七年级下期数学华师大版期末易错题
华师大版初中数学七年级下册期末测试题及参考答案[精品]
华师七下期末能力测试题一、填空题(每小题3分,共30分)1、五边形中,前四个角的比为1∶2∶3∶4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________.2、本学期,我们做过“抢30”的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30谁就获胜”,改为“每次可以连说三个数,谁先抢到33谁就获胜”,那么采取适当策略,其结果_________者胜.3、如图1,在△ABC ,∠A=36°,D 为AC 边上的一点,AD=BD=BC ,则图中的等腰三角形共有_______个.4、已知△ABC 的边长a 、b 、c 满足(1)()2240a b -+-=,(2)c 为偶数,则c 的值为________.5、已知不等式523x a <+的解集是32x <,则a 的值是________. 6、方程34x y -=中,有一组解与y 互为相反数,则3________x y +=. 7、请列举一件可能事件、不可能事件、必然事件:__________________________________________ ____________________________________________ ___________________________________________.8、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm ,则其他两边长分别为________.9、将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;ABCD 图1如果每人分6个橘子,则最后一个小朋友分得的橘子将少于3个,由以上可知共有________个小朋友分________个橘子.10、根据的2倍与5的和比的12小10,可列方程为________________. 二、选择题(每小题3分,共30分) 11、正五边形的对称轴共有( ) A .2条B .4条C .5条D .10条12、有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个 A .4B .5C .6D .无数13、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( ) A .31元B .30.2元C .29.7元D .27元14、已知15 5-2x m y m =+=,若3m >-,则与y 的关系为( ) A .x y =B .x y <C .x y >D .不能确定15、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90°B .105°C .130°D .120° 16、如图2,已知:在△ABC 中,AB=AC,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50°B .65°C .70°D .75°17、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),黑皮可看作正五边形,白皮可ABCFED图2图3看作正六边形,设白皮有块,则黑皮有()32x -块,每块白皮有六条边,共6边,因每块白皮有三条边和黑皮连在一起,故黑皮有3条边.要求出白皮、黑皮的块数,列出的方程正确的是( ) A .332x x =- B .()3532x x =- C .()5332x x =-D .632x x =-18、如图4,将正方形ABCD 的一角折叠,折痕为AE ,∠B ′AD 比∠B ′AE 大48°,设∠B ′AE 和 ∠B ′AD 的度数分别为、y ,那么、y 所适合的 一个方程组是( )A .4890y x y x -=⎧⎨+=⎩B .482y x y x-=⎧⎨=⎩C .48290y x y x -=⎧⎨+=⎩D .48290x y y x -=⎧⎨+=⎩19、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是( ) A .16B .25C .38D .4920、等腰三角形的腰长是4cm ,则它的底边长不可能是( ) A .1cmB .3cmC .6cmD .9cm三、解答题(每小题10分,共60分)21、如图5,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,已知△ADE 的周长为10cm ,BC 的长为5cm ,求△ABC 的周长.E图4A BCE DO图522、儿童公园的门票价格规定如下表:50人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问:(1)两班名有多少学生?(2)如果两联合起;,作为一个团体购票,可以省多少钱?23、已知31x y =⎧⎨=-⎩是方程组3108x ky mx y +=⎧⎨+=⎩的解,求和m 的值.24、已知一个等腰三角形的三边长分别为、2、5-3,求这个三角形的周长.25、某校七(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:弄清这两个被污染的两个数字吗?说明你的理由.26、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.华师七下期末能力测试题参考答案一、填空题1、40°,80°,120°,160°,140°2、先报3、34、45、答案不惟一6、27、答案不惟一8、7,79、1800° 10、125102x +=- 二、选择题11、C 12、B 13、D 14、B 15、C 16、B 17、B 18、C 19、A 20、D 三、解答题 21、15cm22、(1)班有48人,(2)班有56人,合买可省304元23、解:把31x y =⎧⎨=-⎩代入方程组()33110318k m ⨯+-⨯=⎧⎪⎨-=⎪⎩得,解得:=-1,m =3.24、显然2x x ≠,又若53x x =-,则532x x x +-=不合题意. 所以:253x x =-,解得:1x =,所以三角形周长为1225++=. 25、解:设捐款2元的有人,捐款3元的有y 人,则6740162347100x y x y +++=⎧⎨⨯+++⨯=⎩ 解之得:32x y =⎧⎨=⎩ 答:捐款2元的有3人,捐款3元的有20人.26、(1)设A 种型号的衣服每件元,B 种型号的衣服y 元,则:91018101281880x y x y +=⎧⎨+=⎩,解之得90100x y =⎧⎨=⎩ (2)设B 型号衣服购进m 件,则A 型号衣服购进()24m +件,可得:()18243069919 22428m m m m ++⎧⎪⎨+⎪⎩≥解之得≤≤12≤ ∵m 为正整数,∴m =10、11、12,2m +4=24、26、28.答:有三种进货方案:(1) B型号衣服购买10件,A型号衣服购进24件;(2) B型号衣服购买11件,A型号衣服购进26件;(3) B型号衣服购买12件,A 型号衣服购进28件.。
华师大版七年级下册数学期末考试试卷附答案
华师大版七年级下册数学期末考试试题一、单选题1.若代数式x+3的值为2,则x 等于A .1B .1-C .5D .5-2.观察下边的图案,既是中心对称图形又是轴对称图形的是( )A .B .C .D .3.下列不等式一定成立的是( )A .26x <B .0x ->C .10x +>D .20x > 4.小育到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正八边形 B .正六边形 C .正方形 D .正三角形5.三元一次方程组3210x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩的解是( )A .112x y z =-⎧⎪=⎨⎪=⎩B .124x y z =-⎧⎪=-⎨⎪=-⎩C .221x y z =-⎧⎪=⎨⎪=⎩D .227x y y =⎧⎪=-⎨⎪=-⎩6.下列说法中不正确的是( )A .内角和是1080°的多边形是八边形B .六边形的对角线一共有8条C .三角形任一边的中线把原三角形分成两个面积相等的三角形D .一个多边形的边数每增加一条,这个多边形的内角和就增加180°7.如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x ,宽为y ,则依据题意可得二元一次方程组为( )A.153x yx y+=⎧⎨=⎩B.1523x yx y+=⎧⎨=⎩C.1523x yx x y-=⎧⎨=+⎩D.21523x yx x y-=⎧⎨=+⎩8.已知x2y4k{2x y2k1+=+=+,且1x y0-<-<,则k的取值范围为A.11k2-<<-B.10k2<<C.0k1<<D.1k12<<9.在道路两旁种树,每隔3米一棵,还剩3棵;每隔2.5米一棵,到头还缺77棵,则这条道路()A.长为600米,共有405棵树B.长为600米,共有403棵树C.长为300米,共有403棵树D.长为300米,共有405棵树10.如图,∠ABC=∠ACB,BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,BE平分外角∠MBC交DC的延长线于点E,以下结论:①∠BDE=12∠BAC;②DB⊥BE;③∠BDC+∠ABC=90°;④∠BAC+2∠BEC=180°.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于_________ .12.如果等腰三角形一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是______________.13.如图,将△ABC沿BC方向向右平移2cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为________cm.14.若关于x 的不等式组25322x a x b -≥⎧⎨-<⎩的解集为3≤x <4,则a -2b=________. 15.如图,四边形ABCD 中,∠A=100°,∠C=70°,将△BMN 沿MN 翻折,得到△FMN ,若MF ∥AD ,FN ∥DC ,则∠D=________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种袋装粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种袋装粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A 、B 、C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为71.5元,利润率为30%,乙种粗粮利润率为20%,则乙种粗粮每袋的售价为________元.(利润率=-100%⨯售价成本成本)三、解答题17.解下列方程(组):(1) ()()371323x x x --=-+(2)516213410x y x y -=⎧⎨++=⎩18.解不等式组523(2)121123x x x x +<+⎧⎪+-⎨≤+⎪⎩,把解集在数轴上表示出来,并求不等式组的整数解.19.如图,方格纸中每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上.(1)画出与△ABC关于直线MN成轴对称的△A1B1C1;(2)画出将△ABC绕点O逆时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴.20.若关于x的方程1123x k k--=+与方程()315x x x--=-的解互为相反数,求k的值.21.如图,在△ABC中,∠B=32°,∠C=70°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F.(1)求∠BAE的度数;(2)求∠ADF的度数.22.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).23.某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?24.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数” .将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123) =6.(1)计算:F(315),F(746);(2)若s、t都是“相异数”,其中s=100x+42,t=160+y(1≤x≤9,1≤y≤9,x、y都是正整数),当F(s)+F(t)=17时,求x、y的值.25.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1= 度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C交于点D,试说明A1D=CD.参考答案1.B【解析】试题分析:根据题意,列出关于x的一元一次方程x+3=2,通过解该方程可以求得x的值:由题意,得x+3=2,解得x=﹣1.故选B.2.D【解析】【分析】根据中心对称图形和轴对称图形的定义逐个判断即可.【详解】A 选项是轴对称图形但不是中心对称图形;B 选项是既不是轴对称图形也不是中心对称图形;C选项是既不是轴对称图形也不是中心对称图形;D 选项既是中心对称图形也是轴对称图形;故选D.【点睛】本题主要考查中心对称图形和轴对称图形的概念,注意两者的区别.3.C【解析】【分析】根据绝对值的意义和一个数的平方大于等于0,逐个判断即可.【详解】A 选项不一定成立;B选项不一定成立;C选项一定成立;D选项不一定成立,还有可能等于0.故选C.【点睛】本题主要考查绝对值大于等于0,一个数的平方大于等于0,这是重点知识,必须掌握.4.A【解析】【分析】根据圆周角的性质,首先计算每个选项中正多边形的的内角,再计算是否能够无缝铺砖,即可得到答案.【详解】A 正八边形的内角为: (82)180=1358︒︒-⨯,因为360135︒︒不能整除,所以不能无缝铺砖; B 正六边形的内角为: (62)180=1206︒︒-⨯,因为360=3120︒︒ 所以能无缝铺砖;C 正方形的内角为:90︒,因为360=490︒︒ 所以能无缝铺砖;D 正三角形的内角为:60︒,因为360=660︒︒ 所以能无缝铺砖;故选A.【点睛】本题主要考查正多边形的内角和的计算公式,这个是重点知识必须掌握.5.C【解析】【分析】采用加减消元法计算即可.【详解】解:3(1)21(2)0(3)x y z x y z x y -+=-⎧⎪+-=⎨⎪+=⎩将(1)+(2)可得:22(4)x y +=-将(4)-(3)可得:2x =-(5)将(5)代入(3)可得:2y =(6)将(5)和(6)代入(1)可得:1z =所以可得221x y z =-⎧⎪=⎨⎪=⎩故选C.【点睛】本题主要考查三元一次方程的消元法,这是解决方程的最重要的方法,必须掌握. 6.B【解析】【分析】根据各选项逐个判断说法是否正确即可.【详解】A 根据正多边形的内角和计算公式可得:(82)1801080︒︒-⨯=,因此A 说法正确;B 选项说法不正确,六边形的对角线有18条;C 正确,因为每个边上的高是相等的,只要边上的中线则分成的两个三角形的面积相等;D 正确,根据多边形的内角和的计算公式可得每增加一条边,正多边形的内角增加180°. 故选B.【点睛】本题主要考查正多边形的性质,这些选项都是基本性质,必须掌握.7.A【解析】【分析】设每一个小长方形的长为x ,宽为y ,根据大长方形的宽为15及小长方形的长与宽之间的关系,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:设每一个小长方形的长为x ,宽为y ,依题意,得:153x y x y +=⎧⎨=⎩. 故选A .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.D【解析】【详解】∵x+2y=4k 2x+y=2k+1⎧⎨⎩①②∴②-①,得x y 2k 1-=-+将x y 2k 1-=-+代入1x y 0-<-<,得:112k 1022k 1k 12-<-+<⇒-<-<-⇒<<故选D9.A【解析】【分析】根据题意首先设这条道路长x m,;列出一元一次方程求解即可.【详解】解:设这条道路长x m22232773 2.5xx++=+-解得:600x = 所以一共有树:2600234053⨯++=故选A.【点睛】本题主要考查一元一次方程的应用题,注意这类题一定要末端要多种一颗树. 10.D【解析】【分析】根据角平分线的性质,逐个判断结论是否正确即可.【详解】①正确,180BDE DBC DCB ︒∠=-∠-∠12DBC ABC ∠=∠; DCB ACD ACB ∠=∠+∠1()2DCB BAC ABC ACB ∴∠=∠+∠+∠ 11180()22BDE ABC BAC ABC ACB ︒∴∠=-∠-∠+∠-∠即: 12BDE BAC ∠=∠ 故正确;②正确, BD 、BE 分别平分△ABC 的内角∠ABC 、外角∠MBC ,11,22DBC ABC CBE MBC ∴∠=∠∠=∠ 111()90222DBC CBE ABC MBC ABC MBC ︒∴∠+∠=∠+∠=∠+∠= BD BE ∴⊥故正确;③正确,ABC ACB ∠∠=由①可得∠BDC=12BAC ∠ 所以可得∠BDC+∠ABC =90°故正确;④正确, ∠BEC=11180180909022DBE BDE BAC BAC ︒︒︒︒-∠-∠=--∠=-∠ 122(90)1802BAC BEC BAC BAC ︒︒∴∠+∠=∠+⨯-∠= 故正确.故选D.【点睛】本题主要考查平分线的性质,结合三角形的内角和的性质,应用等量替换的方法,这个换算即可.11.﹣1【解析】试题分析:把x=2代入得到4+3m-1=0,所以m=-1考点:一元一次方程,代入求值点评:本题考查代入求值,比较简单,细心就可.12.21或18【解析】【分析】根据题意要根据腰的情况分类讨论,第一当腰为5cm是计算周长;第二当腰为8cm计算周长.【详解】解:根据题意可得第一当腰为5cm时,周长为:5+5+8=18;当腰为8cm时,周长为:8+8+5=21故答案为:21或18【点睛】本题主要考查等腰三角形的腰的分类讨论,这是数学中最常用的思想,必须掌握理解. 13.24【解析】【分析】根据四边形ABFD的周长为:AB+BF+DF+AD,而△ABC的周长为:AB+BC+AC=20cm,采用等量替换的方法计算即可.【详解】解:△ABC的周长为:AB+BC+AC=20cm根据题意可得四边形ABFD的周长为:AB+BF+DF+AD=AB+BC+CF+AC+AD=AB+BC+AC+CF+AD=20+2+2=24故答案为24.【点睛】本题主要考查四边形的周长计算,关键在于利用等量替换的方法计算,等量替换是解决几何问题最重要的方法,必须熟练掌握.14.-9【解析】【分析】首先求解不等式组,再根据解集求出未知数的值,代入计算即可.【详解】解:根据题意可得:52223a x b x +⎧≥⎪⎪⎨+⎪<⎪⎩即:52223a b x ++≤< 所以可得2243532b a +⎧=⎪⎪⎨+⎪=⎪⎩ 解得15a b =⎧⎨=⎩ 所以a -2b=1259-⨯=-故答案为-9【点睛】本题主要考查不等式中参数的求解,关键在于根据不等式的解集求解参数.15.95︒【解析】【分析】首先根据MF ∥AD ,FN ∥DC ,可得100,70BMF BNF ︒︒∠=∠=,由于△FMN 是△BMN沿MN 翻折得到的,所以可得,BMN FMN BNM FNM ∠=∠∠=∠,故可得MFN ∠ 的度数,进而可得∠D 的度数.【详解】 解: MF ∥AD ,FN ∥DC100,70,BMF BNF D MFN ︒︒∴∠=∠=∠=∠△FMN 是△BMN 沿MN 翻折得到的∴ ,BMN FMN BNM FNM ∠=∠∠=∠100701809522MFN ︒︒︒︒∴∠=--= 95D ︒∴∠=故答案为95︒【点睛】本题主要考查折叠图形的性质,关键在于折叠后的图形的性质与原图形全等.16.96【解析】【分析】首先根据甲种粗粮的售价和利润率,列方程求得B 和C 的成本价,再计算乙种粗粮的的成本价,根据利润率的公式即可计算的乙种粗粮每袋的售价.【详解】解:根据=100%⨯售价-成本利润率成本 可得:甲种粗粮的成本为:71.5=551+30%所以可得1千克B 和1千克C 的成本价为:553637-⨯=因此可得2千克B 和2千克C 的成本价为:23774⨯=则乙种粗粮的的成本价为:67480+=故乙种粗粮每袋的售价为:808020%96+⨯=故答案为96【点睛】本题主要考查利润率的计算,这是应用题中的一个重要的类型,必须掌握.17.(1)5x = (2)11x y =⎧⎨=-⎩【解析】【分析】(1)根据等式的性质求解即可.(2)采用加减消元法计算即可.【详解】解:(1)原式可化为:210x -=-解得5x =(2)原式可化为:51621(1)12164(2)x y x y -=⎧⎨+=-⎩将(1)+(2)可得:1717x = 解得:1x =将1x =代入(1)可得:1y =-所以可得:11 xy=⎧⎨=-⎩【点睛】本题主要考查方程的解法,注意二元一次方程组中加减消元法的计算. 18.-1,0,1【解析】【分析】首先根据不等式的性质求解不等式组,然后在数轴上表示,写出整数解即可. 【详解】解:原式可化为:24-1xx<⎧⎨≥⎩即-12x≤<在数轴上表示如下:所以可得不等式的整数解集为:-1,0,1【点睛】本题主要考查不等式的解法,关键在于根据数轴写出不等式的解集. 19.(1)见解析(2)见解析(3)是对称图形,对称轴见解析. 【解析】【分析】(1)首先画出对称点,在连接对称点即可;(2)首先画出逆时针旋转的点,在连接点即可;(3)根据图形观察即可,画出对称轴即可.【详解】(1)首先画出A、B、C点的对称点如下图所示:(2)首先画出逆时针旋转的点如下图所示:(3)是对称图形,对称轴如图所示:【点睛】本题主要考查直角坐标系中点的坐标的绘制,关键在于根据点来绘制图形.20.-2【解析】【分析】首先根据未含参数的方程求解出未知数,在代入参数方程求解参数即可.【详解】解:根据()315x x x --=- 可得2x =- 因为方程1123x k k --=+ 与方程()315x x x --=-的解互为相反数 所以可得1123x k k --=+的解为2x = 代入可得:21123k k --=+ 解得2k =-【点睛】本题主要考查方程参数的计算,关键在于计算参数方程的解.21.(1)20︒ (2)71︒【解析】【分析】(1)根据三角形的内角和,首先计算出BAC ∠的度数,再根据AE 平分∠BAC 可得∠BAE 的度数;(2)在ACD ∆中,根据C ∠首先计算出CAD ∠的度数,再结合ADF ∆和DAF ∠便可计算出∠ADF 的度数.【详解】解:(1)在ABC ∆中∠B=32°,∠C=70°根据三角形的内角和为180︒可得180327078BAC ∠=︒-︒-︒=︒AE 平分∠BAC78392BAE ︒∴∠==︒ (2)在ACD ∆中,∠C=70° AD ⊥BC907020DAC ︒︒︒∴∠=-=由(1)可得39CAE ︒∠=19DAF ∴∠=︒DF ⊥AE90901971ADF DAF ∴∠=︒-∠=︒-︒=︒【点睛】本题主要考查三角形的内角和、角平分线的性质,关键在于根据角的计算求解.22.(1)130︒ (2)100︒ (3)∠BDC=1902A ︒+∠ 【解析】【分析】(1)首先根据∠A=80°,便可计算出ABC ACB ∠+∠的度数,再根据BD 、CD 平分ABC ∠和ACB ∠,再结合BCD ∆便可计算的∠BDC 的度数;(2)根据∠EDC=40°,可计算的BDC ∠的度数,再结合BCD ∆可得DBC DCB ∠+∠,再根据BD 、CD 平分ABC ∠和ACB ∠,在△ABC 中便可计算出∠A 的度数;(3)根据(1)和(2)中的计算可直接写出∠A 与∠BDC 之间的数量关系【详解】(1)在△ABC 中∠A=80°∴ 180********ABC ACB A ∠+∠=︒-∠=︒-︒=︒BD 、CD 平分ABC ∠和ACB ∠∴ 11()1005022DBC DCB ABC ACB ∠+∠=∠+∠=⨯︒=︒ 在BCD ∆中,∠BDC=180********DBC DCB ︒-∠-∠=︒-︒=︒(2)在BCD ∆中∠EDC=40°∴ 18040140BDC ∠=︒-︒=︒∴ 18014040DBC DCB ∠+∠=︒-︒=︒BD 、CD 平分ABC ∠和ACB ∠∴ 2()24080ABC ACB DBC DCB ∠+∠=∠+∠=⨯︒=︒在△ABC 中180********A ABC ACB ∠=︒-∠-∠=︒-︒=︒(3)根据(1)和(2)可得∠BDC=1902A ︒+∠ 【点睛】本题主要考查三角形的内角和的定理和角平分线的性质,关键在于要结合三角形进行计算. 23.(1)甲、乙两种材料每千克分别是15、25元(2)生产方案有3种:第一种:A 产品20件,B 产品30件第二种:A 产品21件,B 产品29件第三种:A 产品22件,B 产品28件【解析】【分析】(1)首先根据题意设甲、乙两种材料每千克分别是x ,y 元,根据题意列方程求解即可; (2)首先根据题意设A 两种产品分别为m 件,根据题意列出不等式求解正整数解即可.【详解】(1)解:设甲、乙两种材料每千克分别是x ,y 元 根据题意可得:4023105x y x y +=⎧⎨+=⎩解得1525x y =⎧⎨=⎩(2)设A 两种产品分别为m 件,则B 中产品为50m -根据题意可得:5028301510252015(50)2025(50)38000m m m m m -≥⎧⎨⨯+⨯+⨯-+⨯⨯-≤⎩ 解得:2220m m ≤⎧⎨≥⎩即:2022m ≤≤ 故m 的取值为:20、21、22所以可得生产方案有3种:第一种:A 产品20件,B 产品30件第二种:A 产品21件,B 产品29件第三种:A 产品22件,B 产品28件【点睛】本题主要考查二元一次方程的应用和不等式的应用,关键在于根据题意列出方程和不等式. 24.(1)9 17 (2)13x y =⎧⎨=⎩【解析】【分析】(1)根据相异数的概念首先写出对调的三个数,再求和,计算F(315),F(746)即可; (2)首先根据题意计算F (s )和F (t ),求解x 和y 的值即可.【详解】(1)根据题意可得315的三个数的和为:315+531+153=999所以999÷111=9 故F(315)=9746的三个三位数的和为:746+674+467=1887所以1887÷111=17 故F(746)=17(2) s 、t 都是相异数,s=100x+42, t=160+y ∴ F(s)=(100x+42+420+x+204+10x )÷111=x+6F(t)=(160+y+601+10y+100y+16) ÷111=y+7F(s)+F(t)=17∴6717x y +++=∴x+y=41≤x≤9,1≤y≤9,x 、y 都是正整数13x y =⎧∴⎨=⎩ 或22x y =⎧⎨=⎩ 或31x y =⎧⎨=⎩ s 和t 都是相异数42x x ∴≠≠、,16y y ≠≠、13x y =⎧∴⎨=⎩ 【点睛】本题主要考查新概念的理解,根据新概念列方程,采用分类讨论的思想求解. 25.(1)①160°,②30°;(2)证明见解析.【解析】分析:(1)①根据旋转的性质可得120ACA ∠=︒,再根据直角三角形两锐角互余求出BCD ∠,然后根据111BCB BCD ACB ∠=∠+∠进行计算即可得解;②根据直角三角形两锐角互余求出1A DE ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出1ACA ∠,即为旋转角的度数;(2)根据两直线平行,同旁内角互补求出90ADC ∠=︒,再根据直角三角形30°角所对的直角边等于斜边的一半可得12CD AC ,=根据旋转的性质可得1A C AC ,=然后求出解即可. 详解:(1)①由旋转的性质得,120ACA ∠=︒,∴1902070BCD ACB ACA ∠=∠-∠=-=,∴1117090160.BCB BCD A CB ∠=∠+∠=+=②∵AB ⊥11A B ,∴11190903060A DE B AC ∠=︒-∠=︒-︒=︒, ∴11603030ACA A DE BAC ∠=∠-∠=︒-︒=︒,∴旋转角为30;(2)∵AB ∥CB 1,第 21 页 ∴111801809090ADC ACB ∠=︒-∠=︒-︒=︒,∵30BAC ,∠= ∴12CD AC ,= 又∵由旋转的性质得,1A C AC ,= ∴1.A D CD =点睛:考查了旋转的性质,三角形外角的性质,平行线的性质,熟记和运用各性质是解题的关键.。
