初中数学七年级下册易错题汇总大全附答案带解析

合集下载

人教版七年级下册数学易错题50题含答案(广州)

人教版七年级下册数学易错题50题含答案(广州)

人教版七年级下册数学易错题50题含答案(广州)一、单选题1.下列四个实数中,是无理数的是()A B.0C.0.7⋅D.2 72.在平面直角坐标中,点(2,3)M-在()A.第一象限B.第二象限C.第三象限D.第四象限3.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的整数解为().A.﹣1,0,1B.﹣1,0C.0,1D.﹣1,14.若21xy=⎧⎨=⎩是关于x、y的方程ax﹣y=3的解,则a=()A.1B.2C.3D.45.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1006.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.65B.35C.15D.257.如图,△ABC沿直线BD向右平移,得到△ECD,若BD=10cm,则A、E两点的距离为()A.10cm B.5cm C.10cm3D.不能确定8.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4B.4C.﹣2D.29.某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打()A.6折B.7折C.8折D.9折10.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于()A.130°B.120°C.110°D.100°11.在平面直角坐标系中,点A(2,-3)在第()象限.A.一B.二C.三D.四12.下列调查中,适宜采用全面调查方式的是()A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件13.如图,已知直线AB,CD被直线EF所截,如果要添加条件,使得MQ∠NP,那么下列条件中能判定MQ∠NP的是()A.∠1=∠2B.∠BMF=∠DNFC.∠AMQ=∠CNP D.∠1=∠2,∠BMF=∠DNF14.下列命题中,是假命题的是()A.邻补角一定互补B.平移不改变图形的形状和大小C.两直线相交,同位角相等D.相等的角不一定是对顶角15.已知21x y =⎧⎨=⎩是方程组5{1ax by bx ay +=+=的解,则a ﹣b 的值是( ) A .1- B .2 C .3 D .416.与3( ) A .6B .7C .8D .917.已知表示实数a ,b 的点在数轴上的位置如图所示,下列结论错误的是( )A .a <1<bB .1<-a <bC .1<a <bD .-b <a <-118.在平面直角坐标系中,若过不同的两点P(2a ,6)与Q(4+b ,3-b)的直线PQ∠x 轴,则( ) A .a =12,b =-3B .a≠12,b≠-3C .a =12,b≠-3D .a≠12,b =-319.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是( )A .共抽取了50人B .90分以上的有12人C .80分以上的所占的百分比是60%D .60.5~70.5分这一分数段的频数是1220.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-二、填空题 21.827-的立方根为______ 22.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是_____人.23.计算:+=________.24.若点P(3,2m-1)在第四象限,则m的取值范围是______.25.如图,直线AB与CD相交于O,已知∠BOD=30°,OE是∠BOC的平分线,则∠EOA=______.26.如图,直线AB∠CD,E为直线AB上一点,EH,EM分别交直线CD与点F、M,EH平分∠AEM,MN∠AB,垂足为点N,∠CFH=α,∠EMN=______(用含α的式子表示)27.如图,在正方形网格中,三角形DEF是由三角形ABC平移得到的,则点C移动了________格.28.不等式-3x+1>-8的正整数解是__________.29.从学校七年级中抽取100名学生,调查学校七年级学生双休日用于数学作业的时间,调查中的总体是_________,个体是______,样本容量是____.30_______13(填“>”、“<”或“=”).31=_____.32.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,则A的成本是________元,B的成本是________元.33.如图,已知AB∠CD,BC∠DE.若∠A=20°,∠C=120°,则∠AED的度数是________ .34.在平面直角坐标系xOy 中,对于点P(x ,y),我们把点P′(-y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 2的坐标为__________,点A 2 019的坐标为__________;若点A 1的坐标为(a ,b),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为_______________.三、解答题 35.解下列方程组:(1)125x y x y -=⎧⎨+=⎩ (2)23346x y x y ⎧=⎪⎨⎪-=⎩ 36.解不等式组,并把解集在数轴上表示出来:(1)23120x x +⎧⎨-⎩>< (2)1122841x x x x +⎧-⎪⎨⎪+-⎩>< 37.已知∠ABC 在平面直角坐标系中的位置如图所示.将∠ABC 向右平移6个单位长度,再向下平移6个单位长度得到∠A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的∠A1B1C1;(2)直接写出∠A1B1C1各顶点的坐标(3)求出∠A1B1C1的面积38.为了了解七年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36°,根据图表中提供的信息,回答下列问题:(1)求样本容量及n的值;(2)已知该校七年级共有500名学生,如果体育成绩达28分以上为优秀,请估计该校七年级学生体育成绩达到优秀的总人数.39.如图,AB//CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD//BC.40.列方程(组),解应用题甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.41.如图1,O为平面直角坐标系的原点,点A坐标为(4,0),同时将点A,O分别向上平移2个单位,再向左平移1个单位,得到对应点B,C.(1)求四边形OABC的面积;(2)在y轴上是否存在一点M,使△MOA的面积与四边形OABC的面积相等?若存在这样一点,求出点M的坐标,若不存在,请说明理由;(3)如图2,点P在OA边上,且∠CBP=∠CPB,Q是AO延长线上一动点,∠PCQ 的平分线CD交BP的延长线于点D,在点Q运动的过程中,求∠D和∠CQP的数量关系.42.解不等式322x-≤2,并把它的解表示在数轴上.43.已知:(2x+5y+4) 2+|3x-4y-17|=044.如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:1=2∠∠.45.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.46.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是∠ABC的边AC上任意一点,∠ABC经过平移后得到∠A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出∠A1B1C1;(3)求∠AOA1的面积.47.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?48.如图∠,已知直线l1∠l2,且l3和l1,l2分别相交于A,B两点,l4和l1,l2分别交于C,D两点,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,点P在线段AB上.(1)若∠1=22°,∠2=33°,则∠3=________;(2)试找出∠1,∠2,∠3之间的等量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图∠,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC 的度数;(4)如果点P在直线l3上且在A,B两点外侧运动时,其他条件不变,试探究∠1,∠2,∠3之间的关系(点P和A,B两点不重合),直接写出结论即可.参考答案:1.A【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:0,.0.7,27是有理数,故选A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,难度不大 2.B【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【详解】解:20-<,30>,(2,3)∴-在第二象限,故选:B .【点睛】本题考查了点的坐标,解题的关键是掌握四个象限内坐标的符号:第一象限:+,+;第二象限:-,+;第三象限:-,-;第四象限:+,-.3.C【分析】由不等式组解集在数轴上的表示即可得.【详解】由数轴可知,此不等式组的整数解为0、1.故选C .【点睛】本题主要考查不等式组的整数解,解题的关键是掌握不等式组解集在数轴上的表示.4.B【分析】根据方程的解满足方程,把解代入方程,可得关于a 的一元一次方程,根据解一元一次方程,可得答案.【详解】解:∠21x y =⎧⎨=⎩是关于x 、y 的方程ax ﹣y =3的解, ∠代入得:2a ﹣1=3,解得:a =2,故选B .【点睛】本题考查了本题考查了二元一次方程的解,掌握方程解的定义是解题的关键. 5.C【详解】解:要了解一批电视机的使用寿命,从中抽取100台,故样本是所抽取的100台电视机的使用寿命.故选:C.6.D【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【详解】解:如图,∠直尺的两边互相平行,∠1=65°,∠∠3=∠1=65°,又∠∠3与∠2互余,∠∠2=90°-65°=25°.故选D.【点睛】本题考查了平行线的性质,直角三角形的性质,熟记平行线的性质是解题的关键.7.B【分析】根据平移的性质得出BC=CD,进而解答即可.【详解】解:由平移可得:BC=CD,AE=BC,∠BD=10cm,∠BC=AE=5cm,故选B.【点睛】本题考查平移的基本性质,难度不大8.B【详解】解:512{34a ba b+=-=①②,∠+∠:4a+4b=16则a+b=4.故选:B.【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——加减消元法、代入消元法是解题的关键.9.C【分析】设该商品可打x折,则该商品的实际售价为550×0.1x元,根据“利润不低于10%”列出不等式求解可得.【详解】解:设该商品可打x折,根据题意,得:550×0.1x﹣400≥400×10%,解得:x≥8.故选C【点睛】本题主要考查一元一次不等式的应用,根据利润率公式列出一元一次不等式是解题的关键.10.B【分析】先设出∠BOE=α,再表示出∠DOE=α∠AOD=4α,建立方程求出α,最用利用对顶角,角之间的和差即可.【详解】解:设∠BOE=α,∠∠AOD:∠BOE=4:1,∠∠AOD=4α,∠OE平分∠BOD,∠∠DOE=∠BOE=α∠∠AOD+∠DOE+∠BOE=180°,∠4α+α+α=180°,∠α=30°,∠∠AOD=4α=120°,∠∠BOC=∠AOD=120°,∠OF平分∠COB,∠∠COF=1∠BOC=60°,2∠∠AOC=∠BOD=2α=60°,∠∠AOF=∠AOC+∠COF=120°,故选B.【点睛】此题是对顶角,邻补角题,还考查了角平分线的意义,解本题的关键是找到角与角之间的关系,用方程的思想解决几何问题是初中阶段常用的方法.11.D【分析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】解:由题意得:点A(2,-3)位于第四象限,故选D.【点睛】本题主要考查了根据点的坐标判断点所在的象限,熟知每个象限点的坐标特征是解题的关键.12.D【详解】A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.13.D【分析】由图中各角的位置关系,根据平行线的判定定理及性质对选项逐一判断即可.【详解】A.∠1与∠2不是同位角,不能判定MQ∠NP,故该选项不符合题意,B.∠BMF=∠DNF,只能判定AB//CD,不能∠BMF=∠DNF,故该选项不符合题意,C.∠AMQ与∠CNP不是同位角,不能判定MQ∠NP,故该选项不符合题意,D. ∠∠BMF=∠DNF,∠AB//CD,∠EMB=∠MND,∠∠1=∠2,∠∠EMQ=∠MNP,∠MQ∠NP,故该选项符合题意,故选D.【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键.14.C【分析】利用邻补角的定义、平移的性质、平行线的性质及对顶角的定义分别判断后即可得到正确的选项.【详解】A.邻补角一定互补,正确,是真命题,B.平移不改变图形的形状和大小,正确,是真命题,C.两直线平行,同位角相等,故该选项是假命题,D.相等的角不一定是对顶角,正确,是真命题,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解邻补角的定义、平移的性质、平行线的性质及对顶角的定义等知识.15.D【分析】根据方程组解的定义将21xy=⎧⎨=⎩代入方程组,得到关于a,b的方程组.两方程相减即可得出答案.【详解】∠21xy=⎧⎨=⎩是方程组5{1ax bybx ay+=+=的解,∠25 {21a bb a+=+=.两个方程相减,得a﹣b=4.故选:D.16.C3即可得答案.【详解】∠4+3<5+3即:7<38∠24更接近于25,∠与38,故选C.【点睛】本题考查了无理数的估算,熟练掌握估算方法是解题关键.17.A【分析】首先根据数轴的特征,判断出a、-1、0、1、b的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】根据实数a,b在数轴上的位置,可得a<-1<0<1<b,1<|a|<|b|,-b<a.由图可知,1<|a|<|b|,故选项A结论错误∠|a|<|b|,a<-1,b>1,∠1<-a<b,故选项B结论正确;∠1<|a|<|b|,b>1∠1<a<b,故选项C结论正确;∠1<|a|<|b|,b>1,a<-1,∠-b<a<-1,选项D结论正确.故选A.【点睛】本题考查了实数与数轴及实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.18.D【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【详解】过不同的两点P(2a,6)与Q(4+b,3-b)的直线PQ∠x轴,∠2a≠4+b,6=3-b,.解得b=-3,a≠12故选D.【点睛】本题考查了坐标与图形,熟记平行于x轴的直线上点的纵坐标相等是解题的关键.19.D【分析】根据表中提供的数据分别进行计算,即可找出描述不正确的选项.【详解】A、抽样的学生共有:4+10+18+12+6=50人,故本选项正确,不符合题意;B. 90分以上的有12人,故本选项正确,不符合题意;C. 80分以上的所占的百分比是121850+=60%;故本选项正确,不符合题意;D. 60.5~70.5分这一分数段的频数是10,故本选项错误,符合题意;故选D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.B【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.21.2 3 -【分析】a【详解】-827的立方根是-23.故答案为-2 3 .【点睛】本题考查的知识点是立方根,解题的关键是熟练的掌握立方根.22.800【分析】设选择“公交车”的学生人数是3x,则自行车的有7x,其他的有2x,根据该校学生有3200人,列出方程,求出x的值,即可得出答案.【详解】设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=8003,则选择“公交车”的学生人数是8003×3=800人;故答案为800【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23【分析】先去掉绝对值,再合并同类二次根式,计算即可得到结果.【详解】+.【点睛】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.24.m<1 2【分析】根据第四象限的点的纵坐标是负数列出不等式求解即可.【详解】解:∠点P(3,2m-1)在第四象限,∠2m-1<0,∠m<12.故答案为m<12.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键25.105°【分析】根据对顶角相等求出∠AOC,根据邻补角求出∠BOC,根据角平分线定义求出∠COE即可.【详解】解:∠∠BOD=30°,∠∠AOC=∠BOD=30°,∠BOC=180°-∠BOD=150°,∠OE是∠BOC的平分线,∠∠COE=12∠BOC=75°,∠∠AOE=75°+30°=105°,故答案为105°【点睛】本题考查了角平分线定义,邻补角,对顶角的应用,关键是根据对顶角相等求出∠AOC.26.2α﹣90°【分析】先利用平行线的性质得到∠AEH=∠CFH=α,再根据角平分线定义得到∠MEH=∠AEH=α,再利用邻补角的定义得到∠MEN=180°-2α,然后根据三角形内角和得出∠EMN的度数.【详解】∠AB∠CD,∠∠AEH=∠CFH=α,∠EH平分∠AEM,∠∠MEH=∠AEH=α,∠∠MEN=180°-2α,∠MN∠AB,∠∠MNE=90°,∠∠EMN=90°-(180°-2α)=2α-90°.故答案为2α-90°.【点睛】本题考查了平行线性质定理、角平分线定义、邻补角的定义以及三角形的内角和定理,熟练掌握有关定理是解题的关键.27.5【分析】根据网格结构,找出对应点C、F之间的格数即可.【详解】∠∠DEF是由∠ABC平移得到,点C到F有5格,∠点C移动了5格.故答案为5【点睛】本题考查了平移的性质,根据网格结构找出对应点是解题的关键.28.1,2【分析】先求出不等式的解集,在取值范围内可以找到正整数解.【详解】不等式3x+1<8的解集为x<73,∠不等式3x+1<8的正整数解是:1,2.故答案是:1,2【点睛】本题考查了一元一次不等式的整数解.解答此题要先求出不等式的解集,再确定正整数解.29.七年级学生双休日用于数学作业的时间七年级每个学生双休日用于数学作业的时间100【详解】根据总体,个体,样本容量的概念即可总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:本题考查的对象是七年级学生双休日用于数学作业的时间,故总体是七年级学生双休日用于数学作业的时间;个体是七年级每个学生双休日用于数学作业的时间;样本是所抽取的100名学生双休日用于数学作业的时间,故样本容量是100.30.>【详解】∠4<5,2>0,13=>0,13>.故答案为:>.31.-7 5【分析】根据平方根、立方根及绝对值的运算法则计算即可.【详解】原式=12+0.1-2-=7 5 -.故答案为7 5 -【点睛】本题考查了实数的运算,熟练掌握运算法则是解题关键.32. 300 200【分析】设A 服装的成本为x 元,B 服装的成本为y 元,根据题中等量关系列方程组求出x 、y 的值即可.【详解】设A 服装的成本为x 元,B 服装的成本为y 元,则50030%20%130x y x y +=⎧⎨+=⎩, 解得300200x y =⎧⎨=⎩, 故答案为300;200【点睛】本题考查了二元一次方程组的应用,找出题中各量之间的等量关系并列出方程是解题关键.33.80°【分析】延长DE 交AB 于F ,根据平行线的性质得到∠AFE =∠B ,∠B+∠C =180°,根据三角形的外角的性质即可得到结论.【详解】延长DE 交AB 于F ,∠////AB CD DE BC ,,∠180B C AFD B ∠+∠=︒∠=∠,,∠∠C=120°,∠∠AFD =60°,∠∠AED =∠AFD +∠A ,∠A =20°,∠∠AED =80°,故答案为:80°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.34. (0,4) (-3,1) -1<a <1且0<b <2【分析】根据伴随点的定义,计算出A2的坐标,罗列出部分点A的坐标,根据点A的变化找出规律即可求出A2019的坐标;根据x轴上方的点的纵坐标大于0列出不等式组求解即可.【详解】∠A1的坐标为(3,1),∠A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∠2019÷4=504……3,∠A2019的坐标为(-3,1).(3)∠点A1的坐标为(a,b),∠A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∠对于任意的正整数n,点An均在x轴上方,∠1010aa+>⎧⎨-+>⎩且20bb-+>⎧⎨>⎩解得-1<a<1,0<b<2.故答案为(0,4);(-3,1);-1<a<1且0<b<2【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.35.(1)21xy=⎧⎨=⎩(2)23xy=-⎧⎨=-⎩【分析】两方程组利用加减消元法求出解即可.【详解】(1)125x yx y-=⎧⎨+=⎩①②,∠+∠得:3x=6,解得:x=2,把x=2代入∠得:y=1,则方程组的解为21xy=⎧⎨=⎩;(2)方程组整理得:32346x yx y=⎧⎨-=⎩①②,把∠代入∠得:2y-4y=6,解得:y=-3,把y=-3代入∠得:x=-2,则方程组的解为23xy=-⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,解题关键在于掌握运算法则36.(1)-1<x<2(2)x>3【分析】(1)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】(1)解不等式2x+3>1,得:x>-1,解不等式x-2<0,得:x<2,则不等式组的解集为-1<x<2,将解集表示在数轴上如下:(2)解不等式x-12x+>12,得:x>2,解不等式x+8<4x-1,得:x>3,则不等式组的解集为x>3,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.37.(1)详见解析;(2)A1(4,−2),B1(1,−4),C1(2,−1);(3)7 2【分析】(1)直接利用平移的性质得出A,B,C平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用∠A 1B 1C 1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:∠A 1 B 1 C 1,即为所求;(2)如图所示:A 1 (4,−2), B 1 (1,−4), C 1 (2,−1);(3) ∠A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=72. 【点睛】本题考查了作图-平移变换,解题关键在于掌握作图法则.38.(1)样本容量为50,n=10;(2)300人.【分析】(1)先求得样本容量,根据得30分的圆心角度数,即可求出得30分的认识,即可求出n 的值;(2)28分(包括28分)以上的人数1510530=++=人,占的比例=30÷50=60%,即可求得该校九年级体育成绩达到优秀的总人数.【详解】(1)样本容量为8÷16%=50,∠30分的人数为36505360⨯=人, ∠()5081215510n =-+++=;(2)估计该校七年级学生体育成绩达到优秀的总人数为1510550030050++⨯=人. 【点睛】本题考查的是统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小. 39.见解析【分析】由AB 与DC 平行,利用两直角平行同位角相等得到一对角相等,再由AE 为角平分线,得到一对角相等,再根据已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证. 【详解】解:∠ AB //CD ,1CFE ∴∠=∠, AE 平分BAD ∠ ,12∴∠=∠,CFE E ∠=∠,2E ∴∠=∠,∠ AD //BC .【点睛】本题考查了平行线的判定和性质,准确识图,灵活运用相关知识是解题的关键. 40.甲的速度分别为6013m/s ,乙的速度分别为7013m/s 【分析】设甲、乙二人的速度分别为xm/s ,ym/s ,根据:相向而行时甲的路程+乙的路程=400,同向而行时甲的路程=乙的路程,列方程组求解即可.【详解】设甲、乙二人的速度分别为xm/s ,ym/s ,根据题意列方程为:4040400210180x y x y +=⎧⎨=⎩, 解得:60137013x y ⎧=⎪⎪⎨⎪=⎪⎩, 答:甲的速度分别为6013m/s ,乙的速度分别为7013m/s . 【点睛】本题主要考查二元一次方程组的实际应用,根据相向而行路程之和等于两地间距离、同向而行俩人路程相等列方程是关键.41.(1)8(2)M (0,4)或(0,-4)(3)∠CQP=2∠D【分析】(1)首先证明四边形OABC 是平行四边形,理由平行四边形的面积公式计算即可;(2)存在.如图1中,设M (0,m ),根据绝对值方程即可解决问题;(3)结论:∠CQP=2∠D .如图3中,延长CP 到K .首先证明∠DPQ=∠DPK ,设∠DPQ=∠DPK=x ,∠DCQ=∠DCP=y ,构建方程组即可解决问题;【详解】(1)如图1中,由题意B (3,2),C (-1,2),∠BC∠OA ,BC=OA ,∠四边形ABCO 是平行四边形.∠S 平行四边形ABCD =4×2=8.(2)存在.理由:如图1中,设M(0,m)由题意S△AOM=8,×4×|m|=8∠12∠m=±4,∠M(0,4)或(0,-4).(3)结论:∠CQP=2∠D.理由:如图3中,延长CP到K.∠BC∠OA,∠∠CBP=∠DPQ,∠∠CBP=∠CPB,∠CPB=∠DPK,∠∠DPQ=∠DPK,设∠DPQ=∠DPK=x,∠DCQ=∠DCP=y,则有22x y CQPx y D=+∠⎧⎨=+∠⎩①②,∠-2×∠得到∠CQP=2∠D.【点睛】本题考查三角形综合题、平行四边形的判定和性质、角平分线的定义、三角形的外角的性质、二元一次方程组等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程组解决问题42.x≤2,将不等式的解集表示在数轴上见解析.【详解】分析:先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.详解:去分母,得:3x-2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:点睛:本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.43.±2【详解】【分析】根据非负数的性质可得关于x、y的二元一次方程组,解方程组后把x、y.【详解】由题意,得:2540 34170x yx y++=⎧⎨--=⎩,解得:32xy=⎧⎨=-⎩,=4,±2.【点睛】本题考查了非负数的性质、解二元一次方程组、求平方根等,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.44.见解析.【分析】求出∠GFH+∠FHD=180°,根据平行线的判定得出FG∠BD,根据平行线的性质得出∠1=∠ABD,求出∠2=∠ABD即可.【详解】∠∠GFH+∠BHC=180°,∠BHC=∠FHD∠∠GFH+∠FHD =180°∠FG//BD∠∠1=∠ABD∠BD平分∠ABC∠∠2=∠ABD∠∠1=∠2.【点睛】本题考查了平行线的性质和判定,角平分线定义,对顶角相等的应用,主要考查学生的推理能力.45.(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.【详解】【分析】(1)根据统计图化学对应的数据和百分比可以求得这次调查的学生数,进而求得m的值;(2)根据(1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数;(4)根据统计图中的数据,可以求得该校九年级学生中有多少名学生对数学感兴趣.【详解】(1)在这次调查中一共抽取了:10÷20%=50(名)学生,m%=9÷50×100%=18%,故答案为50,18;(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),补全的条形统计图如图所示;。

