —In 22dx1 6 —In 22-y •六.(本题满分8分)f Y(y )=«其它设随机变量 X 与Y 满足:var X =2 , var Y =4 , cov X ,Y = 1 ,再设随机变量U = 2X - 3Y ,V =3X -2丫,求二维随机变量 U, V 的相关系数:-U ,V .解:var U = var 2X -3Y =4 var X 9 var Y -12cov X, Y [=4 2 9 4 -12 =32 , var V =var3X-2Y = 9var X i 亠 4 var Y -12 cov X, Y ]=9 24 4-12 =22 ,cov U , V =cov 2X -3Y, 3X - 2Y^6var X 6var X -4cov X, Y -9cov X, Y [=6 26 4-13 1 =23.所以,二维;U ,V_covU,_V . 23 =23“8668451157、var U var V . 32 . 228、1123七.(本题满分8分)设X 1, X 2是取自正态总体 N 0,匚2中的一个样本.试求随机变量X^X 2 “―X22的分布(不1 6 — l n21 < y ::: 1 2由于covX1 X2,X r _X2= v a rX1-v a rX2=0 ,所以, 广X1 +X2 2<屈丿21,_X2相互独立.所以,Y二乂+x2丫l X1- X2 丿「X1 +X2 22 X1 二X2 i占b八.(本题满分8分)某射手射击,他打中10环的概率为0.5,打中9环的概率为0.3,打中8环的概率为0.1,打中7环的概率为0.05,打中6环的概率为0.05 .他射击100次,试用中心极限定理近似计算他所得的总环数介于900环与930环之间的概率.x 1.25 1.30 1.35 1.40①(x)0.8944 0.90230 0.91149 0.91924解:设X k表示该射手射击的第则X k的分布律为X k 10 9 8 7 6P 0.5 0.3 0.1 0.05 0.05所以,E X k1=10 0.5 9 0.3 8 0.1 7 0.05 6 0.05 715,=102 0.5 92 0.3 82 0.1 - 72 0.05 62 0.05 =84.95,所以,D X k二EX: -Ex k2=84.95-9.152=1.2275.因此,X1, X2,…,X100是独立同分布的随机变量,故1 0 0P 9002X k 兰930『P1 0 0 1 0 0 1 0 0 1 0 0900、E X k ' X k-' E X k 930、E X k k £.:::k =1km.:::k T一,1 0 0 — 110 0「D X k ' D X k[k d . k=11 0 0' D X kk =12,而且X1 X2, X1 —X2服从二元正态分布,所以X1 X2与X1 —X2相互独立./ 100送 X k —100x9.15=P —1.35388 兰 7 l J100 汉 1.2275「Q1.35 ]尬[1.35 U 1.35 -1 =2 0.91149 -1 =0.82289 .九.(本题满分9分)设随机变量X 与Y 相互独立而且同分布,其中随机变量X 的分布列为P^X =1 j p 0, P 「X =0 =1 - p 0 ,再设随机变量”1 X +Y 为偶数 Z =」0 X +Y 为奇数■-⑴ 写出随机变量 X, Z 的联合分布律以及 X 与Z 各自的边缘分布律;⑵ 问p 取什么值时,随机变量X 与Z 相互独立?解:⑴X 与Z 的联合分布列以及X 与Z 各自的边际分布列为其中 P 〈X =0, Z =0丄 P 「X =0,Y =1丄 P 〈X =0:PY =1、p 1 - p ; P 〈X =0, Z =1 丄 P 「X =0,Y =0 .;S x "pY =0 .;h [1 - p 2;P :X =1, Z =0 ; = P :X =1, Y =0 ; = P :X =1P "Y =0^= p 1 — p ; P^X =1, Z =1 ; = P 「X =1, Y =1 ;S x=1 ;=P 2 ;900-100 9.15 J00 1.2275100X k -100 9.15•::: 一k -J100x 1.2275930-100 9.15 -<1 00 1.2275<1.35388)第6页共9页⑵如果X 与Z 相互独立,则有P :X =1, Z =0、p 1 一 p 二 P 「X =<:piz =0、p 2p 1 一 p , 1 1解方程 p1-P 二p ・2p1 — p ,得p =—.