华师大版七年级下册数学期末考试试卷及答案
华师大版七年级下册数学期末考试试题一、单选题1.已知7x =是方程27x ax -=的解,则a =( )A .1B .2C .3D .72.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.不等式1122x +的解集是( ) A .1x B .2x C .12x D .12x - 4.三角形的两边长分别是4和7,则第三边长不可能是( )A .4B .6C .10D .125.下列说法错误的是( )A .若a b =,则ac bc =B .若1b =,则ab a =C .若a b c c=,则a b = D .若()()11a c b c -=-,则a b = 6.用正三角形和正六边形铺成一个平面,则在同一个顶点处,正三角形和正六边形的个数之比为( )A .4:1B .1:1C .1:4D .4:1或1:1 7.已知关于x ,y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则m ,n 的值为( ) A .51m n =⎧⎨=⎩ B .15m n =⎧⎨=⎩C .32m n =⎧⎨=⎩D .23m n =⎧⎨=⎩ 8.如果关于x 的方程3212x a +=和方程()3423x x -=-的解相同,那么与a 互为倒数的是( )A .3B .9C .19D .529.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°10.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g11.若关于x 的不等式()()131a xa --的解都能使不等式5x a -成立,则a 的取值范围是( )A .1a 或2a ≥B .2a ≤C .12a ≤D .2a =12.如图,在ABC ∆中,点D ,E ,F 分别在三边上,E 是AC 的中点,AD ,BE ,CF 交于一点G ,2BD DC =,8BGD S ∆=,3AGE S ∆=,则ABC ∆的面积是( )A .16B .19C .22D .30二、填空题 13.关于x 的方程()232523m a x x -++-=是一元一次方程,则a m +=__________ 14.若关于x ,y 的二元一次方程组23122x y k x y +=-⎧⎨+=-⎩的解满足1x y +=,则k 的值是______;15.如图,已知ABC ∆的面积为16,8BC =,现将ABC ∆沿直线BC 向右平移a 个单位到DEF ∆的位置,当ABC ∆所扫过的面积为32时,a 的值为____;16.如图,在ABC ∆中,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC ∆的外角EAC ∠,内角ABC ∠,外角ACF ∠,以下结论:①//AD BC ;②ACB ADB ∠=∠;③90ADC ABD ∠+∠=︒;④1452ADB CDB ∠=︒-∠,其中正确的结论有__.三、解答题17.(1)解方程:2532234x x +--=.(2)解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩,并将解集在数轴上表示.18.如图所示,每个小正方形的边长为1,ABC ∆,DEF ∆的顶点都在小正方形的顶点处.(1)将ABC ∆平移,使点A 平移到点F ,点B ,C 的对应点分别是点'B ,'C ,画出''FB C ∆; (2)画出DEF ∆关DF 于所在直线对称的'DE F ∆;(3)求四边形'''B C FE 的面积.19.已知y=kx+b .当x=1时,y=3;当x=-2时,y=9.(1)求出k ,b 的值;(2)当-3≤x ≤3时,求代数式x-y 的取值范围.20.如图,在ABC ∆中,AD 是高,10DAC ∠=︒,AE 是ABC ∆外角MAC ∠的平分线,交BC 的延长线于点E ,BF 平分ABC ∠交AE 于点F ,若46ABC ∠=︒,求AFB ∠的度数。
华东师大版七年级数学下册期末考试题及答案【完整版】
华东师大版七年级数学下册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求a b m cd m +++的值.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、83、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、16、2或-8三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、(1)a+b=0,cd=1,m=±2;(2)3或-13、(1)∠BOD;∠AOE;(2)152°.4、证明略5、(1)30;(2)①补图见解析;②120;③70人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。
2020-2021学年华东师大版数学七年级下册期末考试题及答案(共5套)
华东师大版数学七年级下册期末考试题(一)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x ,则x 的取值范围是( ) A .0<x <52 B .x ≥52C .x >52D .0<x <102.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .16 3.如图,把一块含有30°角(∠A =30°)的直角三角板ABC 的直角顶点放在长方形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 在三角板的斜边上,如果∠1=40°,那么∠AFE 的度数是( )A .50°B .40°C .20°D .10°第3题图4.如图,已知在△ABC 中,∠B =∠C ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于点D ,∠AED =155°,则∠EDF 等于( ) A .50° B .65° C .70° D .75°第4题图第5题图5.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a ,M 为正八边形内部的小正方形的一个顶点,则∠ABM 的度数及阴影部分的面积分别为( )A .45°,2a 2B .60°,3a 2C .30°,4a 2D .75°,2a 26.下列图形一定是轴对称图形的是( ) A .直角三角形 B .六边形 C .直角梯形 D .正方形7.下列各组的两个图形属于全等图形的是( )8.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是( )A. B. C. D.9.如图,该图形围绕其旋转中心,按下列角度旋转后,能与自身重合的是( ) A.150° B.120° C.90° D.60°第9题图第10题图10.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )A.1条 B.2条 C.4条 D.8条二、填空题(每小题3分,共24分)11.在△ABC中,如果∠B=45°,∠C=72°,那么与∠A相邻的一个外角等于________度.12.如果三角形的三边长度分别为3a,4a,14,则a的取值范围是____________.13.如图,AD,BE分别是△ABC的角平分线和高,∠BAC=40°,则∠AFE=________.第13题图第14题图14.如图,在△ABC中,AD是BC边上的中线,已知AB=5cm,AC=7cm,则△ACD与△ABD 的周长差为________cm.第15题图15.如图,△ABC与△DEF关于O点成中心对称,则线段BC与EF的关系是____________.16.两个完全相同的直角梯形重叠在一起,将其中一个直角梯形按如图所示平移,则图中阴影部分的面积为________.第16题图第17题图17.如图,电风扇的叶片是一个旋转对称图形,电风扇的叶片旋转__________度能与自身重合.18.如图,将△ABC绕其中一个顶点顺时针连续旋转n′1,n′2,n′3所得到的三角形和△ABC的对称关系是______________.第18题图三、解答题(共66分)19.(10分)在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.20.(10分)若六边形的内角之比为2∶4:4:4:5:5,求它的最大内角与最大的外角.21.(12分)在等腰△ABC中,腰AB=AC,BD是AC边上的中线,已知△ABD的周长比△BCD 的周长大8 cm,且腰长是底边长的3倍,求△ABC的周长.22.(10分)在如图所示的长方形草坪上,要修筑两条同样宽的“之”字形柏油路,路宽为2m,则剩余草坪的面积是多少平方米?23.(12分)用四块如图甲所示的瓷砖平铺成一个正方形的地板,使平铺的图案成轴对称图形或中心对称图形,请你在图乙、丙中各画出一种拼法(要求:两种拼法各不相同,所画图案阴影部分用斜线表示).24.(12分)如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,其中AF=4,AB =7.(1)指出旋转中心和旋转的角度; (2)求DE 的长度;(3)BE 与DF 的位置关系如何?参考答案与解析1.C2.C3.D4.B5.A 6.D 7.D 8.D 9.B 10.C 11.117 12.2<a <14 13.70° 14.2 15.平行且相等16.140cm 2解析:如图,∵梯形ABCD 平移到梯形EFGH 的位置,∴S 梯形ABCD =S 梯形EFGH ,BC =FG =20cm ,∴FQ =FG -QG =20-5=15(cm),S 阴影部分=S 梯形BCQF ,而S 梯形BCQF =12×(15+20)×8=140(cm 2),∴S 阴影部分=140cm 2.17.120°或240°18.关于旋转中心成中心对称19.解:∵CD ⊥AB ,∴∠CDB =90°.∵∠B =60°,∴∠BCD =90°-∠B =90°-60°=30°.(3分)∵∠A =20°,∠B =60°,∠A +∠B +∠ACB =180°,∴∠ACB =100°.∵CE 是∠ACB 的平分线,∴∠ACE =12∠ACB =50°,(5分)∴∠CEB =∠A +∠ACE =20°+50°=70°,(7分)∴∠ECD =90°-70°=20°.(10分)20.解:设六边形最小的内角为2x ,则其他几个内角分别为4x ,4x ,4x ,5x ,5x .依题意得2x +4x +4x +4x +5x +5x =(6-2)×180°,(4分)整理得24x =720°,解得x =30°.(6分)所以最大的内角是5x =5×30°=150°,(8分)最大的外角是180°-2x =120°.(10分)21.解:设AB =AC =2x ,则BC =23x .∵BD 是AC 边上的中线,∴AD =CD =12AC =x .又∵AB +AD +BD -(BD +CD +BC )=8cm ,(4分)即2x +x +BD -BD -x -23x =8cm ,(6分)∴43x =8cm ,∴x =6cm ,(8分)∴△ABC 的周长为2x +2x +23x =12+12+4=28(cm).(12分)22.解:经过平移,可知剩余草坪的面积为(32-2)×(20-2)=540(m 2).(9分)答:剩余草坪的面积为540m 2.(10分) 23.解:图略.(12分)24.解:(1)旋转中心为点A ,旋转的角度为90°.(4分)(2)由题意得AE =AF ,AB =AD ,∴DE =AD -AE =AB -AF =7-4=3.(7分)(3)延长BE 交DF 于点G ,∵∠ADF =∠ABE ,∠F +∠ADF =90°,∴∠ABE +∠F =90°,∴∠BGF =90°,即BE 与DF 互相垂直.(12分)华东师大版数学七年级下册期末考试题(二)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.如图,在网格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°2.如图,△ABC ≌△CDA ,并且AB =CD ,那么下列结论错误的是( ) A .∠1=∠2 B .AD =CB C .∠D =∠B D .AC =BC第2题图3.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( ) A .△AA 1P 是等腰三角形 B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1的面积相等D .直线AB ,A 1B 1的交点不一定在MN 上第3题图第4题图4.如图,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A ′点,则线段A ′B 与线段AC 的关系是( ) A .垂直 B .相等C .平分D .平分且垂直5.如图,如果甲、乙关于点O 成中心对称,则乙图中不符合题意的一块是( )第5题图6.一个正多边形的每个外角都等于36°,那么它是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 7.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线 C .∠3=12∠ACB D .CE 是△ABC 的角平分线第2题图第3题图8.如图,下列说法中错误的是( ) A .∠1不是△ABC 的外角 B .∠B <∠1+∠2C .∠ACD 是△ABC 的外角 D .∠ACD >∠A +∠B9.下列长度的三条线段不能组成三角形的是( )A.5,5,10 B.4,5,6 C.4,4,4 D.3,4,510.只用下列图形中的一种,能够铺满地面的是( )A.正十边形 B.正八边形 C.正六边形 D.正五边形二、填空题(每小题3分,共24分)11.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为________条.12.如图,△ABC是由四个形状大小相同的三角形拼成的,则可以看成是△ADF平移得到的小三角形是______________.第12题图第13题图13.如图是贝贝制作的风筝,为了平衡做成轴对称图形,已知OC是对称轴,∠A=35°,∠BOC=115°,那么∠ACB的大小是________.14.如图,四边形ABCD与四边形A′B′C′D′全等,∠A=________,四边形A′B′C′D′的周长为________.第14题图15.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2=________.第15题图第16题图第18题图16.维明公园的一段小路是由型号相同的五边形地砖平铺而成的,如图所示,是平铺图案的一部分,如果每一个五边形中有3个内角相等,那么这三个内角的度数都等于________.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.18.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积是________.三、解答题(共66分)19.(8分)如图,已知△ABC和点O在网格中,按下面的要求操作:(1)△ABC与△A1B1C1关于点O成中心对称,请画出△A1B1C1;(2)将△ABC绕点O逆时针旋转90°得到△A2B2C2,请画出△A2B2C2.20.(10分)△ABC和△A′B′C′关于直线l对称,求∠B′的度数和AB的长度,并且求B′C′的取值范围.21.(12分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.22.(12分)如图,在△ABC中,已知∠ABC=60°,∠ACB=54°,BE是AC边上的高,CF 是AB边上的高,H是BE和CF的交点,HD是∠BHC的平分线,求∠ABE,∠ACF和∠CHD的度数.23.(10分)已知两个正多边形,其中一个正多边形的外角是另一个正多边形外角的2倍,并且用这两个正多边形可以拼成平面图形,求这两个正多边形的边数.24.(14分)如图①,已知线段AB,CD相交于点O,连接AC,BD,我们把形如图①的图形称之为“8字形”.如图②,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD,AB分别相交于M,N.试解答下列问题:(1)仔细观察,在图②中有________个以线段AC为边的“8字形”;(2)在图②中,若∠B=96°,∠C=100°,求∠P的度数;(3)在图②中,若设∠C=α,∠B=β,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C,∠B之间存在着怎样的数量关系(用α,β表示∠P),并说明理由;(4)如图③,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为________.参考答案与解析 1.B 2.D 3.D 4.D5.C 6.D 7.D 8.D 9.A 10.C 11.2 12.△DBE ,△FEC 13.60° 14.70° 36 15.225° 16.120° 17.30° 18.7 19.解:画图略.(8分)20.解:由轴对称性质知∠B ′=∠B =135°,(2分)AB =A ′B ′=20cm ,(4分)A ′C ′=AC =30cm ,(6分)∴由三角形三边关系知B ′C ′的取值范围为10cm<B ′C ′<50cm.(10分) 21.解:(1)AB =A ′B ′,AB ∥A ′B ′.(3分)(2)AB =A ′B ′,对应线段AB 和A ′B ′所在的直线如果相交,交点在对称轴l 上.(6分)(3)l 垂直平分AA ′.(9分)(4)OA =OA ′,∠AOA ′=∠BOB ′.(12分) 22.解:在△ABC 中,∠ABC =60°,∠ACB =54°,∴∠A =66°.∵∠AEB =90°,∠A =66°,∴∠ABE =24°.(3分)又∵∠AFC =90°,∴∠ACF =90°-66°=24°,(6分)∴∠HBC =∠ABC -∠ABE =60°-24°=36°,∠HCB =∠ACB -∠ACF =54°-24°=30°,∴∠BHC =180°-36°-30°=114°.(10分)∵HD 是∠BHC 的平分线,∴∠CHD =12∠BHC =57°.(12分)23.解:设这两个正多边形的边数分别为n ,k ,依题意有360°n =2×360°k,(3分)因此k=2n (n ≥3,且n 为整数),(5分)所以n =3,4,5,6,…,从而k =6,8,10,12,….(7分)其中正三角形和正六边形,正方形和正八边形,正五边形和正十边形能拼成平面图形.(10分)24.解:(1)2(2分)(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,∴∠CAP =∠BAP ,∠BDP =∠CDP .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =∠P -∠B ,即∠P =12(∠C+∠B ).(5分)∵∠C =100°,∠B =96°,∴∠P =12(100°+96°)=98°.(7分)(3)∠P =13(β+2α).理由如下:∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =13∠CDB -13∠CAB ,∠P -∠B =23∠CDB -23∠CAB ,(9分)∴2(∠C -∠P )=∠P -∠B ,∴∠P =13(∠B +2∠C ).∵∠C =α,∠B =β,∴∠P =13(β+2α).(12分)(4)360°(14分) 解析:如图,∵∠B +∠A =∠1,∠C +∠D =∠2,∴∠A +∠B +∠C +∠D =∠1+∠2.∵∠1+∠2+∠F +∠E =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.华东师大版数学七年级下册期末考试题(三)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.若关于x 的不等式(a -2)x >a -2的解集为x >1,那么字母a 的取值范围是( ) A .a >1 B .a <1 C .a >2 D .a <22.不等式组⎩⎪⎨⎪⎧2x -1≤1,-12x <1的整数解的个数为( )A .0个B .2个C .3个D .无数个3.某班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔( )A .20支B .14支C .13支D .10支4.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )A. B.C.D.5.图为歌神KTV 的两种计费方案说明.若晓莉和朋友们打算在此KTV 的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?( )A .6人B .7人C .8人D .9人6.一个正多边形的每个外角都等于36°,那么它是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 7.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线 C .∠3=12∠ACB D .CE 是△ABC 的角平分线第7题图 第8题图8.如图,下列说法中错误的是( ) A .∠1不是△ABC 的外角 B .∠B <∠1+∠2C .∠ACD 是△ABC 的外角 D .∠ACD >∠A +∠B9.下列长度的三条线段不能组成三角形的是( ) A .5,5,10 B .4,5,6 C .4,4,4 D .3,4,5 10.只用下列图形中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形 二、填空题(每小题3分,共24分)11.用不等式表示:x 与5的差不小于x 的2倍:____________. 12.当有理数a <0时,6+a ________6-a (填“<”或“>”).13.关于x 的不等式组的解集在数轴上的表示如图,则不等式组的解集为________.14.当x 满足________时,式子x +52-1的值大于式子3x +22的值.15.如图,在四边形ABCD 中,∠A =45°,直线l 与边AB ,AD 分别相交于点M ,N ,则∠1+∠2=________.第15题图第16题图 第18题图16.维明公园的一段小路是由型号相同的五边形地砖平铺而成的,如图所示,是平铺图案的一部分,如果每一个五边形中有3个内角相等,那么这三个内角的度数都等于________. 17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.18.如图,A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积是________. 三、解答题(共66分)19.(8分)在公路上,常看到如图所示的不同的交通标志图形,它们有着不同的意义,如果设汽车载重为x ,速度为y ,宽度为l ,高度为h ,请你用不等式表示图中各种标志的意义.20.(10分)解下列不等式(组),并把解集在数轴上表示出来.(1)5x -2≤3x; (2)⎩⎨⎧x -23(2x -1)≤4,1+3x2>2x -1.21.(12分)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求有理数a 的取值范围.22.(12分)如图,在△ABC 中,已知∠ABC =60°,∠ACB =54°,BE 是AC 边上的高,CF 是AB 边上的高,H 是BE 和CF 的交点,HD 是∠BHC 的平分线,求∠ABE ,∠ACF 和∠CHD 的度数.23.(10分)已知两个正多边形,其中一个正多边形的外角是另一个正多边形外角的2倍,并且用这两个正多边形可以拼成平面图形,求这两个正多边形的边数.24.(14分)如图①,已知线段AB ,CD 相交于点O ,连接AC ,BD ,我们把形如图①的图形称之为“8字形”.