七年级下册数学期末试卷易错题(Word版 含答案)

七年级下册数学期末试卷易错题(Word版 含答案)

七年级下册数学期末试卷易错题(Word 版 含答案)一、选择题1.实数2的平方根为()A .2B .2±C .2D .2± 2.四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是( )A .B .C .D . 3.若点P 在第四象限内,则点P 的坐标可能是( )A .()4,3B .()3,4-C .()3,4--D .()3,4- 4.下列四个命题:①9的平方根是3±;②5是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( )A .0个B .1个C .2个D .3个5.如图,AB ∥CD ,∠EBF =∠FBA ,∠EDG =∠GDC ,∠E =45°,则∠H 为( )A .22°B .22.5°C .30°D .45°6.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .67.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80° 8.若点(1,3)++M k k 在x 轴上,则点M 的坐标为( )A .(4,0)B .(0,3)-C .(2,0)-D .(0,2)- 二、填空题9.已知 325.6≈18.044,那么± 3.256≈___________.10.点()2,3P -关于x 轴对称的点的坐标为_________.11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.12.如图,//AB DE ,70ABC ∠=︒,140CDE ∠=︒,则BCD ∠的度数为___________︒.13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.14.已知57a ,57b ,则2019()a b +=________. 15.如图,若“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-,则“将"所在位置的坐标为_______.16.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.三、解答题17.计算下列各题:2213-123181632163125()2-318.求下列各式中的x值:(1)16(x+1)2=25; (2)8(1﹣x)3=125 19.完成下面的证明.如图,AB∥CD,∠B+∠D=180°,求证:BE∥DF.分析:要证BE∥DF,只需证∠1=∠D.证明:∵AB∥CD(已知)∴∠B+∠1=180°()∵∠B+∠D=180°(已知)∴∠1=∠D()∴BE∥DF()20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.若整数m 的两个平方根为63a -,22a -;b 为89的整数部分.(1)求a 及m 的值;(2)求275m b ++的立方根.二十二、解答题22.(1)若一圆的面积与这个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆______C 正.(填“=”或“<”或“>”号)(2)如图,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 二十三、解答题23.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H .(1)当点H 在线段EG 上时,如图1①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.24.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)25.Rt △ABC 中,∠C=90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P 在线段AB 上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;(3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P 运动到△ABC 形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: . 26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.D解析:D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是2±故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数. 2.C【分析】根据火柴头的方向、平移的定义即可得.【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得.【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下, 因为平移不改变火柴头的朝向,所以观察四个选项可知,只有选项C 符合,故选:C .【点睛】本题考查了平移,掌握理解平移的概念是解题关键.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.B【分析】根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.【详解】解:3=,3的平方根是5的算术平方根,正确,是真命题,符合题意;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.真命题只有②,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.B【分析】过E 作//EQ AB ,过H 作//HI AB ,利用平行线的性质解答即可.【详解】解:过E 作//EQ AB ,过H 作//HI AB ,//AB CD ,//////EQ AB CD HI ∴,180QEB ABE ∴∠+∠=︒,180QED EDC ∠+∠=︒,180IHD CDH ∠+∠=︒,180IHB ABH ∠+∠=︒,EBF FBA ∠=∠,EDG GDC ∠=∠,45BED ∠=︒,2245FBA GDC BED ∴∠-∠=∠=︒, 1180(180)22.52BHD CDH ABH GDC FBA FBA GDC BED ∴∠=∠-∠=︒-∠-︒-∠=∠-∠=∠=︒. 故选:B .【点睛】 此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.6.A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;22-的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.A【分析】过点C 作CF ∥AB ,则CF ∥DE ,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB ∥DE ,过点C 作CF ∥AB ,则CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故选:A .【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.C【分析】点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标.【详解】解:∵在轴上∴∴∴∴点的坐标为故选:C【点睛】本题考查平面直角坐标系中,坐标解析:C【分析】点(1,3)++M k k 在x 轴上,则纵坐标为零,列式计算,得到k 的值,从而代入横坐标得到【详解】解:∵(1,3)++M k k 在x 轴上∴30k +=∴3k =-∴13+1=2k +=--∴点M 的坐标为(2,0)-故选:C【点睛】本题考查平面直角坐标系中,坐标轴上点的特征,根据知识点切入解题是关键.二、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】 ∵,∴,即 1.8044±.故答案为±1.804410.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:,故答案为.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.12.30【分析】过点C 作CF ∥AB ,根据平行线的传递性得到CF ∥DE ,根据平行线的性质得到∠BCF=∠ABC ,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=70°,由等式性质得到∠解析:30【分析】过点C 作CF ∥AB ,根据平行线的传递性得到CF ∥DE ,根据平行线的性质得到∠BCF =∠ABC ,∠CDE +∠DCF =180°,根据已知条件等量代换得到∠BCF =70°,由等式性质得到∠DCF =30°,于是得到结论.【详解】解:过点C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠BCF =∠ABC =70°,∠DCF =180°-∠CDE =40°,∴∠BCD =∠BCF -∠DCF =70°-40°=30°.故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.13.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.14.1【分析】根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.【详解】解析:1【分析】根据4<7<9可得,2<3,从而有7<<8,由此可得出7,小数部分a用b的值,再将a,b的值代入所求式子即可得出结果.【详解】解:∵4<7<9,∴23,∴-3<<-2,∴7<<8,2<3,∴7,2,∴,∴2019()+=12019=1.a b故答案为:1.【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.15.【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为,“象”所在位置的坐标为∴棋盘中每一格代表1∴“将"所在位置的坐标为,即故答案为:.【点睛】本1,4解析:()【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-∴棋盘中每一格代表1∴“将"所在位置的坐标为()12,4-+,即()1,4故答案为:()1,4.【点睛】本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解.16.(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A (1,1), B (-1,1),C (-1,-2), D(1,-2)∴AB = CD = 2,AD = BC = 3,∴四边形ABCD 的周长= AB + AD +BC +CD = 10∵P 点的运动是绕矩形ABCD 的周长的循环运动,且速度为每秒一个单位长度∴P 点运动一周需要的时间为10秒∵2021=202×10+1∴当t =2021秒时P 的位置相当于t =1秒时P 的位置∵t =1秒时P 的位置是从A 点向B 移动一个单位∴此时P 点的坐标为(0,1)∴t =2021秒时P 点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P 点一个循环运动需要花费的时间.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质. 18.(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得.等式两边开平方,得.所以,得.所以,解析:(1)14x=或94x=-;(2)3.2x=-【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得()225116x+=.等式两边开平方,得514x+=±.所以,得5511-44x x+=+=或.所以,19-44 x=或(2)等式两边都除以8,得()31251-8x=.等式两边开立方,得51-2x=.所以,3.2 x=-【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根..19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D =180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE∥DF,只需证∠1=∠D,由AB∥CD可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】证明:∵AB∥CD(已知)∴∠B+∠1=180°(两直线平行,同旁内角互补)∵∠B+∠D=180°(已知)∴∠1=∠D(同角的补角相等),∴BE∥DF(同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C ( 3解析:(1)3,4,3,﹣2,D ,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A →C ( 3,4),B →D (3﹣2),C →D (+1,﹣2);故答案为3,4;3,﹣2;D ,﹣2;(2)这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a 值,从而得到m ;(2)估算出的范围,得到b 值,代入求出,从而得到的立方根.【详解】解:(1)∵整数的两个平方根为,解析:(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(289b 值,代入求出275m b ++,从而得到275m b ++的立方根.【详解】解:(1)∵整数m 的两个平方根为63a -,22a -,∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b ∴<∴910<,∴b =9,∴275275369216m b ++=+⨯+=,∴275m b ++的立方根为6.【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.二十二、解答题22.(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得关于a 的方程,解得a 的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.【详解】解:(1)圆的面积与正方形的面积都是22cm π,∴)cm )cm ,)C cm ∴=圆,)C cm =正,32848ππππ=⨯>⨯,∴C C ∴<正圆.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得:3212a a ⨯=,解得a =a =∴长为,宽为,正方形的面积为216cm ,∴正方形的边长为4cm ,324>,∴不能裁出长和宽之比为3:2的长方形.【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.二十三、解答题23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG 平分∠BEF ,∴∠BEG =∠FEG ,∵FH ⊥EF ,∴∠EFH =90°,∵AB ∥CD ,∴∠BEF +∠EFG =180°,∴2∠BEG +90°-∠HFG =180°,∴2∠BEG -∠HFG =90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH ,∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.25.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2 解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【详解】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP +∠CEP =360°,∠C +∠α+∠CDP +∠CEP =360°, ∴∠1+∠2=∠C +∠α,∵∠C =90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C =∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP 与BE 的交点为M ,∵∠2+∠α=∠DME ,∠DME +∠C =∠1,∴∠1=∠C +∠2+∠α=90°+∠2+∠α.(4)如图④,设PE 与AC 的交点为F ,∵∠PFD =∠EFC ,∴180°-∠PFD =180°-∠EFC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