并且当p =-时,有221Pi • X1 1 1 044211 1 1 4 4 21 1 p j22可以验证,此时X 与Z 是相互独立的.十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为冬-5的指数分布.X 的密度函数为由题意,知 ^X Y ,设T 的密度函数为f T t ,则-be-bef T t = f X x f Y t - x dx 二 5e _5x f Y t - x dx-:作变换 u=t-x ,贝U du =-dx ,当x =0时,u =t ;当x - 时,u —;匚.代入上式,得f (x5e _5xx 0 xE0现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令: T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数.解:5e*xX 的密度函数为fx (x )=」x 0 x 乞0丫的密度函数为fY (y )= “ 5e^ytf r (t )= - \5e~^~ F Y (U du =5e~ Je 5u fY(u dut-20当仁0时,由f Y y =0,知f r t =o ; 当t 0时,tf T t =5e® e 5u 5e“u du =25te^综上所述,可知随机变量T 的密度函数为(本题满分9分) 设总体X 的密度函数为1 _ixf x;e 二,-:::x26其中二0是未知参数. X 1,…,X n 是从中抽取的一个样本•求解:r 的似然函数为1_(日)=口 f (X i ;日 Ay^exh —4 送 X i ;>, y(2日)I 日-‘ 则有‘ / 1 nIn L (e )=—nln (2&)— —为 x i ,对。
14-15I 概率论与数理统计试卷(A)48学时参考答案与评分标准
| | | | | | | |装|| | | |订| | | | | |线|| | | | | | |防灾科技学院2014~2015年 第一学期期末考试概率论与数理统计试卷(A )考试形式 闭卷 使用班级本科48学时班 答题时间120分钟(请将答案写在答题纸上)一 、填空题(本大题共7小题,每题3分,共21分)1、若以事件i A 表示“一个工人生产的第i 个零件是合格品”(n i ≤≤1),则事件“没有一个零件是不合格品”用i A 表示为 12n A A A ;2、已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P 0.62 .3、假设某潜在震源区年地震发生数X 服从参数为2=λ的泊松分布,则未来一年该震源区发生至少一次地震的概率为21--e ;4、10张彩票中有5张是有奖彩票。
每人依次抽取一张彩票,第2个人抽中奖的概率为 1/2 ;5、假设英语四级考试有60个选择题,每题有四个选项,其中只有一个为正确选项。
小明没有复习而选择 “裸考”,答案全是随便“蒙”的,则Ta “蒙”对题数的期望是 15 ;6、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,6.011,4.01,0)(,则X 的分布律是1130.40.20.4X-⎛⎫ ⎪⎝⎭,=≤<-)31(X P 0.6 ;二、单项选择题(本大题共7小题,每题3分,共21分)7、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β(A )11-=αβ (B )1+=αβ (C )11+=αβ (D )不能确定 ( C ) 8、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则)2(>X P 的值为(A ))]2(1[2Φ-. (B )1)2(2-Φ.