如图②,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD ,AB 分别相交于M ,N .试解答下列问题:(1)仔细观察,在图②中有________个以线段AC 为边的“8字形”; (2)在图②中,若∠B =96°,∠C =100°,求∠P 的度数;(3)在图②中,若设∠C =α,∠B =β,∠CAP =13∠CAB ,∠CDP =13∠CDB ,试问∠P 与∠C ,∠B 之间存在着怎样的数量关系(用α,β表示∠P ),并说明理由;(4)如图③,则∠A +∠B +∠C +∠D +∠E +∠F 的度数为________.参考答案与解析1.C2.C3.C4.C5.C 6.D 7.D 8.D 9.A 10.C 11.x -5≥2x 12.< 13.-4≤x <-114.x <1215.225° 16.120° 17.30° 18.719.解:x ≤5.5t(2分) y ≤30km/h(4分) l ≤2m(6分) h ≤3.5m(8分) 20.解:(1)x ≤1(在数轴上表示解集略).(4分) (2)-10≤x <3(在数轴上表示解集略).(10分)21.解:由①,得x >-25,由②,得x <2a .(3分)又∵其有三个整数解,∴不等式组的解集为-25<x <2a ,(5分)∴2<2a ≤3,解得1<a ≤32.(12分)22.解:在△ABC 中,∠ABC =60°,∠ACB =54°,∴∠A =66°.∵∠AEB =90°,∠A =66°,∴∠ABE =24°.(3分)又∵∠AFC =90°,∴∠ACF =90°-66°=24°,(6分)∴∠HBC =∠ABC -∠ABE =60°-24°=36°,∠HCB =∠ACB -∠ACF =54°-24°=30°,∴∠BHC =180°-36°-30°=114°.(10分)∵HD 是∠BHC 的平分线,∴∠CHD =12∠BHC =57°.(12分)23.解:设这两个正多边形的边数分别为n ,k ,依题意有360°n =2×360°k,(3分)因此k=2n (n ≥3,且n 为整数),(5分)所以n =3,4,5,6,…,从而k =6,8,10,12,….(7分)其中正三角形和正六边形,正方形和正八边形,正五边形和正十边形能拼成平面图形.(10分)24.解:(1)2(2分)(2)∵∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,∴∠CAP =∠BAP ,∠BDP =∠CDP .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =∠P -∠B ,即∠P =12(∠C+∠B ).(5分)∵∠C =100°,∠B =96°,∴∠P =12(100°+96°)=98°.(7分)(3)∠P =13(β+2α).理由如下:∵∠CAP =13∠CAB ,∠CDP =13∠CDB ,∴∠BAP =23∠CAB ,∠BDP =23∠CDB .∵∠CAP +∠C =∠CDP +∠P ,∠BAP +∠P =∠BDP +∠B ,∴∠C -∠P =13∠CDB -13∠CAB ,∠P -∠B =23∠CDB -23∠CAB ,(9分)∴2(∠C -∠P )=∠P -∠B ,∴∠P =13(∠B +2∠C ).∵∠C =α,∠B =β,∴∠P =13(β+2α).(12分)(4)360°(14分) 解析:如图,∵∠B +∠A =∠1,∠C +∠D =∠2,∴∠A +∠B +∠C +∠D =∠1+∠2.∵∠1+∠2+∠F +∠E =360°,∴∠A +∠B +∠C +∠D +∠E +∠F =360°.华东师大版数学七年级下册期末考试题(四)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.下列方程中,是二元一次方程的是( ) A .xy =1 B .y =3x -1 C .x +1y=2 D .x 2+x -3=02.若a <b ,则下列各式中一定成立的是( ) A .a -1<b -1 B.a 3>b3C .-a <-bD .ac <bc3.不等式组⎩⎪⎨⎪⎧x -1>0,8-4x ≤0的解集在数轴上表示为( )4.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=445.已知关于x 的方程2x +4=m -x 的解是负数,则m 的取值范围是( ) A .m <43 B .m >43 C .m <4 D .m >46.已知a ,b 满足方程组⎩⎪⎨⎪⎧a +2b =8,2a +b =7,则a -b 的值为( )A .-1B .0C .1D .27.已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax +5y =4,5x +y =3与⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,则a ,b 的值为( ) A.⎩⎪⎨⎪⎧a =1,b =2B.⎩⎪⎨⎪⎧a =-4,b =-6C.⎩⎪⎨⎪⎧a =-6,b =2D.⎩⎪⎨⎪⎧a =14,b =28.已知⎩⎪⎨⎪⎧3x +4y =4k ,4x +3y =3k +7且0<x +y <1,则k 的取值范围是( )A .-1<k <0B .-1<k <-12C .0<k <1D .-1<k <19.某商品的标价比成本价高m %,根据市场需要该商品需降价n %出售,为了不亏本,n 应满足( )A .n ≤mB .n ≤100m100+mC .n ≤m100+m D .n ≤100m100-m10.宜宾市某化工厂,现有A 种原料52千克,B 种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A 种原料3千克,B 种原料2千克;生产1件乙种产品需要A 种原料2千克,B 种原料4千克,则生产方案的种数为( ) A .4 B .5 C .6 D .7二、填空题(每小题3分,共24分)11.当x =________时,代数式3x -2与代数式6-x 的值相等.12.已知⎩⎪⎨⎪⎧x =-2,y =3是方程x -ky =1的解,那么k =________.13.不等式组⎩⎪⎨⎪⎧12x ≤1,2-x <3的解集是__________.14.已知x =3-2a 是不等式2(x -3)<x -1的一个解,那么a 的取值范围是________. 15.若3x +12的值比2x -23的值小1,则x 的值为________.16.如果4xa +2b -11-2y5a -2b -3=8是关于x ,y 的二元一次方程,那么a -b =________.17.已知关于x的不等式组⎩⎪⎨⎪⎧x -a ≥0,3-2x ≥-1的整数解共有5个,则a 的取值范围是________________.18.书店举行购书优惠活动,活动规则如下: ①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折; ③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元. 三、解答题(共66分)19.(8分)解下列方程或方程组:(1)3x -22=4x +23-1; (2)⎩⎪⎨⎪⎧3x -7y =8①,2x +y =11②.20.(8分)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1,把它的解集在数轴上表示出来,并写出不等式组的非负整数解.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A ,B 两种饮料各多少瓶?22.(10分)若关于x ,y 的方程组⎩⎪⎨⎪⎧3x +5y =m +2,2x +3y =m 的解x 与y 的值的和等于2,求m 2-4m+4的值.23.(10分)定义新运算:对于任意实数a ,b 都有a △b =ab -a -b +1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4-2-4+1=8-6+1=3,请根据上述知识解决问题:若3△x 的值大于5而小于9,求x 的取值范围.24.(10分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知这两种货车的装货情况如下表:(1)(2)现租用该公司3辆甲种货车及5辆乙种货车,一次刚好运完这批货,如果按每吨付运费30元计算,货主应付多少运费?25.(12分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元. (1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,其中直拍球拍的数量不低于总数量的70%,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.参考答案与解析1.B 2.A 3.A 4.A 5.C 6.A 7.D 8.A 9.B10.B 解析:设生产甲产品x 件,则乙产品(20-x )件,根据题意得⎩⎪⎨⎪⎧3x +2(20-x )≤52,2x +4(20-x )≤64,解得8≤x ≤12.∵x 为整数,∴x =8,9,10,11,12,∴有5种生产方案.故选B.11.2 12.-1 13.-1<x ≤2 14.a >-1 15.-13516.-2 17.-3<a ≤-218.248或296 解析:设第一次购书的原价为x 元,则第二次购书的原价为3x 元,依题意得①当0<x ≤1003时,x +3x =229.4,解得x =57.35(舍去);②当1003<x ≤2003时,x +910×3x =229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x ≤100时,x +710×3x =229.4,解得x =74,此时两次购书原价总和为:4x =4×74=296.综上所述,小丽这两次购书原价的总和是248或296元.19.解:(1)x =4.(4分)(2)⎩⎪⎨⎪⎧x =5,y =1.(8分)20.解:不等式组的解集为-1≤x <3,(4分)在数轴上表示略,其非负整数解为0,1,2.(8分)21.解:设A 种饮料生产了x 瓶,B 种饮料生产了y瓶,根据题意得⎩⎪⎨⎪⎧x +y =100,2x +3y =270,(4分)解得⎩⎪⎨⎪⎧x =30,y =70.(7分)答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.(8分)22.解:⎩⎪⎨⎪⎧3x +5y =m +2①,2x +3y =m ②,由①-②,得x +2y =2③.∵x ,y 的值的和等于2,∴x +y =2④,由③-④,得y =0.把y =0代入④,得x =2.把x =2,y =0代入②,得m =4,(7分)∴m 2-4m +4=42-4×4+4=4.(10分)23.解:由题意得⎩⎪⎨⎪⎧3x -3-x +1>5,3x -3-x +1<9,(5分)解得72<x <112.(10分)24.解:(1)设甲、乙两种货车每辆每次分别可运x 吨货物,y 吨货物,由题意得⎩⎪⎨⎪⎧2x +3y =15.5,5x +6y =35,解得⎩⎪⎨⎪⎧x =4,y =2.5.答:甲种货车每辆每次可运货物4吨,乙种货车每辆每次可运货物2.5吨.(7分) (2)30×(4×3+2.5×5)=735(元).(9分) 答:货主应付运费735元.(10分)25.解:(1)设直拍球拍每副x 元,横拍球每副y 元,由题意得⎩⎪⎨⎪⎧20(x +20)+15(y +20)=9000,5(x +20)+1600=10(y +20),解得⎩⎪⎨⎪⎧x =220,y =260. 答:直拍球拍每副220元,横拍球每副260元.(6分)(2)设购买直拍球拍m 副,则购买横拍球(40-m )副,由题意得⎩⎪⎨⎪⎧m ≥40×70%,m ≤3(40-m ),解得28≤m≤30.∵m 为整数,∴m 为28,29,30.(8分)设买40副球拍所需的费用为w ,则w =(220+20)m +(260+20)(40-m )=11200-40m .(10分)∴当m =28时,w =10080元;当m =29时,w =10040元;当m =30时,w =10000元,∴当m =30时,w 取最小值,最小值为10000元. 答:购买直拍球拍30副,购买横拍球10副时,费用最少,最少费用为10000元.(12分)华东师大版数学七年级下册期末检测题(五)(时间:120分钟 分值:120分)一、选择题(每小题3分,共30分)1.已知(x -2y -1)2+||2x +y -7=0,则3x -y 的值为( )A .3B .1C .-6D .82.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的平均速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x ,y 分钟,则列出的二元一次方程组是( )A.⎩⎪⎨⎪⎧x +y =13,200x +70y =3350B.⎩⎪⎨⎪⎧x +y =20,70x +200y =3350C.⎩⎪⎨⎪⎧x +y =13,70x +200y =3350D.⎩⎪⎨⎪⎧x +y =20,200x +70y =33503.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .44.小刚解出了方程组⎩⎪⎨⎪⎧3x -y =3,2x +y =△的解为⎩⎪⎨⎪⎧x =4,y =□.因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则△、□分别为( )A .17,9B .16,8C .23,15D .15,235.甲、乙两药品仓库共存药品45 t ,为共同抗击“H7N9禽流感”,现从甲仓库调出库存药品的60%,从乙仓库调出库存药品的40%支援疫区.结果乙仓库所余药品比甲仓库所余药品多3 t ,那么,甲、乙仓库原来所存药品分别为( )A .21 t ,24 tB .24 t ,21 tC .25 t ,20 tD .20 t ,25 t 6.下列式子中,是一元一次方程的是( ) A .3x +1=4x B .x +2>1 C .x 2-9=0 D .2x -3y =0 7.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc ,则b =d8.一元一次方程2x =4的解是( ) A .x =1 B .x =2 C .x =3 D .x =49.已知方程x -2y +3=8,则整式x -2y 的值为( ) A .5 B .10 C .12 D .1510.下列过程中,变形正确的是( ) A .由2x =3,得x =23B .由x -13-1=1-x 2,得2(x -1)-1=3(1-x )C .由x -1=2,得x =2-1D .由-3(x +1)=2,得-3x -3=2二、填空题(每小题3分,共24分)12.已知x ,y 满足方程组⎩⎪⎨⎪⎧x +2y =5,2x +y =4,则x -y 的值是________.13.若2x a +1-3y b -2=10是关于x ,y 的二元一次方程,则a -b =________.14.已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.15.若(m -2)x |2m -3|=6是关于x 的一元一次方程,则m 的值是________. 16.若a =b ,12b =-12c ,4c -3d =0,则a 和d 之间的关系式为______________.17.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为________.18.规定一种运算“*”,a *b =13a -14b ,则方程x *2=1*x 的解为________.三、解答题(共66分)19.(12分)解下列方程组:(1)⎩⎪⎨⎪⎧4x +y =7,6x -y =3;(2)⎩⎪⎨⎪⎧3x -2(2y +1)=4,x +2y +12=4(x -1).20.(10分)在等式y =x 2+mx +n 中,当x =2时,y =5;当x =-3时,y =-5. (1)求m ,n 的值;(2)试求当x =3时,y 的值.21.(10分)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -5y =2a ,2x +7y =a -18.(1)若x ,y 的值互为相反数,求a 的值;(2)若2x +y +35=0,解这个方程组.22.(10某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?23.(12分)小杰到食堂买饭,看到A ,B 两窗口前面排队的人一样多,就站在A 窗口队伍的后面,过了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人.此时,若小杰迅速从A 窗口队伍转移到B 窗口队伍后面重新排队,将比继续在A 窗口排队提前30秒买到饭,求开始时,每队有多少人排队.24.(12分)某公司以每吨500元的价格收购了100吨某种药材.若直接在市场上销售,每吨的售价是1000元.该公司决定加工后再出售,相关信息如下表所示:注:①出品率指加工后所得产品的质量与原料的质量的比值;②加工后的废品不产生效益.受市场影响,该公司必须在10天内将这批药材加工完毕,现有3种方案: A .全都粗加工;B .尽可能多的精加工,剩余的直接在市场上销售;C .部分粗加工,部分精加工,恰好10天完成. 问:哪个方案获得的利润最大?是多少?参考答案与解析1.D2.D3.C 解析:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费.设截成2米长的彩绳x 根,1米长的y 根,由题意得2x +y =5,因为x ,y 都是正整数,所以符合条件的解为⎩⎪⎨⎪⎧x =0,y =5或⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =1,则共有3种不同截法.故选C.4.A5.B 解析:若设甲仓库原来存药x 吨,乙仓库原来存药y 吨,由题意得⎩⎪⎨⎪⎧x +y =45,60%y -40%x =3,解得⎩⎪⎨⎪⎧x =24,y =21.故选B. 6.A 7.C 8.B 9.A 10.D 11.y =2x -53 12.-1 13.-3 14.-815.1 16.4a +3d =0 17.90% 18.10719.解:(1)⎩⎪⎨⎪⎧x =1,y =3.(6分) (2)⎩⎨⎧x =43,y =-12.(12分) 20.解:(1)由题意得⎩⎪⎨⎪⎧5=4+2m +n ,-5=9-3m +n ,(3分)解得⎩⎪⎨⎪⎧m =3,n =-5.(6分)(2)由(1)可得原等式为y =x 2+3x -5,因此当x =3时,y =32+3×3-5=13.即当x =3时,y 的值为13.(10分)21.解:(1)⎩⎪⎨⎪⎧3x -5y =2a ①,2x +7y =a -18②,①-②×2,得-x -19y =36,即x +19y =-36.当x =-y 时,-y +19y =-36,解得y =-2,∴x =2.代入①,得a =8.(6分)(2)由(1)知,⎩⎪⎨⎪⎧x +19y =-36,2x +y =-35,解得⎩⎪⎨⎪⎧x =-17,y =-1.(10分) 22.解:设五月份用电量为x 度,则六月份用电量为(500-x )度.依题意得500-x >x ,解得x <250,当0<x ≤200时,列方程得0.55x +0.6(500-x )=290.5,解得x =190.则500-x =310,符合题意.(5分)当200<x <250时,列方程得0.6x +0.6(500-x )=290.5,此方程无解.(9分)答:该户居民五、六月份各用电190度,310度.(10分)23.解:设开始时,每队有x 人在排队,2分钟后,B 窗口排队的人数为x -6×2+5×2=x -2,(3分)根据题意得x4=2+x -26+12,(7分)解得x =26.(11分)答:开始时,每队有26人排队.(12分)24.解:方案A 的利润为100×80%×5000-500×100=350000(元);(3分)方案B 的利润为60×60%×11000+40×1000-50000=386000(元);(6分)设方案C 粗加工x 天,则精加工(10-x )天,有14x +6(10-x )=100,解得x =5.(8分)方案C 的利润为5×14×80%×5000+5×6×60%×11000-50000=428000(元).(10分)所以方案C 的利润最大,是428000元.(11分)答:方案C 获得的利润最大,最大利润为428000元.(12分)。
七年级下册数学 期末试卷易错题(Word版 含答案)
七年级下册数学 期末试卷易错题(Word 版 含答案)一、选择题1.116的平方根是() A .-14B .14C .14±D .12±2.如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列语句中,是假命题的是( ) A .有理数和无理数统称实数B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两个锐角的和是锐角5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒6.下列计算正确的是( ) A .38-=±2B .(﹣3)0=0C .(﹣2a 2b )2=4a 4b 2D .2a 3÷(﹣2a )=﹣a 37.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是( )A .(2020,0)B .(2021,-1)C .(2021,1)D .(2022,0)二、填空题9.若,则()m a b +的值为10.点A (-2,1)关于x 轴对称的点的坐标是____________________.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.13.图,直线//AB CD ,直线l 与直线AB ,CD 相交于点E 、F ,点P 是射线EA 上的一个动.点.(不包括端点E ),将EPF 沿PF 折叠,使顶点E 落在点Q 处.若∠PEF =75°,2∠CFQ =∠PFC ,则EFP ∠=________.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若△PAB 的面积为18,则m ,n 满足的数量关系式为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→”的路线运动,设第n 秒运动到点n P (n 为正整数),则点2021P 的坐标是______.三、解答题17.计算:(1)()4129-⨯- (2)()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=. 19.完成下面的证明.如图,AB ∥CD ,∠B +∠D =180°,求证:BE ∥DF . 分析:要证BE ∥DF ,只需证∠1=∠D . 证明:∵AB ∥CD (已知) ∴∠B +∠1=180°( ) ∵∠B +∠D =180°(已知) ∴∠1=∠D ( ) ∴BE ∥DF ( )20.如图,在平面直角坐标系中,ABC ∆的顶点都在格点上,点C (41)-,. (1)写出点A ,B 的坐标; (2)求ABC ∆的面积.21.已知:31a +的立方根是2-,21b -的算术平方根3,c 是43的整数部分. (1)求,,a b c 的值;(2)求922a b c -+的平方根.二十二、解答题22.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.二十三、解答题23.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.24.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.26.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线AO 与水平镜面夹角为∠1,反射光线OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB 经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图 3,有两块平面镜OM,ON,且∠MON =55︒,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 相交于点E,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜OM,ON,且∠MON =α ,入射光线AB 经过两次反射,得到反射光线CD,光线AB 与CD 所在的直线相交于点E,∠BED=β , α 与β 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于a,那么这个数叫做a的平方根)即可得.【详解】解:因为211416⎛⎫±=⎪⎝⎭,所以116的平方根是14±,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.C 【分析】根据平移变换的定义可得结论. 【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的. 故选:C . 【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C 【分析】根据平移变换的定义可得结论. 【详解】解:由平移变换的定义可知,选项C 可以看作由“基本图案”经过平移得到的. 故选:C . 【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题. 3.B 【分析】根据坐标的特点即可求解. 【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限 故选B . 【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点. 4.D 【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可 【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如505010090︒+︒=︒>︒,故D 选项是假命题,符合题意 故选D 【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.