(华电科院)算法设计与分析实验报告—01背包问题

合集下载

实验报告分支限界法01背包

实验报告分支限界法01背包

实验报告分支限界法01背包实验报告:分支限界法解决01背包问题一、引言背包问题是数学和计算机科学中一个经典的问题。

背包问题通常分为01背包问题和完全背包问题两种情况。

本实验主要探讨的是分支限界法解决01背包问题,该算法常用于解决NP难问题。

分支限界法通过将问题分解为一系列子问题,并借助剪枝技术,逐步缩小问题的空间,从而找到最优解。

本实验将通过具体的案例来展示分支限界法的求解过程和原理,并对算法的时间复杂度和空间复杂度进行分析。

二、算法原理01背包问题的数学模型为:有n个物品,每个物品有一个重量wi和一个价值vi,在限定的背包容量为W的情况下,如何选择物品放入背包,使得背包中物品的总价值最大。

分支限界法的基本思想是:通过不断地分解问题为更小的子问题,并使用估算函数对子问题进行优先级排序,将优先级最高的子问题优先求解。

具体步骤如下:1.根节点:将背包容量W和物品序号0作为初始状态的根节点。

2.扩展节点:对于任意一个节点S,选择装入下一个物品或者不装入两种分支。

计算新节点的上界。

3.优先级队列:将扩展节点按照上界从大到小的顺序插入优先级队列。

4.剪枝条件:当扩展节点的上界小于当前已找到的最优解时,可以剪枝。

5.结束条件:当到叶节点或者队列为空时,结束。

若叶节点的上界高于当前最优解,更新最优解。

三、实验过程1.输入数据:给定一个物品序列,每个物品有重量和价值,以及一个背包的最大容量。

2.算法实现:根据算法原理,使用编程语言实现分支限界法的求解过程。

3.结果分析:比较算法求解得到的最优解和其他算法(如动态规划)得到的最优解之间的差异。

四、实验结果以一个具体的案例来说明分支限界法的求解过程。

假设有4个物品,其重量和价值分别为{2,3,4,5}和{3,4,5,6},背包的最大容量为8、通过分支限界法求解,得到最优解为9,对应的物品选择为{2,3,5}。

通过与动态规划算法的结果比较,可以发现分支限界法的最优解与动态规划算法得到的最优解是一致的。

算法分析与设计实验报告之01背包问题

算法分析与设计实验报告之01背包问题

算法分析与设计实验报告[0/1背包问题]0/1背包问题的不同算法解决方案组员02黄希龙 09455321张育强05周麒目录一.问题描述 (1)二.算法分析 (2)1.穷举法: (2)2.递归法: (4)3.贪心法: (5)4.动态规划法分析: (6)5.回溯法分析: (7)6.分支限界法: (9)三.时空效率分析 (10)1.穷举法: (10)2.递归法: (11)3.动态规划法: (11)4.回溯法: (11)5分支限界法: (11)四.运行结果 (12)1.穷举法输出结果: (12)2.递归法输出结果: (13)3.动态规划法输出结果: (14)4.回溯法输出结果: (15)5.分支限界法输出结果: (16)五.分析输出结果 (17)六.总结与反思 (18)一.问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二.算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:)2(max )1()1}(1,0{11∑∑==⎪⎩⎪⎨⎧≤≤∈≤ni i i ini i i x v n i x Wx w 于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。

(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。

有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。

算法设计与分析实验报告—01背包问题

算法设计与分析实验报告—01背包问题

算法设计与分析实验报告—0/1背包问题-【问题描述】给定n 种物品和一个背包。

物品i 的重量是iw ,其价值为i v,背包容量为C 。

问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?【问题分析】0/1背包问题的可形式化描述为:给定C>0, i w >0, i v >0,1i n ≤≤,要求找出n 元0/1向量{}12(,,...,),0,1,1n i x x x x i n ∈≤≤,使得n1i i i w x c =≤∑,而且n1i ii v x=∑达到最大。

因此0/1背包问题是一个特殊的整数规划问题。

0n k w ≤≤1max ni i i v x =∑n1i ii w xc =≤∑{}0,1,1i x i n ∈≤≤【算法设计】设0/1背包问题的最优值为m( i, j ),即背包容量是j ,可选择物品为i,i+1,…,n 时0/1背包问题的最优值。

由0/1背包问题的最优子结构性质,可以建立计算m( i, j )的递归式如下:max{m( i+1, j ), m( i+1, j-i w )+i v } i j w ≥m( i, j )=m(i+1,j)n v n j w >m(n,j)=0 0n k w ≤≤【算法实现】#include <iostream.h> #include<string.h> #include<iomanip.h>int min(int w, int c) {int temp; if (w < c) temp = w;elsetemp = c;return temp;}Int max(int w, int c) {int temp; if (w > c) temp = w;elsetemp = c;return temp;}void knapsack(int v[], int w[], int** m, int c, int n) //求最优值 {int jmax = min(w[n]-1, c);for (int j = 0; j <= jmax; j++)m[n][j] = 0;for (int jj = w[n]; jj <= c; jj++)m[n][jj] = v[n];for(int i = n-1; i > 1; i--)//递归部分{jmax = min(w[i]-1, c);for(int j = 0; j <= jmax; j++)m[i][j] = m[i+1][j];for(int jj = w[i]; jj <= c; jj++)m[i][jj] = max(m[i+1][jj], m[i+1][jj-w[i]]+v[i]);}m[1][c] = m[2][c];if(c >= w[1])m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);cout << endl << "最优值:" << m[1][c] << endl;cout<<endl;cout<< "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" << endl;}int traceback(int x[], int w[], int** m, int c, int n) //回代,求最优解{out << endl << "得到的一组最优解如下: " << endl;for(int i = 1; i < n; i++){if(m[i][c] == m[i+1][c]) x[i] = 0;else{x[i] = 1;c -= w[i];}}x[n] = (m[n][c]) ? 1:0;for(int y = 1; y <= n; y++)cout << x[y] << "\t";cout << endl;return x[n];}void main(){int n, c;int **m;cout << "&&&&&&&&&&&&&&&&&&&&&欢迎使用0-1背包问题程序&&&&&&&&&&&&&&&&&&&" << endl;cout << "请输入物品个数: ";cin >> n ;cout << endl << "请输入背包的承重:";cin >> c;int *v = new int[n+1];cout << endl << "请输入每个物品的价值 (v[i]): " << endl;for(int i = 1; i <= n; i++)cin >> v[i];int *w = new int[n+1];cout << endl << "请输入每个物品的重量 (w[i]): " << endl;for(int j = 1; j <= n; j++)cin >> w[j];int *x = new int[n+1];m = new int* [n+1]; //动态的分配二维数组for(int p = 0; p < n+1; p++)m[p] = new int[c+1];knapsack (v, w, m, c, n);traceback(x, w, m, c, n);}【运行结果】。