(C ))2(2Φ-. (D ))2(21Φ-. ( A )9、某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数 学期望与方差分别为 ( D ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 10、设随机变量X 和Y 不相关,则下列结论中正确的是( B ) (A )X 与Y 独立. (B ))()()(Y D X D Y X D +=-. (C ))()()(Y D X D Y X D -=-. (D ))()()(Y D X D XY D =.11、设离散型随机变量X 和Y 的联合概率分布为若Y X ,独立,则βα,的值为(A )91,92==βα. (B )92,91==βα.(C ) 61,61==βα (D )181,185==βα. ( A ) 12、设样本4321,,,X X X X 为来自总体)1,0(N 的样本,243221)(X X X C X Y +++=,若Y 服从自由度为2的2χ分布,则=C ( B )(A) 3; (B) 1/3; (C) 0; (D) -3 . 13、设随机变量与相互独立,其概率分布分别为则有(A ) (B )(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβX Y 010.40.6X P 010.40.6Y P ()0.P X Y ==()0.5.P X Y ==(C ) (D ) ( C ) 14、设总体)4,2(~2N X ,n X X X ,,,21 为来自X 的样本,则下列结论中正确的是 (A ))1,0(~42N X -. (B ))1,0(~162N X -. (C ))1,0(~22N X -. (D ))1,0(~/42N nX -. ( D ) 三、解答题(本大题共5小题,每题10分,共50分)15、计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。
2013-2014学年第二学期概率论与数理统计阶段测验(一)试卷答案
2013-2014学年第⼆学期概率论与数理统计阶段测验(⼀)试卷答案北京交通⼤学2013~2014学年第⼆学期概率论与数理统计阶段测验(⼀)参考答案⼀.(本题满分8分)将12本各不相同的书籍放在书架的⼀层上,求指定的4本书放在⼀起的概率.解:设{}本书放在⼀起指定的4=A ,求()A P .12本不同的书籍放在书架的⼀层上,有不同的放法!12种(样本点总数).将指定的4本书看成⼀本,再与其它的8本书⼀起放,有放法!9种;再,指定的4本书有放法!4,因此事件A 含样本点数为!4!9?个.所求概率为 ()01818.0551!12!4!9==?=A P .⼆.(本题满分8分)已知甲袋中装有2个红球、5个⽩球;⼄袋中装有4个红球、3个⽩球.现掷⼀颗均匀的骰⼦,若所得点数能被3整除,则从⼄袋中取出⼀球,否则从甲袋中取出⼀球.⑴. 计算所取的球为红球的概率(4分);⑵. 已知所取的球为红球,球该球是从甲袋中取出的概率(4分).解:设{}从甲袋中取球=A ,{}取出的球为红球=B ,⑴. 由全概率公式,得()()()()()A B P A P A B P A P B P += 21874317232=?+?=⑵. 由Bayes 公式,得 ()()()()()()()AB P A P A B P A P A B P A P B A P ?+??=21743172327232=?+??=三.(本题满分8分)⼀实习⽣⽤同⼀台机器独⽴地制造3个同种零件,第i 个元件是不合格品的概率为11+=i p i , ()3,2,1=i 以X 表⽰3个零件中合格品的个数,求{}2=X P .解:11,32311,21211321=-==-==-=A A A P所以,{}()3213213212A A A A A A A A A P X P ??== ()()()321321321A A P A A P A A P ++=()()()()()()()()()321321321A P A P A P A P A P A P A P A P A P ++=2411413221433121433221=??+??+??=.四.(本题满分8分)有甲、⼄两种味道和颜⾊都极为相似的名酒各4杯.如果从中挑4杯,能将甲种酒全部挑出来,算是成功⼀次.⑴. 某⼈随机地去猜,问他成功⼀次的概率是多少(3分)?⑵. 某⼈声称他通过品尝能区分两种酒.他连续试验10次,成功3次.试推断他是猜对的,还是他确有区分的能⼒(设各次试验是相互独⽴的)(5分).解:⑴. 设{}试验成功⼀次=A ,则有()7014844==C C A P⑵. 