【详解】A.原式=﹣2,故A错误;B.原式=1,故B错误;C、(﹣2a2b)2=4a4b2,计算正确;D、原式=﹣a2,故D错误;故选C.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA =180°-34°=146°, ∵BE ⊥AE , ∴∠AEB =90°,∵∠AEB +∠BED +∠AED =360°, ∴∠BED =360°-146°-90°=124°, 故选:B . 【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标. 【详解】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长解析:C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标. 【详解】解:半径为1个单位长度的半圆的周长为12×2π×1=π, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度, ∴点P 每秒走12个半圆,∴当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,∵2021÷4=505余1, ∴P 的坐标是(2021,1), 故选:C . 【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题9.-1 【解析】解:有题意得,,,,则解析:-1 【解析】 解:有题意得,,,,则()ma b10.(-2,-1) 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】 本解析:(-2,-1) 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答. 【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1), 故答案为:(-2,-1). 【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),解析:120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB ),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°, 又因为∠DFE=∠BFC ,∠BFC=180°-(∠FBC+∠FCB ),因为角平分线CD 、EF 相交于F ,所以∠FBC+∠FCB=(∠B+∠C )÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,∴,∴,,,∵,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查了平解析:90x y z +-=︒【分析】过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;13.或【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+解析:35︒或63︒【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+∠CFE=180°设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.②当点Q在CD下方时,如图2设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=2x,3∴75°+2x+x=180°,3解得x=63°,∴∠EFP=63°.故答案为:35︒或63︒【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.15.【分析】连接OP,将PAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,解析:3230m n +=-【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=, ∵点P (m ,n )为第三象限内一点,m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-, 1133222OBP P S OB x m m =⋅=⨯⋅=-, 33182PAB OAB OAP OBP S S S S n m ∴=++=--+=, 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.16.【分析】通过观察可得,An 每6个点的纵坐标规律:,0,,0,-,0,点An 的横坐标规律:1,2,3,4,5,6,…,n ,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1 解析:20213,22⎛⎫- ⎪ ⎪⎝⎭ 【分析】 通过观察可得,A n 每6个点的纵坐标规律:32,0,32,0,-32,0,点A n 的横坐标规律:1,2,3,4,5,6,…,n ,点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次,点P 运动n 秒的横坐标规律: 12,1,32,2,52,3,…,2n ,点P 的纵坐标规律:32,0,32,0,032-,0,…,确定P 2021循环余下的点即可. 【详解】解:∵图中是边长为1个单位长度的等边三角形,∴113,22A ⎛⎫ ⎪ ⎪⎝⎭A 2(1,0)333,22A ⎛⎫ ⎪ ⎪⎝⎭A 4(2,0)553,22A ⎛⎫- ⎪ ⎪⎝⎭A 6(3,0)773,22A ⎛⎫ ⎪ ⎪⎝⎭…∴A n 中每6303030, 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→…”的路线运动,1秒钟走一段,P 运动每6秒循环一次点P 00,0,…, 点P 的横坐标规律: 12,1,32,2,52,3,…,2n , ∵2021=336×6+5,∴点P 2021的纵坐标为, ∴点P 2021的横坐标为20212,∴点P 2021的坐标20212⎛ ⎝⎭,,故答案为:20212⎛ ⎝⎭,. 【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴ ,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键. 19.两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B+∠1=180°,又有∠B+∠D=180°,由此即可证得.【详解】解析:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行【分析】要证BE ∥DF ,只需证∠1=∠D ,由AB ∥CD 可知∠B +∠1=180°,又有∠B +∠D =180°,由此即可证得.【详解】证明:∵AB ∥CD (已知)∴∠B +∠1=180°(两直线平行,同旁内角互补)∵∠B +∠D =180°(已知)∴∠1=∠D (同角的补角相等),∴BE ∥DF (同位角相等,两直线平行)故答案为:两直线平行,同旁内角互补;同角的补角相等;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1),;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(解析:(1)(3,4)A ,(0,1)B ;(2)9【分析】(1)根据坐标的特性以及C 点坐标,直接可以得出A 、B 的坐标(2)利用面积的和差求解:三角形ABC 的面积等于一个长方形的面积减去三个直角三角形的面积.【详解】解:(1)(3,4)A ,(0,1)B(2)3ABC S S S =-△长方形个三角形11145241533222=⨯-⨯⨯-⨯⨯-⨯⨯ =9【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=. 364349<6437∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为164±±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 二十二、解答题22.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(1)2,2-;(2)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.二十三、解答题23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC =23∠APC 理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE ﹣∠CKE =∠BAK ﹣∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP ﹣∠DCP ,∵∠BAK =23∠BAP ,∠DCK =23∠DCP , ∴∠BAK ﹣∠DCK =23∠BAP ﹣23∠DCP =23(∠BAP ﹣∠DCP )=23∠APC , ∴∠AKC =23∠APC .【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠FDM=12∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-1∠B.2【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.26.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】β= 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.。
华师大版数学七年级下册期末考试试卷及答案
华师大版数学七年级下册期末考试试题第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D2.若一个多边形的每个内角都为135°,则它的边数为( ) A .9 B .8 C .10 D .123.(邵阳中考)不等式组⎩⎨⎧x>-12x -3≤1的解集在数轴上表示正确的是( )4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是( )A .先把△ABC 向左平移5个单位,再向下平移2个单位B .先把△ABC 向右平移5个单位,再向下平移2个单位 C .先把△ABC 向左平移5个单位,再向上平移2个单位D .先把△ABC 向右平移5个单位,再向上平移2个单位第4题图5.下列正多边形的组合中能够铺满地面不留缝隙的是( ) A .正八边形和正三角形 B .正五边形和正八边形 C .正方形和正三角形 D .正六边形和正五边形6.如图,△ABC 绕点A 按逆时针方向旋转一定的角度后成为△AB ′C ′.有下列结论:①BC =B ′C ′;②∠BAB ′=∠CAC ′;③∠ABC =∠AB ′C ′;④△ABB ′≌△ACC ′.其中正确的结论有( )第6题图A.1个 B.2个 C.3个 D.4个7.已知△ABC,①如图甲,若P点是∠ABC和∠ACB的平分线的交点,则∠P=90°+12∠A;②如图乙,若P点是∠ABC和外角∠ACE的平分线的交点,则∠P=90°-∠A;③如图丙,若P点是外角∠CBF和∠BCE的平分线的交点,则∠P=90°-12∠A.上述说法正确的有()A.0个 B.1个 C.2个 D.3个8.有一根长40 cm的金属棒,欲将其截成x根长7 cm的小段和y根长9 cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=4,y=1C.x=3,y=2 D.x=2,y=3第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若2x3-2k+2=4是关于x的一元一次方程,则k=.10.若3x-2=2(x-3)与3(x+a)=a-5x有相同的解,那么a-1=.11.如图,△BDC≌△ABE,且∠BCD=90°,A,C,B在同一条直线上,AB=5 cm,AE=4 cm,BE=3 cm,则△ACD的面积为 cm2.第11题图12.在有理数范围内定义一种新运算“⊗”,其运算规则为a⊗b=-3a+2b,如-1⊗2=-3×(-1)+2×2=7,则不等式x⊗(-2)≥3的解集是.13.如图所示,已知∠AOB =30°,点P 在∠AOB 内部,点P 与点P 1关于OA 对称,与点P 2关于OB 对称,则∠P 1OP 2= .第13题图14.以长为13,14,x +5的三条线段为边可构成三角形,则x 的取值范围是 . 15.已知方程组⎩⎨⎧x -y =2k ,x +3y =1-5k 的解x 与y 的和为负数,则k 的取值范围是 .16.某种商品进价为800元,售价为1 200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率不低于5%,则至多打 折. 三、解答题(本大题共8小题,共72分) 17.(10分)解方程(组): (1)3x -12 -2x +16=-1;(2)⎩⎪⎨⎪⎧x +13+y -14=32,x -32+y +25=12.18.(6分)解不等式组⎩⎨⎧3x +2≤2(x +3),2x -13>x2,并写出不等式组的整数解.19.(8分)如图,已知在△BCD中,BC=4,BD=5.(1)直接写出CD的取值范围是1<CD<9;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.20.(8分)顶点在网格交点的多边形叫做格点多边形.如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.(1)在网格中画出△ABC向上平移4个单位长度后得到的△A1B1C1;(2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.AB C21.(8分)(乐山中考)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4,② 的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y>0. 求满足条件的m 的整数值.22.(10分)如图,在△ABC 中,∠BAC =120°,以BC 为边向外作等边三角形BCD ,将△ABD 绕着点D 按顺时针方向旋转60°到△ECD 的位置,若AB =3,AC =2,求∠BAD 的度数和AD 的长.23.(10分)(哈尔滨中考)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元,购买4个A 型放大镜和6个B 型放大镜需用152元. (1)求每个A 型放大镜和B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?24.(12分)(攀枝花中考)为了打造区域性中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?参考答案第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列图形既是轴对称图形,又是中心对称图形的是 (D )A B C D2.若一个多边形的每个内角都为135°,则它的边数为 (B ) A .9 B .8 C .10 D .123.(邵阳中考)不等式组⎩⎨⎧x>-12x -3≤1的解集在数轴上表示正确的是(B )4.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC 平移到△DEF 的位置,下面正确的平移步骤是 (A ) A .先把△ABC 向左平移5个单位,再向下平移2个单位 B .先把△ABC 向右平移5个单位,再向下平移2个单位 C .先把△ABC 向左平移5个单位,再向上平移2个单位 D .先把△ABC 向右平移5个单位,再向上平移2个单位第4题图5.下列正多边形的组合中能够铺满地面不留缝隙的是 (C ) A .正八边形和正三角形 B .正五边形和正八边形 C .正方形和正三角形 D .正六边形和正五边形6.如图,△ABC 绕点A 按逆时针方向旋转一定的角度后成为△AB ′C ′.有下列结论:①BC =B ′C ′;②∠BAB ′=∠CAC ′;③∠ABC =∠AB ′C ′;④△ABB ′≌△ACC ′.其中正确的结论有 (C )第6题图A .1个B .2个C .3个D .4个7.已知△ABC,①如图甲,若P点是∠ABC和∠ACB的平分线的交点,则∠P=90°+12∠A;②如图乙,若P点是∠ABC和外角∠ACE的平分线的交点,则∠P=90°-∠A;③如图丙,若P点是外角∠CBF和∠BCE的平分线的交点,则∠P=90°-12∠A.上述说法正确的有(C)A.0个 B.1个 C.2个 D.3个8.有一根长40 cm的金属棒,欲将其截成x根长7 cm的小段和y根长9 cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为(C)A.x=1,y=3 B.x=4,y=1C.x=3,y=2 D.x=2,y=3第Ⅱ卷(非选择题共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.若2x3-2k+2=4是关于x的一元一次方程,则k=1.10.若3x-2=2(x-3)与3(x+a)=a-5x有相同的解,那么a-1=15.11.如图,△BDC≌△ABE,且∠BCD=90°,A,C,B在同一条直线上,AB=5 cm,AE=4 cm,BE=3 cm,则△ACD的面积为32cm2.第11题图12.在有理数范围内定义一种新运算“⊗”,其运算规则为a⊗b=-3a+2b,如-1⊗2=-3×(-1)+2×2=7,则不等式x⊗(-2)≥3的解集是x≤-73.13.如图所示,已知∠AOB=30°,点P在∠AOB内部,点P与点P1关于OA对称,与点P2关于OB对称,则∠P1OP2=60°.第13题图14.以长为13,14,x +5的三条线段为边可构成三角形,则x 的取值范围是-4<x<22. 15.已知方程组⎩⎨⎧x -y =2k ,x +3y =1-5k 的解x 与y 的和为负数,则k 的取值范围是k>13 .16.某种商品进价为800元,售价为1 200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率不低于5%,则至多打7折. 三、解答题(本大题共8小题,共72分) 17.(10分)解方程(组): (1)3x -12 -2x +16=-1; 解:3(3x -1)-(2x +1)=-6, 化简得7x =-2,所以x =-27 .(2)⎩⎪⎨⎪⎧x +13+y -14=32,x -32+y +25=12.解:原方程组可化为⎩⎨⎧4(x +1)+3(y -1)=18,5(x -3)+2(y +2)=5,整理得⎩⎨⎧4x +3y =17,5x +2y =16, 解得⎩⎨⎧x =2,y =3.18.(6分)解不等式组⎩⎨⎧3x +2≤2(x +3),2x -13>x2, 并写出不等式组的整数解.解:⎩⎨⎧3x +2≤2(x +3), ①2x -13>x2, ②解①,得x≤4,解②,得x>2,不等式组的解集为2<x≤4.则不等式组的整数解为3,4.19.(8分)如图,已知在△BCD中,BC=4,BD=5.(1)直接写出CD的取值范围是1<CD<9;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.解:∵AE∥BD,∴∠CBD=∠A=55°.∵∠BDE为△BCD的一个外角,∴∠BDE=∠C+∠CBD.∴∠C=∠BDE-∠CBD=125°-55°=70°.20.(8分)顶点在网格交点的多边形叫做格点多边形.如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度.(1)在网格中画出△ABC向上平移4个单位长度后得到的△A1B1C1;(2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2;(3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.AB C答案:略21.(8分)(乐山中考)已知关于x ,y 的方程组⎩⎨⎧x -2y =m ,①2x +3y =2m +4,② 的解满足不等式组⎩⎨⎧3x +y ≤0,x +5y>0. 求满足条件的m 的整数值. 解:①+②,得3x +y =3m +4,③②-①,得x +5y =m +4,∵⎩⎨⎧3x +y ≤0,x +5y>0, ∴⎩⎨⎧3m +4≤0,m +4>0,解得-4<m ≤-43 , ∴满足条件的m 的整数值为-3,-2.22.(10分)如图,在△ABC 中,∠BAC =120°,以BC 为边向外作等边三角形BCD ,将△ABD 绕着点D 按顺时针方向旋转60°到△ECD 的位置,若AB =3,AC =2,求∠BAD 的度数和AD 的长.解:由∠BAC =120°知∠ABC +∠ACB =60°,因为∠ABD =∠ABC +∠CBD =∠DCE ,∠CBD =60°,由此可知∠ACB +∠BCD +∠DCE =360°-120°-60°=180°,即点A ,C ,E 在一条直线上.又因为AD =ED ,由旋转特征知,∠ADE =60°,故△ADE 为等边三角形,所以∠BAD =∠E =60°,AD =AE =AC +CE =AC +AB =5.23.(10分)(哈尔滨中考)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元,购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?解:(1)设每个A 型放大镜x 元,每个B 型放大镜y 元,根据题意,得⎩⎨⎧8x +5y =220,4x +6y =152, 解得⎩⎨⎧x =20,y =12. 答:每个A 型放大镜20元,每个B 型放大镜12元.(2)设购买a 个A 型放大镜,则购买(75-a)个B 型放大镜.根据题意,得20a +12(75-a)≤1 180,解得a ≤35.答:最多可以购买35个A 型放大镜.24.(12分)(攀枝花中考)为了打造区域性中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?解:(1)设甲、乙两种型号的挖掘机各需x 台,y 台.依题意得⎩⎨⎧x +y =8,60x +80y =540, 解得⎩⎨⎧x =5,y =3.答:甲、乙两种型号的挖掘机各需5台,3台.(2)设租用m 台甲型挖掘机,n 台乙型挖掘机.依题意,得60m +80n =540,化简,得3m +4n =27.∴m =9-43 n ,∴方程的解为⎩⎨⎧m =5,n =3, ⎩⎨⎧m =1,n =6. 当m =5,n =3时,支付租金为100×5+120×3=860元>850元,超出限额;当m =1,n =6时,支付租金为100×1+120×6=820元,符合要求.答:有一种租车方案,即租用1台甲型挖掘机和6台乙型挖掘。
七年级下期数学++华师大版+++期末易错题+
七年级下期数学华师大版期末易错题(40分钟)一.选择题(共11小题)1.若等式x=y可以变形为,则有()A.a>0 B.a<0C.a≠0 D.a为任意有理数2.已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.53.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程?a=﹣(x﹣6)无解,则a的值是()A.1 B.﹣1 C.±1 D.a≠14.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?()A.6 B.9 C.12 D.185.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元 C.0.95元 D.0.9元6.二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.47.当1≤x≤2时,ax+2>0,则a的取值范围是()A.a>﹣1 B.a>﹣2 C.a>0 D.a>﹣1且a≠08.如果关于x的不等式(m+1)x>m+1的解集为x<1,则m的取值范围是()A.m<0 B.m<﹣1 C.m>1 D.m>﹣19.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线10.夏季荷花盛开,为了便于游客领略“人从桥上过,如在水中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘的周长为280m,且桥宽忽略不计,则小桥的总长为()A.280m B.140m C.90m D.70m11.如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是()A.①⑤B.②⑤C.③⑤D.②④二.填空题(共8小题)12.已知(|m|﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,则m= .13.若4x﹣3y=0且x≠0,则= .14.若关于x的不等式2m一1<x<m+l无解,则m的取值范围是.15.若不等式组恰有两个整数解.则实数a的取值范围是.16.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= .17.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=12,则S1﹣S2的值为.18.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为.19.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.三.解答题(共5小题)20.解下列方程(1)(2).21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究二:若将△ADC改为任意四边形ABCD呢?已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(写出说理过程)探究三:若将上题中的四边形ABCD改为六边形ABCDEF(图(3))呢?请直接写出∠P 与∠A+∠B+∠E+∠F的数量关系:.23.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x= °; x= °; x= °;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F= °.24.如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.(1)将△ABC向下平移4个单位,得到△A′B′C′;(2)把△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C″,请你画出△A′B′C′和△A″B″C″(不要求写画法);(3)点B经过(1),(2)两次变换的路径长.七年级下期数学华师大版期末易错题(40分钟)参考答案一.选择题(共11小题)1.C;2.B;3.A;4.D;5.B;6.D;7.A;8.B;9.D;10.B;11.B;二.填空题(共8小题)12.1;13.;14.m≥2;15.<a≤1;16.24°;17.2;18.3﹣;19.±3;三.解答题(共5小题)20.;21.;22.∠P=(∠A+∠B+∠E+∠F)﹣180°;23.180;180;180;140;24.;。