人教版七年级下册数学易错题集合50题含答案(广州)

人教版七年级下册数学易错题集合50题含答案(广州)

人教版七年级下册数学易错题集合50题含答案(广州)一、单选题1.一个数的平方等于它本身,这个数是( ). A .1B .1,0C .0D .0,±12.如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看成是由“基本图案”经过平移得到的是( )A .B .C .D .3.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若该班男生人数为x ,女生人数为y ,则所列方程组正确的是( )A .()4921x y y x -=⎧⎨=+⎩B .()4921x y y x +=⎧⎨=+⎩C .()4921x y y x -=⎧⎨=-⎩D .()4921x y y x +=⎧⎨=-⎩4.下列各式是二元一次方程的是( ) A .132y x +B .203x yy +-= C .21y x=+ D .20x y +=5.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定1]的值为( ) A .3B .4C .5D .66.2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是( ) A .北纬31o B .东经103.5oC .金华的西北方向上D .北纬31o ,东经103.5o7.若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A .x 2≤B .x 1>C .1x 2≤<D .1x 2<≤8.鸿运旅行社组织了197人到香格里拉和九寨沟旅游,到香格里拉的人数x 比到九寨沟的人数y 的2倍多5人,则下面所列的方程组中符合题意的是( )A .25197x y x y =-⎧⎨+=⎩B .25197x y x y =+⎧⎨+=⎩C .19725x y x y +=⎧⎨=+⎩ D .2(5)197x y x y =+⎧⎨+=⎩9.下列语句中,正确的是( ) A .正整数、负整数统称整数 B .正数、0、负数统称有理数 C .开方开不尽的数和π统称无理数 D .有理数、无理数统称实数 10.频率不可能取到的数为( ) A .0B .0.5C .1D .1.511.不等式1x 0+<的解集在数轴上表示正确的是( ) A .B .C .D .12.为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,随机抽取50名中学生进行该问卷调查,根据调查的结果绘制成如图所示的条形统计图,该调查的方式与图中a 的值分别是( )A .普查,26B .普查,24C .抽样调查,26D .抽样调查,2413.若方程()2331a a x y -++=是关于x ,y 的二元一次方程,则a 的值为A .-3B .±2C .±3D .314.下列命题不是真命题的是( ) A .0.3是0.09的平方根 B .(-2)2的算术平方根是-2CD .已知a ||a =15.如图,AO ⊥OB 于点O ,⊥BOC =35°,则⊥AOC 的补角等于( )A .55°B .145°C .125°D .135°16.不等式组 21523x x -≤⎧⎨-+<⎩的解集表示在数轴上为( )A .B .C .D .17.在同一平面内,两条直线的位置关系可能是( ) A .相交或垂直 B .垂直或平行 C .平行或相交D .相交或垂直或平行 18.已知关于x 的不等式组3x x a <⎧⎨>⎩有解,则a 的取值范围是( ) A .3a <B .3a ≤C .3a >D .3a ≥19.如果a 是任意实数,则点P (a -2,a -1)一定不在第( )象限 A .一B .二C .三D .四20.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,则a 2022的值为( ) A .-1010B .-1011C .-1012D .-202221.平面直角坐标系内AB ∥x 轴,AB =1,点A 的坐标为(-2,3),则点B 的坐标为( )A .(-1,4)B .(-1,3)C .(-3,3)或(-1,-2)D .(-1,3)或(-3,3)22.2022年我市有37000名初中毕业生参加了毕业考试,为了解37000名考生的中考成绩,从中抽取了200名考生的试卷进行统计分析,以下说法正确的是( ) A .37000名考生是总体 B .每名考生的成绩是个体 C .200名考生是总体的一个样本D .样本容量是37000二、填空题23.在同一平面内,两条直线没有公共点,它们的位置关系是______ ,两条直线有且只有一个公共点,它们的位置关系是_______ .24.已知方程组45ax by bx ay +=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则a b +的值为____________.25.小于π的自然数有________个.26.如图,直线AB //CD //EF ,且⊥B =40°,⊥C =125°,则⊥CGB =_______.27的所有整数有_____________.28.如图,已知⊥1=⊥2,则图中互相平行的线段是_____.29.一组数据的最大值与最小值的差为3.5cm ,若取组距为0.4cm ,应将该数据应分________ 组.30.若x 3m –3–2yn –1=5是二元一次方程,则mn =__________.31.一个样本含有20个数据:68、69、70、66、68、64、65、65、69、62、67、66、65、67、63、65、64、61、65、66,在列频率分布表时,如果组距为2,那么应分为____组,在64.5~66.5这一小组的频率为________32.在下列实数227,3.1415926,-8 1.103030030003…(两个3之间依次多一个0),π中,无理数有_____________33.2352x x a -≤⎧⎨-+<⎩关于x 的不等式组只有4个整数解,则a 的取值范围是__________.34.以下命题中(1)对顶角相等(2)相等的角是对顶角(3)垂直于同一条直线的两直线互相平行(4)平行于同一条直线的两直线互相平行(5)同位角相等,其中真命题的序号为___________35.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____ 36.到x 轴距离为6,到y 轴距离为4的坐标为____.37.一个正数的平方根分别是1x -+和2x +5,则这个正数是______38.已知:234x t y t =+⎧⎨=-⎩,则x 与y 的关系式是_______.39.已知x ,y 都是实数,且y 4,则yx =________.40a b ,则2a b ++的值________41.在同一平面内,A ∠与B ∠的两边一边平行,另一边垂直,且A ∠比B ∠的3倍少10°.则B ∠______.42.若⊥A 与⊥B 的两边分别平行,且⊥A 比⊥B 的3倍少40°,则⊥B =_____度. 43.在同一平面内,⊥A 与⊥B 的两边分别垂直,⊥A 比⊥B 的2倍少40°,则⊥B =_____三、解答题44.计算下列各式的值:(1)(2)(﹣3)2﹣|﹣12|+12(3)x2﹣121=0; (4)(x ﹣5)3+8=0.45.甲乙两人同时解方程组832ax by cx y +=⎧⎨-=-⎩ ,甲正确解得11x y =⎧⎨=-⎩ ;乙因为抄错c 的值,解得26x y =⎧⎨=-⎩.求a ,b ,c 的值.46.设a ,b ,c 都是实数,且满足(2﹣a )+|c+8|=0,ax2+bx+c=0,求x2+2x ﹣1的值.47.请你根据萌萌所给的如图所的内容,完成下列各小题.(1)若m※n=1,m※2n=﹣2,分别求m 和n 的值;(2)若m 满足m※2≤0,且3m※(﹣8)>0,求m 的取值范围. 48b a bc -+49.解方程(组) (1)2(21)4x -=(2)1243231y x x y ++⎧=⎪⎨⎪-=⎩ 50.如图,⊥1+⊥2=180°,⊥A =⊥C ,DB 平分⊥AB C .(1)探究AE 与CF 的位置关系,并说明理由. (2)探究AD 与BC 的位置关系,并说明理由. (3)BC 平分⊥DBE 吗?为什么?51.某校计划安排七年级全体师生参观红旗渠风景区,现有36座和48座两种客车(不包括驾驶员座位)供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能比租36座的客车少租1辆,且有1辆车没有坐满,但超过了30人,该校七年级共有师生多少人?52.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P (a ,b )是⊥ABC 的边AC 上任意一点,⊥ABC 经过平移后得到111A B C △,点P 的对应点为1(6,2)Pab +-(1)直接写出点111,,A B C 的坐标. (2)在图中画出111A B C △.(3)连接11,,AA AO AO ,求1AOA 的面积. (4)连接1BA ,若点Q 在y 轴上,且1QBA 的面积为10,求点Q 的坐标.53.在实施“城乡危旧房改造工程”中,襄城区计划推出A 、B 两种新户型.根据预算,建成10套A 种户型和30套B 种户型住房共需资金480万元,建成30套A 种户型和10套B 种户型住房共需资金400万元.(1)在危旧房改造中建成一套A 种户型和一套B 种户型住房所需的资金分别是多少万元?(2)襄城区有800套住房需要改造,改造资金由国家危旧房补贴和地方财政共同承担.若国家补贴拨付的改造资金不少于2100万,襄城区财政投入额资金不超过7700万元,其中,国家财政投入到A 、B 两种户型的改造资金分别为每套2万元和3万元. ⊥请你计算求出A 种户型至少可以建多少套,最多可以建多少套?⊥这项改造工程总投入资金W 万元,建成A 种户型m 套,写出W 与m 的关系式. 54.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A ,B 的对应点C ,D .连接AC ,BD .(1)写出点C ,D 的坐标及四边形ABDC 的面积.(2)在y 轴上是否存在一点P ,连接P A ,PB ,使S 三角形P AB =S 四边形ABDC ?若存在,求出点P 的坐标,若不存在,试说明理由;(3)点Q 是线段BD 上的动点,连接QC ,QO ,当点Q 在BD 上移动时(不与B ,D重合),给出下列结论:⊥DCQ BOQCQO∠+∠∠的值不变;⊥DCQ COQBQO∠+∠∠的值不变,其中有且只有一个正确,请你找出这个结论并求值.55.如图所示,已知AB∥CD,分别探索下列四个图形中⊥P与⊥A,⊥C的关系,并证明你的结论.参考答案:1.B【详解】解:根据平方的定义可得,1的平方等于1,0的平方等于0,所以一个数的平方等于它本身的数是1和0. 故选B . 2.C【分析】根据平移的性质:不改变物体的大小,朝一个方向移动能够得到的图像. 【详解】解:观察图形可知,图像C 可以看成由“基本图案”经过平移得到. 故选:C .【点睛】此题考查了图形的平移,平移只改变位置,不改变大小和性质,要注意与旋转和翻折的区别. 3.D【分析】根据等量关系:男生数-1=女生数的一半,男生+女生=49,据此即可列出方程组.【详解】由该班一男生请假后,男生人数恰为女生人数的一半,得x -1= 12y ,即y =2(x -1);由该班共有学生49人,得x +y =49, 列方程组为()4921x y y x +=⎧⎨=-⎩, 故选D【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键. 4.B【详解】A. 3y +12x 是代数式而不是方程,不是二元一次方程,故此选项错误; B. 方程3x y+−2y =0符合二元一次方程的定义,故此选项正确; C. 方程y =2x +1的右边不是整式,不符合二元一次方程的定义,故此选项错误;D. 方程2x +y =0中未知数的项的最高次数是2,不符合二元一次方程的定义,故此选项错误; 故选B.5.B【详解】解:根据91016<<,则34<,即415<<,根据题意可得:14⎤=⎦. 考点:无理数的估算 6.D【详解】本题主要考查了坐标确定位置. 根据在地理上常用经纬度来表示某个点的位置,既有经度,又有纬度.解:根据地理上表示某个点的位的方法可知选项D 符合条件. 故选D . 7.D【分析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.【详解】解:在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,这个不等式组的解是1x 2<≤. 故选D . 8.C【详解】试题解析:根据题意可得等量关系;⊥去香格里拉的人数+去九寨沟的人数=197人;⊥去香格里拉的人数x=到九寨沟的人数y 的2倍+5人,根据等量关系列出方程组:19725x y x y +=⎧⎨=+⎩ 故选C . 9.D【详解】试题解析:A 、正整数、零和负整数统称整数,故A 错误; B 、正有理数、零、负有理数统称有理数,故B 错误; C 、无限不循环小数是无理数,故C 错误; D 、有理数和无理数统称实数,故D 正确; 故选D .10.D【详解】解:频率大于等于0小于等于1,故选D .11.A【详解】不等式1x 0+<的解集为x 1<-,在数轴上表示如下:,故选A.【点睛】本题考查了在数轴上表示一元一次不等式的解集,不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.D【详解】根据关键语句“先随机抽取50名中学生进行该问卷调查,”可得该调查方式是抽样调查,调查的样本容量为50,故6+10+6+a+4=50,解即可.解:该调查方式是抽样调查,a=50﹣6﹣10﹣6﹣4=24,故选D .13.D 【分析】试题分析:依题意知a 2-=1且a+3≠0.解得x=3或x=-3(舍去).故选D 考点:二元一次方程点评:本题难度较低,主要考查学生对二元一次方程性质知识点的掌握.【详解】请在此输入详解!14.B【分析】利用有关的性质、定义及定理分别对每个小题判断后即可确定正确的选项.【详解】解:A 、0.3是0.09的平方根,是真命题;B 、()224-=,4的算术平方根是2,是假命题;C 、2-D 、已知a a =,是真命题;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是理解有关的定义、定理及性质. 15.C【分析】根据题意得90AOB ∠=︒,根据⊥BOC =35°,得55AOC ∠=︒,再根据互补两角和是180°即可得.【详解】解:⊥AO ⊥OB ,⊥90AOB ∠=︒,⊥⊥BOC =35°,⊥903555AOC AOB BOC ∠=∠-∠=︒-︒=︒,⊥⊥AOC 的补角为:180=18055=125AOC ︒-∠︒-︒︒,故选C .【点睛】本题考查了补角,解题的关键是掌握互补的两个角的和是180°.16.B【分析】求出不等式组的解集即可得.【详解】解:21523x x -≤⎧⎨-+<⎩①② 由⊥得,3x ≤,由⊥得,1x >-,⊥不等式组的解集为:13x -<≤,故选:B .【点睛】本题考查了在数轴上表示不等式组的解集,解题的关键是正确求解出不等式组的解集.17.C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C 正确;故选:C .【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.18.A【分析】先求出不等式组的解集,即可求解.【详解】解:⊥关于x 的不等式组3x x a <⎧⎨>⎩有解, ⊥不等式组的解集为3a x <<,⊥3a <.故选:A【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.19.D【分析】根据题意可得21a a ,然后根据点在第四象限内,横坐标为正,纵坐标为负,即可求解.【详解】解:根据题意得:21a a ,⊥点在第四象限内,横坐标为正,纵坐标为负,⊥点P (a -2,a -1)一定不在第四象限.故选:D【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.20.B【分析】分别求得a 1,a 2,a 3,a 4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解.【详解】解:⊥a 1=0,a 2=-|a 1+1|=-1,a 3=-|a 2+2|=-1,a 4=-|a 3+3|=-2,5442a a =--+=-,6553a a =--+=-…,当下标为偶数时,其值等于下标的一半的相反数,⊥a 2022的值为-1011.故选B .【点睛】本题考查了数字类规律,找到规律是解题的关键.21.D【分析】根据平行与横轴上的点纵坐标相等分析计算即可.【详解】解:⊥AB∥x轴,⊥A点与B点纵坐标相同,横坐标之差等于其距离,且AB=1,B点横坐标为﹣2+1=-1,或-2-1=-3,故B点坐标为:(-1,3)或(-3,3),故选:D.【点睛】本题考查平行于坐标轴的线上的点的坐标特征,能够掌握数形结合思想是解决本题的关键.22.B【分析】根据总体的定义:要考查的全体对象称为总体;个体的定义:组成总体的每一个考查对象称为个体;样本的定义:被抽取的那些个体组成一个样本;样本容量的定义:样本中个体的数目称为样本容量,进行判断即可得.【详解】解:A、37000名考生的中考成绩是总体,选项说法错误,不符合题意;B、每名考生的成绩是个体,选项说法正确,符合题意;C、200名考生的中考成绩是总体的一个样本,选项说法错误,不符合题意;D、样本容量是200,选项说法错误,不符合题意;故选B.