设X :试验10次成功的次数,则??701,10~B X由于()473310101633.370697013-?=??==C X P 因此随机事件{}6==X B 是⼀个⼩概率事件,根据“⼩概率事件在⼀次试验中是不⼤可能发⽣的”的原理,随机事件{}6==X B 是不⼤可能发⽣的,但它却发⽣了,因此我们可以断定此⼈确有区分酒的能⼒.五.(本题满分8分)将⼀个表⾯涂有颜⾊的正⽅体等分为1000个⼩正⽅体,从这些⼩正⽅体中任取⼀个.令X 表⽰所取的⼩正⽅体含有颜⾊的⾯数,⑴求X 的分布列(5分);⑵求概率()1≥X P (3分).解:⑴ X 的取值为3,2,1,0. {}100083=⑵ ()()111<-=≥X P X P ()01=-=X P 512.01-= 488.0.01-=.六.(本题满分8分)设离散型随机变量X 的可能取值为 ,2,1,其相应的概率分别为()!k C k X P kλ?==, () ,2,1=k .其中0>λ为参数.求常数C .解:由 ()∑∞===11k k X P∑∞=?=1!k kk C λ∑∞=?=1!k kk C λ-?=∑∞=1!0k k k C λ ()1-?=λe C 所以,11-=λe C .七.(本题满分8分)=λ的指数分布,如果他候车时间超过5分钟,他就改为步⾏上班.求他⼀周5天上班时间中⾄少有2天需要步⾏的概率.解:X 的密度函数为()≤>=-00414x x ex p xX .设=A “候车时间超过5分钟”,则()4554415-+∞-==≥=?e dx e X P p x .设Y :⼀周5天中他需要步⾏上班的天数.则()p B Y ,5~,因此所求概率为()()()()41155005111112p p C p p C Y P Y P ----=≤-=≥4438.0151144545545=-- --=---e e e .⼋.(本题满分8分)设连续型随机变量X 的分布函数为()x B A x F arctan +=, ()+∞<<∞-x .试求:⑴. 系数A 与B ;⑵. 概率{}11<<-X P .解:⑴. 由()1lim =+∞→x F x ,()0lim =-∞→x F x ,得()()B A x B A x F x x 2a r c t a nlim lim 1π+=+==+∞a r c t a nlim lim 0π-=-==-∞→-∞→.解⽅程组 ??=-=+0212B A B A ππ,得21=A ,π1=B 所以,()x x F arctan 121π+=()+∞<<∞-x ⑵. {}11<<-X P ()()11--=F F()??-+- +=1a r c t a n 1211a r c t a n 121ππ? ??-?+-??? ???+=41214121ππππ 21=九.(本题满分9分)从6,5,4,3,2,1这6个数字中任意取出3个数字,并将其按照⼤⼩排列,得:321x x x <<,令随机变量2x X =.求随机变量X 的⑴分布律(5分);⑵分布函数()x F (4分).解:随机变量X 的取值为5,4,3,2.从6个不同的数字中任意取出3个,有取法2036=C 种,由此得()5120412=?==X P ,()10320323=?==X P ,()10320234=?==X P ,()5120145=?==X P .因此随机变量X 的分布列为234551 103 103 51 X 的分布函数为()≥<≤<≤<≤<=5154544321325120x x x x x x F .⼗.(本题满分9分)设在时间t (分钟)内,通过某路⼝的汽车数()t X 服从参数为t λ的Poisson (泊松)分布,其中0>λ为常数.已知在1分钟内没有汽车通过的概率为2.0,求在2分钟内⾄少有1辆汽车通过的概率.解:()t X 的分布列为(){}()tk e k t k t X P λλ-==!,() ,2,1,0=k .因此在1=t 分钟内,通过的汽车数为 (){}λλ-==e k k X P k!1,() ,2,1,0=k .由题设,(){}2.001===-λe X P ,所以5ln =λ.因此,(){}(){}()252425111!0521021125ln 220=-=-=?-==-=≥--e e X P X P λ.⼗⼀.(本题满分9分)甲袋中有1个⿊球和2个⽩球,⼄袋中有3个⽩球.每次从甲、⼄两个袋中各任取⼀球,交换后放⼊另⼀个袋中.