华东师大版七年级下册数学期末试题带答案
华东师大版七年级下册数学期末试题带答案2021年七年级下册期末考试数学试题一、单选题(每小题3分;共30分)1.下列方程是一元一次方程的是()A。
5x+1-2=0B。
3x-2y=0C。
x^2-4=6D。
√x=22.将方程2/(2x-1)-3x+1=6去分母得到2(2x-1)-3x+1=6,错在()A。
分母的最小公倍数找错B。
去分母时漏乘项C。
去分母时分子部分没有加括号D。
去分母时各项所乘的数不同3.用“代入消元法”解方程组2x-x-1=8和2x+x-1=8,把①代入②正确的是()A。
2x+x+1=8B。
2x-x+1=8C。
2x+x-1=8D。
2x-x-1=84.下列四个选项中是方程组解的是()A。
x+y=1,x-y=1B。
x+y=1,x-y=-1C。
x-y=1,x+y=-1D。
x-y=-1,x+y=-15.若a>b,则下列不等式一定成立的是()A。
a-3<b-3B。
-2a<-2bXXX>2aD。
a^2<b^26.不等式3x-1>5的解集是()A。
x>2B。
x<2C。
x≥2D。
x≤27.如果一个多边形的每个外角都是60°,那么这个多边形是()A。
五边形B。
六边形C。
七边形D。
八边形8.为估计池塘两岸A、B间的距离,XXX在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A。
5mB。
15mC。
20mD。
28m9.下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是()A。
B。
C。
D。
10.下列图形不是轴对称图形的是()A。
B。
C。
D。
二、填空题(每小题3分;共15分)11.如图,一个上下边平行的纸条按如图所示方法折叠一下,则∠1=90°。
12.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是5.13.已知a=2x+1,b=4-x,且a、b在数轴上的位置如图所示,则x的取值范围是-3<x<2.14.已知方程5x-y-2=0,改写成用含x的式子表示y的形式为y=5x-2.15.关于x的方程3x-2m=1的解为正数,则m的取值范围是m<3/2.三、解答题(共8题;共75分)16.解不等式3(x-1)<4x-4,把它的解集在数轴上表示出来。
华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】
华师大版数学2023年七年级下册第二学期期末复习检测卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的有( )(第1题)A .4个B .3个C .2个D .1个2.若x =1是方程ax +2x =1的解,则a 的值是( )A .-1B .1C .2D .-123.下列等式变形不一定正确的是( )A .若x =y ,则x -5=y -5B .若x =y ,则ax =ayC .若x =y ,则3-2x =3-2yD .若x =y ,则=xc yc4.若关于x 的方程x +k =2x -1的解是负数,则k 的取值范围是( )A .k >-1B .k <-1C .k ≥-1D .k ≤-15.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a -3|+(b -7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7 B .7<c <10 C .3<c <7D .4<c <106.如图,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A .20 cm 2B .15 cm 2C .10 cm 2D .25 cm2(第6题) (第7题) (第8题)7.如图,将△ABC 绕点A 逆时针旋转90°能与△ADE 重合,点D 在线段BC 的延长线上,若∠BAC =20°,则∠AED 的大小为( )A .135°B .125°C .120°D .115°8.如图,桐桐从A 点出发,前进3 m 到点B 处后向右转20°,再前进3 m 到点C 处后又向右转20°,…,这样一直走下去,她第一次回到出发点A 时,一共走了( )A .100 mB .90 mC .54 mD .60m9.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是( )A .20分B .22分C .23分D .25分(第9题) (第10题)10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°二、填空题(每题3分,共15分)11.若一个正多边形的每个外角都等于45°,则用这种多边形能铺满地面吗?答:________.(填“能”或“不能”)12.如图,在△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连结EF ,则∠1、∠2、∠3的大小关系是________.(第12题) (第15题)13.若代数式3x +2与代数式x -10的值互为相反数,则x =________.14.二元一次方程组的解x ,y 的值相等,则k =________.{3x +2y =10,kx +(k +2)y =6)15.如图,l 1∥l 2,五边形ABCDE 是正五边形,那么∠1-∠2的度数为________.三、解答题(共75分)316.(8分)解方程(组):(1)-+=1; (2)2x -12x -24{34 x +y =12,4x -2y =10.)17.(9分)解不等式组:然后把它的解集在数轴上表示出来,{2x +3≥x +11,3x -105<4,)并求出x 的整数解.18.(8分)在图①,图②的网格纸中,△ABC 与△DEF 的三个顶点都在格点上.(1)在图①中,以点A 为对称中心画一个与△ABC 成中心对称的图形;(2)在图②中,将△DEF 绕点D 顺时针方向旋转90°,画出旋转后的图形.(第18题)19.(9分)如图,一条直线分别交△ABC的边及延长线于点D、E、F,∠A=20°,∠CED=100°,∠D=35°,求∠B的度数.(第19题)20.(9分)如图,∠1、∠2、∠3、∠4是四边形ABCD的四个外角.用两种方法说明∠1+∠2+∠3+∠4=360°.(第20题)21.(10分)如图,将△ABC沿射线AB的方向移动2 cm到△DEF的位置.5(1)找出图中所有平行的直线;(2)找出图中与AD 相等的线段,并写出其长度;(3)若∠ABC =65°,求∠BCF的度数.(第21题)22.(11分)如图,在△ABC 中,∠C =40°.将△ABC 绕点A 按逆时针方向旋转得到△ADE ,连结BD .当DE ∥AC 时,求∠ABD 的度数.(提示:在一个三角形中,若两条边相等,则它们所对的角也相等)(第22题)23.(11分)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?请说明理由.7答案一、1.C 2.A 3.D 4.B 5.B 6.A 7.D 8.C 9.C 10.A 点拨:设A ′D 与AC 交于点O .∵∠A =40°,∴∠A ′=∠A =40°.∵∠1=∠DOA +∠A ,∠1=112°,∴∠DOA =∠1-∠A =112°-40°=72°.∵∠DOA =∠2+∠A ′,∴∠2=∠DOA -∠A ′=72°-40°=32°.二、11.不能 12.∠1>∠2>∠3 13.2 14.1215.72° 点拨:如图,延长AB 交l 2于点M.(第15题)∵五边形ABCDE ∴正五边形ABCDE 的每个外角相等.∴∠MBC ==72°.360°5∵l 1∥l 2,∴∠2=∠BMD .∵∠1=∠BMD +∠MBC ,∴∠1-∠2=∠1-∠BMD =∠MBC =72°.三、16.解:(1)-+=1,2x -12x -24去分母,得-2(2x -1)+(x -2)=4,去括号,得-4x +2+x -2=4,移项,得-4x +x =4+2-2,合并同类项,得-3x =4,系数化为1,得x =-.43(2){34x +y =12,①4x -2y =10.②)①×2+②,得x =11,解得x =2.112把x =2代入②,得8-2y =10,解得y =-1,故方程组的解为{x =2,y =-1.)17.解:解2x +3≥x +11,得x ≥8;解<4,得x <10,3x -105∴不等式组的解集是8≤x <10.在数轴上表示为:(第17题)∴x 的整数解是8、9.18.解:(1)如图①,△AB ′C ′即为所求;(第18题)(2)如图②,△DE ′F ′即为所求.19.解:∵∠CED =100°,∠D =35°,∴∠BCD =180°-∠CED -∠D =180°-100°-35°=45°.∵∠BCD 是△ABC 的外角,∴∠B =∠BCD -∠A =45°-20°=25°.920.解:方法1:∵∠1+∠BAD =180°,∠2+∠ABC =180°,∠3+∠BCD =180°,∠4+∠CDA =180°,∴∠1+∠BAD +∠2+∠ABC +∠3+∠BCD +∠4+∠CDA =180°×4=720°.∵∠BAD +∠ABC +∠BCD +∠CDA =360°,∴∠1+∠2+∠3+∠4=360°.方法2:如图,连结BD,(第20题)∵∠1=∠ABD +∠ADB ,∠3=∠CBD +∠CDB ,∴∠1+∠2+∠3+∠4=∠ABD +∠ADB +∠2+∠CBD +∠CDB +∠4=180°×2=360°.21.解:(1)AE ∥CF ,AC ∥DF ,BC ∥EF .(2)AD =CF =BE =2 cm.(3)∵AE ∥CF ,∠ABC =65°,∴∠BCF =∠ABC =65°.22.解:∵将△ABC 绕点A 按逆时针方向旋转得到△ADE ,∴∠BAD =∠EAC ,△ADE ≌△ABC ,∴∠C =∠E =40°,AB =AD .∵DE ∥AC ,∴∠E =∠EAC .∴∠BAD =∠C =40°.∵AB =AD ,∴∠ABD =∠ADB ,∴∠ABD =(180°-∠BAD )=70°.1223.解:(1)设一把扫帚的售价是x 元,一把拖把的售价是y 元.由题意,可得解得{x +3y =26,3x +2y =29,){x =5,y =7.)答:一把扫帚的售价是5元,一把拖把的售价是7元.(2)设扫帚买了m 把,共花费W 元,则拖把买了(50-m )把.由题意得,W =5m +7(50-m )=-2m +350.∵扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,∴2(50-m )≤m ≤3(50-m ),解得≤m ≤.1003752∵m 为正整数,∴m 可以取34,35,36,37,∴共有四种方案:方案一:扫帚34把,拖把16把,共花费:-2×34+350=282(元).方案二:扫帚35把,拖把15把,共花费:-2×35+350=280(元).方案三:扫帚36把,拖把14把,共花费:-2×36+350=278(元).方案四:扫帚37把,拖把13把,共花费:-2×37+350=276(元).∵282>280>278>276,∴方案四最省钱.11。
华东师大版七年级下册第8章 一元一次不等式:不等式易错题整理复习
不等式易错题整理复习一.选择题1.如图,一个运算程序,若需要经过两次运算才能输出结果,则x 的取值范围为( )A .x >1B .1<x ≤7C .1≤x <7D .1≤x ≤72.若不等式组⎩⎨⎧>>-a x x 312的解集是x >2,则a 的取值范围是( ) A .a <2 B .a ≤2 C .a ≥2 D .无法确定3.关于x ,y 的方程组⎩⎨⎧=++=+3313y x k y x ,若2<k <4,则x ﹣y 的取值范围是( ) A .﹣1<x ﹣y <0 B .0<x ﹣y <1 C .﹣3<x ﹣y <﹣1 D .﹣1<x ﹣y <14.不等式组2≤3x ﹣7<8的所有整数解为( )A .3,4,5B .3,4C .4,5D .35.关于x 的不等式组0233(2)x m x x ->⎧⎨--⎩≥恰有五个整数解,那么m 的取值范围为( ) A .﹣2≤m <﹣1 B .﹣2<m <﹣1 C .m <﹣1 D .m ≥﹣26.不等式组2502103x x +>⎧⎪⎨-⎪⎩≤的最小整数解是( ) A .﹣3 B .﹣2 C .0 D .17.不等式组4261x x m ->-⎧⎨->-⎩无解,则m 的取值范围是( ) A .m ≥5 B .m ≥6 C .m >6 D .m ≤68.对于有理数x ,我们规定{x }表示不小于x 的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若 3104=⎭⎬⎫⎩⎨⎧+x ,则x 的取值可以是( ) A .10B .20C .30D .40二.填空题9.不等式组⎩⎨⎧>-≤-01202x x 的整数解是 . 10.若不等式组⎩⎨⎧->-≥+22152x x a x 有解,则a 的取值范围是 . 11.若不等式组⎩⎨⎧≤-+>043a x x x 有3个整数解,则a 的取值范围是 . 12.已知关于x 、y 方程组⎩⎨⎧=-=+k x y y x 252的解满足x >1,y ≥2,则k 的取值范围是 . 13.关于x 的不等式组⎪⎩⎪⎨⎧≤+->-x x x x 610325310的所有整数解的和是 .14.若不等式组⎩⎨⎧->+<+a x x a x 47203的解集为x <0,则a 的取值为 . 15.关于x 的不等式组⎩⎨⎧<->-ba x ab x 22的解集为﹣3<x <3,则a = ,b = .16.已知关于x 的不等式组⎩⎨⎧>--≥-0125a x x 有5个整数解,则a 的取值范围是 . 17.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 . 三.解答题18.解下列不等式或不等式组,并把解集在数轴上表示出来:(1))1(47)2(3-<-+x x (2)⎪⎩⎪⎨⎧-<+≥--13214)2(3x x x x19.已知|a ﹣1|=1﹣a ,若a 为整数时,方程组⎩⎨⎧+=-=+2653a y x a y x 的解x 为正数,y 为负数,求a 的值?20.学校预备采购一批数学教学用具,已知购买1套立体模型和2套三角板共需300元,购买2套立体模型和3套三角板共需510元.(1)求1套立体模型和1套三角板的价格各是多少元?(2)若学校准备购买这两种数学教学用具共80套,要求每种都要购买,且三角板的数量少于立体模型的数量,又根据学校预算,购买总金额不能超过8500元,请问学校共有几种购买方案?(请写出具体的购买方案).参考答案1.C .2.B .3.B .4.B .5.A .6.B .7.B .8.B .9. 1,2 .10. a >2 .11. 5≤a <6 .12. ﹣1≤k <1 .13. 9 .14. 0或﹣7 .15.a = ﹣3 ,b = 3 .16. ﹣2≤a <﹣1 .17. a ≥3 .18.解:(1)去括号得:3x +6﹣7<4x ﹣4,移项得:3x ﹣4x <﹣4﹣6+7,合并同类项得:﹣x <﹣3,系数化为1得:x >3,不等式的解集为:x >3,(2)解不等式x ﹣3(x ﹣2)≥4得:x ≤1, 解不等式321x <x ﹣1得:x >4, 即该不等式组无解,19.a 的值为0或1.20.解:1套立体模型价格为120元,1套三角板的价格是90元,(2)学习共有三套购买方案,方案一:可购买41套立体模型,39套三角板,方案二:可购买42套立体模型,38套三角板,方案三:可购买43套立体模型,37套三角板.。
华师大版初中数学七年级下册期末测试题及参考答案
华师七下期末能力测试题一、填空题(每小题3分,共30分)1、五边形中,前四个角的比为1∶2∶3∶4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________.2、本学期,我们做过“抢30”的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30谁就获胜”,改为“每次可以连说三个数,谁先抢到33谁就获胜”,那么采取适当策略,其结果_________者胜.3、如图1,在△ABC ,∠A=36°,D 为AC 边上的一点,AD=BD=BC ,则图中的等腰三角形共有_______个.4、已知△ABC 的边长a 、b 、c 满足(1)()2240a b -+-=,(2)c 为偶数,则c 的值为________.5、已知不等式523x a <+的解集是32x <,则a 的值是________. 6、方程34x y -=中,有一组解x 与y 互为相反数,则3________x y +=. 7、请列举一件可能事件、不可能事件、必然事件:__________________________________________ ____________________________________________ ___________________________________________.8、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm ,则其他两边长分别为________.9、将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;如果每人分6个橘子,则最后一个小朋友分得的橘子将少于3个,由以上可知共有________个小朋友分________个橘子. 10、根据x 的2倍与5的和比x 的12小10,可列方程为________________.ABCD图1二、选择题(每小题3分,共30分) 11、正五边形的对称轴共有( ) A.2条B .4条C .5条D .10条12、有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个 A .4B .5C .6D .无数13、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( ) A .31元 B .30.2元 C .29.7元 D .27元 14、已知15 5-2x m y m =+=,若3m >-,则x 与y 的关系为( ) A .x y =B .x y <C .x y >D .不能确定15、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90°B .105°C .130°D .120°16、如图2,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50°B .65°C .70°D .75°17、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,则黑皮有()32x -块,每块白皮有六条边,共6x 边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边.要求出白皮、黑皮的块数,列出的方程正确的是( ) A .332x x =- B .()3532x x =- C .()5332x x =- D .632x x =-18、如图4,将正方形ABCD 的一角折叠,折痕为AE ,∠B ′AD 比∠B ′AE 大48°,设∠B ′AE 和 ∠B ′AD 的度数分别为x 、y ,那么x 、y 所适合的 一个方程组是( )ABFED图2E图3A .4890y x y x -=⎧⎨+=⎩B .482y x y x-=⎧⎨=⎩C .48290y x y x -=⎧⎨+=⎩D .48290x y y x -=⎧⎨+=⎩19、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是( ) A .16 B .25 C .38 D .49 20、等腰三角形的腰长是4cm ,则它的底边长不可能是( ) A .1cmB .3cmC .6cmD .9cm三、解答题(每小题10分,共60分)21、如图5,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,已知△ADE 的周长为10cm ,BC 的长为5cm ,求△ABC 的周长.22、儿童公园的门票价格规定如下表:少,不到50人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问:(1)两班名有多少学生?(2)如果两联合起来,作为一个团体购票,可以省多少钱?A CE DO图523、已知31x y =⎧⎨=-⎩是方程组3108x ky mx y +=⎧⎨+=⎩的解,求k 和m 的值.24、已知一个等腰三角形的三边长分别为x 、2x 、5x -3,求这个三角形的周长.25、某校七(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:办法弄清这两个被污染的两个数字吗?说明你的理由.26、某商场准备进一批两种不同型号的衣服,已知购进A 种型号衣服9件,B 种型号衣服10件,则共需1810元;若购进A 种型号衣服12件,B 种型号衣服8件,共需1880元;已知销售一件A 型号衣服可获利18元,销售一件B 型号衣服可获利30元,要使在这次销售中获利不少于699元,且A 型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.华师七下期末能力测试题参考答案一、填空题1、40°,80°,120°,160°,140°2、先报3、34、45、答案不惟一6、27、答案不惟一8、7,79、1800° 10、125102x +=- 二、选择题11、C 12、B 13、D 14、B 15、C 16、B 17、B 18、C 19、A 20、D 三、解答题 21、15cm22、(1)班有48人,(2)班有56人,合买可省304元23、解:把31x y =⎧⎨=-⎩代入方程组()33110318k m ⨯+-⨯=⎧⎪⎨-=⎪⎩得,解得:k =-1,m =3.24、显然2x x ≠,又若53x x =-,则532x x x +-=不合题意. 所以:253x x =-,解得:1x =,所以三角形周长为1225++=. 25、解:设捐款2元的有x 人,捐款3元的有y 人,则6740162347100x y x y +++=⎧⎨⨯+++⨯=⎩ 解之得:32x y =⎧⎨=⎩ 答:捐款2元的有3人,捐款3元的有20人.26、(1)设A 种型号的衣服每件x 元,B 种型号的衣服y 元,则:91018101281880x y x y +=⎧⎨+=⎩,解之得90100x y =⎧⎨=⎩(2)设B 型号衣服购进m 件,则A 型号衣服购进()24m +件,可得:()18243069919 22428m m m m ++⎧⎪⎨+⎪⎩≥解之得≤≤12≤ ∵m 为正整数,∴m =10、11、12,2m +4=24、26、28.答:有三种进货方案:(1) B 型号衣服购买10件,A 型号衣服购进24件; (2) B 型号衣服购买11件,A 型号衣服购进26件;(3) B 型号衣服购买12件,A 型号衣服购进28件.。
华师大版初中数学七年级下册期末试卷及答案(精)
华师大版初中数学七年级下册期末试卷及答案(精)-CAL-FENGHAI.-(YICAI)-Company One130︒l C'B'A'B C A 50︒长春市第87中学七年级数学下册测 试 题一、选择题(每小题3分,共30分) 1、方程│3x│=18的解的情况是( ).A .有一个解是6B .有两个解,是±6C .无解D .有无数个解 2、不等式x -2<0的正整数解是( ) A .1 B .0,1 C .1,2 D .0,1,23.如图,△ABC 经过怎样的平移得到△DEF 【 】 A .把△ABC 向左平移4个单位,再向下平移2个单位B .把△ABC 向右平移4个单位,再向下平移2个单位 C .把△ABC 向右平移4个单位,再向上平移2个单位D .把△ABC 向左平移4个单位,再向上平移2个单位4、不等式2x +3≥5的解集在数轴上表示正确的是( )5.解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得 ( )。
A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132x x -+= D 、20.250.11032x x-+= 6、如图,ΔABC 如图,ΔABC6、与ΔA’B’C’关于直线l 对称,则∠B 的度数为( )A .50° B.30° C.100° D.90°7、.现有正三角形、正十边形与第三种正多边形能铺平整的地面,则第三种正多边形是( )A .正十二边形B .正十三边形C .正十四边形D .正十五边形8、在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于( ). A .10分 B .15分 C .20分 D .30分9、把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领, 这捆书的本数是 【 】.第3题A BCDEFA .10B .52C .54D .5610、如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC △沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=【 】A. 140︒B. 130︒C. 110︒D. 70︒二、填空题(每小题3分,共24分)11、若x =-9是方程131-=+m x 的解,则m = 。