【点睛】本题考查了总体,个体,样本,样本容量,解题的关键是掌握这些知识点.23.平行相交【详解】试题解析:在同一平面内,两条直线没有公共点,它们的位置关系是平行,两条直线有且只有一个公共点,它们的位置关系是相交.故答案为平行,相交.24.3【分析】把21xy=⎧⎨=⎩代入45ax bybx ay+=⎧⎨+=⎩即得关于的a、b二元一次方程组,再把两个方程相加,通过计算即可得到结果.【详解】由题意得,把21xy=⎧⎨=⎩代入45ax bybx ay+=⎧⎨+=⎩得24 25a bb a+=⎧⎨+=⎩2254a b b a +++=+即339a b +=3a b ∴+=故答案为:3.【点睛】本题考查的是二元一次方程组的解的定义及应用,二元一次方程组中两个一次方程的公共解,就是二元一次方程组的解.25.4【详解】试题解析:⊥π≈3.14,⊥小于π的自然数有0,1,2,3共4个.故答案为4.26.15º##15度【分析】根据平行线的性质得出⊥BGF =⊥B =40°,⊥C +⊥CGF =180°,求出⊥CGF =55°,即可得出答案.【详解】解:⊥AB //CD //EF ,⊥B =40°,⊥C =125°,⊥⊥BGF =⊥B =40°,⊥C +⊥CGF =180°,⊥⊥CGF =55°,⊥⊥CGB =⊥CGF -⊥BGF =15°.故答案为:15°【点睛】本题考查了平行线的性质的应用,牢记“两直线平行,内错角相等”等平行线的性质是解题的关键.27.0, 1, 2,-1,-2【分析】先估算出23【详解】解:∴23,⊥2,1,0,-1,-2.故答案为2,1,0,-1,-2.键.28.AD⊥BC【分析】根据内错角相等,两直线平行进行判断.【详解】解:⊥⊥1=⊥2⊥AD⊥BC(内错角相等,两直线平行)故答案为:AD⊥BC.【点睛】本题考查了平行线的判定,解题的关键是记住同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.29.9【详解】试题解析:3.53=80.44,则应该分成9组.故答案是:9.30.169【详解】试题解析由题意得:3m-3=1,n-1=1,解得:m=43,n=2,⊥m n=(43)2=169.故答案为169.31.52 5【分析】⊥根据“组数=(最大值-最小值)÷组距”计算,由于组数为整数,注意小数部分要进位;⊥由频数与总数的比为频率计算即可.【详解】⊥在样本数据中最大值为70,最小值为61,它们的差是7061=9-,已知组距为2,那么由于9=4.52,故可以分成5组.⊥在64.5~66.5这一小组的数为66、65、65、66、65、65、65、66,共8个,这一小组的频率为82 205=.故答案为:5;25.【点睛】本题主要考查数据的收集、整理与描述,解题关键是画频数分布直方图的一般步骤:计算最大值与最小值的差(极差),确定组距与组数,列频数分布表,画出频数分布直方图.32,1.103030030003…(两个3之间依次多一个0),π【分析】根据无理数的定义,“无限不循环的小数是无理数”逐个分析判断即可.【详解】解:在227,3.1415926,-83=,1.103030030003…(两个3之间依次多一个0),π中,227,3.1415926, -83=,1.103030030003…(两个3之间依次多一个0),π是无理数,1.103030030003…(两个3之间依次多一个0),π【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:⊥开方开不尽的数,⊥无限不循环小数,⊥含有π的数.33.23a ≤<【分析】根据题意,分别解不等式,根据不等式组的解只有4个整数解,可得021a ≤-<,解不等式组即可求解.【详解】解:解不等式235x -≤,得4x ≤,解不等式2x a -+<,得2x a >-,x 的不等式组只有4个整数解,1,2,3,4∴021a ≤-<解得23a ≤<故答案为:23a ≤<【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 34.(1)(4)【分析】根据平行线的性质以及对顶角的定义和点、线之间的关系分别判断得出即可.【详解】解:(1)对顶角相等,是真命题,(2)相等的角不一定是对顶角,故原命题不是真命题,(3)在同一平面内,垂直于同一条直线的两直线互相平行, 故原命题不是真命题, (4)平行于同一条直线的两直线互相平行,是真命题,(5)两直线平行,同位角相等,故原命题不是真命题,所以真命题的序号为(1)(4).故答案为:(1)(4)【点睛】本题主要考查了判断命题的真假,平行线的性质以及对顶角的定义和点、线之间的关系,熟练掌握相关知识点是解题的关键.35.12y <- 【分析】根据不等式的性质可得ba -2=,0a >,进而可得0b <,据此即可求解.【详解】解:⊥关于x 的不等式ax <-b 的解集x <2, ⊥b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ⊥1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 36.(4,6),(﹣4,6),(﹣4,﹣6)或(4,﹣6).【分析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,即可得出答案.【详解】解:⊥点到x 轴的距离是6,到y 轴的距离是4,⊥该点的坐标是(4,6),(﹣4,6),(﹣4,﹣6)或(4,﹣6),故答案为:(4,6),(﹣4,6),(﹣4,﹣6)或(4,﹣6).【点睛】本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值是解题关键.37.49【分析】根据题意,结合平方根的性质列出方程,求解方程即可得到结论.【详解】解:一个正数的平方根有两个,且互为相反数,∴由一个正数的平方根分别是1x -+和2x +5,可知()()1250x x -+++=, 即60x +=,解得6x =-,∴()221749x -+==, 故答案为:49.【点睛】本题考查平方根的性质,根据题意列出方程求解是解决问题的关键. 38.x +3y =14【分析】用y 把t 表示出来,再利用代入消元法可得到x 与y 的关系式.【详解】解:234x t y t =+⎧⎨=-⎩①② 由⊥得:4,t y =-⊥()234,x y =+-整理得:314,x y +=故答案为:314+=x y39.64【详解】由二次根式有意义的条件得:x =3,⊥y =4,⊥yx =43=64,故答案为:6440的大小,进而求得,a b 的值,代入代数式即可求解.【详解】解:⊥12,12<<<,⊥1,1a b ==,2112a b ∴++=++=【点睛】本题考查了无理数的估算,求得,a b 的值是解题的关键.41.25°或50°【分析】根据平行线的性质以及垂直的定义即可求解.【详解】解:∵A ∠与B ∠的两边一边平行,另一边垂直,∴有两种情况,如下图所示:由题意得,AC∥BD,∠A=3∠B-10°,BC⊥AD ∵AC∥BD∴∠C=∠B∵BC⊥AD∴∠A+∠C=90°∴3∠B-10°+∠B=90°,∴∠B=25°如下图所示:由题意得,AN∥BM,∠A=3∠B-10°,BH⊥AM ⊥AN∥BM∴∠A+∠M=180°,∵BH⊥AM∴∠B+∠M=90°∴∠A-∠B=90°∵∠A=3∠B-10°3∠B﹣10°﹣∠B=90°,∴∠B=50°,综上所述,∠B的度数为25°或50°,故答案:25°或50°.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.42.55或20【分析】根据平行线性质得出⊥A+⊥B=180°⊥,⊥A=⊥B⊥,求出⊥A=3⊥B﹣40°⊥,把⊥分别代入⊥⊥求出即可.【详解】解:⊥⊥A与⊥B的两边分别平行,⊥⊥A+⊥B=180°⊥,⊥A=⊥B⊥,⊥⊥A比⊥B的3倍少40°,⊥⊥A=3⊥B﹣40°⊥,把⊥代入⊥得:3⊥B﹣40°+⊥B=180°,⊥B=55°,把⊥代入⊥得:3⊥B﹣40°=⊥B,⊥B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由⊥A和⊥B的两边分别平行,即可得⊥A=⊥B或⊥A+⊥B=180°,注意分类讨论思想的应用.43.2203或40°【分析】分两种情况讨论,即可求解.【详解】解:如图,⊥ADE=⊥BCE=90°,⊥⊥AED=⊥BEC,⊥⊥A=⊥B,⊥⊥A比⊥B的2倍少40°,即2⊥B-⊥A=40°,⊥2⊥A-⊥A=40°,解得:⊥A=40°,⊥⊥B=40°;如图,连接AB,⊥ADB=⊥ACB=90°,⊥⊥BAD+⊥ABD=90°,⊥BAC+⊥ABC=90°,⊥⊥CAD+⊥DBC=180°,⊥⊥CAD=180°-⊥CBD,⊥⊥CAD比⊥CBD的2倍少40°,即2⊥CBD-⊥CAD=40°,⊥2⊥CBD-(180°-⊥CBD)=40°,解得:2203 CBD;综上所述,⊥B的度数为2203或40°.故答案为:2203或40°【点睛】本题主要考查了余角的性质,三角形的内角和定理,利用分类讨论思想解答是解题的关键.44.(1(2)6;(3)x=±11;(4)x=3.【详解】试题分析:(1)原式去括号合并即可得到结果;(2)原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用算术平方根定义计算即可得到结果;(3)方程变形后,利用平方根定义开方即可求出解;(4)方程变形后,利用立方根定义开立方即可求出解.试题解析::(1)原式(2)原式=9-12+12-3=6;(3)方程变形得:x2=121,开方得:x=±11;(4)方程变形得:(x-5)3=-8,开立方得:x-5=-2,解得:x=3.45.1025 abc=⎧⎪=⎨⎪=-⎩【详解】试题分析:把11xy=⎧⎨=-⎩代入方程组,把26xy=⎧⎨=-⎩代入方程组中的第一个方程,即可得到一个关于a、b、c的方程组,解方程组即可求解.试题解析:根据题意得:832 268a bca b-⎧⎪+-⎨⎪-⎩===,解得:1025 abc=⎧⎪=⎨⎪=-⎩.46.3【详解】试题分析:先依据非负数的性质求得a、b、c的值,再求值即可.试题解析:⊥(2-a)2,⊥a=2,c=-8,b=4.⊥2x2+4x+8=0,⊥x2+2x=4⊥x2+2x﹣1=4-1=3.47.(1)11nm=⎧⎨=⎩;(2)﹣2<m≤32.【详解】试题分析:(1)根据题意列出关于m、n的方程组,求出m、n的值即可;(2)根据题意列出关于m的不等式组,求出m的取值范围即可.试题解析:(1)⊥m⊥n=1,m⊥2n=-2,⊥431462m nm n-⎧⎨--⎩==,解得11nm⎧⎨⎩==;(2)⊥m⊥2≤0,3m⊥(-8)>0,⊥46012240m m -≤⎧⎨+⎩> ,解得-2<m≤32. 点睛:解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则.48.2a -b【分析】由题意得,0a b c <<<,b c <,即0b a ->,0a b +<,0b c +>,根据绝对值的化简性质进行计算即可得.【详解】解:由题意得,0a b c <<<,b c <,⊥0b a ->,0a b +<,0b c +>,,⊥原式=()()()c b a a b b c --++-+=+c b a a b b c -++--=2a -b .【点睛】本题考查了数轴与实数,解题的关键是根据数轴得出各项符号,利用绝对值的化简性质.49.(1)32x =或12x =- (2)373x y =-⎧⎪⎨=-⎪⎩【分析】(1)利用平方根的定义解方程;(2)将方程组整理后,根据加减消元法解二元一次方程组即可求解.(1)解:2(21)4x -=,212x -=±, 解得32x =或12x =-; (2)1243231y x x y ++⎧=⎪⎨⎪-=⎩ 整理得345231y x x y -=⎧⎨-=⎩①②, ⊥+⊥得,26x -=,将3x =-,代入⊥得,()3435y -⨯-=, 解得73y =-,∴方程组的解为373x y =-⎧⎪⎨=-⎪⎩. 【点睛】本题考查了根据平方根解方程,加减消元法解二元一次方程组,正确的计算是解题的关键.50.(1)AE CF ,理由见解析(2)AD BC ∥,理由见解析(3)BC 不一定平分DBE ∠,理由见解析【分析】(1)先根据邻补角定义可得2180CDB ∠+∠=︒,从而可得1CDB ∠=∠,再根据平行线的判定即可得出结论;(2)先根据平行线的性质可得C CBE ∠=∠,从而可得A CBE ∠=∠,再根据平行线的判定即可得出结论;(3)先根据角平分线的定义可得CBD ABD ∠=∠,再根据平行线的性质可得CBE A ∠=∠,然后根据ABD ∠与A ∠不一定相等可得CBD ∠与CBE ∠不一定相等,由此即可得出结论.(1)解:AE CF ,理由如下:⊥12180,2180CDB ∠+∠=︒∠+∠=︒,⊥1CDB ∠=∠,⊥AE CF .(2)解:AD BC ∥,理由如下:⊥AE CF ,⊥C CBE ∠=∠,⊥A C ∠=∠,A CBE ∴∠=∠,⊥AD BC ∥.(3)解:BC 不一定平分DBE ∠,理由如下: DB 平分ABC ∠,CBD ABD ∴∠=∠,AD BC ∥,CBE A ∴∠=∠,ABD ∠与A ∠不一定相等,∴CBD ∠与CBE ∠不一定相等,BC ∴不一定平分DBE ∠.【点睛】本题考查了平行线的判断与性质、角平分线的定义,熟练掌握平行线的判定与性质是解题关键.51.该校七年级共有师生180人.【分析】设需租用36座客车x 辆,则该校七年级共有师生36x 人,根据“若只租用48座客车,则能比租36座的客车少租1辆,且有一辆车没有坐满,但超过了30人”,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,结合x 为整数即可确定x 的值,将其代入36x 中即可求出该校七年级共有师生人数.【详解】解:设需租用36座客车x 辆,则该校七年级共有师生36x 人,由题意得:()()3648230{36481x x x x -+-><, 解得:4112x <<, 又⊥x 为整数,⊥x =5,⊥36x =36×5=180,答:该校七年级共有师生180人.【点睛】本题考查了一元一次不等式组的应用,解题的关键是根据各数量之间的关系,正确列出一元一次不等式组.52.(1)111(3,1),(1,1),(4,2)A B C --(2)见解析(3)6(4)(0,-1.5)或(0,3.5)【分析】(1)根据平移的性质可得⊥ABC 先向右平移6个单位,再向下平移2个单位得到111A B C △,即可求解;(2)根据点111,,A B C 的坐标描点,即可求解;(3)用1AOA 所在的长方形的面积减去三个直角三角形的面积,即可求解;(4)设Q (0,t ),根据三角形的面积公式,即可求解.(1)解:⊥P (a ,b )的对应点为1(6,2)P a b +-.⊥⊥ABC 先向右平移6个单位,再向下平移2个单位得到111A B C △,⊥A (-3,3),B (-5,1),C (-2,0),⊥点111(3,1),(1,1),(4,2)A B C --;(2)解:如图,111A B C △即为所求;(3)解:1AOA 的面积11163333162222=⨯-⨯⨯-⨯⨯-⨯⨯ 9318622=--- =6(4)解:设Q (0,t ),⊥1(5,1),(3,1)B A -,⊥1BA x ∥轴,⊥13(5)8BA =--=,⊥1QBA 的面积为10, ⊥18|1|102t ⨯⨯-=, 解得t =-1.5或t =3.5,⊥Q 点的坐标为(0,-1.5)或(0,3.5).【点睛】本题考查了作图——平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 53.(1)建成一套A 种户型住房所需的资金是9元,一套B 种户型住房所需的资金是13元(2)⊥100300x ≤≤;⊥410400W m =-+【分析】(1)设建成一套A 种户型住房所需的资金是a 元,一套B 种户型住房所需的资金是b 元,列出方程组即可解决问题.(2)⊥设A 种户型有x 套,则B 种户型有(800-x )套.列出不等式组即可解决问题.⊥根据总投入资金=建A 种户型的费用+建B 种户型的费用,即可解决问题.(1)解:设建成一套A 种户型住房所需的资金是a 元,一套B 种户型住房所需的资金是b 元,根据题意得:10304803010400a b a b +=⎧⎨+=⎩,解得:913a b =⎧⎨=⎩, 答:建成一套A 种户型住房所需的资金是9元,一套B 种户型住房所需的资金是13元; (2)解:⊥设A 种户型可以建x 套,则B 种户型可以建x 套,根据题意得:()()()238002100913800238007700x x x x x x ⎧+-≥⎪⎨⎡⎤+--+-≤⎪⎣⎦⎩, 解得:100300x ≤≤,答:A 种户型至少可以建100套,最多可以建300套;⊥根据题意得:913(800)410400W m m m =+-=-+,即W 与m 的关系式为410400W m =-+.【点睛】本题考查二元一次方程组、一元一次不等式组等知识,解题的关键是学会设未知数,构建方程组、不等式组解决问题,属于中考常考题型.54.(1)C (0,2),D (4,2),S 四边形ABCD =8;(2)存在,点P 的坐标为(0,4)或(0,-4);(3)结论⊥正确,DCQ BOQ CQO∠+∠∠=1. 【分析】(1)根据点平移的规律:左减右加,上加下减,即可得到点C 、D 的坐标,利用平行四边形的面积公式计算面积即可;(2)设点P 的坐标为(0,y ),根据三角形的面积公式底乘以高的一半列式计算即可得到答案;(3)结论⊥正确.过点Q 作QE ⊥AB ,交CO 于点E ,利用平行线的性质:两直线平行内。