01背包实验报告

01背包实验报告

算法设计与分析实验报告0_1背包一.问题描述假设有n件物品,每件物品有各自的重量W1,W2,……,Wn和与之对应的价值V1,V2,……,Vn。

设背包的容量为c,在不超过背包容量的前提下,求出获得最大价值总和的方案。

(0-1背包的情况下物品不可分割,只能选择放入,或者不放入背包中)。

二.求解思路1.贪心策略问题开始阶段,将所有物品按价值从高到低排列,每一次往背包里放入不超过背包容量的价值最大的物品,直到没有物品可放入为止。

但事实证明,由于物品的不可分割性,0-1背包并不适合贪心策略。

例:假设背包的容量为50,共有三件物品(重量,价值):(10,60),(20,100),(30,120)。

若使用贪心策略,则会选择一个(30,120)和一个(20,100)。

得到的价值总和是220。

而稍加计算便可知选取两个(20,100)和一个(10,60)可以得到更大的价值总和260。

因此贪心策略不能给出0-1背包的最优解。

后话:即使是普通背包问题(物品可分割),每次选择价值最大的物品也不能得到最优解。

正确的贪心策略应是:每次选择单位重量下价值最大的物品。

由于本次实验主要讨论的是0-1背包问题,这里就不给出该贪心策略的证明。

2.动态规划(1)证明0-1背包问题具有最优子结构性质:假设(x1,x2,……,xn)是容量为c的背包的一组最优解,其中xi的取值为0或1,表示是否放入背包中。

则必有(x2,x3,……,xn)为如下子问题的一组最优解:sum{xi*wi} (2<=i<=n)<=c-x1*w1利用反证法证明,假设(y1,y2,……,yn)是该子问题的一组最优解而(x2,x3,……,xn)不是。

则sum{yi*vi} > sum{xi*vi} (2<=i<=n)那么就可得到:x1*v1+ sum{yi*vi} > x1*v1+ sum{xi*vi} (2<=i<=n)则(x1,y2,……,yn)是原问题的最优解,而(x1,x2,……,xn)不是,与假设矛盾。

01背包实验报告总结

01背包实验报告总结

01背包实验报告总结引言本文旨在总结并分析通过进行01背包实验得出的结论和经验。

背包问题是计算机科学中的经典问题之一,涉及到在给定的一组物品中选择一些物品,使得它们的总重量不超过背包的限制,并且价值总和最大化。

01背包问题的特点是每个物品要么被选中,要么不被选中,即不允许部分装入。

实验背景我们进行了一系列的01背包实验,以探索不同参数对问题求解效果的影响。

实验中,我们的目标是找到最佳的解法,在满足背包容量限制的前提下,尽可能多地选择物品,使得其总价值达到最大。

实验设计我们设计了几个实验方案,包括不同的算法和不同的参数设置。

具体的实验设计如下:实验一:贪心算法我们使用了贪心算法来解决01背包问题。

贪心算法的基本思想是每次选择当前情况下的最优解,不进行迭代。

在本实验中,我们选择了两种不同的贪心策略:1. 单纯贪心策略:按照物品的价值降序排列,将价值最高的物品放入背包。

2. 乘法策略:按照物品的价值密度(价值除以重量)降序排列,将价值密度最高的物品放入背包。

实验二:动态规划算法我们使用了动态规划算法来解决01背包问题。

动态规划算法的基本思想是将问题划分为若干子问题,并通过保存子问题的解来避免重复计算。

在本实验中,我们使用了自底向上的动态规划实现。

实验三:回溯算法我们使用了回溯算法来解决01背包问题。

回溯算法的基本思想是逐步构造问题的解,并通过剪枝操作来减少搜索空间。

在本实验中,我们使用了递归回溯的方式实现。

实验结果与分析我们根据实验设计进行了一系列的实验,并对实验结果进行了记录和分析。

下面是我们得到的主要结论:•对于贪心算法而言,乘法策略的效果要优于单纯贪心策略。

乘法策略在同样的时间复杂度下,可以获得更好的解。

•动态规划算法是时间复杂度最高的算法,但它可以得到全局最优解。

如果问题规模不大,动态规划算法是一个可行的选择。

•回溯算法的主要特点是灵活性,可以根据实际问题进行优化。

在某些特定情况下,回溯算法可能能够更快地找到最优解。

算法设计与分析实验报告——基于动态规划方法的0-1背包等问题

算法设计与分析实验报告——基于动态规划方法的0-1背包等问题

实验报告. 基于动态规划方法的0-1背包等问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),在针对0-1背包问题求解的实践中理解动态规划(Dynamic Programming, DP) 方法的思想、求解策略及步骤。