【精品】华师大版七年级(下)期末数学常考试题100道(解析版)
华师大版七年级(下)期末数学常考试题100题参考答案与试题解析一、选择题(共30小题)1.(常考指数:47)在等边△ABC所在的平面内求一点P,使△PAB,△PBC,△PAC都是等腰三角形,具有这样性质的点P有()A.1B.4C.7D.10考点:等腰三角形的判定;等边三角形的性质.分析:本题利用了等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线.解答:解:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线得3个交点,再加三角形的垂心,一共10个.故具有这种性质的点P共有10个.故选:D.点评:本题考查的是等边三角形的性质及等腰三角形的判定定理,解答此题时要根据等边三角形三线合一的特进行解答.2.(常考指数:25)已知是二元一次方程组的解,则2m﹣n的算术平方根为()A.4B.2C.D.±2考点:二元一次方程组的解;算术平方根.分析:由于已知二元一次方程的解,可将其代入方程组中,即可求出m、n的值,进而利用算术平方根定义可求2m﹣n的算术平方根.解答:解:由题意得:,解得;∴===2;故选:B.点评:此题既考查了二元一次方程组的解法,也考查了算术平方根的定义,其中能够根据二元一次方程的解来得m、n的值,是解答此题的关键.3.(常考指数:33)如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是()A.0B.2C.5D.8考点:代数式求值.专题:整体思想.分析:将a﹣3b=﹣3整体代入即可求出所求的结果.解答:解:∵a﹣3b=﹣3,代入5﹣a+3b,得5﹣a+3b=5﹣(a﹣3b)=5+3=8.故选:D.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,可以利用“整体代入法”求代数式的值.4.(常考指数:43)如果a<b<0,下列不等式中错误的是()D.a﹣b<0A.a b>0 B.a+b<0 C.<1考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,则a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,则|a|>|b|,则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;故选:C.点评:利用特殊值法验证一些式子错误是有效的方法.5.(常考指数:35)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.30.2元C.29.7元D.27元考点:一元一次方程的应用.专题:销售问题.分析:本题要注意关键语“按标价9折出售,仍获利润10%”.要求商品进货价,可先设出未知数,再依题意列方程求解.解答:解:设进货价为x元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.6.(常考指数:27)某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列的方程正确的是()A.x•50%×80%=240 B.x•(1+50%)×80%=240 C.240×50%×80%=x D.x•(1+50%)=240×8考点:由实际问题抽象出一元一次方程.专题:销售问题.分析:等量关系为:标价×8折=240,把相关数值代入即可求得所求的方程.解答:解:这件衣服的标价为x•(1+50%),打8折后售价为x•(1+50%)×80%,可列方程为x•(1+50%)×80%=240,故选:B.点评:根据实际售价找到相应的等量关系是解决问题的关键,注意应先算出这件衣服的标价.7.(常考指数:31)小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的一端,这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.小宝体重可能是()A.23.3千克B.23千克C.21.1千克D.19.9千克考点:一元一次不等式组的应用.专题:压轴题.分析:找到关键描述语,进而找到所求的量的等量关系,列出不等式组求解.解答:解:设小宝的体重为x千克.故,所以23>x≥21,故选:C.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系即可求解.8.(常考指数:35)不等式2x≤6的解集为()A.x≥3 B.x≤3 C.x≥D.x≤考点:解一元一次不等式.专题:计算题.分析:在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个数,不等号的方向改变.因此方程两边同除以2,不等式方向不变,可得出x≤3.解答:解:由2x≤6两边同除以2得:x≤3,点评:本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;(2)在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.9.(常考指数:37)下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=考点:一元一次方程的定义.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+(a,b是常数且a≠0).解答:解:A、x2﹣4x=3的未知数的最高次数是2次,不是一元一次方程,故A错误;B、x=0符合一元一次方程的定义,故B正确;C、x+2y=1是二元一次方程,故C错误;D、x﹣1=,分母中含有未知数,是分式方程,故D错误.故选:B .点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的最高次数是1,一次项系数不是这是这类题目考查的重点.10.(常考指数:27)下列图形中对称轴最多的图形是()A.B.C.D.考点:轴对称图形.分析:先找出对称轴,从而得出对称轴最多的图形.解答:解:A、根据它的组合特点,有4条对称轴;B、有4条对称轴;C、有无数条对称轴;D、不是轴对称图形.故选:C .点评:能够正确说出轴对称图形的对称轴.11.(常考指数:48)如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形考点:三角形的外角性质.分析:三角形的一个外角小于与它相邻的内角,故内角大于相邻外角;根据三角形外角与相邻的内角互补,故角>90°,为钝角三角形.解答:解:如图,∵∠1<∠ABC,∵∠1=180°﹣∠ABC,∴∠ABC>90°.故选:C.点评:三角形的一边与另一边的延长线组成的角,叫做三角形的外角,可见外角与相邻的内角互补.本题要运此关系解题.12.(常考指数:36)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件考点:随机事件.分析:根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.解答:解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选:A.点评:用到的知识点为:必然事件指在一定条件下一定发生的事件.13.(常考指数:37)如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为()A.600m2B.551m2C.550m2D.500m2考点:矩形的性质.专题:应用题;压轴题.分析:要计算耕地的面积,只要求出小路的面积,再用矩形的面积减去小路的面积即可.解答:解:30×20﹣30×1﹣20×1+1×1=600﹣30﹣20+1=551(平方米),故选:B.点评:解答此题的关键是正确求出小路的面积,要注意两条小路重合的面积最后要减去.14.(常考指数:25)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个考点:勾股定理的逆定理;三角形内角和定理.分析:根据直角三角形的判定方法对各个选项进行分析,从而得到答案.解答:解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:C.点评:解答此题要用到三角形的内角和为180°,若有一个内角为90°,则△ABC是直角三角形.15.(常考指数:27)如图,数轴上所表示的不等式组的解集是()A.x≤2 B.﹣1≤x≤2 C.﹣1<x≤2 D.x>﹣1考点:在数轴上表示不等式的解集.分析:数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解答:解:不等式的解集是﹣1与2之间的部分,并且包含2,但不包含﹣1.因而解集为:﹣1<x≤2.故选:C.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空圆点表示.16.(常考指数:25)以下各组数据为长度的三条线段,能组成三角形的是()A.1,2,3 B.1,4,3 C.5,9,5 D.2,7,3考点:三角形三边关系.分析:根据三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边,进行分析判断.解答:解:A、1+2=3,不能组成三角形,故A错误;B、1+3=4,不能组成三角形,故B错误;C、5+5>9,9﹣5<5,能组成三角形,故C正确;D、2+3<7,不能组成三角形,故D错误.故选:C.点评:一定注意三角形的三边关系:两边之和>第三边,两边之差<第三边.17.(常考指数:87)下面有4个汽车标志图案,其中是轴对称图形的是()A.②③④B.①③④C.①②④D.①②③考点:轴对称图形.分析:利用轴对称图形性质,关于某条直线对称的图形叫轴对称图形得出即可.解答:解:只有第4个不是轴对称图形,其它3个都是轴对称图形.故选:D.点评:此题主要考查了轴对称图形的性质,轴对称的关键是寻找对称轴,两边图象折叠后可重合.18.(常考指数:31)若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.﹣1 B.0C.1D.考点:一元一次方程的解.专题:计算题.分析:根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.解答:解:∵x=2是关于x的方程2x+3m﹣1=0的解,∴2×2+3m﹣1=0,解得:m=﹣1.故选:A.点评:本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.19.(常考指数:28)不等式3x﹣5<3+x的正整数解有()A.1个B.2个C.3个D.4个考点:一元一次不等式组的整数解.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:解不等式3x﹣5<3+x的解集为x<4,所以其正整数解是1,2,3,共3个.故选:C.点评:解答此题要先求出不等式的解集,再确定正整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.20.(常考指数:45)不等式组的最小整数解是()A.﹣1 B.0C.2D.3考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其最小整数解即可.解答:解:不等式组的解集为﹣<x≤3,所以最小整数解为﹣1.故选:A.点评:考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小小大大小中间找,大大小小解不了.21.(常考指数:39)下列多边形中,能够铺满地面的是()A.正五边形B.正六边形C.正七边形D.正八边形考点:平面镶嵌(密铺).专题:应用题;压轴题.分析:正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺.正七边形,正八边形同理可知不能铺.正六边形的每个内角是120°,能整除360°,能密铺.解答:解:正六边形的每个内角是120°,能整除360°,能密铺;正五边形,正七边形,正八边形的一个内角不能整除360°,所以都不能单独进行密铺.故选:B.点评:根据镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除:若能整除,则进行平面镶嵌;若不能整除,则不能进行平面镶嵌.22.(常考指数:42)如图,将△ABC绕点C顺时针旋转40°得△A′B′C,若AC⊥A′B′,则∠BAC等于()A.50°B.60°C.70°D.80°考点:旋转的性质.分析:已知旋转角度,旋转方向,可求∠A′CA,根据互余关系求∠A′,根据对应角相等求∠BAC.解答:解:依题意旋转角∠A′CA=40°,由于AC⊥A′B′,由互余关系得∠A′=90°﹣40°=50°,由对应角相等,得∠BAC=∠A′=50°.故选:A.点评:本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易23.(常考指数:40)已知是方程kx﹣y=3的一个解,那么k的值是()A.2B.﹣2 C.1D.﹣1考点:二元一次方程的解.分析:知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k的一元一次方程,从而可以求出k 值.解答:解:把代入方程kx﹣y=3,得:2k﹣1=3,解得k=2.故选:A.点评:解题的关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程,利用方程的解的定义以求方程中其它字母的值.24.(常考指数:24)(n+1)边形的内角和比n边形的内角和大()A.180°B.n×180°C.360°D.n×360°考点:多边形内角与外角.分析:(n+1)边形的内角和是(n+1﹣2)180°,n边形的内角和是(n﹣2)180°.内角和增大(n+1﹣2)180(n﹣2)180°=180°.解答:解:(n+1﹣2)180°﹣(n﹣2)180°=180°.故选:A.点评:本题主要考查了多边形的内角和定理,多边形的内角和公式,是需要识记的内容.25.(常考指数:25)将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.考点:生活中的轴对称现象.分析:认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C是符合要求的.解答:解:观察选项可得:只有C是轴对称图形.故选:C.点评:本题考查轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是对称图形.折痕所在的这条直线叫做对称轴,仔细观察图形是正确解答本题的关键.26.(常考指数:49)不等式组:的解集在数轴上表示正确的是()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:压轴题.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.解答:解:解不等式组得,再分别表示在数轴上,如图:答案:B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空圆点表示.27.(常考指数:35)把方程3x+去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.3x+2(2x﹣1)=3﹣3(x+1)考点:解一元一次方程.分析:同时乘以各分母的最小公倍数,去除分母可得出答案.解答:解:去分母得:18x+2(2x﹣1)=18﹣3(x+1).故选:A.点评:本题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项和系数化为1,在去分母时一定注意:不要漏乘方程的每一项.28.(常考指数:37)一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数的性质.分析:根据一次函数的性质,当k>0时,图象经过第一、三象限解答.解答:解:∵k=2>0,∴函数经过第一、三象限,∵b=﹣3<0,∴函数与y轴负半轴相交,所以,图象不经过第二象限.故选:B.点评:本题主要考查一次函数的性质,需要熟练掌握.29.(常考指数:25)下列长度的三条线段能组成三角形的是()A.1、2、3.5 B.4、5、9 C.20、15、8 D.5、15、8考点:三角形三边关系.分析:根据三角形任意两边之和大于第三边,任意两边之差小于第三边,利用排除法求解.解答:解:A、∵1+2=3<3.5,∴不能组成三角形;B、∵4+5=9,∴不能组成三角形;C、20、15、8,能组成三角形;D、5+8=13<15,不能组成三角形.故选:C.点评:本题主要考查三角形的三边性质,需要熟练掌握.30.(常考指数:59)尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP由作法得△OCP≌△ODP的根据是()A.S AS B.A SA C.A AS D.S SS考点:全等三角形的判定.专题:作图题.分析:认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三形符合SSS判定方法要求的条件,答案可得.解答:解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;∴在△OCP和△ODP中,∴△OCP≌△ODP(SSS).故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角应相等时,角必须是两边的夹角.二、填空题(共30小题)31.(常考指数:14)用直径为4cm的圆钢,铸造三个直径为2cm,高为16cm的圆柱形零件,则需要截取的圆钢长12cm.考点:一元一次方程的应用.专题:几何图形问题.分析:在此题中要知道圆柱体的体积公式,即:底面积×高,同时根据铸造前后的体积相等即可列出方程求解.解答:解:设截取的圆钢长xcm.根据题意得:,4x=48,解得:x=12.故答案为:12.点评:注意正确运用圆柱的体积公式.同时学生要结合实际,能够理解铸造前后的体积相等建立方程.32.(常考指数:17)若不等式组无解,则m的取值范围是m≥8.考点:解一元一次不等式组.分析:不等式组无解就是两个不等式的解集没有公共部分,可利用数轴进行求解.解答:解:x<8在数轴上表示点8左边的部分,x>m表示点m右边的部分.当点m在8这点或这点的右边时两个不等式没有公共部分,即不等式组无解.则m≥8.故答案为:m≥8.点评:本题考查不等式组中不等式的未知字母的取值,利用数轴能直观的得到,易于理解.33.(常考指数:22)在四边形ABCD中,AB=DC,AD=BC,请再添加一个条件,使四边形ABCD是矩形.你添加的条件是对角线相等.(写出一种即可)考点:矩形的判定.专题:压轴题;开放型.分析:已知两组对边相等,如果其对角线相等可得到△ABD≌△ABC≌△ADC≌△BCD,进而得到,∠A=∠B=∠C=∠D=90°,使四边形ABCD是矩形.解答:解:若四边形ABCD的对角线相等,则由AB=DC,AD=BC可得.△ABD≌△ABC≌△ADC≌△BCD,所以四边形ABCD的四个内角相等分别等于90°即直角,所以四边形ABCD是矩形,故答案为:对角线相等.点评:此题属开放型题,考查的是矩形的判定,根据矩形的判定,关键是要得到四个内角相等即直角.34.(常考指数:21)将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有7个儿童,分37个橘子.考点:一元一次不等式的应用.分析:如果每人分4个橘子,则剩下9个橘子,可设有x个儿童,则橘子数有:4x+9;每人分6个橘子,则最一个儿童分得的橘子数将少于3个,即橘子总数小于6(x﹣1)+3,就可以列出不等式,得出x的取值范解答:解:设共有x个儿童,则共有4x+9个橘子,则1≤4x+9﹣6(x﹣1)<3,解得6<x≤7,所以共有7个儿童,分了4x+9=37个橘子,故答案为:7,37.点评:本题考查的是一元一次不等式的运用,要注意不等式两边同时除以一个负数不等式的方向要改变.正确解“最后一个儿童分得的橘子数将少于3个”这句话包含的不等关系是解决本题的关键.35.(常考指数:22)已知方程x﹣8=2y,用含y的代数式表示x,那么x=10y+40.考点:解二元一次方程.分析:要用含y的代数式表示x,就要把方程中含有x的项移到方程的左边,其它的项移到方程的右边,再进一合并同类型、系数化为1即可.解答:解:移项,得x=2y+8,系数化1,得x=10y+40.故答案为:10y+40.点评:此题考查了方程的变形,能够熟练运用移项、合并同类型、系数化为1的步骤进行变形.36.(常考指数:12)若关于x、y的方程x m﹣1﹣2y3+n=5是二元一次方程,则m=2,n=﹣2.考点:二元一次方程的定义.分析:根据二元一次方程的定义,含未知数项的次数为一次,求出m、n的值.解答:解:因为关于x、y的方程x m﹣1﹣2y3+n=5是二元一次方程,所以,解得m=2,n=﹣2.故答案为:2,﹣2.点评:二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.37.(常考指数:17)如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为60度.考点:旋转的性质;等边三角形的性质.分析:此题只需根据旋转前后的两个图形全等的性质,进行分析即可.解答:解:连接PP′.根据旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.点评:此题主要考查了图形旋转的性质,难度不大.38.(常考指数:18)一个承重架的结构如图所示,如果∠1=155°,那么∠2=65度.考点:三角形的外角性质.分析:根据三角形的一个外角等于和它不相邻的两个内角的和解答.解答:解:∵∠1=155°,∠2+90°=∠1,∴∠2=155°﹣90°=65°.故答案为:65.点评:本题主要利用三角形的外角性质求解.39.(常考指数:23)已知△ABC中,∠A=∠B=∠C,则△ABC为直角三角形.考点:三角形内角和定理.分析:要判断△ABC的形状,需求出△ABC中各内角的度数.题目中有三个未知数∠A,∠B,∠C,已知两个件,再利用隐含的条件∠A+∠B+∠C=180°,可求出各角度数.解答:解:∵∠A=∠B=∠C,∴∠C=3∠A,∠B=2∠A.∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,∴∠A=30°,∴∠C=3∠A=90°.故△ABC为直角三角形.故答案为:直角.点评:有3个未知值时,应会用其中的一个字母把另两个表示出来,注意题中隐含的三角形的内角和等于180条件.40.(常考指数:21)若|x﹣y|+(y+1)2=0,则x+y=﹣2.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵|x﹣y|+(y+1)2=0,∴x﹣y=0,y+1=0,∴x=﹣1,y=﹣1.∴x+y=﹣2.故答案为:﹣2.点评:本题考查的知识点是:某个数的绝对值与另一数的平方的和等于0,那么绝对值里面的代数式的值为0,方数的底数为0.41.(常考指数:12)x与3的和不小于﹣6,用不等式表示为x+3≥﹣6.考点:由实际问题抽象出一元一次不等式.专题:和差倍关系问题.分析:关系式为:x与3的和≥﹣6,把相关数值代入即可.解答:解:∵x与3的和为x+3,“不小于”用数学符号表示为“≥”,可列不等式为:x+3≥﹣6,故答案为:x+3≥﹣6.点评:考查列一元一次不等式的问题,易错点是理解“不小于”用数学符号表示应为“≥”.42.(常考指数:20)对甲、乙两种机床生产的同一种零件进行抽样检测(零件个数相同),其平均数方差的计算结果是:机床甲:甲=15,S甲2=0.03;机床乙:乙=15,S乙2=0.06.由此可知甲(填“甲”或“乙”)机床的性能较好.考点:方差;算术平均数.专题:应用题.分析:根据方差的意义,方差反映了一组数据的波动大小,方差越大,波动性越大,比较两台机床的方差后,以得出结论.解答:解:∵S2甲<S2乙,∴甲机床的性能较好.故答案为:甲.点评:本题考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.43.(常考指数:30)若关于x的不等式组的解集是x>2,则m的取值范围是m≤2.考点:不等式的解集.分析:根据不等式组的解集,可判断m与2的大小.解答:解:因为不等式组的解集是x>2,根据同大取较大原则可知:m<2,当m=2时,不等式组的解集也是x>2,所以m≤2.故答案为:m≤2.点评:主要考查了不等式的运用.根据题意分别求出对应的值,利用不等关系求解.44.(常考指数:12)已知等腰三角形的一个内角为70°,则它的顶角为40或70度.考点:等腰三角形的性质;三角形内角和定理.分析:本题考查的是等腰三角形的性质.首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底所以要分两种情况进行讨论.解答:解:本题可分两种情况:①当70°角为底角时,顶角为180°﹣2×70°=40°;②70°角为等腰三角形的顶角;因此这个等腰三角形的顶角为40°或70°.故答案为:40或70.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注分情况进行讨论,这是十分重要的,也是解答问题的关键.45.(常考指数:21)不等式x﹣2>0的解集是x>2.考点:解一元一次不等式.分析:本题可对方程直接进行移项,即可得出x的取值.解答:解:对不等式x﹣2>0移项得:x>2.故答案为:x>2.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个数不等号的方向改变.46.(常考指数:38)请写出一个方程的解是2的一元一次方程:x﹣2=0.考点:一元一次方程的定义.专题:开放型.分析:可设未知数为x,由于x=2,那么x﹣2=0.解答:解:答案不唯一,例如x﹣2=0.故答案为:x﹣2=0.点评:解决本题的关键是把未知数看成2得到相应等式.47.(常考指数:54)关于x的不等式3x﹣2a≤﹣2的解集如图所示,则a的值是﹣.。