求这样交换n 次后,⿊球仍在甲袋中的概率.解:设=n A “第n 次交换后⿊球在甲袋中”,并设()n n p A P =,() ,2,1=n .由全概率公式,得()()()()()1111----+==n n n n n n n n A A P A P A A P A P A P p()3113211?-+?=--n n p p3131313132111+=+-=---n n n p p p 313131313131312222++=+??? ??+=--n n p p3131313122111+++++==--- n n n p 323131313113131311111nn n n p p -+=--+=-- ??-+=--1113112131n n p .⽽ 321=p ,代⼊上式,得 2 113121213131121323111???? ??+=+?=??? ??-+?= --n n n n n p .⼗⼆.(本题满分9分)设随机变量()1,0~N X ,求随机变量122+=X Y 的密度函数()y p Y .解:X 的密度函数为()2221x X e x p -=π,()+∞<<∞-x .所以,随机变量122+=X Y 的分布函数为()()()-≤=≤+=≤=211222y X P y X P y Y P y F Y .所以,当1≤y 时,()0=y F Y ;当1>y 时,()?------==-≤≤--= -≤=2212122222221212121y x y y x Y dx edx ey X y P y X P y F ππ,即 ()≤>=?--11222122y y dx ey F y x Y π,对()y F Y 求导,得随机变量Y 的密度函数为()()≤>-??='=--111221222212y y y ey F y p y Y Y π ()≤>-=--10112141y y e y y π.。
太原理工大学2014年数理统计试题
6 ∑︁ ������=1 6 ∑︁ ������=1
������������ < 2
������������ ⩾ 2
)︂
7 26
(︂
(2) ������ = ������
6 ∑︀ ������=1
⃒ ⃒ ������������ < 2 ⃒������ =
1 2
( )
(������)(266 − 16������0.975 , 266 + 16������0.975 ); (������ )(266 − 162 ������0.975 , 266 + 162 ������0.975 ); √ √ (������ )(266 − 16������0.975 / 100, 266 + 16������0.975 / 100); √ √ (������ )(266 − 16������0.95 / 100, 266 + 16������0.95 / 100). 4 (C)
和������������ 和随机误差的离差平方和������������ ;
(B)因子的离差平方和������������ 反映了因子水平之间的差
异所导致的误差;
(C)随机误差的离差平方和������������ 反映了随机因素所导
致的误差;
(D)若因子的离差平方和大于随机误差平方和, 那说
明因子的影响超越了随机因素的影响, 即说明该因子显著.
异所导致的误差;
(C)随机误差的离差平方和������������ 反映了随机因素所导
致的误差;
(D)若因子的离差平方和大于随机误差平方和, 那说
明因子的影响超越了随机因素的影响, 即说明该因子显著. 3 (B)
太原理工大学历年概率论与数理统计试题
(
)
1
( A )( X
n
t0.025 (n
1),
X
n
t0.025 (n
1)) ;
(B
)( X
S n
u0.025 ,
X
S n
u 0.025
)
;
( C )( X
n
u0.025 ,
X
n
u0.025 ) ;(
D
)( X
S n
t0.025 (n
1), X
S n
t 0.025
P(0 2X 3Y Z 6)
(结论用 () 表示即可);
5、已知正常男性成人血液每毫升中白细胞数量为 X .设 E( X ) 7300, D( X ) 7002 ,用
切比雪夫不等式估计每毫升血液含白细胞数在 5200 至 9400 之间的概率不小于 __________.
(n
1))
.