作为挑战:可以完成基于跳跃点的改进算法,以支持连续型物品重量/背包容量且提高算法的效率。

实验目的◆理解动态规划方法的核心思想以及动态规划方法的求解过程;◆从算法分析与设计的角度,对0-1背包问题的基于DP法求解有更进一步的理解。

环境要求对于环境没有特别要求。

对于算法实现,可以自由选择C, C++, Java,甚至于其他程序设计语言如Python等。

实验步骤步骤1:理解问题,给出问题的描述。

步骤2:算法设计,包括策略与数据结构的选择步骤3:描述算法。

希望采用源代码以外的形式,如伪代码或流程图等;步骤4:算法的正确性证明。

需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。

附上代码或以附件的形式提交,同时贴上算法运行结果截图;步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。

说明:步骤1-6在“实验结果”一节中描述,步骤7在“实验总结”一节中描述。

实验结果步骤1:理解问题,给出问题的描述。

给定 n个物品,其中第 i 个物品的体积为 v i ,价值为 w i 。

有一容积为 m 的背包,要求选择一些物品放入背包,使得物品总体积不超过m的前提下,物品的价值总和最大。

0-1背包问题的限制是,每种物品只有一个,它的状态只有放和不放两种。

0-1背包问题是特殊的整数规划问题,其可用数学语言表述为:对于给定n>0,m>0,v,w (v i ,w i>0,1≤i≤n),找出一个 n 元0-1向量 x=( x 1, x 2,⋯, x n ) 其中x i ∈{0,1},1≤i ≤n ,使得∑w i n i=1x i 最大,并且∑v i n i=1x i ≤m ,即:max x (∑w i ni=1x i ) s.t.∑v i ni=1x i ≤m, x i ∈{0,1},1≤i ≤n步骤2:算法设计,包括策略与数据结构的选择。

算法背包实验报告

算法背包实验报告

一、实验背景背包问题(Knapsack problem)是组合优化领域中的一个经典问题,它来源于日常生活中物品选择与装载的问题。

0-1背包问题是指给定一组物品,每个物品都有一定的重量和价值,选择一部分物品装入背包,使得背包总重量不超过给定限制,且物品总价值最大。

本实验旨在通过实现动态规划算法解决0-1背包问题,并分析其时间复杂度和空间复杂度。

二、实验目的1. 理解动态规划算法的基本思想和解决问题的步骤。

2. 掌握动态规划算法在解决0-1背包问题中的应用。

3. 分析0-1背包问题的数学模型,并建立求解最优值的递归关系式。

4. 对比不同背包问题的求解方法,分析其优缺点。

三、实验原理0-1背包问题的数学模型如下:设背包容量为C,物品集合为I,第i个物品的重量为w(i),价值为v(i),则0-1背包问题的目标函数为:Maximize Σ(v(i) x(i)),其中x(i) ∈ {0, 1}。

约束条件为:Σ(w(i) x(i)) ≤ C。

动态规划算法通过将问题分解为子问题,并存储子问题的解,以避免重复计算。

对于0-1背包问题,其状态可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w(i)] + v(i)),其中i表示物品编号,j表示剩余容量。

当i=0或j-w(i)<0时,dp[i][j] = 0。

四、实验过程1. 设计数据结构:定义物品类,包含物品编号、重量和价值属性。

2. 生成测试数据:随机生成一定数量的物品,并设置背包容量。

3. 实现动态规划算法:根据上述原理,实现0-1背包问题的动态规划算法。

4. 测试算法:使用测试数据验证算法的正确性。

5. 分析算法性能:分析算法的时间复杂度和空间复杂度。

五、实验结果与分析1. 算法正确性:通过测试数据验证,算法能够正确求解0-1背包问题。

2. 时间复杂度:动态规划算法的时间复杂度为O(nC),其中n为物品数量,C为背包容量。

0-1背包问题实验报告

0-1背包问题实验报告

0-1 背包问题实验报告一.问题描述1•给定n种物品和一个背包。

物品i的重量是w[i],其价值为v[i],背包容量为c。

问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。

2.在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。

不能将物品i 装入背包多次,也不能只装入部分的物品i。

二.问题规模1.物品数目:n=50,2.背包容量:c=1000,3.每个物品重量分别为:{220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,101,100,100,98,96,95,90,88,82,80,77,75,73,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5,3,1,1}4.每个物品价值分别为:{80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28,30,22,50,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1}三.实验方法本次实验将分别通过动态规划法,贪心算法,回溯法及分支界限法四种方法解决0-1背包问题。

四.算法分析I •动态规划法(1).对动态规划的0-1背包问题,在给定c>0,wi>0, vi>0, 1<=i<=n,要求找出一个n 元0-1 向量(x1,x2,…)xn 1},1 < i;使得xi {0,wxii 1ni而且maxvixi。

c,i 1n同时可得出其递推关系,设最优值m[i,j]是背包容量为j,可选物品i,i+1…盼0-1背包问题的最优值。

于是可建立计算m(l,j)的递归式:m[i,j] 在j>=wi, 为max{m(i+1,j),m(i+1,j-wi)+vi},在0<=j<wi 时,m(i+1,j);m[n,j] 在j>=wn 时为vn,在O W j <wn 为0。

背包问题实验报告

背包问题实验报告

0-1背包问题实验报告一:0-1背包问题给定n种物品和一个背包。

物品i的重量是Wi,其价值为Vi,背包的容量为c。

问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有两种选择,装入或者不装入背包。

不能将物品i多次装入,也不能装入部分的物品i。

因此,该问题被称为0-1背包问题。

本次针对0-1背包问题的实验,主要使用动态规划的方法、贪心算法、回溯法以及分支限界法。

测试用例为:n=50,c=1000,每个物品重量为{220,208,198,192,180,180,165,162,160,158,155,130,125,122,120,118,115,110,105,1 01,100,100,98,96,95,90,88,82,80,77,75,73,70,69,66,65,63,60,58,56,50,30,20,15,10,8,5 ,3,1,1}每个物品价值为{80,82,85,70,72,70,66,50,55,25,50,55,40,48,50,32,22,60,30,32,40,38,35,32,25,28 ,30,22,50,30,45,30,60,50,20,65,20,25,30,10,20,25,15,10,10,10,4,4,2,1} 下面将分别谈论。

