分支界限法解0-1背包问题实验报告
回溯法和分支限界法解决0-1背包题(精)[精品文档]
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
分支限界法结局0~1背包问题
Bound( i ) cleft = c – cw; b = cp; while( i <= n && w[i] <= cleft ){ cleft -= w[i]; b += p[i]; i++; } if( i<=n) b += p[i]/w[i] * cleft; return b; }
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结 点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为 止。
与回溯法区别
求解目标不同: 一般而言,回溯法的求解目标是找出解空间树中满 足的约束条件的所有解,而分支限界法的求解目标 则是尽快的找出满足约束条件的一个解。
搜索方法不同 回溯法使用深度优先方法搜索,而分支限界一般用宽 度优先或最佳优先方法来搜索;
按照队列先进先出(FIFO)原则选取下一个节点为扩展节点;
数据结构:队列
(2)优先队列式分支限界法
按照优先队列中规定的优先级选取优先级最高的节点成为当前 扩展节点。 数据结构:堆 最大优先队列:使用最大堆,体现最大效益优先
最小优先队列:使用最小堆,体现最小费用优先
【0-1背包问题】
物品数量n=3,重量w=(20,15,15),价值v=(40,25,25) 背包容量c=30,试装入价值和最大的物品? 解空间:{(0,0,0),(0,0,1),…,(1,1,1)}
分支限界法解决0/1背包问题
分支限界法思想概述 与回溯法区别 求解步骤 常见的两种分支限界法 0-1背包问题
分支限界法的基本思想
分支限界法基本思想
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜 索问题的解空间树。
【优质】背包问题实验报告-范文word版 (13页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。
三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。
动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。
0-1背包问题具有最优子结构性质。
假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。
i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。
分支界限法0-1背包问题(优先队列式分支限界法)
分⽀界限法0-1背包问题(优先队列式分⽀限界法)输⼊要求有多组数据。
每组数据包含2部分。
第⼀部分包含两个整数C (1 <= C <= 10000)和 n (1 <= n <= 10,分别表⽰背包的容量和物品的个数。
第⼆部分由n⾏数据,每⾏包括2个整数 wi(0< wi <= 100)和 vi(0 < vi <= 100),分别表⽰第i个物品的总量和价值输出要求对于每组输⼊数据,按出队次序输出每个结点的信息,包括所在层数,编号,背包中物品重量和价值。
每个结点的信息占⼀⾏,如果是叶⼦结点且其所代表的背包中物品价值⼤于当前最优值(初始为0),则输出当前最优值 bestv 和最优解bestx(另占⼀⾏)参见样例输出测试数据输⼊⽰例5 32 23 22 3输出⽰例1 1 0 02 2 2 23 5 2 24 10 4 5bestv=5, bestx=[ 1 0 1 ]4 11 2 23 4 5 42 3 0 0⼩贴⼠可采⽤如下的结构体存储结点:typedef struct{int no; // 结点在堆中的标号int sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // 优先值 sv/sw}Node;#include<stdio.h>#include<math.h>#include<string.h>typedef struct {int no; // 结点标号int id; // 节点idint sw; // 背包中物品的重量int sv; // 背包中物品的价值double prior; // sv/sw}Node;int surplusValue(int *v,int n,int y) {int sum = 0;for(int i = y; i <= n; i++) {sum += v[i];}return sum;}void qsort(Node *que,int l,int r) {int len = r - l + 1;int flag;for(int i = 0; i < len; i ++) {flag = 0;for(int j = l; j < l + len - i; j++) {if(que[j].prior < que[j+1].prior) {Node t = que[j];que[j] = que[j+1];que[j+1] = t;flag = 1;}}//if(!flag ) return;}}void branchknap(int *w,int *v,int c,int n) {int bestv = 0;int f = 0;int r = 0;Node que[3000];memset(que,0,sizeof(que));int path[15];que[0].no = 1;que[0].id = que[0].sv = que[0].sw = que[0].prior = 0;while(f <= r) {Node node = que[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;printf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp % 2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++ ;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id + 1]) <= c && surplusValue(v,n,node.id+1) + node.sv > bestv) { r++;que[r].id = node.id + 1;que[r].no = node.no*2;int id = node.id + 1;que[r].sv = node.sv + v[id];que[r].sw = node.sw + w[id];que[r].prior = que[r].sv / (que[r].sw*1.0);}if(surplusValue(v,n,node.id+2) + node.sv > bestv) {r++;que[r].id = node.id + 1;que[r].no = node.no*2 + 1;que[r].sv = node.sv;que[r].sw = node.sw;que[r].prior = node.prior;}}f++;qsort(que,f,r);}}int main() {int c,n;int w[15],v[15];while(~scanf("%d %d",&c,&n)){for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap(w,v,c,n);}return 0;}#include<stdio.h>#include<math.h>#include<string.h>typedef int bool;#define true 1#define false 0struct Node{int no; // ?