二、填空题(每题 3 分,共 15 分)
1、已知 D( X ) 4 ,D(Y ) 1 ,D( X Y ) 4 ,则 X 与Y 的相关系数为____________;
2、设 X 和 S 2 分别是来自二项分布 B(m, p) 的样本均值与样本方差,样本容量为 n ,若用
X kS 2 作为 mp 2 的无偏估计,则 k ____________;
三010分设某厂生产的仪器每台仪器以概率07可以直接出厂以概率03需要进一步调试经调试后以概率08可以出厂以概率02定为不合格7品不能出厂现该厂生产了2?nn台仪器
2013 年
一、选择题(每题 3 分,共 15 分)
2014 ~ 2015学年第 2 学期B概率论与数理统计-经管类试卷及答案
上 海 商 学 院2014~ 2015学年第 2学期《概率论与数理统计》期末考试试卷总课时: 54 B 卷(可用计算器)一、选择题(每题3分,共15分) 1.设随机变量X 和Y 相互独立,且)4,3N(~X ,)9,2N(~Y ,则~Y X Z -=( )A .)12(1,NB .)15(1,NC .)13(1,N D .)14(1,N 2.样本n X X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A . 2i X )1(n i ≤≤都是μ的无偏估计B .2S 是2σ的无偏估计C )1(2n i X i ≤≤是2σ的无偏估计D 2X 是2σ的无偏估计3. 设A 、B 互斥,且P(A)>0,P(B)>0,则下列等式成立的是( ) A .P(AB)B .)()()(B P A P B A P =-C .P(A)+P(B)=1D .P(A|B)=14. 设随机变量)3(~2χX (卡方分布),则=)(2χE ( ) A .1 B .3 C .5 D .65. .设随机变量X ,Y 相互独立,其联合分布为()则有( )A .92,91==βαB .91,92==βαC .32,31==βαD .31,32==βα二、填空题(每题3分,共15分)1、设事件A 1、A2、A 3分别表示某车间生产的第i 个零件是正品(i=1,2,3),则事件 “三个零件中至少有一个次品”可表示为 ; 2、一批产品共有10个, 其中次品为3个, 现无放回地从中抽取,每次只抽一个, 则第三次才取到正品的概率为 3、已知事件A 与B 独立,且5.0)(=B P 则=)(A B P 。
4、.设二维随机变量)(Y X ,的分布律为下表,则==+2)Y (X P _______.5i )2(~22211t XX cX +, =c 。
三、计算题(共70分)1、甲、乙、丙工厂共同生产100台相同型号的商品,其中60台是甲厂生产的,25台是乙厂生产的,15台是丙厂生产的,已知这三个厂生产的商品合格率依次为0.9、0.6、0.8,现有一位顾客从这批商品中随机地取了一件,试求:(1)该顾客取到一件合格商品的概率;(2)顾客开箱测试后发现商品不合格,试问这件商品来自甲厂的概率是多大?(10分)2、设市场上对某品牌奶茶的需求量X服从均匀分布U(200,400),每售出一杯奶茶可为商店挣得1元,但假如销售不出而屯积于冰箱,则每杯赔3元。
概率论与数理统计(A)期末复习资料
《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。
最新太原理工大学概率论习题册答案解析
i 1,2,3 则
1 须检修 ,其分布列为: Xi 0 不须检修
X1 0 1 p 0.6 0.4
X2 p
0 1 0.5 0.5
X3 p
0 1 0.4 0.6
所以 E ( X1 X 2 X 3 ) 0.4 0.5 0.6 1.5
五、设随机变量 X 的概率密度为 x , 1 0 x cos f x 2 2 , 其它 0 对X独立地重复观察4次, Y表示观察值大于 2 的次数,求 E (Y )。 3
七、设随机变量 X 与 独立,且均服从正态 Y 1 分布 N (0,求 及 , ) E (min( X , Y )) E (、 X Y )
2 E (max( X , Y ))
解:因为 X Y ~,所以 N (0,1)
E( X Y )
又
1 max X , Y ( X Y X Y ) 2 1 min X , Y ( X Y X Y ) 2
2 使 cY 服从 分布。
解:因为 ( X1 X 2 X 3 ) ~ N (0,3)
( X 4 X 5 X 6 ) ~ N (0,3) 所以
X1 X 2 X 3 2 X 4 X 5 X 6 2 ( ) ( ) ~ 2 (2) 3 3 1 故 c。 3 五. 的简单随机样本, n 16 X ~ N (,抽取样本容量 , 2 )
2 2 2 X2 X4 X 2 2 n ~ ( n) 2
2 X 12 X 32 X 2 n ~ F ( n, n ) n 1 Y1 2 2 2 2 2 2 X2 X4 X 2 X X X n 2 4 2n n
2 X 12 X 32 X 2 n 1
2014年高考数学真题汇编(含答案):概率与统计(精编文档).doc
【最新整理,下载后即可编辑】2014年全国高考理科数学试题分类汇编(纯word 解析版) 八、概率与统计(逐题详解)第I 部分1.【2014年陕西卷(理06)】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525===2.【2014年重庆卷(理03)】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =,3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+.2 2.4B y x =-.29.5C y x =-+ .0.3 4.4D y x =-+【答案】A【解析】根据正相关知回归直线的斜率为正,排除,C D ,回归直线经过点(,)x y --,故选A3.【2014年陕西卷(理09)】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =),则12,10,y y y的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A【解析】A 选变均值也加此数,方差不样本数据加同一个数,.4.