二:动态规划法1:基本思想:动态规划算法的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

其经过分解得到的子问题往往不是相互独立的,可以用一张表来记录所有已解决的子问题的答案,而不论该子问题以后是否会用到。

从而使得子问题避免重复计算。

2:设计步骤:动态规划算法适用于解最优化问题,通常可按以下几步设计:(1)找出最优解的特性,并刻画其结构特征。

(2)递归地定义最优值。

(3)以自底向上的方式计算出最优值。

(4)根据计算最优值时得到的信息,构造最优解。

0 1背包实验报告

0 1背包实验报告

0 1背包实验报告0-1背包实验报告引言:0-1背包问题是在计算机科学中经典的组合优化问题之一。

该问题的目标是在给定一组物品和一个固定容量的背包下,选择一些物品放入背包中,使得放入的物品总价值最大化,同时不能超过背包的容量限制。

本实验旨在通过实际操作和数据分析,深入理解0-1背包问题的求解方法和优化策略。

实验设计:本实验采用Python编程语言进行0-1背包问题的求解。

首先,我们设计了一个物品类(Item),每个物品具有重量(weight)和价值(value)两个属性。

然后,我们生成了一组具有不同重量和价值的物品,这些物品将作为输入数据用于求解0-1背包问题。

接下来,我们实现了两种常见的求解方法:动态规划和贪心算法,并对它们的性能进行了对比分析。

实验过程:1. 生成输入数据:我们使用随机数生成器生成了一组具有不同重量和价值的物品。

为了方便观察和分析,我们限定了物品的数量为10个,重量范围为1到10,价值范围为1到100。

2. 动态规划求解:动态规划是解决0-1背包问题的经典方法之一。

我们设计了一个动态规划函数,通过填充一个二维数组来求解最优解。

具体步骤如下:- 初始化一个二维数组dp,其中dp[i][j]表示在前i个物品中选择总重量不超过j的物品的最大总价值。

- 通过递推公式dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])求解dp数组。

- 根据dp数组的最后一行最后一列的值,反推出背包中放入的物品。

3. 贪心算法求解:贪心算法是另一种常见的求解0-1背包问题的方法。

它的基本思想是每次选择具有最大单位价值的物品放入背包中,直到背包无法再放入任何物品为止。

具体步骤如下:- 计算每个物品的单位价值(value/weight)。

- 按照单位价值从大到小的顺序对物品进行排序。

- 依次选择单位价值最大的物品放入背包中,直到背包无法再放入任何物品。

算法设计与分析实验报告-背包问题

算法设计与分析实验报告-背包问题

算法设计与分析实验报告一、实验内容:给定n 种物品和一背包。

物品i 的重量是w i ,其价值为v i ,背包的容量为C 。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、算法思想与设计描述:(一)基本算法:1、使用动态规划算法计算最优值,递归式如下,m(i ,j)是背包容量为j ,可选择物品为i ,i+1,…,n 时0-1背包问题的最优值具体代码:for(i=1; i<=num; i++)for(j=1; j<=C; j++){int temp = value[i -1][j -goods[i].weight]+goods[i].value;if(j>=goods[i].weight && temp > value[i -1][j])value[i][j] = temp;elsevalue[i][j] = value[i -1][j];}2、逆推得出装入背包的物品:j = C;for(i=num; i>=1; i --){if(value[i][j] > value[i -1][j]){judge[i] = 1;j -= goods[i].weight;}}(二)改进算法:1、求最大价值:i i i i w j w j j i m v w j i m j i m j i m <≤≥⎩⎨⎧+-=0),1-(}),1-(),,1-(max{),(具体代码:for(i=0; i<MAXNUM; i++){for(j=0; j<MAXNUM; j++){p[i][j].weight = 0;p[i][j].value = 0;q[i][j].weight = 0;q[i][j].value = 0;}}for(i=0; i<=num-1; i++){j = 0;//计算q集合的值while(j == 0 || (j>0 && p[i][j].weight!=0)){q[i][j].weight = p[i][j].weight + goods[i+1].weight;q[i][j].value = p[i][j].value + goods[i+1].value;j++;}m = 1; k = 0; j = 1;//复制i层的p、q到i+1层的p中并按重量由小到大排序while(p[i][j].weight!=0 && q[i][k].weight!=0){if(p[i][j].weight <= q[i][k].weight){p[i+1][m] = p[i][j];j++;}else{p[i+1][m] = q[i][k];k++;}m++;}while(p[i][j].weight != 0)//i层的p还没有复制结束{p[i+1][m] = p[i][j];j++;m++;}while(q[i][k].weight != 0)//i层的p还没有复制结束{p[i+1][m] = q[i][k];k++;m++;}k = 1;while(p[i+1][k].weight)//删除集合A、集合B中的元素{if((p[i+1][k].value<p[i+1][k-1].value) || (p[i+1][k].weight > C)){j = k;while(p[i+1][j].weight){p[i+1][j] = p[i+1][j+1];j++;}}elsek++;}}max_value=p[i][k-1].value;2、逆推得出最优装法:•初设i=n•比较p[i](j1,v1)与p[i-1](j2,v2)的最后一个元素,如果不同,则第i个一定被选了,且下一次i为(j1-wi,v1-vi)第一次出现的位置;如果相同则i——;•循环执行上述步骤直到i=0为止//逆推得到最优装法i = num;while(i){j = 1; k = 1;while(p[i][j].weight)j++;while(p[i-1][k].weight)k++;j--; k--;if(p[i][j].value != p[i-1][k].value){judge[i] = 1;//第i个被选中了if(i == 1)i--;int last_weight = p[i][j].weight-goods[i].weight;int last_value = p[i][j].value - goods[i].value;m = 1;while(i>1 && m<=num)//找到下一个i{j = 1;while(p[m][j].weight){if(p[m][j].weight == last_weight && p[m][j].value == last_value){i = m;break;}else{j++;}}if(i == m)break;m++;}}elsei--;}三、测试说明:1、基本算法算法复杂度:O(nC)2、改进算法:算法复杂度:O(min{nC, 2^n})四、实验总结:动态规划算法可以避免普通递归算法在某些问题上的重复计算,是一种聪明的递归。