七年级下册数学易错题整理附答案(超好)

七年级下册数学易错题整理附答案(超好)

七年级数学下易错题练习答案第五章相交线与平行线1.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16° C.90°﹣α D.α﹣44°【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14° B.15° C.16° D.17°【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70° C.80° D.110°【解答】∴∠2=180°﹣50°﹣50°=80°.故选:C.4.如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30° C.40° D.50°【解答】解:∵直尺对边互相平行,故选:C.∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.5.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.6.如图,AB∥CD,点E在线段BC上,∠CDE=∠CED.若∠ABC=30°,则∠D为()A.85°B.75° C.60° D.30°【解答】故选:B.7.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.8.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.9.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补二、填空题1.如图,把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,则∠EMF = 90°2.如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF= 115度.3 将长方形纸片ABCD 沿过A 点的直线折叠,折痕为线段AE ,得到图8所示的图形,已知∠CED ′=50º,则∠AED = 65 度.4、改写成如果…那么…形式1、改写:如果三个角是一个三角形的内角,那么这三个角的和是180°。

初中数学七年级下册易错题汇总大全附答案带解析之欧阳物创编

初中数学七年级下册易错题汇总大全附答案带解析之欧阳物创编

初中数学七年级下册易错题时间:2021.02.07 命题人:欧阳物相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。

正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数. 错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3. 第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组 .错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是 .错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是 .3.将方程变形时忽略常数项3.利用加减法解方程组 .错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是 .错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是 .4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C. .D. .错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组 .错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果.正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:十位上的数个位上的数对应的两位数相等关系解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y x y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩, 因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。

人教版七年级数学易错题(含解析)

人教版七年级数学易错题(含解析)

七年级数学易错题1、a一定负数吗?错解:一定.剖析:带有负号的数不一定就是正数,关键是确定a是一个什么数,这就要应用分类讨论的思想进行讨论.解:不一定,a 可能是正数,0,负数分析:若a 是正数,则a就是负数,若a=0 则a=0 若a 是负数,则a 就是正数.2、在数轴上点A表示的数是7.点B,C表示的两个数互为相反数且C与A之间的距离为2,求点B,C 对应的数.错解:点C与点A 之间的距离为2,点C 表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.剖析:点C与点A之间的距离为2,则点C有可能在点A的左侧也有可能在点A右侧.故要分情况讨论.正解:点C与点A 之间的距离为2,点C在点A的左侧2个单位长度或点C在点A的右侧2个单位长度.① 点C在点A的左侧2个单位长度,则点C表示的数为5.点B 和点C 表示的数互为相反数,B 表示的数为-5.② 点C在点A的右侧2个单位长度,则点C表示的数为9.点B 和点C 表示的数互为相反数,B 表示的数为-9.1 1 1 13、.计算:1 5 5 9 9 13 13 17 2001 2005错解:原式=1 1 1 1 1 1 1 1 1 15 5 9 9 13 13 17 2001 20051=120052004=2005剖析:由于学生在长期的学习中形成的思维定式,用类似于解1 1 1 1 11 1 1 1 1方法直接去求解.而忽视本12 23 34 2003 2004 2004 20051 4 1 1 4413 13 17 20011 2005题1 1 4,1 1 4结果中分子是4而不是1.故这样做是错的.5 5 5 9 451正解:原式=55991 1 1 156= (1 )4 2005 = 501.=2005174、计算: 391713 . 2617错解】原式 39 13 17 1326 17 507 21 515 .2错解剖析】本题错误原因是把 3917 看成 39与17 的和,而它应是 39与26 2617 17的和. 26正确解答】原式 39 13 17 13 507 17 5151 .26 2 25、计算:1) 14 61 2 ( 3)2 ;错解剖析】错解一中是将 14计算成 1得到163,错解二中是去括号符号出错解】错解一:原式 =1- 16 =1-16 =1+76=13.=6.错解二:原式 =-1- 1 × 6 =-1- 1 ×6 =-1-76 13 =- . 62-9) -7)2-9) -7)13错得到7正确答案】原式 =-1- 1×( 2-9)6 1=-1- 1 ×(-7)6=- 1+ 76 162) ( 1)4 32 22 ( 1)2.2错解】原式 =1- 9÷ 1=-8.错解剖析】没有按照运算顺序计算,而是先计算 22 ( 3)2 .2正确答案】原式 =1-9× 1 × 144=1-916 7=16.1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2y7、用代数式表示下列语句:1)比 x 与 y 的和的平方小 x 与 y 的和的数;a 的 2倍与b 的1 的差除以 a 与b 的差的立方 .32) 错解: 1) x 2y 2x y 2) 2a 13b a b 3. 6、 用代数式表示下列语句:1) 比 x 与 y 的和的平方小 x 与 y 的和的数;剖析: 2)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3正解:(1)(x y) 2 (x y) (2)12a b3 (a b) 3222)a的2倍与b的1的差除以a与b的差的立方.37373剖析:(1)要表示的是“比 x 与 y 的和的平方小 x 与 y 的和的数”,应该先求和 再求平方即应该是 (x y)2 (x y) ,而不应该是 x 2 y 2x y .2a1b正解:(1)(x y)2 (x y) (2)33(a b) 38、已知方程 (m 3)x 4 m 2是关于 x 的一元一次方程. 求:(1) m 的值; (2) 写出这个关于 x 的一元一次方程. 【错解】 m=±3. 【剖析】忘记 m-3≠0 这个条件.m 2 1 【正解】(1)由 m 2 1得 m=-3.m 3 0 (2)-6x +4=-5.9、解方程 7x -1 x 1(x 1) 2(x 1).2 23 1 1 2【错解】 7 x - 1 x 1(x 1) 2(x 1).2 2 342x 3x 3(x 1) 4(x 1) . 42x 3x 3x 3 4x 4 . 32x=-7.7x= .3211 【剖析】 去中括号时 1(x 1)漏乘系数 1 ,另外,同样在这一步去括号时忘 22记了考虑符号问题. 【正解】第一次去分母,得142 x - 3 x (x 1) 4(x 1).2第一次去括号,得 42 x - 3x 3(x 1) 4x 4 .2 第二次去分母,得 84 x- 6x + 3x -3=8x-8. 移项,合并同类项,得 73 x =- 5. 把系数化为 1,得x =10. 解方程 x 1 = 5.错解:(1) x 2 y 2x y2) 2a 1b a b 3.32)是书写不规范,除号要用分数线代替,即应该写成1 2a b3 (a b)3【错解】由x 1=5 得到x- 1=5.∴ x=6.【剖析】去绝对值符号必须考虑正负性x-1=5 或x-1=-5.【正解】由x 1=5得到x- 1=5或x- 1=- 5.∴ x=6 或x=-4.11、某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付264元,请问张强第一次、第二次分别购买香蕉多少千克?【错解】⑴当第一次购买香蕉少于20千克,第二次购买香蕉20 千克以上但不超过40千克时,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32.∴第一次购买32 千克香蕉,第二次购买18 千克香蕉.【剖析】本题是一道分类讨论题,分类讨论的关键是第二次的购买量,关键得考虑第二次多于第一次,解题时应该重点考虑.【正解】⑴当第一次购买香蕉少于20千克,第二次香蕉20 千克以上但不超过40 千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264,解得:x=14.50-14=36(千克).∴第一次购买14 千克香蕉,第二次购买36 千克香蕉.⑵当第一次购买香蕉少于20 千克,第二次香蕉超过40千克的时候,设第一次购买x 千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264,解得:x=32(不符合题意,舍去).答:第一次购买14 千克香蕉,第二次购买36 千克香蕉.12、下列哪些空间图形是柱体?错解:A 、B 、C 、D 都是柱体. 错解剖析:柱体的主要特征是上下两个底面形状、大小完全一样且互相平行.此题错误 地认为 C 、D 也是柱体.图形 C 因为上下底面不平行,所以不是柱体;图形 D 上下底面 大小不等,所以也不是柱体.正确答案: A 和B 是柱体( A 是圆柱, B 是棱柱).13、已知点 B 在直线 AC 上,AB =6,AC =10,P 、Q 分别是 AB 、AC 的中点,求PQ 的长. 错解: PQ=2.错解分析: 这是一道典型的数形结合题, 用几何的思想, 代数的方法进行计算,重点要画 出符合条件的两种图形 ,注重分类的完备性.正确答案:本题 B 点有在线段 AC 上或在射线 CA 上两种可能.由 P 、Q 分别为 AB 、AC 的 11 中点可知 AP = AB =3,AQ = AC =5,所以 PQ =AQ -AP =2 或 PQ =AQ + AP =8.22AP Q B CB P A Q C所以 PQ 的长为 2 或 8.14、 (1)计算 14° 41′ 25;″×5(2)把 26.29 °转化为度、分、秒表示的形式. 错解一 :( 1) 14°41′25″=×750°205′12=5″72°6′2;5″( 2) 26 . 29°= 26°29.′错解二 :( 1) 14°41′25″=×750°205′12=5″91°7′;5″ ( 2) 26 . 29°= 26°2′.9″剖析:角的度量单位度、分、秒之间是六十进制(即满 60 进1),而不是百进制或十进 制,在由大单位化成下一级小单位时应乘以 60,由小单位化成上一级大单位时应除以 60 ,上述错解均因单位间的进制关系不清而致错.正解:( 1)14°41′25″=×750°205′12=5″73°27′;5″ ( 2) 26 . 29°= 26°+0.29°=26°+0.29×60′ =26°+17.4′=26°+ 17′+0.4×60″=26°17′2.4″15、如图,已知∠ AOC =∠ BOC =∠ DOE =90°,问图中是否有与∠ COE 互补的角?错解:观察图形可知,图中没有与∠ COE 互补的角.剖析:图中真的没有与∠ COE 互补的角吗?还是让我们分析后再下结论吧!由∠ AOC =90°可知:∠AOD 与∠COD 互为余角;由∠ DOE=90°可知:∠ COE与∠ COD 互为余角,根据“同角的余角相等”得∠ COE=∠ AOD.可见,要找与∠ COE 互补的角,可转化为找与∠AOD 互补的角,观察图形知:∠ BOD 与∠ AOD 互为补角,因此与∠ COE 互补的角是∠ BOD .由上可知,在识图时,我们不单单要认真观察图形,而且还要仔细分析题设条件,这样才能作出正确的判断.正解:图中有与∠ COE 互补的角,它是∠ BOD .思考:图中有没有与∠ COD 互补的角?。