【2014年湖南卷(理02)】对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则A. 321p p p <=B. 132p p p <=C. 231p p p <=D. 321p p p ==【答案】D 【解析】根据随机抽样的原理可得三种抽样方式都必须满足每个个体被抽到的概率相等,即 321p p p ==,故选D5.【2014年山东卷(理07)】为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为舒张压/kPa(A )6 (B )8 (C ) 12(D )18【答案】C【解析】第一组与第二组频率之和为0.24+0.16=0.4200.450÷=500.361818612⨯=-=6.【2014年全国新课标Ⅰ(理05)】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.7.【2014年全国新课标Ⅱ(理05)】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.45【答案】 A 【解析】.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=8.【2014年广东卷(理06)】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A. 200,20B. 100,20C. 200,10D. 100,10【答案】A【解析】由题意知:该地区中小学生总人数为:35004500200010000++=人,所以样本容量为100002%200⨯=,应抽取高中生人数为:420040794⨯=++,所以抽取的高中生近视人数为4050%20⨯=人.故选A.9.【2014年湖北卷(理04)】根据如下样本数据x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.-3.0A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a【答案】 B【解析】画出散点图如图所示,y 的值大致随x 的增加而减小,因而两个变量呈负相关,所以0<b ,0>a10.【2014年湖北卷(理07)】由不等式⎪⎩⎪⎨⎧≤--≥≤020x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A.81B.41 C.43 D.87【答案】 D【解析】依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯.11.【2014年江西卷(理06)】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是【答案】D【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D12.【2014年浙江卷(理09)】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(3m ≥,3)n ≥,从乙盒中随机抽取(1i i =,2)个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1i i ξ=,2); (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1i p i =,2).则A.12p p >,12()()E E ξξ<B.12p p <,12()()E E ξξ>C.12p p >,12()()E E ξξ>D.12p p <,12()()E E ξξ<【答案】A 【解析】,,,所以P 1>P 2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以 ==,E (ξ1)﹣E (ξ2)=.故选A第II 部分13.【2014年辽宁卷(理14)】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,学科网则质点落在阴影区域的概率是 .【答案】【解析】∵A (﹣1,﹣1),B (1,﹣1),C (1,1),D (﹣1,1),∴正方体的ABCD 的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积 S=2=2=2[(1﹣)﹣(﹣1+)]=2×=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故答案为:14.【2014年广东卷(理11)】从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计B (卷A ) 第 1 页 共 8 页
考试方式: 闭卷 太原理工大学 概率论与数理统计B 试卷A 适用专业:14级各专业 考试日期:2016.1.16 时间: 120 分钟 共 8 页
一、选择题(每题3分,共15分) 1、已知2.0)(8.0)(,4.0)(===AB P B P A P ,则)(B A P -为 ( ) (A ) 0; (B ) 4.0; (C ) 2.0 ; (D ) 6.0. 2、设随机变量X 与Y 都服从标准正态分布,则一定正确的结论为 ( )
)(A Y X +服从正态分布; )(B 22Y X +服从2χ分布; )(C 2X 和2Y 都服从2χ分布; )(D 22Y X 服从F 分布. 3、10021,,,X X X 独立同分布,若)100,2,1(1)(,1)( ===i X D X E i i ,则由中心 极限定理可知)90(1001≥∑=i i X P 约为 ( ) (A ))1(Φ; (B ) )1(-Φ; (C ))5.0(Φ ; (D ) 无法计算. 4、设随机变量X 的概率密度为⎪⎪
⎪⎩
⎪⎪
⎪⎨⎧≤≤≤≤=其它
,063,9210,31)(x x x f , 若k 使32)(=≥k X P 则k 的取值范围为 ( ) )(A []3,1-; )(B []3,1; )(C []6,0; )(D []6,1. 5、总体),(~2σμN X ,2σ未知,提出假设为1:,1:10>=μμH H ,取显著水平05
.0=α则其拒绝域为 ( )
概率论与数理统计B (卷A ) 第 2 页 共 8 页
(A
)0.0251(X t n ->-; (B )0.0251(1)X t n ->-; (C )n S
n t X )1(105.0--<; (D )n S
n t X )1(105.0-+>.