华师大版七年级下册数学期末考试试题及答案
华师大版七年级下册数学期末考试试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)方程﹣3x=6的解是()A.x=2 B.x=﹣3 C.x=﹣2 D.x=﹣182.(3分)若a>b,则下列不等式中,不成立的是()A.a+5>b+5 B.a﹣5>b﹣5 C.5a>5b D.﹣5a>﹣5b3.(3分)三条线段a,b,c分别满足下列条件,其中能构成三角形的是()A.a+b=4,a+b+c=9 B.a:b:c=1:2:3C.a:b:c=2:3:4 D.a:b:c=2:2:44.(3分)商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种5.(3分)一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种6.(3分)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°7.(3分)已知a=x+2,b=x﹣1,且a>3>b,则x的取值范围是()A.x>1 B.x<4 C.x>1或x<4 D.1<x<48.(3分)一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是()千米/小时.A.35 B.40 C.45 D.509.(3分)如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a >b),则(a﹣b)等于()A.3 B.4 C.5 D.610.(3分)如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如果不等式组的解集是x>3,那么m的取值范围是.12.(3分)小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了千米(途中休息时间不计).13.(3分)如图,将周长为15cm的△ABC沿射线BC方向平移2cm后得到△DEF,则四边形ABFD的周长为cm.14.(3分)如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是.15.(3分)如图,在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=1cm2,则S△BEF=cm2.16.(3分)两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是.三、解答题(共8小题,满分72分)17.(6分)﹣=1.2.18.(7分)已知方程4x﹣3y﹣6z=0与方程x﹣3y﹣3z=0有相同的解,求x:y:z.19.(7分)在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED 的度数.20.(9分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=度;(2)求∠EDF的度数.21.(10分)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.22.(12分)如图,在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,点E是BC上一个动点(点E与B、C不重合),连AE,若a、b满足,且c是不等式组的最大整数解.(1)求a,b,c的长;(2)若AE平分△ABC的周长,求∠BEA的大小;(3)是否存在线段AE将三角形ABC的周长和面积同时平分?若存在,求出BE的长;若不存在,请说明理由.23.(12分)将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C 交于点D,试说明A1D=CD.24.(9分)小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.此时,若小杰迅速从A窗口队伍转移到B窗口后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,每队有多少人排队.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016春•雁江区期末)方程﹣3x=6的解是()A.x=2 B.x=﹣3 C.x=﹣2 D.x=﹣18【分析】直接将原方程系数化1,即可求得答案.【解答】解:﹣3x=6,系数化1得:x=﹣2.故选C.【点评】此题考查了一元二次方程的解.注意使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.2.(3分)(2016春•雁江区期末)若a>b,则下列不等式中,不成立的是()A.a+5>b+5 B.a﹣5>b﹣5 C.5a>5b D.﹣5a>﹣5b【分析】根据不等式的性质1,可判断A、B,根据不等式的性质2,可判断C,根据不等式的性质3,可判断D.【解答】解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B正确;C、不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D、不等式的两边都乘以同一个负数不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,不等式的两边都乘以同一个负数不等号的方向改变.3.(3分)(2016春•雁江区期末)三条线段a,b,c分别满足下列条件,其中能构成三角形的是()A.a+b=4,a+b+c=9 B.a:b:c=1:2:3C.a:b:c=2:3:4 D.a:b:c=2:2:4【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、当a+b=4时,c=5,4<5,故该选项错误.B、设a,b,c分别为1X,2X,3X,则有a+b=c,不符合三角形任意两边大于第三边,故错误;C、正确;D、设a,b,c分别为2X,2X,4X,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选C.【点评】本题利用了三角形三边的关系求解.当边成比例时可以设适当的参数来辅助求解.4.(3分)(2016春•雁江区期末)商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.1种B.2种C.3种D.4种【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.【点评】此题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.5.(3分)(2009•黑河)一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种【分析】关键描述语:某旅行团20人准备同时租用这三种客房共7间,每个房间都住满,可先列出函数关系式,再根据已知条件确定所求未知量的范围,从而确定租房方案.【解答】解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选C.【点评】本题的关键是找出题中的隐藏条件,列出不等式进行求解.6.(3分)(2014•桂林)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°【分析】根据旋转的性质得AC′=AC,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AC′C=∠ACC′,然后根据平行线的性质由CC′∥AB得∠ACC′=∠CAB=70°,则∠AC′C=∠ACC′=70°,再根据三角形内角和计算出∠CAC′=40°,所以∠B′AB=40°.【解答】解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC′=AC,∠B′AB=∠C′AC,∴∠AC′C=∠ACC′,∵CC′∥AB,∴∠ACC′=∠CAB=70°,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣2×70°=40°,∴∠B′AB=40°,故选:C.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.7.(3分)(2016春•雁江区期末)已知a=x+2,b=x﹣1,且a>3>b,则x的取值范围是()A.x>1 B.x<4 C.x>1或x<4 D.1<x<4【分析】根据题意可得不等式组,再解不等式组即可.【解答】解:∵a=x+2,b=x﹣1,且a>3>b,∴,解得:1<x<4,故选:D.【点评】此题主要考查了一元一次不等式组的应用,关键是根据题意列出不等式组,再正确确定不等式组的解集.8.(3分)(2016春•雁江区期末)一辆汽车在公路上行驶,看到里程表上是一个两位数,1小时后其里程表还是一个两位数,且刚好它的十位数字与个位数字与第一次看到的两位数的十位数字与个位数字颠倒了位置,又过了1小时后看到里程表是一个三位数,它是第一次看到的两位数中间加一个0,则汽车的速度是()千米/小时.A.35 B.40 C.45 D.50【分析】设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶速度为v,第一次看到的两位数为10y+x,行驶一小时后看到的两位数为10x+y,第三次看到的三位数为100y+x,由汽车均速行驶可得三段时间的路程相等,即可列出两个方程求解即可.由速度=求得答案.【解答】解:设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶速度为v,根据题意得:,解得:x=6y,∵xy为1﹣9内的自然数,∴;即两位数为16.即:第一次看到的两位数是16.第二次看到的两位数是61.第三次看到的两位数是106.则汽车的速度是:=45(千米/小时).故选:C.【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数.9.(3分)(2016春•雁江区期末)如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.3 B.4 C.5 D.6【分析】设重叠部分面积为c,则a﹣b=(a+c)﹣(b+c)问题得解.【解答】解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=18﹣12=6.故选D.【点评】本题考查了平行四边形的性质和其面积的有关计算,解题的关键是设出重叠部分面积为c,由整体减部分即可求出问题的答案.10.(3分)(2016春•雁江区期末)如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.B.C.D.【分析】设第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可.【解答】解:设规则瓶体部分的底面积为S.倒立放置时,空余部分的体积为bS,正立放置时,有墨水部分的体积是aS因此墨水的体积约占玻璃瓶容积的=,故选A.【点评】考查列代数式;用墨水瓶的底面积表示出墨水的容积及空余部分的体积是解决本题的突破点.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2012•桂平市三模)如果不等式组的解集是x>3,那么m的取值范围是m≤3.【分析】先用含有m的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m的不等式,从而解答即可.【解答】解:在中由(1)得,x>3由(2)得,x>m根据已知条件,不等式组解集是x>3根据“同大取大”原则m≤3.故答案为:m≤3.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.12.(3分)(2016春•雁江区期末)小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了10千米(途中休息时间不计).【分析】本题是求小明从上午到下午一共走的路程,也就是山路和平路往返各一次.在这些路程里有山路,有平路,都是未知的,所以要设它们未知数.本题只包含一个等量关系:走山路时间+走平路时间=2+12﹣9.(走山路时间包括上山所用时间和下山所用时间,走平路时间包括往返两次平路时间).【解答】解:设平路有xkm,山路有ykm.则(+)+(+)=2+12﹣9,解得x+y=10,故答案是:10.【点评】本题考查了二元一次方程的应用.解题时,设了2个未知数,只有一个等量关系.先尝试去做,可以发现答案就在这一个等量关系里.所以在做数学题的时候,不放弃也是一种方法.13.(3分)(2016春•雁江区期末)如图,将周长为15cm的△ABC沿射线BC方向平移2cm 后得到△DEF,则四边形ABFD的周长为19cm.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【解答】解:根据题意,将周长为15cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=15cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=19cm.故答案为:19.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.14.(3分)(2016春•雁江区期末)如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是2∠α=∠β+∠γ.【分析】根据两直线平行,同位角相等可得∠γ=∠B,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠α、∠β,再根据角平分线的定义可得∠BAD=∠CAD,然后整理即可得解.【解答】解:∵EF∥BC,∴∠γ=∠B,由三角形的外角性质得,∠α=∠B+∠BAD=∠γ+∠BAD,∠β=∠α+∠CAD,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∴∠α﹣∠β=∠γ﹣∠α,∴2∠α=∠β+∠γ.故答案为:2∠α=∠β+∠γ.【点评】本题考查了平行线的性质,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.15.(3分)(2016春•雁江区期末)如图,在△ABC中,已知点D、E、F分别为BC、AD、CE 的中点,且S△ABC=1cm2,则S△BEF=cm2.【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【解答】解:∵由于D、E、F分别为BC、AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,S△BEC=S△ABC=cm2.S△BEF=S△BEC=×=cm2.解法2:∵D是BC的中点∴S△ABD=S△ADC(等底等高的三角形面积相等),∵E是AD的中点,∴S△ABE=S△BDE,S△ACE=S△CDE(等底等高的三角形面积相等),∴S△ABE=S△DBE=S△DCE=S△AEC,∴S△BEC=S△ABC=cm2.∵F是CE的中点,∴S△BEF=S△BCE,∴S△BEF=S△BEC=×=cm2.故答案为:.【点评】此题考查了三角形的面积,根据三角形中线将三角形的面积分成相等的两部分解答.16.(3分)(2016春•雁江区期末)两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是10°,10°或130°,50°.【分析】由两个角的两边都平行,可得此两角互补或相等,然后设其中一个角为x°,分别从两角相等或互补去分析,由其中一个角的度数是另一个角的3倍少20°,列方程求解即可求得答案.【解答】解:∵两个角的两边都平行,∴此两角互补或相等,设其中一个角为x°,∵其中一个角的度数是另一个角的3倍少20°,∴若两角相等,则x=3x﹣20,解得:x=10,∴若两角互补,则x=3(180﹣x)﹣20,解得:x=130,两个角的度数分别是10°,10°或130°,50°.故答案为:10°,10°或130°,50°.【点评】此题考查了平行线的性质.此题难度不大,解题的关键是掌握若两个角的两边都平行,则此两角互补或相等,注意方程思想的应用.三、解答题(共8小题,满分72分)17.(6分)(2016春•雁江区期末)﹣=1.2.【分析】首先对每个式子进行化简,然后去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:原式即﹣=,去分母,得5(10x﹣10)﹣3(10x+20)=18,去括号,得50x﹣50﹣30x﹣60=18,移项,得50x﹣30x=18+50+60,合并同类项,得20x=128,系数化为1得x=6.4.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(7分)(2016春•雁江区期末)已知方程4x﹣3y﹣6z=0与方程x﹣3y﹣3z=0有相同的解,求x:y:z.【分析】联立两方程组成方程组,把z看做已知数表示出x与y,即可求出x:y:z的值.【解答】解:联立得:,①﹣②得:3x=3z,即x=z,把x=z代入①得:y=﹣z,则x:y:z=z:(﹣z):z=3:(﹣2):3.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.(7分)(2016春•雁江区期末)在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度数.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DAC,再求出∠BAD,然后根据三角形的内角和定理求出∠ABC,再根据角平分线的定义求出∠ABE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠ADB=100°,∠C=80°,∴∠DAC=∠ADB﹣∠C=100°﹣80°=20°,∵∠BAD=∠DAC,∴∠BAD=×20°=10°,在△ABD中,∠ABC=180°﹣∠ADB﹣∠BAD=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=∠ABC=×70°=35°,∴∠BED=∠BAD+∠ABE=10°+35°=45°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质与定理并准确识图理清图中各角度之间的关系是解题的关键.20.(9分)(2016春•雁江区期末)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.【点评】此题考查了三角形的内角和定理、三角形的外角的性质、翻折变换等问题,解答的关键是沟通外角和内角的关系.21.(10分)(2016春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.【分析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m 的范围,然后再化简(2),最后求得m的值.【解答】解:(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得,(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m<﹣,∴﹣2<m<﹣,∴m=﹣1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(12分)(2016春•雁江区期末)如图,在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,点E是BC上一个动点(点E与B、C不重合),连AE,若a、b满足,且c是不等式组的最大整数解.(1)求a,b,c的长;(2)若AE平分△ABC的周长,求∠BEA的大小;(3)是否存在线段AE将三角形ABC的周长和面积同时平分?若存在,求出BE的长;若不存在,请说明理由.【分析】(1)根据二元一次方程组的解法得出a,b的值,再利用不等式组的解法得出x的取值范围,进而得出c的值;(2)利用(1)中所求以及等腰直角三角形的性质得出AC=CE,进而得出答案;(3)分别根据AE平分三角形ABC的周长和平分面积时不能同时符合要求进而得出答案.【解答】解:(1)解方程组得:,解不等式组,解得:﹣4≤x<11,∵满足﹣4≤x<11的最大正整数为10,∴c=10,∴a=8,b=6,c=10;(2)∵AE平分△ABC的周长,△ABC的周长为24,∴AB+BE=×24=12,∴EC=6,BE=2,∴AC=CE=6,∴△AEC为等腰直角三角形,∴∠AEB=45°,∠BEA=135°;(3)不存在.∵当AE将△ABC分成周长相等的△AEC和△ABE时,EC=6,BE=2,此时,△AEC的面积为:,△ABE的面积为:面积不相等,∴AE平分△ABC的周长时,不能平分△ABC的面积,同理可说明AE平分△ABC的面积时,不能平分△ABC的周长.【点评】此题主要考查了等腰直角三角形的性质以及二元一次方程组的解法和不等式组的解法等知识,进行分类讨论得出是解题关键.23.(12分)(2016春•雁江区期末)将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1=160度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB与A1C 交于点D,试说明A1D=CD.【分析】(1)①根据旋转的性质可得∠ACA1=20°,再根据直角三角形两锐角互余求出∠BCD,然后根据∠BCB1=∠BCD+∠A1CB1进行计算即可得解;②根据直角三角形两锐角互余求出∠A1DE,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACA1,即为旋转角的度数;(2)根据两直线平行,同旁内角互补求出∠ADC=90°,再根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AC,根据旋转的性质可得A1C=AC,然后求出解即可.【解答】解:(1)①由旋转的性质得,∠ACA1=20°,∴∠BCD=∠ACB﹣∠ACA1=90°﹣20°=70°,∴∠BCB1=∠BCD+∠A1CB1,=70°+90°,=160°;②∵AB⊥A1B1,∴∠A1DE=90°﹣∠B1A1C=90°﹣30°=60°,∴∠ACA1=∠A1DE﹣∠BAC=60°﹣30°=30°,∴旋转角为30°;(2)∵AB∥CB1,∴∠ADC=180°﹣∠A1CB1=180°﹣90°=90°,∵∠BAC=30°,∴CD=AC,又∵由旋转的性质得,A1C=AC,∴A1D=CD.【点评】本题考查了旋转的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,平行线的性质,熟记各性质是解题的关键.24.(9分)(2016春•雁江区期末)小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.此时,若小杰迅速从A窗口队伍转移到B窗口后面重新排队,将比继续在A窗口排队提前30秒买到饭,求开始时,每队有多少人排队.【分析】“B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人”相当于B窗口前的队伍每分钟减少1人,题中的等量关系为:小李在A窗口排队所需时间=转移到B窗口排队所需时间+(30秒),设出未知数列出方程解答即可.【解答】解:设开始时,每队有x人在排队,2分钟后,B窗口排队的人数为:x﹣6×2+5×2=x ﹣2,根据题意得:,去分母得3x=24+2(x﹣2)+6,去括号得3x=24+2x﹣4+6,移项得3x﹣2x=26,解得x=26.答:开始时,有26人排队.【点评】解答此题抓住不变(开始排队人数、A窗口每分钟有4人买饭离开和B窗口每分钟有6人买了饭离开)和变(B窗口队伍后面每分钟增加5人)来解决问题。
华师大版七年级下册数学期末试题试卷及答案