01背包问题实验心得体会

01背包问题实验心得体会

01背包问题实验心得体会01背包问题是一个经典的动态规划问题,也是算法设计与分析中常见的一个问题。

在这个问题中,有一个容量为C的背包和N个物品,每个物品有一个重量和一个价值,要求选出一些物品放入背包中,使得总重量不超过背包容量且总价值最大。

在实验中,我首先对01背包问题进行了建模和分析,然后使用了两种不同的算法进行求解,分别是基于贪心算法和动态规划算法。

最后,对两种算法进行了对比和分析。

首先,我对01背包问题进行了建模。

根据题目要求,我将问题定义为一个二维表格,表格的行表示物品的索引,列表示背包的容量。

表格中的每个元素表示在考虑前i个物品并且背包容量为j的情况下,可以获得的最大价值。

根据这个定义,我可以通过填充表格中的元素来逐步求解问题。

然后,我使用了两种算法来求解01背包问题。

首先是贪心算法,贪心算法的核心思想是每次选择当前最优解,但是在01背包问题中,贪心算法不一定能够得到最优解。

因此,我使用了一个简单的贪心策略,即每次选择单位价值最高的物品放入背包中。

这个算法的时间复杂度为O(NlogN),因为需要对物品按照单位价值进行排序。

然后是动态规划算法,动态规划算法是一种通过将问题分解为子问题,并且利用子问题的解来求解原问题的方法。

对于01背包问题,动态规划算法的思路是从表格的左上角开始,逐行逐列地填充表格中的元素。

具体的填充方法是,对于第i个物品和第j个背包容量,如果当前物品的重量大于背包容量,则当前元素的值等于上一行相同列的元素的值;否则,当前元素的值等于上一行相同列的元素的值和上一行当前列减去当前物品重量所对应的元素的值的最大值。

这个算法的时间复杂度为O(NC),其中N为物品的个数,C为背包的容量。

实验结果显示,贪心算法的解并不一定是最优解,而动态规划算法的解一定是最优解。

这是因为贪心算法在每一次选择中只考虑了当前最优解,而没有考虑到整体最优解。

而动态规划算法通过填充表格的方式,可以逐步求解出整体最优解,并且保证了子问题的最优解是原问题的最优解。

背包问题问题实验报告(3篇)

背包问题问题实验报告(3篇)

第1篇一、实验目的1. 理解背包问题的基本概念和分类。

2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。

3. 分析背包问题的复杂度,比较不同算法的效率。

4. 通过实验验证算法的正确性和实用性。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。

c. 返回dp[n][C],即为最大价值。

2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。

实验报告分支限界法01背包

实验报告分支限界法01背包

实验报告分支限界法01背包实验报告:分支限界法01背包问题一、引言01背包问题是计算机科学中经典的问题之一,也是分枝限界法(Branch and Bound)的重要应用之一、本实验旨在通过使用分支限界法求解01背包问题,加深对该算法的理解,并验证其在计算机科学中的实际应用价值。

二、算法原理01背包问题是指在给定容量的背包和一组物品中,求解如何选择物品,使得在背包容量限制下,装入背包的物品总价值最大。

该问题可以使用动态规划方法求解,但这里我们采用分支限界法进行求解。

分支限界法首先将问题划分为多个较小的子问题,然后通过选择最有希望的子问题进行探索,并进行剪枝操作,以避免无效的,最后得到问题的最优解。

在01背包问题中,每个物品可以选择装入背包或不装入背包,因此可以通过对每个物品的选择进行枚举,并使用上界函数(bound function)对每个子问题的解进行估计,去掉必然不是最优解的子问题,从而减少空间。

具体实现中,可以使用一个优先队列(Priority Queue)来存储这些子问题,按照优先级从高到低的顺序进行扩展探索,直到找到最优解或队列为空时停止。

三、实验过程1.根据给定的背包容量和物品价值、重量数组,创建一个优先队列并初始化其第一个子问题。

2.使用循环进行优先队列的遍历,直到队列为空。

3.取出队列中优先级最高的子问题进行扩展探索。

4.对该子问题进行剪枝操作:若当前子问题的上界函数值小于当前最优解,则该子问题无需继续扩展。

5.对没有剪枝的子问题进行扩展操作:分为两种情况,一种是将当前物品放入背包,一种是不放入背包。

6.若扩展的子问题是可行解,则更新当前最优解。

7.将扩展的子问题加入优先队列。

8.重复步骤3-7,直到找到最优解或队列为空。

四、实验结果本次实验使用分支限界法求解了一个01背包问题。

背包的最大容量为W=10,共有5个物品,其重量分别为w={2,3,4,5,9},价值分别为v={3,4,5,8,10}。

算法设计与分析——0-1背包问题(动态规划)

算法设计与分析——0-1背包问题(动态规划)

算法设计与分析——0-1背包问题(动态规划)⼀、问题描述有N件物品和⼀个最多能被重量为W 的背包。

第i件物品的重量是weight[i],得到的价值是value[i] 。

每件物品只能⽤⼀次,求解将哪些物品装⼊背包⾥物品价值总和最⼤。

⼆、问题分析2.1 确定dp数组以及下标的含义对于背包问题,有⼀种写法,是使⽤⼆维数组,即dp[i][j] 表⽰从下标为[0-i]的物品⾥任意取,放进容量为j的背包,价值总和最⼤是多少。