áµ?±êo?int id; //jie dian idint sw; // ±3°ü?D·µá?int sv; // ±3°ü?D·µ?µdouble prior;};struct Node queuee[2000];int w[15],v[15];int bestv = 0,c,n;int path[15]; //lu jingint surplusValue(int y) {int sum = 0;for(int i = y; i <= n; i++)sum += v[i];return sum;}void qsort(int l,int r) {// printf("------\n");int len = r - l + 1;//printf("----%d %d %d-----\n",l,r,len);bool flag;for(int i = 0; i < len ; i++) {flag = false;for(int j = l; j <l+ len -i ;j++) {if(queuee[j].prior < queuee[j+1].prior) {struct Node temp = queuee[j];queuee[j] = queuee[j+1];queuee[j+1] = temp;flag = true;}//if(!flag) return;}}// printf("---排序嘻嘻---\n");//for(int i = l; i <= r;i++ )// printf("***%d : %.2lf\n",queuee[i].no,queuee[i].prior);// printf("\n------\n");}void branchknap() {bestv = 0;int f = 0;int r = 0;queuee[0].no = 1;queuee[0].id = 0;queuee[0].sv = 0;queuee[0].sw = 0;queuee[0].prior = 0;// printf("f: %d r: %d\n",f,r);while(f <= r) {struct Node node = queuee[f];printf("%d %d %d %d\n",node.id+1,node.no,node.sw,node.sv);if(node.no >= pow(2,n)) {if(node.sv > bestv) {bestv = node.sv;//TODOprintf("bestv=%d, bestx=[",bestv);int temp = node.no;int i = 0;while(temp > 1) {if(temp%2 == 0)path[i] = 1;elsepath[i] = 0;temp /= 2;i++;}i--;while(i >= 0) {while(i >= 0) {printf(" %d",path[i]);i--;}printf(" ]\n");}} else {if((node.sw + w[node.id+1]) <= c && surplusValue(node.id+1) + node.sv > bestv) { r++;//printf("%d\n",(node.sw + w[node.id+1]));queuee[r].id = node.id+1;queuee[r].no = node.no*2;int id = node.id+1;queuee[r].sv = node.sv + v[id];queuee[r].sw = node.sw + w[id];queuee[r].prior = queuee[r].sv/(queuee[r].sw*1.0);//printf("进队id: %d\n",queuee[r].no) ;//printf("%d %d %d\n",id,v[id], w[id]);}if(surplusValue(node.id+2) + node.sv > bestv) {r++;queuee[r].id = node.id+1;queuee[r].no = node.no*2 + 1;queuee[r].sv = node.sv ;queuee[r].sw = node.sw ;queuee[r].prior = node.prior;//printf("进队id: %d\n",queuee[r].no) ;}}f++;qsort(f,r);}}int main() {while(~scanf("%d %d",&c,&n)){memset(queuee,0,sizeof(queuee));for(int i = 1; i <= n; i++) {scanf("%d %d",&w[i],&v[i]);}branchknap();}return 0;}。
实验报告:动态规划01背包问题)范文(最终五篇)
实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。
(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。
有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。
优先队列式分支限界法求解0-1背包问题
算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。
算法设计与分析实验报告—01背包问题
算法设计与分析实验报告—0/1背包问题-【问题描述】给定n 种物品和一个背包。
物品i 的重量是iw ,其价值为i v,背包容量为C 。
问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?【问题分析】0/1背包问题的可形式化描述为:给定C>0, i w >0, i v >0,1i n ≤≤,要求找出n 元0/1向量{}12(,,...,),0,1,1n i x x x x i n ∈≤≤,使得n1i i i w x c =≤∑,而且n1i ii v x=∑达到最大。
因此0/1背包问题是一个特殊的整数规划问题。
0n k w ≤≤1max ni i i v x =∑n1i ii w xc =≤∑{}0,1,1i x i n ∈≤≤【算法设计】设0/1背包问题的最优值为m( i, j ),即背包容量是j ,可选择物品为i,i+1,…,n 时0/1背包问题的最优值。