华师大版七年级下册数学期末考试试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.2.(3分)下列长度的各组线段能组成一个三角形的是()A.7cm、10cm、15cm B.4cm、5cm、10cmC.3cm、5cm、8cm D.1cm、5cm、7cm3.(3分)不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤04.(3分)等腰三角形两边长分别为5和7,则它的周长是()A.19 B.11 C.17 D.17或195.(3分)下列叙述中错误的是()A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形6.(3分)如果三角形的一个外角与它不相邻的两个内角的和为180°,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.(3分)一个多边形的每个外角都相等且都小于45°,则这个多边形的边数最少是()A.7 B.8 C.9 D.108.(3分)用规格为50cm×50cm的地板砖密铺客厅恰好需要60块.如果改用规格为acm×acm的地板砖y块也恰好能密铺该客厅,那么y与a之间的关系为()A.B.C.y=150000a2D.y=150000a9.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°10.(3分)三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形二、填空题(共10小题,每小题3分,满分30分)11.(3分)不等式组的所有整数解的和为.12.(3分)为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有种.13.(3分)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.14.(3分)若一个正多边形的每一个内角都等于120°,则它是正边形.15.(3分)若一个正多边形的周长是63,且内角和1260°,则它的边长为.16.(3分)正八边形不能单独铺满地面,其原因是它每个内角是°,而°不是这个度数的整数倍,拼接有缝隙.17.(3分)正三角形有条对称轴.18.(3分)如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为.19.(3分)如图,四边形ABCD是正方形,△ABF和△ADE经旋转后得到的,则可知旋转中心为,旋转了度,如果连接EF,那么△AEF是三角形.20.(3分)等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数可能为.三、解答题(共7小题,满分60分)21.(8分)若两个多边形的边数之比是1:2,内角和度数之比为1:3,求这两个多边形的边数.22.(8分)求不等式组的最大整数解.23.(10分)三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长.24.(6分)如图,点P在∠AOB内,点M、N分别是P点关于OA、OB的对称点,且MN交OA、OB相交于点E,若△PEF的周长为20,求MN的长.25.(10分)如图,△ABC的三条中线AD、BE、CF交于点O,请找出图中所有面积相等的三角形.26.(9分)如图,△ABC是直角三角形,∠ACB=90°,∠B=30°,以点C为旋转中心,将△ABC旋转到△A′B′C′的位置,且使A′B′经过点A.(1)求∠ACA′的度数,判断△ACA′的形状;(2)求线段AC与线段AB的数量关系.27.(9分)某汽车销售公司经销某品牌A、B两款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元.(1)公司预计用不多于135万元且不少于129万元的资金购进这两款汽车共20辆,有几种进货方案?(2)如果A款汽车每辆售价为9万元,B款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(1)中所有的方案获利相同,a值应是多少?(提示:可设购进B款汽车x辆)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•漳州)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出两个不等式的解,然后表示出解集,并在数轴上表示出来.【解答】解:解不等式x+1>0得:x>﹣1,解不等式2x﹣4≤0得:x≤2,则不等式的解集为:﹣1<x≤2,在数轴上表示为:.故选B.【点评】本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,解答本题的关键是熟练掌握不等式的解法以及求不等式解集的规律.2.(3分)(2017春•洛宁县期末)下列长度的各组线段能组成一个三角形的是()A.7cm、10cm、15cm B.4cm、5cm、10cmC.3cm、5cm、8cm D.1cm、5cm、7cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、10+7>15,能组成三角形;B、5+4<10,不能组成三角形;C、3+5=8,不能组成三角形;D、1+5<7,不能组成三角形.故选A.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.(3分)(2016•聊城)不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m 的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.4.(3分)(2017春•洛宁县期末)等腰三角形两边长分别为5和7,则它的周长是()A.19 B.11 C.17 D.17或19【分析】分长为5的边为度和腰两种情况进行讨论,利用三角形的三边关系进行验证即可.【解答】解:当长为5的边为腰时,则三边长分别为5、5、7,符合三角形三边关系,此时三角形的周长为5+5+7=17;当长为5的边为底时,则三边长分别为5、7、7,符合三角形三边关系,此时三角形的周长为5+7+7=19;故选:D.【点评】本题主要考查等腰三角形的性质和三角形三边关系,分情况讨论并进行三边关系的验证是解题的关键.5.(3分)(2017春•洛宁县期末)下列叙述中错误的是()A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形【分析】能够完全重合的两个图形叫做全等形,结合各选项进行判断即可.【解答】解:A、能够重合的图形称为全等图形,说法正确,故本选项错误;B、全等图形的形状和大小都相同,说法正确,故本选项错误;C、所有正方形不一定都是全等图形,说法错误,故本选项正确;D、形状和大小都相同的两个图形是全等图形,说法正确,故本选项错误;故选C.【点评】本题考查了全等图形的知识,要求同学们掌握全等图形的定义及性质.6.(3分)(2005•新疆)如果三角形的一个外角与它不相邻的两个内角的和为180°,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【分析】三角形的一个外角等于它不相邻的两个内角的和,以及三角形内角和为180°,据此即可得出结论.【解答】解:因为三角形的一个外角等于它不相邻的两个内角的和,又三角形内角和为180°,所以另外一个内角和它的外角相等,都是90°,因此为直角三角形.故选C.【点评】知道三角形的一个外角等于它不相邻的两个内角的和,所以为直角.7.(3分)(2017春•洛宁县期末)一个多边形的每个外角都相等且都小于45°,则这个多边形的边数最少是()A.7 B.8 C.9 D.10【分析】利用一个多边形的每一个外角都相等,且小于45°,根据多边形的外角和为360°,列出不等式,据此求出n的取值范围,得到n的最小值.【解答】解:设多边形的边数为n,∵多边形的外角和是360°,且多边形的每一个外角都相等,∴根据题意得,<45,∴45n>360,n>,n>8,由于n是整数,∴n的最小值为9,故选:C.【点评】此题考查了多边形的内角与外角,利用外角小于45得出不等式是解题的关键.8.(3分)(2006•连云港)用规格为50cm×50cm的地板砖密铺客厅恰好需要60块.如果改用规格为acm×acm的地板砖y块也恰好能密铺该客厅,那么y与a 之间的关系为()A.B.C.y=150000a2D.y=150000a【分析】客厅面积为:50×50×60=150000,那么所需地板砖块数=客厅面积÷一块地板砖的面积.【解答】解:由题意设y与a之间的关系为,y=,由于用规格为50cm×50cm的地板砖密铺客厅恰好需要60块,则k=50×50×60=150000,∴.故选:A.【点评】本题考查了由实际问题列反比例函数的解析式,由题意找到所求量的等量关系是解决问题的关键.9.(3分)(2015•合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°【分析】先根据旋转的性质得∠C=∠E=70°,∠BAC=∠DAE,再根据垂直的定义得∠AFC=90°,则利用互余计算出∠CAF=90°﹣∠C=20°,所以∠DAE=∠CAF+∠EAC=85°,于是得到∠BAC=85°.【解答】解:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°﹣∠C=90°﹣70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.故选B.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.10.(3分)(2017春•洛宁县期末)三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形【分析】根据三角形按边的分类方法即可确定.【解答】解:三角形按边分类可分为不等边三角形、等腰三角形,故选:D.【点评】本题考查了三角形的分类,要注意等腰三角形与等边三角形两个概念的区别.二、填空题(共10小题,每小题3分,满分30分)11.(3分)(2014•河南)不等式组的所有整数解的和为﹣2.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.【解答】解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.(3分)(2017春•洛宁县期末)为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有8种.【分析】可设6人的帐篷有x顶,4人的帐篷有y顶.根据两种帐篷容纳的总人数为100人,可列出关于x、y的二元一次方程,根据x、y均为非负整数,求出x、y的取值.根据未知数的取值即可判断出有几种搭建方案.【解答】解:设6人的帐篷有x顶,4人的帐篷有y顶,依题意,有:6x+4y=100,整理得y=25﹣1.5x,因为x、y均为非负整数,所以25﹣1.5x≥0,解得0≤x≤16,从0到16的偶数共有9个,所以x的取值共有9种可能,由于需同时搭建两种帐篷,x不能为0(舍去),即共有8种搭建方案.故答案是:8.【点评】本题考查了二元一次方程的应用.解决本题的关键是找到人数的等量关系,及帐篷数的不等关系.13.(3分)(2015•朝阳)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为8.【分析】首先设第三边长为x,根据三角形的三边关系可得3﹣2<x<3+2,然后再确定x的值,进而可得周长.【解答】解:设第三边长为x,∵两边长分别是2和3,∴3﹣2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8,故答案为:8.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.14.(3分)(2015•黄冈模拟)若一个正多边形的每一个内角都等于120°,则它是正6边形.【分析】首先设这个正多边形的边数为n,根据多边形内角和公式:180°(n﹣2),列出方程进行计算即可.【解答】解:设这个正多边形的边数为n,由题意得:(n﹣2)×180=120n解得:n=6.故答案为:6.【点评】此题主要考查了多边形内角和,关键是掌握多边形内角和公式.15.(3分)(2017春•洛宁县期末)若一个正多边形的周长是63,且内角和1260°,则它的边长为7.【分析】先根据多边形的内角和公式求出多边形的边数,再用周长63除以边数求解即可.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1260°,解得n=9,∵多边形的各边相等,∴它的边长是:63÷9=7.故答案为:7.【点评】主要考查了多边形的内角和公式,熟记公式求出多边形的边数是解题的关键.16.(3分)(2017春•洛宁县期末)正八边形不能单独铺满地面,其原因是它每个内角是135°,而360°不是这个度数的整数倍,拼接有缝隙.【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:正八边形不能单独铺满地面,其原因是它每个内角是135°,而360°不是这个度数的整数倍,拼接有缝隙.故答案为:135,360.【点评】本题考查平面密铺的知识,注意掌握用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.17.(3分)(2017春•洛宁县期末)正三角形有3条对称轴.【分析】一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:等边三角形有3条对称轴.故答案为3.【点评】本题主要考查了轴对称图形的定义,本题是一个基础题,比较简单.18.(3分)(2017春•洛宁县期末)如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为30.【分析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.【解答】解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=30.【点评】主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.19.(3分)(2017春•洛宁县期末)如图,四边形ABCD是正方形,△ABF和△ADE经旋转后得到的,则可知旋转中心为点A,旋转了90度,如果连接EF,那么△AEF是等腰直角三角形.【分析】根据图形旋转的概念可得,旋转中心是点A,对应点与旋转中心所连线段的夹角等于旋转角,等腰直角三角形的判定方法进行判断即可.【解答】解:如图,∵△ABF是△ADE的旋转图形,∴旋转中心是点A;∵∠DAB=90°,且AD与AB是对应边,∴旋转了90°,∵AE=AF,∠FAE=90°,∴△AEF是等腰直角三角形;故答案为:点A,90,等腰直角.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.(3分)(2017春•洛宁县期末)等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数可能为50°或130°.【分析】等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,另外两种情况可以根据垂直的性质及外角的性质求出顶角的度数.【解答】解:①当为锐角三角形时,如图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时,如图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°.故答案为50°或130°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,进行分类讨论是正确解答本题的关键,难度适中.三、解答题(共7小题,满分60分)21.(8分)(2017春•洛宁县期末)若两个多边形的边数之比是1:2,内角和度数之比为1:3,求这两个多边形的边数.【分析】设多边形的边数为n,则另一个为2n,分别表示出两个多边形的内角和得到有关n的方程求解即可.【解答】解:∵两个多边形的边数之比为1:2,∴设多边形的边数为n,则另一个为2n,∵内角和度数之比为1:3,∴(n﹣2):2n﹣2=1:3解得:n=4,∴2n=8.故这两个多边形的边数分别为:4,8.【点评】本题考查了多边形的内角与外角,正确的设出边数并表示出其内角和是解决本题的关键.22.(8分)(2017春•洛宁县期末)求不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式x≤+2,得:x≤2,∴不等式组的解集为﹣1<x≤2,则其最大整数解为2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(10分)(2017春•洛宁县期末)三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长.【分析】利用三角形的三边长是三个连续的自然数,可设三角形三边的长分别为x﹣1,x,x+1,根据三角形三边的关系得到x﹣1+x>x+1,解得x>2,根据三角形的周长小于20得到x﹣1+x+x+1<20,解得x<,从而得到x为3,4,5,6,然后分别计算出三角形三边的长.【解答】解:设三角形三边的长分别为x﹣1,x,x+1,则x﹣1+x>x+1,解得x >2,∴x﹣1+x+x+1<20,解得x<,∴2<x<且x为整数,∴x为3,4,5,6,当x=3时,三角形三边为2,3,4;当x=4时,三角形三边为3,4,5;当x=5时,三角形三边为4,5,6;当x=6时,三角形三边为5,6,7.【点评】本题考查了三角形三边关系:三角形两边之和大于第三边.24.(6分)(2017春•洛宁县期末)如图,点P在∠AOB内,点M、N分别是P 点关于OA、OB的对称点,且MN交OA、OB相交于点E,若△PEF的周长为20,求MN的长.【分析】根据轴对称的性质可知:EP=EM,PF=FN,所以线段MN的长=△PEF的周长,再根据△PEF的周长为20,即可得出MN的长.【解答】解:∵点M是P点关于OA的对称点,∴EP=EM,∵N是P点关于OB的对称点,∴PF=FN,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长为20,∴MN=20cm.【点评】此题主要考查了轴对称的性质:对称轴上的任何一点到两个对应点之间的距离相等.25.(10分)(2017春•洛宁县期末)如图,△ABC的三条中线AD、BE、CF交于点O,请找出图中所有面积相等的三角形.【分析】分三种情况:面积为△ABC的的三角形,面积为△ABC的的三角形,面积为△ABC的的三角形.【解答】解:△ABD、△ACD、△BCE、△BAE、△CAF、△CBF的面积相等,都是△ABC面积的;△OBD、△OCD、△OCE、△OAE、△OAF、△OBF的面积相等,都是△ABC面积的;△OAB、△OBC、△OAC的面积相等,都是△ABC面积的.【点评】本题考查了三角形的面积,注意同底等高三角形面积的求法,等底等高三角形面积的求法,等底同高三角形面积的求法.26.(9分)(2017春•洛宁县期末)如图,△ABC是直角三角形,∠ACB=90°,∠B=30°,以点C为旋转中心,将△ABC旋转到△A′B′C′的位置,且使A′B′经过点A.(1)求∠ACA′的度数,判断△ACA′的形状;(2)求线段AC与线段AB的数量关系.【分析】(1)证明∠BAC=60°;证明AC=A′C,得到∠A′=∠A′AC=60°,求出∠ACA′=60°;(2)由△ABC≌△A′B′C′得到∠A′CB=∠ACB=90°,求得∠B′=∠B=30°,由(1)知:∠ACA′=60°,得到AC=AB′,于是得到结论.【解答】解:(1)如图,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°;∵△ABC≌△A′B′C′,∴∠A′=∠BAC=60°,AC=A′C,∴∠A′=∠A′AC=60°,∴∠ACA′=180°﹣120°=60°,∴△ACA′是等边三角形;(2)∵△ABC≌△A′B′C′,∴∠A′CB=∠ACB=90°,∠B′=∠B=30°,A′B′=AB,由(1)知:∠ACA′=60°,∴∠ACB′=30°,∴AC=AB′,∴AB=A′B′=AA′+AB′=2AC=2AC.【点评】该题主要考查了旋转变换的性质、等腰三角形的性质及其应用问题;解题的关键是灵活运用旋转变换的性质、等腰三角形的性质等来分析、判断、解答.27.(9分)(2017春•洛宁县期末)某汽车销售公司经销某品牌A、B两款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元.(1)公司预计用不多于135万元且不少于129万元的资金购进这两款汽车共20辆,有几种进货方案?(2)如果A款汽车每辆售价为9万元,B款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(1)中所有的方案获利相同,a值应是多少?(提示:可设购进B款汽车x辆)【分析】(1)关系式为:129≤A款汽车总价+B款汽车总价≤135.(2)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设购进A款汽车每辆x辆,则购进B款汽车(20﹣x)辆,依题意得:129≤7.5x+6(20﹣x)≤135.解得:6≤x≤10,∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(2)设总获利为W万元,购进B款汽车x辆,则:W=(9﹣7.5)(20﹣x)+(8﹣6﹣a)(15﹣x)=(0.5﹣a)x+30.当a=0.5时,(1)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车14辆时对公司更有利.【点评】本题考查一元一次不等式组的应用,找到合适的等量关系及不等关系是解决问题的关键.第21 页共21 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下期数学华师大版期末易错题
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
七年级下期数学华师大版期末易错题(40分钟)
一.选择题(共11小题)
1.若等式x=y可以变形为,则有()
A.a>0 B.a<0
C.a≠0 D.a为任意有理数
2.已知下列方程:①;②=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()
A.2 B.3 C.4 D.5
3.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程?a=﹣(x﹣6)无解,则a的值是()
A.1 B.﹣1 C.±1 D.a≠1
4.已知甲校原有1016人,乙校原有1028人,寒假期间甲、乙两校人数变动的原因只有转出与转入两种,且转出的人数比为1:3,转入的人数比也为1:3.若寒假结束开学时甲、乙两校人数相同,则乙校开学时的人数与原有的人数相差多少?()A.6 B.9 C.12 D.18
5.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需元;若购铅笔4支,练习本8本,圆珠笔2支共需元,那么,购铅笔、练习本、圆珠笔各1件共需()
A.元 B.元 C.元 D.元
6.二元一次方程x+3y=10的非负整数解共有()对.
A.1 B.2 C.3 D.4
7.当1≤x≤2时,ax+2>0,则a的取值范围是()
A.a>﹣1 B.a>﹣2 C.a>0 D.a>﹣1且a≠0
8.如果关于x的不等式(m+1)x>m+1的解集为x<1,则m的取值范围是()A.m<0 B.m<﹣1 C.m>1 D.m>﹣1
9.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()
A.角平分线 B.中位线C.高 D.中线
10.夏季荷花盛开,为了便于游客领略“人从桥上过,如在水中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘的周长为280m,且桥宽忽略不计,则小桥的总长为()
A.280m B.140m C.90m D.70m
11.如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是()
A.①⑤B.②⑤C.③⑤D.②④
二.填空题(共8小题)
12.已知(|m|﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,则m= .13.若4x﹣3y=0且x≠0,则= .
14.若关于x的不等式2m一1<x<m+l无解,则m的取值范围是.
15.若不等式组恰有两个整数解.则实数a的取值范围
是.
16.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= .
17.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为
S 1,△CEF的面积为S
2
,若S
△ABC
=12,则S
1
﹣S
2
的值为.
18.已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为.
19.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.
三.解答题(共5小题)
20.解下列方程
(1)
(2).
21.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:
销售时段销售数量销售收入
A种型号 B种型号
第一周 3台 5台 18000元
第二周 4台 10台 31000元
(1)求A,B两种型号的净水器的销售单价;
(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?
(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
22.动手操作,探究:
探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
探究二:若将△ADC改为任意四边形ABCD呢?
已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.(写出说理过程)
探究三:若将上题中的四边形ABCD改为六边形ABCDEF(图(3))呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:.
23.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;
(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.
x= °; x= °; x= °;
(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠
F= °.
24.如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.
(1)将△ABC向下平移4个单位,得到△A′B′C′;
(2)把△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C″,请你画出△
A′B′C′和△A″B″C″(不要求写画法);
(3)点B经过(1),(2)两次变换的路径长.
七年级下期数学华师大版期末易错题(40分钟)
参考答案
一.选择题(共11小题)
1.C;2.B;3.A;4.D;5.B;6.D;7.A;8.B;9.D;10.B;11.B;
二.填空题(共8小题)
12.1;13.;14.m≥2;15.<a≤1;16.24°;17.2;18.3﹣;19.±3;
三.解答题(共5小题)
20.;21.;22.∠P=(∠A+∠B+∠E+∠F)﹣180°;23.180;180;180;140;24.;。