2.2 确定递推公式再回顾⼀下dp[i][j]的含义:从下标为[0-i]的物品⾥任意取,放进容量为j的背包,价值总和最⼤是多少。

那么可以有两个⽅向推出来dp[i][j],由dp[i - 1][j]推出,即背包容量为j,⾥⾯不放物品i的最⼤价值,此时dp[i][j]就是dp[i - 1][j]由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最⼤价值,那么dp[i - 1][j -weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最⼤价值所以递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);2.3 dp数组如何初始化关于初始化,⼀定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

⾸先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],⽆论是选取哪些物品,背包价值总和⼀定为0。

如图再看其他情况。

状态转移⽅程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就⼀定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最⼤价值。

算法01背包、合唱队形实验报告

算法01背包、合唱队形实验报告

中南大学《算法设计与分析》实验报告姓名:吴冰专业班级:软件1002学号:3902100216指导教师:刘莉平完成日期:2011.11一、实验名称动态规划算法实验二、实验目的(1)掌握动态规划方法贪心算法思想(2)掌握最优子结构原理(3)了解动态规划一般问题三、实验内容(1)编写一个简单的程序,解决0-1背包问题。

设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}(2)合唱队形安排。

【问题描述】N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。

合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK,则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。

已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

四、算法思想分析01背包:背包的最终最大容量未知,所以,我们得从1到M一个一个的试,比如,刚开始任选N件物品中的一个,看对应的M的背包,能不能放进去,如果能放进去,并且还有多少空间,则,多出来的空间能放N-1物品中的最大价值合唱队问题:分别从左到右求最大上升子序列,从右到左求最大下降子序列,再枚举中间最高的一个人。

五、算法源代码及用户屏幕#include<iostream>using namespace std;int max(int a,int b){if(a > b)return a;elsereturn b;}void ZeroOneBag(int *v,int *w,int *x,int c,int n, int m[6][100]){int i,j;for(j = 0; j < c; j++){if (j < w[n]) //从䨮第̨²N件t物?品¡¤开a始º?,ê?如¨?果?放¤?不?下?m[n][j]=0;else//如¨?果?放¤?的Ì?下?m[n][j]=v[n];}for(i = n-1; i >= 1; i--) //控?制?物?品¡¤的Ì?循-环¡¤,从䨮i-1到Ì?第̨²件t{for(j = 0; j < w[i]; j++) //当Ì¡À前¡ã这a个?物?品¡¤放¤?不?下?,ê?则¨°最Á?优®?解a为a之?前¡ã的Ì?解am[i][j]=m[i+1][j];for(j=w[i]; j<=c; j++)m[i][j]=max(m[i+1][j], m[i+1][j-w[i]]+v[i]);}for(i = 1; i < n; i ++)//构1造¨¬最Á?优®?解a{if(m[i][c] == m[i+1][c])x[i] = 0;else{x[i] = 1;c = c-w[i];}}x[n] = (m[n][c])?1:0; //m[n][c]大䨮于®¨²吗e?ê?大䨮于®¨²就¨ª是º?选?了¢?return;}void main(){int i=0,n=5;int w[]={0,2,2,6,5,4};int v[]={0,6,3,5,4,6};int x[]={0,0,0,0,0,0};cout<<"程¨¬序¨°自Á?带ä?数ºy据Y为a:êo"<<"\n";cout<<"编À¨¤号? 重?量¢? 价?值¦Ì"<<endl;{cout<<" "<<i+1<<" "<<w[i+1]<<" "<<v[i+1]<<endl;}int m;cout<<"请?输º?入¨?最Á?大䨮背À3包㨹重?量¢?限T制?:êo";cin>>m;int array[6][100]={0};ZeroOneBag(v,w,x,m,5,array);cout<<"\n背À3包㨹能¨¹装Á¡ã的Ì?最Á?大䨮价?值¦Ì为a: "<<array[1][m];cout<<"\n\n最Á?优®?解a为a: \n";for(i = 1; i <= n; i++)cout<<" x"<<"["<<i<<"]";cout<<endl;for(i = 1; i <= n; i++)cout<<" "<<x[i]<<" ";cout<<"\n\n";system("PAUSE");}#include<iostream>using namespace std;#define MAXN 200void main(){int n,a[MAXN],b[MAXN],c[MAXN],i,j,max;cout<<"合?唱a队¨®的Ì?人¨?数ºy为a:êo ";cin>>n;cout<<"合?唱a队¨®员¡À的Ì?身¦¨ª高?为a:êo ";cin>>a[i];memset(b,0,sizeof(a));memset(c,0,sizeof(c));b[1] = 1;for(i = 2;i<=n;i++){max = 0;for(j = i-1;j>=1;j--)if(a[j]<a[i]&&b[j]>max)max = b[j];b[i] = max +1;}c[n] = 1;for(i=n-1;i>0;i--){max = 0;for(j = i+1;j<=n;j++)if(a[j]<a[i]&&c[j]>max)max = c[j];c[i] = max+1;}max+b[1]+c[1];for(i =2;i<=n;i++){if(b[i]+c[i]>max)max = b[i]+c[i];}cout<<"出?列¢D的Ì?人¨?数ºy为a:êo "<<n-max+1<<endl;system("PAUSE");}六、实验过程分析在求解问题中,对于每一步策略,列出各种可能的局部解,再依据某种判定条件,舍弃那些肯定不能得到最优解的局部解,在每一步都经过筛选,以没一步都是最优解来保证全局是最优解。

算法背包问题实验报告

算法背包问题实验报告

一、实验目的1. 掌握动态规划的基本思想和应用场景。

2. 理解并实现0-1背包问题的动态规划解法。

3. 比较贪心算法在解决背包问题时的适用性和局限性。

4. 分析不同算法的时间复杂度和空间复杂度。

二、实验原理背包问题是一种典型的组合优化问题,它描述为:给定一组物品,每种物品都有一定的重量和价值,在限定的最大承重(背包容量)下,如何选择物品使得背包内物品的总价值最大。