浙教版数学七年级下册易错题整理(含答案)

浙教版数学七年级下册易错题整理(含答案)

第一章平行线1、如图所示,若BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°,求证AB∥CD解:∵BE平分∠ABD,DE平分∠BDC,∴∠ABD=2∠1,∠BDC=2∠2,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD(同旁内角互补,两直线平行)2、如图,AB平行CD,EG,FG分别平分∠BEF,∠DFE,求∠GEF+∠EFG的度数解:∵AB∥CD∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补)∵EG,FG分别平分∠BEF,∠DFE,∴∠GEF=1/2∠BEF∠EFG=1/2∠DFE∴∠GEF+∠EFG=1/2(∠BEF+∠DFE)=90°3、如图,三角形ABC中,BE平分∠ABC,∠1=∠2,∠C=50°,求∠AED 的度数.解:∵BE平分∠ABC ∴∠1=∠CBE.∵∠1=∠2,∴∠2=∠CBE.∴DE∥BC(内错角相等,两直线平行),∠AED=∠C.∵∠C=50°,∴∠AED=50°.4、如图,已知ADB 是一条直线,∠ADE=∠ABC ,且DG 、BF 分别是∠ADE 和∠ABC 的角平分线,DG 与BF 平行吗?解: 平行理由是:∵DG、BF 分别是∠ADE 和∠ABC 的平分线,∴ABC ABF ADE ADG ∠=∠∠=∠2121 ∵∠ADE=∠ABC,∴∠ADG=∠ABF,∴DG∥BF (同位角相等两直线平行)5、有一条长方形纸带,按如图所示沿AB 折叠,若∠=30°,求纸带重叠部分中∠CAB 的度数.解:∵EC ∥FA ,∠1=30°,∴∠2=30°(同位角).∴∠3+∠4=180°-30°=150°∵∠3与∠4是重叠部分的角∴∠3=∠4=150°/2=75°.∠CAB=∠3=75°∠CBA=180°-∠3-∠1=180°-75°-30°=75°6、AB‖CD,分别探索下面四个图形中,∠APC 与∠PAB 、∠PCD 之间有什么关系,并加以证明过点P分别作PE∥AB 然后得到结论:第一幅图∠APC+∠PAB+∠PCD=360°第二幅图:∠APC=∠PAB+∠PCD 第三幅图:∠APC+∠PAB=∠PCD7、如图所示,已知AB∥DE,∠ABC=80°,∠CDE=140°,求∠BCD的度数解:答案不唯一反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=80°,∴∠CMD=180°-∠BMD=100°;又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE-∠CMD=140°-100°=40°.8、如图把一张长方形纸条ABCD沿EF折叠,若∠1=65°,则∠AEG=______.解:∵ABCD是长方形∴AD∥BC,∴∠DEF=∠1=65°,由折叠的性质得:∠GEF=∠DEF=65°,根据平角的定义,得:∠AEG=180°-65°×2=50°.故答案为:50°.9、如图,已知AD⊥BC于点D,EF⊥BC于点F,且AD平分∠BAC,请问(1)AD与EF平行吗?(2)∠3与∠E相等吗?请说明理由解(1)平行∵AD⊥BC,EF⊥BC∴AD∥EF(在同一平面内,垂直于同一条直线的两条直线互相平行) (2)相等由(1)得∵AD∥EF ∴∠3=∠2(内错角相等)∠1=∠E∵AD平分∠BAC ∴∠1=∠2 ∴∠3=∠E10、将两张长方形纸片按如图所示摆放,使其中一张纸片的一个顶点恰好落在另一张纸片的一条边上.求证:∠1+∠2=90°.证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.11、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图1,AB ∥ EF,BC ∥ DE.∠1与∠2的关系是:______;(2)如图2,AB ∥ EF,BC ∥ DE.∠1与∠2的关系是:______;(3)经过上述证明,我们可以得到一个真命题:如果______,那么______.解答:如图(1)AB ∥EF,BC ∥DE.∠1与∠2的关系是:∠1=∠2.证明:如图(1)∵AB ∥EF,BC ∥DE,∴∠1=∠3,∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换);(2)如图(2),AB ∥EF,BC ∥DE.∠1与∠2的关系是:∠1+∠2=180°,证明:∵AB ∥EF,BC ∥DE,∴∠2=∠3(两直线平行,同位角相等),∠1+∠3=180°(两直线平行,同旁内角互补),∴∠1+∠2=180°(等量代换);(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.12、已知∠A的两条边和∠B的两条边分别平行,且∠A比∠B的三倍少20°,求∠B的度数。

人教版七年级下册数学 期末试卷易错题(Word版 含答案)

人教版七年级下册数学 期末试卷易错题(Word版 含答案)

人教版七年级下册数学 期末试卷易错题(Word 版 含答案)一、选择题1.如图,A 点在直线DE 上,在∠BAD ,∠BAE ,∠BAC ,∠CAE ,∠C 中,∠B 的同旁内角有( )A .2个B .3个C .4个D .5个2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.在平面直角坐标系中,点(﹣3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列命题是假命题的是( ) A .两个锐角的和是钝角B .两条直线相交成的角是直角,则两直线垂直C .两点确定一条直线D .三角形中至少有两个锐角5.如图,直线//a b ,点,M N 分别在直线,a b 上,P 为两平行线间一点,那么123∠+∠+∠等于( )A .360︒B .300︒C .270︒D .180︒6.下列结论正确的是( )A .64的立方根是±4B .﹣18没有立方根C .立方根等于本身的数是0D 327-37.如图,直线l ∥m ,等腰Rt △ABC 中,∠ACB =90°,直线l 分别与AC 、BC 边交于点D 、E ,另一个顶点B 在直线m 上,若∠1=28°,则∠2=( )A .75°B .73°C .62°D .17°8.如图,()11,0A ,()21,1A ,()31,1A -,()41,1A --,()52,1A -…按此规律,点2022A 的坐标为( )A .()505,505B .()506,505-C .()506,506D .()506,506-二、填空题9.若|y+6|+(x ﹣2)2=0,则y x =_____.10.若过点()()3,7,5M a N --、的直线与x 轴平行,则点M 关于y 轴的对称点的坐标是_________.11.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.12.如图,己知AB ∥CD .OE 平分∠AOC ,OE ⊥OF ,∠C =50°,则∠AOF 的度数为___.13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.已知221m <,若0,m >且2m +是整数,则m =______ . 15.点31,25()P m m +-到两坐标轴的距离相等,则m =________.16.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长的速度运动,运动时间为t 秒.若t =2021秒,则点P 所在位置的点的坐标是_____.三、解答题17.(1238127(2)32|--+ (2)解方程:()31125x -=- 18.求下列各式中的x 值: (1)()3101250x ++= (2)()22360x --=19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠, 求证:180BEC FGE ∠+∠=︒, 请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知). ∴90ABC ADE ∠=∠=︒(垂直定义). ∴______________∥______________()∴1∠=______________() 又∵12∠=∠(已知) ∴∠2=(),∴______________∥______________() ∴180BEC FGE ∠+∠=︒()20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C '''; (2)写出点A '的坐标; (3)三角形ABC 的面积为 .21.若整数m 的两个平方根为63a -,22a -;b 89 (1)求a 及m 的值; (2)求275m b ++的立方根.二十二、解答题22.如图用两个边长为18cm 的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm 2?请说明理由.二十三、解答题23.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________;(2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示) 24.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由. 实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.25.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 . 26.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、选择题 1.B 解析:B 【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解. 【详解】解:∠B 的同旁内角有∠BAE ,∠BAC 和∠C ,共有3个, 故选:B . 【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键.2.D 【分析】根据平移的性质依次判断,即可得到答案. 【详解】A 、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C 、操场上红旗的飘动不是平移,故本选项错误;D 、教室解析:D 【分析】根据平移的性质依次判断,即可得到答案. 【详解】A 、荡秋千运动是旋转,故本选项错误;B 、月亮绕地球运动是旋转,故本选项错误;C 、操场上红旗的飘动不是平移,故本选项错误;D 、教室可移动黑板的左右移动是平移,故本选项正确. 故选:D . 【点睛】本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解. 3.B 【分析】根据各象限内点的坐标特征解答即可. 【详解】解:点(3,2)P -在第二象限, 故选:B . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.A 【分析】选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20°、30°,和是50°,还是锐角,因此是假命题. 【详解】A.两个锐角的和是钝角是假命题,如两个锐角分别是20°、30°, 而它们的和是50°,还是锐角,不是钝角;B.两条直线相交成的角是直角则两直线垂直是真命题;C.两点确定一条直线是真命题;D.三角形中至少有两个锐角是真命题.故选: A【点睛】本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键.5.A【分析】过点P作PE∥a.则可得出PE∥a∥b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论.【详解】解:过点P作PE∥a,如图所示.∵PE∥a,a∥b,∴PE∥a∥b,∴∠AMP=∠MPE,∠BNP=∠NPE,∴∠2=∠MPE+∠NPE=∠AMP+∠BNP.∵∠1+∠AMP=180°,∠3+∠BNP=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.6.D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D3273,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根. 7.B 【分析】如图标注字母M ,首先根据等腰直角三角形的性质得出EBM ∠,再利用平行线的性质即可得出∠2的度数. 【详解】解:如图标注字母M ,∵△ABC 是等腰直角三角形, ∴45A ABC ∠=∠=︒,∴1284573EBM EBA ∠=∠+∠=︒+︒=︒, 又∵l ∥m ,∴273EBM ∠=∠=︒, 故选:B . 【点睛】本题主要考查等腰直角三角形的性质和平行线的性质,解题关键是熟练掌握等腰直角三角形的性质和平行线的性质.平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.8.C 【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C 【分析】经观察分析所有点,除A 1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A 2022在第一象限;第一象限的点A 2(1,1),A 6(2,2),A 10(3,3)…观察易得到点的坐标=24n +. 【详解】解:由题可知第一象限的点:A 2,A 6,A 10…角标除以4余数为2; 第二象限的点:A 3,A 7,A 11…角标除以4余数为3; 第三象限的点:A 4,A 8,A 12…角标除以4余数为0; 第四象限的点:A 5,A 9,A 13…角标除以4余数为1; 由上规律可知:2022÷4=505…2 ∴点A 2022在第一象限.观察图形,可知:点A 2的坐标为(1,1),点A 6的坐标为(2,2),点A 10的坐标为(3,3),…,∴第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标) ∴点A 4n-2的坐标为(24n +,24n +)(n 为正整数), ∴点A 2022的坐标为(506,506). 故选C . 【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)求解.二、填空题 9.36【解析】由题意得,y+6=0,x ﹣2=0, 解得x=2,y=﹣6, 所以,yx=(﹣6)2=36. 故答案是:36.解析:36【解析】由题意得,y+6=0,x ﹣2=0, 解得x=2,y=﹣6, 所以,y x =(﹣6)2=36. 故答案是:36.10.【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标. 【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5) ∴点M 关于y 轴的对 解析:()3,5-【分析】根据MN 与x 轴平行可以求得M 点坐标,进一步可以求得点M 关于y 轴的对称点的坐标.【详解】解:∵MN 与x 轴平行,∴两点纵坐标相同,∴a=-5,即M 为(-3,-5)∴点M 关于y 轴的对称点的坐标为:(3,-5)故答案为(3,-5).【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键.11.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵A解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠5434=︒-︒20=︒.故答案为:20︒.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等. 12.115°【分析】要求∠AOF 的度数,结合已知条件只需要求出∠AOE 的度数,根据角平分线的定义可以得到∠AOE=∠AOC ,再利用平行线的性质得到∠C=∠AOC 即可求解.【详解】解:∵AB ∥CD解析:115°【分析】要求∠AOF 的度数,结合已知条件只需要求出∠AOE 的度数,根据角平分线的定义可以得到∠AOE =∠AOC ,再利用平行线的性质得到∠C =∠AOC 即可求解.【详解】解:∵AB ∥CD ,∠C =50°,∴∠C =∠AOC =50°,∵OE 平分∠AOC , ∴12AOE COE AOC ===∠∠∠25°, ∵OE ⊥OF ,∴∠EOF =90°,∴∠AOF =∠AOE +∠EOF =115°,故答案为:115°.【点睛】本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 的具体数值,然后根据是整数即可求出答案.【详解】解:∵是整数,∴m 是整数,∵,∴m2≤4,∴−2≤m≤2,∴m =−2,−1解析:2【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 整数即可求出答案.【详解】解:∵∴m 是整数, ∵2m <∴m 2≤4,∴−2≤m ≤2,∴m =−2,−1,0,1,2当m =±2或−1∵0,m >∴m =2故答案为:2.【点睛】本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m 的范围,本题属于中等题型.15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:6-或45. 【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点31,25()P m m +-到两坐标轴的距离相等, ∴31=25m m +-,31=25m m +-或31=(25)m m +--,解得,=6m -或4=5m , 故答案为:6-或45. 【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 16.(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可.【详解】(1)原式=(2)解:【点睛】本题考查的是实数的运算,求一个数的立方根x=-解析:(1)102)4【分析】(1)根据实数的运算法则直接计算即可,x-再求解x即可.(2)利用立方根的含义求解1,【详解】+-++(1)原式= 9(3)22=10x-=-(2)解:15x=-4【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键.18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC=∠2,即可得到BE ∥GF ,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己解析:答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC =∠2,即可得到BE ∥GF ,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己知),∴∠ABC =∠ADE =90°(垂直定义),∴BC ∥DE (同位角相等,两直线平行),∴∠1=∠EBC (两直线平行,内错角相等),又∵∠l =∠2 (已知),∴∠2=∠EBC (等量代换),∴BE ∥GF (同位角相等,两直线平行),∴∠BEC +∠FGE =180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A '的坐标为(-3,1);(3)三角形ABC 的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a 值,从而得到m ;(2)估算出的范围,得到b 值,代入求出,从而得到的立方根.【详解】解:(1)∵整数的两个平方根为,解析:(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(2b 值,代入求出275m b ++,从而得到275m b ++的立方根.【详解】解:(1)∵整数m 的两个平方根为63a -,22a -,∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b ∴<∴910<,∴b =9,∴275275369216m b ++=+⨯+=,∴275m b ++的立方根为6.【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.二十二、解答题22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b所以3b所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.二十三、解答题23.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB ∥CD ∥EF ,∴∠BEF =∠ABG =n °,∠CDE =∠DEF =40°,∴∠BED =∠BEF -∠DEF =n °-40°;综上所述,∠BED 的度数为n °+40°或n °-40°或220°-n °.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.24.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠ 解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1 148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.25.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.26.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AEDEKD∠=︒.80【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