二、填空题(每题3分,共15分)
1、设随机变量X 的分布函数为⎪⎩⎪⎨⎧<≥+=-000,)(22
x x Be A x F x ,,则=),(B A ;
2、设总体X 以等概率θ
1取值为:θ,,2,1 ,则参数θ的矩估计量为 ____________; 3、已知X 与Y 相互独立,具有相同的分布2
1)1()0(=
===X P X P ,则变量),max(Y X Z =
的分布列为____________;
4、设随机变量X 的概率密度为⎩⎨⎧<<=其它
,010,,2)(x x x f ,则X Y 2=的密度函数为
__________ ;
5、欲检验假设220,),,(~:σμσμN X H 未知,若选取100个样本,分成八组进行
∑=-=81
22ˆ)ˆ(i i i i p n p n n χ的拟合优度检验,则该统计量服从的分布为__________. (注明分布类型及自由度).
三、(10分)设某厂生产的仪器,每台仪器以概率0.7可以直接出厂,以概率0.3
n台仪器.
n
(≥
求(1)全部能出厂的概率α;(2)至少有2件不能出厂的概率β.
概率论与数理统计B(卷A)第3 页共8 页
概率论与数理统计B (卷A ) 第 4 页 共 8 页
四、(本题15分)设随机变量X 和Y 的联合密度为⎪⎩⎪⎨⎧<<<<=其它,
010,0,1),(y y x y y x f 求:(1)X 和Y 的边缘密度 ;(2)Y X ,是否相互独立; (3))2
141(=<Y X P .
五、(本题15分)掷一枚不均匀的硬币,出现正面的概率为)1
<p
p,设X为
0(< Array一直掷到正反面都出现时所需要的投掷次数,求(1)X的分布列;(2)X取到偶数的
概率.
概率论与数理统计B(卷A)第5 页共8 页
概率论与数理统计B (卷A ) 第 6 页 共 8 页
六、(本题10分)设随机变量X 的概率密度为:
1,0(;)(1)!0k
k x x e x f x k θθθ--⎧>⎪=-⎨⎪⎩
,其它,θ为未知参数,k 为已知正整数. 又设),,,(21n X X X 为X 的简单随机样本,求θ的极大似然估计量.
概率论与数理统计B (卷A ) 第 7 页 共 8 页
七、(本题10分)设二维随机变量(,)X Y 服从圆域222:R y x G ≤+上的均匀分布, (1)计算 ),(Y X COV ; (2)令22Y X Z +=,计算)(Z E .
概率论与数理统计B (卷A ) 第 8 页 共 8 页 八、(本题10分)总体服从正态分布),(2σμN ,2,σμ均未知,取其容量是n 的简单样本,均值为X ,方差2
12)(11∑=--=n
i i X X n S . (1)求);(2
S D (2)若16=n ,求)04.2(22
≤σS P . (附:2222
0.01
0.0250.010.025==27.5==χχχχ(15)30.6;(15);(16)32;(16)30.6.).。