三、实验内容本实验主要涉及以下内容:1. 0-1背包问题动态规划解法- 使用二维数组实现动态规划算法,记录每个子问题的最优解。

- 使用一维数组优化空间复杂度,通过滚动数组的方式实现。

2. 贪心算法解决背包问题- 分析贪心算法在解决背包问题时的适用性和局限性。

3. 比较两种算法的性能- 通过实际数据和测试案例,比较动态规划算法和贪心算法在解决背包问题时的运行时间和结果。

四、实验过程1. 0-1背包问题动态规划解法- 二维数组实现:- 定义一个二维数组dp,其中dp[i][j]表示前i个物品放入容量为j的背包中的最大价值。

- 遍历所有物品和背包容量,根据物品是否放入背包更新dp数组。

- 最终dp[m][W]即为最大价值。

- 一维数组实现:- 定义一个一维数组dp,其中dp[j]表示容量为j的背包中的最大价值。

- 遍历所有物品,对于每个物品,从背包容量开始倒序遍历,更新dp数组。

- 最终dp[W]即为最大价值。

2. 贪心算法解决背包问题- 根据物品价值与重量的比例,选择价值最大的物品放入背包。

- 重复上述步骤,直到背包容量达到上限。

3. 比较两种算法的性能- 使用一组测试案例,包括不同数量的物品和不同的背包容量。

- 分别使用动态规划算法和贪心算法求解背包问题,记录运行时间和结果。

- 比较两种算法在解决背包问题时的性能。

五、实验结果与分析1. 动态规划算法- 在测试案例中,动态规划算法在所有情况下都能找到最大价值。

- 时间复杂度为O(nW),空间复杂度为O(nW)或O(W),其中n为物品数量,W为背包容量。

01背包问题实验报告

01背包问题实验报告

算法设计与分析实验报告书实验名称:0/1背包问题学号:姓名:实验时间:2015年 6 月 1 日一实验目的和要求(1)深刻掌握贪心法、动态规划法、回溯法的设计思想并能熟练运用(2)理解这样一个观点:同样的问题可以用不同的方法来解决,一个好的算法是反复努力和重新修正的结果。

二实验内容(1)分别用蛮力法贪心法、动态规划法、回溯法设计0/1背包问题的算法。

(2)分析算法随n和C变化的时间性能,随机产生参数n和C,收集算法执行的时间(3)讨论n和C变化时,动态规划法和回溯法的时间性能。

(4)讨论几种算法在该问题求解上的特点。

三实验环境VC++6.0四设计思想及实验步骤蛮力法的设计思想和步骤将所有排列下的背包的重量和价值都计算出来,选择重量不大于背包的总重量下的最大价值。

贪心法的设计思想和步骤首先计算每种物品单位重量的价值vi/wi;按单位价值对物品进行升序排列。

然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包,直到背包装满为止。

动态规划法的设计思想和步骤令V(i, j)表示在前i个物品中能够装入容量为j的背包中的物品的最大价值,则可以得到如下动态函数:V(i, j)=0 (i=0或j=0)V( i, j) = V(i-1, j) j<w[i]V( i, j) = max{V(i-1, j), V(I, j-1)+v[i]} j>=w[j]按照下述方法来划分段:第一段只装入前1个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入2个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n个阶段。

最后V(n, C)便是容量为C的背包中装入n个物品时获取到的最大价值。

回溯法的设计思想和步骤为了避免生成那些不可能产生最佳解的问题状态,要不断的利用越约束条件来剪掉那些实际上不可能产生所需解的节点,以减少问题额计算量。

对于n种可选物品的0/1背包问题,其解空间长度由长度为n的0-1向量组成,可用子集数表示。

01背包实验报告

01背包实验报告

01背包实验报告01背包实验报告引言:01背包问题是一种经典的动态规划问题,它的解决方案可以应用于许多实际场景中。

本实验旨在通过实际操作和数据分析,深入理解01背包问题的解决思路和算法效率。

实验目的:1. 理解01背包问题的定义和解决思路;2. 掌握动态规划算法的基本原理;3. 分析不同算法对于不同规模问题的效率差异。

实验过程:1. 实验环境准备:在实验开始之前,我们需要准备一台配置合适的计算机,安装好编程环境和所需的编程语言。

本实验选择使用Python作为编程语言。

2. 实验步骤:a. 定义问题:我们首先需要明确01背包问题的定义。

假设有一个背包,它的容量为C。

有n个物品,每个物品有两个属性:重量w和价值v。

我们的目标是在不超过背包容量的前提下,选择一些物品放入背包,使得背包中物品的总价值最大。

b. 动态规划算法实现:为了解决01背包问题,我们可以使用动态规划算法。

具体实现步骤如下: - 创建一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大总价值;- 初始化dp数组的第一行和第一列为0,表示背包容量为0或物品数量为0时,最大总价值为0;- 对于每个物品i,遍历背包容量j,根据以下递推关系更新dp数组的值:- 如果物品i的重量大于背包容量j,则dp[i][j] = dp[i-1][j],即不选择物品i;- 如果物品i的重量小于等于背包容量j,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),即选择物品i或不选择物品i中的最大值;- 最终,dp[n][C]即为所求的最大总价值。