七年级数学下册第六章实数易错题集锦(带答案)

七年级数学下册第六章实数易错题集锦(带答案)

七年级数学下册第六章实数易错题集锦单选题1、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.故选:D.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.2、已知a为整数,且满足√8<a<√12,则a等于()A.2B.3C.4D.5答案:B分析:估算无理数√8和√12的大小,进而确定a的值即可.解:∵2<√8<3,3<√12<4,a为整数,且满足√8<a<√12,∴a=3.故选:B.小提示:本题主要考查了估算无理数的大小,熟练掌握估算无理数大小的方法进行求解是解决本题的关键.3、实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点答案:D分析:分①若原点的位置为A点时,②若原点的位置为B点或C点时,③若原点的位置为D点时,结合有理数的加法法则和点在数轴上的位置分析即可得出正确选项.解:根据数轴可知x<y<z,①若原点的位置为A点时,x>0,则|z+y|=z+y,|x+y|=x+y,x+y<z+y,∴|z+y|>|x+y|,舍去;②若原点的位置为B点或C点时,x<0,y>0,z>0,|z|>|x|,|z|>|y|,则|x+y|<|y|或|x+y|<|x|,|z+y|=|z|+|y|,∴|z+y|>|x+y|,舍去;③若原点的位置为D点时,x<0,y<0,z>0,|y|>|z|则|x+y|<|y|+|x||z+y|<|y|,∴|z+y|<|x+y|,符合条件,∴最有可能是原点的是D点,故选:D.小提示:本题考查实数与数轴,有理数的加法法则,化简绝对值.熟记有理数的加法法则是解题关键.4、下列说法正确的是()A.4的平方根是2B.√16的平方根是±4C.25的平方根是±5D.﹣36的算术平方根是6答案:C分析:根据平方根和算术平方根的定义判断即可.解:A.4的平方根是±2,故错误,不符合题意;B.√16的平方根是±2,故错误,不符合题意;C .25的平方根是±5,故正确,符合题意;D .-36没有算术平方根,故错误,不符合题意;故选:C .小提示:本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.5、下列说法正确的是( )A .负数没有立方根B .8的立方根是±2C .√−83=−√83D .立方根等于本身的数只有±1答案:C分析:根据立方根的定义分别判断即可.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根. 解:A 负数有一个立方根,故该选项错误,不符合题意;B 选项,8的立方根是2,故该选项错误,不符合题意;C 选项,√−83=−√83,故该选项正确,符合题意;D 选项,立方根等于本身的数只有±1和0,故该选项错误,不符合题意.故选:C .小提示:本题考查了立方根的应用,掌握立方根的定义是解题的关键.6、下列四种叙述中,正确的是( )A .带根号的数是无理数B .无理数都是带根号的数C .无理数是无限小数D .无限小数是无理数答案:C分析:根据无理数的概念逐个判断即可.无理数:无限不循环小数.解:A .√4=2,是有理数,故本选项不合题意;B .π是无理数,故本选项不合题意;C .无理数是无限不循环小数,原说法正确,故本选项符合题意;D .无限循环小数是有理数,故本选项不合题意.故选:C .小提示:此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.7、如图,在数轴上表示实数√15的点可能().A.点P B.点Q C.点M D.点N答案:C分析:确定√15是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.解:∵9<15<16,∴3<√15<4,∴√15对应的点是M.故选:C.小提示:本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.8、如图,数轴上点E对应的实数是()A.−2B.−1C.1D.2答案:A分析:根据数轴上点E所在位置,判断出点E所对应的值即可;解:根据数轴上点E所在位置可知,点E在-1到-3之间,符合题意的只有-2;故选:A.小提示:本题主要考查数轴上的点的位置问题,根据数轴上点所在位置对点的数值进行判断是解题的关键.9、计算下列各式,值最小的是()A.2×0+1−9B.2+0×1−9C.2+0−1×9D.2+0+1−9答案:A分析:根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.根据实数的运算法则可得:A.2×0+1−9=−8; B.2+0×1−9=-7;C.2+0−1×9=-7; D.2+0+1−9=-6;故选A.小提示:本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..10、把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地放在一个底面为长方形(长为√21,宽为4)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4√21B .16C .2(√21+4)D .4(√21−4)答案:B分析:分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案.较大阴影的周长为:(4−2b)×2+a ×2,较小阴影的周长为:(4−a)×2+2b ×2,两块阴影部分的周长和为:[(4−2b)×2+a ×2]+[(4−a)×2+2b ×2]= 16,故两块阴影部分的周长和为16.故选B .小提示:本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.填空题11、计算:(1)√273=______; (2)√−27643=_______; (3)−√−183=_______;(4)√1+911253=______; (5)√24×45×253=______; (6)√0.25+√−273=______;(7)√0.09−√−83=______.答案: 3 −34 12 65 30 −2.5 2.3 分析:(1)直接利用立方根的定义即可求解;(2)直接利用立方根的定义即可求解;(3)直接利用立方根的定义即可求解;(4)直接利用立方根的定义即可求解;(5)直接利用立方根的定义即可求解;(6)利用算术平方根和立方根的定义即可求解;(7)利用算术平方根和立方根的定义即可求解.解:(1)∵33=27,∴√273=3; (2)∵(−34)3=−2764,∴√−27643=−34; (3)∵(−12)3=−18,∴√−183=−12,即−√−183=12;(4)√1+911253=√2161253∵(65)3=216125,∴√2161253=65,即√1+911253=65; (5)√24×45×253=27000,∵303=27000,∴√270003=30; (6)√0.25+√−273=0.5+(−3)=−2.5;(7)√0.09−√−83=0.3−(−2)=0.3+2=2.3.所以答案是:3,−34,12,65,30,−2.5,2.3.小提示:本题考查立方根和算术平方根.熟练掌握立方根和算术平方根的定义是解题关键.12、规定一种新运算“*”:a *b =13a -14b ,则方程x *2=1*x 的解为________.答案:107 分析:根据题中的新定义化简所求方程,求出方程的解即可.根据题意得:13x -14×2=13×1-14x , 712x =56, 解得:x =107,故答案为x =107. 小提示:此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可.13、已知√a −b +|b −1|=0,则a +1=__.答案:2.分析:利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.∵√a −b +|b ﹣1|=0,又∵√a −b ≥0,|b −1|≥0,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.小提示:本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.14、如果√a 的平方根是±3,则a =_________答案:81分析:根据平方根的定义即可求解.∵9的平方根为±3,∴√a =9,所以a=81小提示:此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15、下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有_____个. 答案:3分析:根据无理数的三种形式:①开不尽的方根,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数即可.解:在所列实数中,无理数有1.212212221…,2﹣π,√43这3个,所以答案是:3.小提示:本题考查无理数的定义,熟练掌握无理数的概念是解题的关键.解答题16、已知4a +7的立方根是3,2a +2b +2的算术平方根是4(1)求a ,b 的值.(2)求6a +3b 的平方根.答案:(1)a =5,b =2;(2)6a +3b 的平方根为±6.分析:(1)运用立方根和算术平方根的定义求解;(2)根据平方根,即可解答.(1)解:∵4a +7的立方根是3,2a +2b +2的算术平方根是4,∴4a +7=27,2a +2b +2=16,∴a =5,b =2;(2)解:由(1)知a =5,b =2,∴6a +3b =6×5+3×2=36,∴6a +3b 的平方根为±6.小提示:本题考查了平方根、立方根、算术平方根.掌握一个正数的平方根有2个是解题的关键,不要漏解.17、我们知道,√2是一个无理数,将这个数减去整数部分,差就是小数部分,即√2的整数部分是1,小数部分是√2−1,请回答以下问题:(1)√10的小数部分是________,5−√13的小数部分是________.(2)若a是√90的整数部分,b是√3的小数部分,求a+b−√3+1的平方根.(3)若7+√5=x+y,其中x是整数,且0<y<1,求x−y+√5的值.答案:(1)√10−3,4−√13;(2)±3;(3)11.分析:(1)确定√10的整数部分,即可确定它的小数部分;确定√13的整数部分,即可确定5−√13的整数部分,从而确定5−√13的小数部分;(2)确定√90的整数部分,即知a的值,同理可确定√3的整数部分,从而求得它的小数部分,即b的值,则可以求得代数式a+b−√3+1的值,从而求得其平方根;(3)由2<√5<3得即9<7+√5<10,从而得x=9,y=√5−2,将x、y的值代入原式即可求解.(1)解:∵3<√10<4,∴√10的整数部分为3,∴√10的小数部分为√10−3,∵3<√13<4,∴−3>−√13>−4,∴5−3>5−√13>5−4即1<5−√13<2,∴5−√13的整数部分为1,∴5−√13的小数部分为4−√13,所以答案是:√10−3,4−√13;(2)解:∵9<√90<10,a是√90的整数部分,∴a=9,∵1<√3<2,∴√3的整数部分为1,∵b是√3的小数部分,∴b=√3−1,∴a+b−√3+1=9+√3−1−√3+1=9∵9的平方根等于±3,∴a+b−√3+1的平方根等于±3;(3)解:∵2<√5<3,∴7+2<7+√5<7+3即9<7+√5<10,∵7+√5=x+y,其中x是整数,且0<y<1,∴x=9,y=7+√5−9=√5−2,∴x−y+√5=9−(√5−2)+√5=11.小提示:本题考查了无理数的估算、求平方根以及求代数式的值,关键是掌握二次根式的大小估算方法.18、把三个半径分别是3,4,5的铅球熔化后做一个更大的铅球,这个大铅球的半径是多少?(球的体积公式是V=43πR3,其中R是球的半径.)答案:大铅球的半径是6.分析:求出半径分别是3,4,5的铅球的体积之和,再根据立方根的定义计算出结果即可.解:设这个大铅球的半径为r,由题意可得4 3πr3=43π(33+43+53),即r3=216,所以r=√2163=6.大铅球的半径是6.小提示:本题考查了立方根的应用,熟记立方根的定义是解答本题的关键.。

七年级下册数学易错题集含解答过程

七年级下册数学易错题集含解答过程

七年级下册数学易错题集含解答过程一、有理数运算易错点 1:符号问题例:计算-5 + 3错误解答:-5 + 3 =-8正确解答:-5 + 3 =-2分析:在进行有理数加法运算时,异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

易错点 2:乘法运算中的符号例:计算-2 × 3错误解答:-2 × 3 = 6正确解答:-2 × 3 =-6分析:两数相乘,同号得正,异号得负。

易错点 3:运算顺序例:计算 12 ÷(-3 + 2)错误解答:12 ÷(-3 + 2)= 12 ÷(-1) =-12正确解答:12 ÷(-3 + 2)= 12 ÷(-1) =-12分析:先计算括号内的式子,再进行除法运算。

二、整式的运算易错点 1:合并同类项例:合并同类项 3x + 2y 5x + 6y错误解答:3x + 2y 5x + 6y =-2x + 8y正确解答:3x + 2y 5x + 6y =(3 5)x +(2 + 6)y =-2x + 8y 分析:合并同类项时,系数相加,字母和字母的指数不变。

易错点 2:幂的运算例:计算(-2a²)³错误解答:(-2a²)³=-6a^6正确解答:(-2a²)³=(-2)³ ×(a²)³=-8a^6分析:幂的乘方,底数不变,指数相乘。

易错点 3:整式的乘法例:计算(2x 3)(x + 5)错误解答:(2x 3)(x + 5) = 2x²+ 10x 3x 15 = 2x²+ 7x 15正确解答:(2x 3)(x + 5) = 2x²+ 10x 3x 15 = 2x²+ 7x 15分析:使用多项式乘以多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

初一数学下册:计算易错题汇总

初一数学下册:计算易错题汇总

初一数学下册:计算易错题汇总#初一数学错误一:含有带分数的加减法,受限于小学思维例1计算错误:原式=-3分析正解错误二:性质符号与运算符号的相通性深化理解-1,-2,-3可以看作是(-1),(-2),(-3)的和,中间的加法的“+”省略不写,也可以看作是-1减2再减3例2计算:-3-5*(-2)错解:原式=-3-10=-13分析中间5前面的“-”重复用了两遍,一会当成运算中的符号,一会当成5的性质符号正解正解1:原式=-3-(-10)=-3+10=7;中间5前面的“-”当成运算符号正解2:原式=-3+(-5)(-2)=-3+10=7;中间5前面的“-”当成性质符号错误三:去括号时,法则运用错误例3计算:(2-3)-(-4+5)(要求:先去括号,再合并)错解:原式=2-3+4+5=8分析去第二个括号时,括号前面是负号,没有改变括号中的每一项导致错误正解原式=2-3+4-5=-2这里为了形象展示错误,括号内未直接合并错误四:乘方运算的“底数”弄错例4计算:(-2)²,-2²的值。

错解:(-2)²=4(√)-2²=4(×)分析正解(-2)²=4(√)-2²=-4(√)错误五:去绝对值时,未判断绝对值里面的正负例5错解:分析去绝对值符号时,未先判断绝对值里面数据的符号,进而用绝对值法则求解。

正解类似的错误还有很多,不再一一列举,总得来说要想计算做正确,就必须做到以下几点:计算中相关的概念一定要辨析清楚计算的法则、运算率、公式要掌握计算时要依法则、不跳步计算时要能够随时检验,发现异常,比如绝对值不可能为负涉及到符号的问题,一般是先定符号,再计算求值温馨提示:计算是三年初中的基础,很多优秀的孩子到九年级还因为计算丢分就是因为七年级的计算习惯没有养成,家长一定要注重孩子的计算训练,不仅要关注结果,还要关注过程的规范性!。