c. 实验数据生成:为了验证算法的正确性和效率,我们需要生成一些测试数据。

我们可以使用随机数生成器生成一定规模的测试数据,包括背包容量、物品重量和价值等。

d. 算法效率分析:在实验中,我们可以通过分析不同规模问题的求解时间来评估算法的效率。

我们可以使用计时器来记录算法执行的时间,并绘制出不同规模问题的求解时间与问题规模的关系图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
else
{
goods[i].X=0;
}
for(j=2;j<=n;j++) /*按物品编号做降序排列*/
{
goods[0]=goods[j];
i=j-1;
while (goods[0].flag<goods[i].flag)
{
goods[i+1]=goods[i];
i--;
}
goods[i+1]=goods[0];
return 0;
}
五、调试过程及实验结果
六、总结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。
实验二:贪心算法解0—1背包问题
一、实验目的
学习掌贪心算法法思想。
二、实验内容
用贪心法求解0—1背包问题,并输出问题的最优解。
for(int j=1;j<=C;j++)
{
if(s[i]<=j)
{
if(v[i]+a[i-1][j-s[i]]>a[i-1][j])
a[i][j]=v[i]+a[i-1][j-s[i]];
else
a[i][j]=a[i-1][j];
}
else
a[i][j]=a[i-1][j];
}
}
}
void outputsack(int a[100][100], int x[100],int s[100],int n,int C)
{
float cu; int i,j;
for(i=1;i<=n;i++) goods[i].X=0;
cu=M; //背包剩余容量
for(i=1;i<n;i++)
{ if(goods[i].w<cu) / /若不超过容量,尽量增加物品
{
goods[i].X=1;
cuห้องสมุดไป่ตู้=goods[i].w;//确定背包新的剩余容量
{
for(int k=n;k>=1;k--)
{
if(a[k][C]=a[k-1][C])
x[k]=0;
else
{
x[k]=1;
C=C-s[k];
}
}
x[1]=a[1][C]?1:0;
}
int main()
{
int a[100][100];
int s[100];
int v[100];
int x[100];
float M;
goodinfo *goods;//定义一个指针
while(j)
{
cout<<"请输入物品的总数量:";
cin>>n;
goods=new struct goodinfo [n+1];//
cout<<"请输入背包的最大容量:";
cin>>M;
cout<<endl;
int i;
for(i=1;i<=n;i++)
六、代码如下:
#include <iostream>
using namespace std;
struct goodinfo
{
float p; //物品效益
float w; //物品重量
float X; //物品该放的数量
int flag; //物品编号
};//物品信息结构体
void Insertionsort(goodinfo goods[],int n) //插入排序,按pi/wi价值收益进行排序,一般教材上按冒泡排序
for( i=1;i<=n;i++)
{cin>>v[i];}
knapsack(a,s,v,n,C);
outputsack(a,x,s,C,n);
//max(s,v);
//for( i=1;i<=n;i++)
//cout<<x[i];
cout<<"最大价值是:"<<endl;
cout<<a[n][C]<<endl;
其c++部分代码如下:
#include<iostream.h>
void knapsack(int a[100][100],int s[100],int v[100],int n,int C)
{
for(int i=0;i<=C;i++)
{
a[0][i]=0;
}
for( i=1;i<=n;i++)
{
a[i][0]=0;
三、实验内容
0-1背包问题:给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为c。问应如何选择装入背包中的物品,使得装入背包中的物品的总价值最大?
在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分物品i。0-1背包问题是一个特殊的整数规划问题。
{ goods[i].flag=i;
cout<<"请输入第"<<i<<"件物品的重量:";
cin>>goods[i].w;
cout<<"请输入第"<<i<<"件物品的效益:";
cin>>goods[i].p;
goods[i].p=goods[i].p/goods[i].w;//得出物品的效益,重量比
问题描述:给定n种物品和一背包。物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、实验条件
用VC6.0软件进行编程。
四、需求分析
对于给定n种物品和一背包。在容量最大值固定的情况下,要求装入的物品价值最大化。
五、基本思想:
总是对当前的问题作最好的选择,也就是局部寻优。最后得到整体最优。总是选择单位价值最高的物品
八、动态规划与贪心算法比较
动态规划法又和贪婪算法有些一样,在动态规划中,可将一个问题的解决方案视为一系列决策的结果。不同的是,在贪婪算法中,每采用一次贪婪准则便做出一个不可撤回的决策,而在动态规划中,还要考察每个最优决策序列中是否包含一个最优子序列。
四、问题分析
在0/1背包问题中物体或者被装入背包或者不被装入背包只有两种选择。循环变量i、j意义:前i个物品能够装入载重量为j的背包中,数组c意义:c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值。若w[i]>j第i个物品不装入背包,否则若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j],则记录当前最大价值,替换为第i个物品装入背包后的价值。
cout<<endl;
}
Insertionsort(goods,n);
bag(goods,M,n);
cout<<"press <1> to run agian"<<endl;
cout<<"press <0> to exit"<<endl;
cin>>j;
}
}
七、运行结果:
上述结果显示:
贪心算法不是总是最优的.
}
}
cout<<"最优解为:"<<endl;
for(i=1;i<=n;i++)
{
cout<<"第"<<i<<"件物品要放:";
cout<<goods[i].X<<endl;
}
}
void main()
{
cout<<"|--------运用贪心法解背包问题---------|"<<endl;
int j,n;
int C,n;
cout<<"请输入物品的总个数n:"<<endl;
cin>>n;
cout<<"请输入背包的总容量C:"<<endl;
cin>>C;
cout<<"请依次输入物品的体积s[i]:"<<endl;
for(int i=1;i<=n;i++)
{cin>>s[i];}
cout<<"请对应输入物品的价值v[i]:"<<endl;
课程设计报告
( 2013 -- 2014 年度第 一 学期)
名称:算法设计与分析
题目0—1背包问题
院系:信息工程
班级:网络11k1
学号:
学生姓名:
指导教师:牛华为
设计周数:1周
成绩:
日期:2013年11月15
一、目的和要求
了解并掌握动态规划算法;
用动态规划算法解决0-1背包问题。
二、实验环境
用VC6.0软件进行编程
{
int j,i;
for(j=2;j<=n;j++)
{
goods[0]=goods[j];
相关文档
最新文档