惠州市七年级第二学期数学易错易混解答题精粹含解析

惠州市七年级第二学期数学易错易混解答题精粹含解析

惠州市七年级第二学期数学易错易混解答题精粹解答题有答案含解析1.先化简,再求值: 2()2(3)(2)(2)x y x x y x y x y +-+++- ,其中x =﹣1,y =1.2.观察下列各式:①()2412112⨯⨯+=+;②()2423123⨯⨯+=+;③()2434134⨯⨯+=+⋅⋅⋅. (1)根据你观察、归纳、发现的规律,写出4201220131⨯⨯+可以是______的平方. (2)试猜想写出第n 个等式,并说明成立的理由. (3)利用前面的规律,将221141122x x x x ⎛⎫⎛⎫++++⎪⎪⎝⎭⎝⎭改成完全平方的形式为:______. 3.据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图、扇形图. (1)图2中所缺少的百分数是____________;(2)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_____________;(3)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_______________名.4.计算:(2010-π)0+(-1)2019+(12)-35.已知,如图,点A ,B ,C ,D 在一条直线上,填写下列空格:∵AE ∥BF (已知)∴∠E =∠1(______________________) ∵∠E =∠F (已知〉∴∠_____=∠F (________________)∴________∥_________(________________________)6.已知:方程组2325x y ax y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组.(1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.7.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥,垂足为O ,求:(1)求∠BOE 的度数. (2)求EOF ∠的度数.8.为传承中华优秀传统文化,某校团委组织了一次全校2800名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题:(1)在这个问题中,有以下说法:①2800名学生是总体;②200名学生的成绩是总体的一个样本;③每名学生是总体的一个个体;④样本容量是200;⑤以上调查是全面调查.其中正确的说法是 (填序号)(2) 统计表中m= ,n= ; (3) 补全频数分布直方图;(4) 若成绩在90分以上(包括90分)为优等,请你估计该校参加本次比赛的2800名学生中成绩是优等的约为多少人?9.如图,把一张长方形的纸片ABCD 沿EF 折叠后,ED 与BC 的交点为G ,点D ,C 分别落在'D ,'C 的位置上,若55EFG ∠=.求1∠,2∠的度数.10.如图,已知△ABC 是等边三角形,D 、F 分别为BC 、AB 边上的点,AF=BD,以AD 为边作等边ΔADE. (1)求证:AE=CF; (2)求∠BEF 的度数.11.我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是 ;(2)在扇形统计图中,m = ,n = . (3)补全条形统计图.12.若6x y +=,且()()2223x y ++=. (1)求xy 的值;(2)求226x xy y ++的值.13.如图,已知C 是线段AB 的中点,//CD BE ,且CD BE =,试说明D E ∠=∠的理由.14.解方程组(1)23 322 x y x y=-⎧⎨+=⎩(2)2()1346()4(2)16x y x yx y x y-+⎧-=-⎪⎨⎪+--=⎩15.如图,在平面直角坐标系中,OA=OB=OC=6,过点A的直线AD交BC于点D,交y轴与点G ,△ABD的面积为△ABC面积的13.(1)求点D的坐标;(2)过点C作CE⊥AD,交AB交于F,垂足为E.①求证:OF=OG;②求点F的坐标。

初中数学七年级下册易错题汇总大全附答案带解析

初中数学七年级下册易错题汇总大全附答案带解析

初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。

正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.A.1个;B.2个;C.3个;D.4个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组.错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是.3.将方程变形时忽略常数项3.利用加减法解方程组.错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是.4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到0.1,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m³,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到0.1,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组.错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果. 正解:0.2二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x ,或只设十位上的数为x ,那将很难或根本就想象不出关于x 的方程.一般地,与十位上的数个位上的数对应的两位数相等关系 原两位数 x y 10x+y 10x+y=x+y+9 新两位数yx10y+x10y+x=10x+y+27数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。

初一下数字第一章易错点规纳(附练习及答案)

初一下数字第一章易错点规纳(附练习及答案)

第一章 整式的运算1.整式易错点一:单项式及其有关概念 (1)单项式的定义①单独的一个数或一个字母也是单项式 ②分母中含有字母的代数式不是单项式 (2)单项式的次数①单独一个非零数的次数是0②单项式的次数只与所含字母的指数有关,切勿加单项式中系数的指数 (3)单项式的系数①单项式的系数包括它前面的符号 ②π是常数易错题练习1.指出下列代数式中的单项式,并写出各单项式的系数和次数x ,ab -,a1,π2y x 2,1-a ,527x易错点二:多项式及其有关概念 ①多项式中的每一项必须都是单项式②多项式的次数是其中次数最高的项的次数,而不是所以项的次数和 ③一个多项式通常被描述成“几次几项式”易错题练习2.指出下列多项式的项、常数项和次数 (1)724523-+-x x x (2)322333b b a ab a -++易错点三:整式单项式和多项式统称整式。

整式分两类,一类是单项式,一类是多项式。

2. 整式的加减易错点:整式的加减 运算步骤: (1)先去括号; (2)合并同类项 易错题练习3.一个多项式加1322--xy y x 得3232---xy y x ,求这个多项式3. 同底数幂的乘法易错点:同底数幂的乘法①法则:底数不变,指数相加n m n m a a a +=⋅ (n m ,都是正整数)②底数可以是一个数,也可以是一个单项式或多项式 ③法则可逆向使用 ④易错题练习4.若422x x x m m =⋅-,求122++-m m 的值4. 幂的乘方与积的乘方易错点一:幂的乘方① 法则:底数不变,指数相乘mn n m a a =)( (n m ,都是正整数) ②法则可逆向使用 易错点二:积的乘方①法则:n n n b a b a ⋅=⋅)( (n 是正整数)②对三个或三个以上因式的积的乘方也适用 ③法则可逆向使用 易错题练习 5.计算322244243)()2()(b a a a a a a --+-+⋅⋅6.若0353=-+y x ,求y x 328⋅的值5. 同底数幂的除法易错点一:同底数幂的除法法则①法则:底数不变,指数相减 n m n m a a a -=÷ (0≠a ,n m ,都是正整数,n m >) ②法则可逆向使用易错点二:零指数幂与负整数指数幂 ①任何非零数的0次幂都等于1 0,10≠=a a ②负整数指数幂 p a aa p p ,0,1≠=-是正整数 易错题练习7.计算: 22402)2()2(1-+-÷---6. 整式的乘法易错点一:单项式与单项式相乘的法则①法则:系数、相同字母的幂分别相乘,其余字母同它的指数不变,作为积的因式 ②单项式与单项式相乘的结果仍是一个单项式 ③多个以上单项式相乘同样适用 易错点二:单项式与多项式相乘的法则①法则:单项式分别乘多项式的各项,所得积相加 mb ma b a m +=+)( ②注意符号问题③相乘的结果是多项式,项数与多项式相同 易错点三:多项式与多项式相乘的法则①法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加 nb na mb ma b a n m +++=++))(( ②注意符号问题③要合并同类项,得出最简结果。

河北省廊坊市七年级第二学期数学易错易混解答题精粹含解析

河北省廊坊市七年级第二学期数学易错易混解答题精粹含解析
∠1+∠2=180°+180°-2(∠AED+∠ADE),
∴∠1+∠2=360°-2(180°-∠A)=2∠A;
探究:2∠A=∠1+∠2.
理由如下:如图②:
∵∠1+∠A′DA+∠2+∠A′EA=360°,
∠A+∠A′+∠A′DA+∠A′EA=360°,
∴∠A′+∠A=∠1+∠2,
30.解不等式组: ,并写出它的整数解.
参考答案
解答题有答案含解析
1.(1)① ;② ,负整数解为 ;(2)0.
【解析】
【分析】
(1)①先对方程组的两个等式进行移项化简,再用加减消元法去求解;
②分别求出不等式组中两个的解,再求解集;
(2)把 代入②,把 代入①,即可得到a,b的值,再进行计算即可得到答案.
【点睛】
本题考查了用扇形统计图计算概率,解题的关键是掌握概率的计算,以及实际问题的应用情况.
3.(1) ;(2) .
【解析】
【分析】
(1)方程利用加减消元法求解即可;
(2)方程第二个式子整理后,利用加减消元法求解即可.
【详解】
解:(1)
②×2得 ③,
①-③得: ,
解得 ,
将 代入①得 ,
解得 ,
∴该方程组的解为 ;
19.(6分)解方程(组):
(1)
(2)
20.(6分)(1)解方程组: ;
(2)解不等式组: ,并写出所有的整数解.
21.(6分)如图,在直角三角形 中, , .点 是直线 上一个动点(点 不与点 , 重合),连接 ,在线段 的延长线上取一点 ,使得 .过点 作 ,交直线 于点 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学七年级下册易错题汇总大全附答案带解析This model paper was revised by LINDA on December 15, 2012.初中数学七年级下册易错题相交线与平行线1.未正确理解垂线的定义1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.错解:A或B或C.解析:本题应在正确理解垂直的有关概念下解题,知道垂直是两直线相交时有一角为90°的特殊情况,反之,若两直线相交则不一定垂直.正解:D.2.未正确理解垂线段、点到直线的距离2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.错解:A或B或C.解析:本题错误原因是不能正确理解垂线段的概念及垂线段的意义.A.这种说法是错误的,从直线外一点到这条直线的垂线段的长度叫做点到直线的距离. 仅仅有垂线段,没有指明这条垂线段的长度是错误的.B.这种说法是错误的,因为垂线是直线,直线没有长短,它可以无限延伸,所以说“垂线的长度”就是错误的;C.这种说法是错误的,“画”是画图形,画图不能得到数量,只有“量”才能得到数量,这句话应该说成:画出已知直线外一点到已知直线的垂线段,量出垂线段的长度.正解:D.3.未准确辨认同位角、内错角、同旁内角3.如图所示,图中共有内错角().组;组;组;组.错解:A.解析:图中的内错角有∠AGF与∠GFD,∠BGF与∠GFC,∠HGF与∠GFC三组.其中∠HGF与∠GFC易漏掉。

正解:B.4.对平行线的概念、平行公理理解有误4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().个;个;个;个.错解:C或D.解析:平行线的定义必须强调“在同一平面内”的前提条件,所以②是错误的,平行公理中的“过一点”必须强调“过直线外一点”,所以④是错误的,①③是正确的.正解:B.5.不能准确识别截线与被截直线,从而误判直线平行5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC ∥AD.个;个;个;个.错解:D.解析:解与平行线有关的问题时,对以下基本图形要熟悉:“”“”“”,只有③推理正确.正解:A.6.混淆平行线的判定和性质、忽略平行线的性质成立的前提条件6.如图所示,直线,∠1=70°,求∠2的度数.错解:由于,根据内错角相等,两直线平行,可得∠1=∠2,又因为∠1=70°,所以∠2=70°.解析:造成这种错误的原因主要是对平行线的判定和性质混淆. 在运用的时候要注意:(1)判定是不知道直线平行,是根据某些条件来判定两条直线是否平行;(2)性质是知道两直线平行,是根据两直线平行得到其他关系.正解:因为(已知),所以∠1=∠2(两直线平行,内错角相等),又因为∠1=70°(已知),所以∠2=70°.7.对命题这一概念的理解不透彻7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.错解:(1)(2)不是命题,(3)是命题.解析:对于命题的概念理解不透彻,往往认为只有存在因果关系的关联词才是命题,正确认识命题这一概念,关键要注意两点,其一必须是一个语句,是一句话;其二必须存在判断关系,即“是”或“不是”.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.忽视平移的距离的概念8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?错解:正确.解析:平移的距离是指两个图形中对应点连线的长度,而不是线段,所以在这个平移过程中,平移的距离应该是线段AA′的长度.正解:错误.第六章平面直角坐标系1.不能确定点所在的象限1.点A的坐标满足,试确定点A所在的象限.错解:因为,所以,,所以点A在第一象限.解析:本题出错的原因在于漏掉了当,时,的情况,此时点A在第三象限.正解:因为,所以为同号,即,或,. 当,时,点A在第一象限;当,时,点A在第三象限.2.点到x轴、y轴的距离易混淆2.求点A(-3,-4)到坐标轴的距离.错解:点A(-3,-4)到轴的距离为3,到轴的距离为4.解析:错误的原因是误以为点A()到轴的距离等于,到轴的距离等于,而事实上,点A()到轴的距离等于,到轴的距离等于,不熟练时,可结合图形进行分析.正解:点A(-3,-4)到轴的距离为4,到轴的距离为3.第八章二元一次方程组1.不能正确理解二元一次方程组的定义1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.错解:A或C.解析:方程组①④是二元一次方程组,符合定义,方程组③是二元一次方程组,符合定义,而且是最简单、最特殊的二元一次方程组.正解:D.2.将方程相加减时弄错符号2.用加减法解方程组 .错解:①-②得,所以,把代入①,得,解得.所以原方程组的解是 .错解解析:在加减消元时弄错了符号而导致错误.正解:①-②得,所以,把代入①,得,解得.所以原方程组的解是 .3.将方程变形时忽略常数项3.利用加减法解方程组 .错解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是 .错解解析:在①×2+②这一过程中只把①左边各项都分别与2相乘了,而忽略了等号右边的常数项4.正解:①×2+②得,解得. 把代入①得,解得. 所以原方程组的解是 .4.不能正确找出实际问题中的等量关系4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C. .D. .错解:B或D.解析:错误的原因是等量关系错误,本题中的等量关系为:(1)第一车间实际生产台数+第二车间实际生产台数=798台;(2)第一车间计划生产台数+第二车间计划生产台数=680台.正解:C.第九章不等式与不等式组1.在运用不等式性质3时,未改变符号方向1.利用不等式的性质解不等式:.错解:根据不等式性质1得,即. 根据不等式的性质3,在两边同除以-5,得.解析:在此解答过程中,由于对性质3的内容没记牢,没有将“<”变为“>”,从而得出错误结果.正解:根据不等式的性质1,在不等式的两边同时减去5,得,根据不等式的性质3,在不等式的两边同时除以-5,得.2.利用不等式解决实际问题时,忽视问题的实际意义,取值时出现错误2.某小店每天需水1m3,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为㎡,那么高至少为多少米时才够用(精确到0.1m)错解:设高为m时才够用,根据题意得. 由. 要精确到,所以.答:高至少为1.2m时才够用.解析:最后取解时,没有考虑到问题的实际意义,水箱存水量不得小于1m3,如果水箱的高为时正好够,少一点就不够了. 故最后取近似值一定要大于,即取近似值时只能入而不能舍.正解:设高为m时才够用,根据题意得. 由于,而要精确到,所以.答:水箱的高至少为1.3m时才够用.3.解不等式组时,弄不清“公共部分”的含义3.解不等式组 .错解:由①得,由②得,所以不等式组的解集为.错解解析:此题错在对“公共部分”的理解上,误认为两个数之间的部分为“公共部分”(即解集). 实质上,和没有“公共部分”,也就是说此不等式组无解. 注意:“公共部分”就是在数轴上两线重叠的部分.正解:由①得,由②得,所以不等式组无解.第十章数据的收集、整理与描述1.全面调查与抽样调查选择不当1.调查一批药物的药效持续时间,用哪种调查方式?错解:全面调查.解析:此调查若用全面调查具有破坏性,不宜采用全面调查.正解:抽样调查.2.未正确理解定义2.2006年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.错解:如下图所示:解析:漏掉其他人员4%,扇形表示的百分比之和不等于1,正确的扇形统计图表示的百分比之和为1.正解:如下图所示:3.对频数与频率的意义的理解错误3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.错解:捐10元的5人,.解析:该题的错误是因为将5+10+5作为总次数,实际上应是25为总次数,这其实是对频率概念错误理解的结果.正解:二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组1010x y y x +⎧⎨+⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为元,获利元,因此得方程=20%y;打八折时的卖出价为元,获利元,可得方程=10.解方程组0.920%0.810x y yx y-=⎧⎨-=⎩,解得200150xy=⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套要求的期限是几天分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.。

相关文档
最新文档