由0/1背包问题的最优子结构性质,可以建立计算m( i, j )的递归式如下:max{m( i+1, j ), m( i+1, j-i w )+i v } i j w ≥m( i, j )=m(i+1,j)n v n j w >m(n,j)=0 0n k w ≤≤【算法实现】#include <iostream.h> #include<string.h> #include<iomanip.h>int min(int w, int c) {int temp; if (w < c) temp = w;elsetemp = c;return temp;}Int max(int w, int c) {int temp; if (w > c) temp = w;elsetemp = c;return temp;}void knapsack(int v[], int w[], int** m, int c, int n) //求最优值 {int jmax = min(w[n]-1, c);for (int j = 0; j <= jmax; j++)m[n][j] = 0;for (int jj = w[n]; jj <= c; jj++)m[n][jj] = v[n];for(int i = n-1; i > 1; i--)//递归部分{jmax = min(w[i]-1, c);for(int j = 0; j <= jmax; j++)m[i][j] = m[i+1][j];for(int jj = w[i]; jj <= c; jj++)m[i][jj] = max(m[i+1][jj], m[i+1][jj-w[i]]+v[i]);}m[1][c] = m[2][c];if(c >= w[1])m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);cout << endl << "最优值:" << m[1][c] << endl;cout<<endl;cout<< "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" << endl;}int traceback(int x[], int w[], int** m, int c, int n) //回代,求最优解{out << endl << "得到的一组最优解如下: " << endl;for(int i = 1; i < n; i++){if(m[i][c] == m[i+1][c]) x[i] = 0;else{x[i] = 1;c -= w[i];}}x[n] = (m[n][c]) ? 1:0;for(int y = 1; y <= n; y++)cout << x[y] << "\t";cout << endl;return x[n];}void main(){int n, c;int **m;cout << "&&&&&&&&&&&&&&&&&&&&&欢迎使用0-1背包问题程序&&&&&&&&&&&&&&&&&&&" << endl;cout << "请输入物品个数: ";cin >> n ;cout << endl << "请输入背包的承重:";cin >> c;int *v = new int[n+1];cout << endl << "请输入每个物品的价值 (v[i]): " << endl;for(int i = 1; i <= n; i++)cin >> v[i];int *w = new int[n+1];cout << endl << "请输入每个物品的重量 (w[i]): " << endl;for(int j = 1; j <= n; j++)cin >> w[j];int *x = new int[n+1];m = new int* [n+1]; //动态的分配二维数组for(int p = 0; p < n+1; p++)m[p] = new int[c+1];knapsack (v, w, m, c, n);traceback(x, w, m, c, n);}【运行结果】。
分支界限方法01背包问题解题步骤
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
01背包分支限定法
0—1背包问题一、实验目的学习掌握分支限定法思想。
二、实验内容用分支限定法求解0—1背包问题,并输出问题的最优解。
0—1背包问题描述如下:给定n种物品和一背包。
物品i的重量是Wi,其价值为Vi,背包的容量是c,问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。
三、实验条件Jdk1.5以上四、需求分析对于给定n种物品和一背包。
在容量最大值固定的情况下,要求装入的物品价值最大化。
五、基本思想:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。
六、详细设计/** Bound_Branch.java** Created on 2007年6月2日, 下午6:07** To change this template, choose Tools | Template Manager* and open the template in the editor.*/package sunfa;public class Bound_Branch {static double c;static int n;static double[]w;static double[]p;static double cw;static double cp;static int []bestX;static MaxHeap heap;//上界函数bound计算节点所相应价值的上界private static double bound(int i){double cleft=c-cw;double b=cp;while(i<=n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}//装填剩余容量装满背包if(i<=n)b+=p[i]/w[i]*cleft;return b;}//addLiveNode将一个新的活节点插入到子集树和优先队列中private static void addLiveNode(double up,double pp,double ww,int lev,BBnode par,boolean ch){//将一个新的活节点插入到子集树和最大堆中BBnode b=new BBnode(par,ch);HeapNode node =new HeapNode(b,up,pp,ww,lev);heap.put(node);}private static double bbKnapsack(){// TODO 自动生成方法存根//优先队列式分支限界法,返回最大价值,bestx返回最优解//初始化BBnode enode=null;int i=1;double bestp=0;//当前最优值double up=bound(1);//当前上界while(i!=n+1){//非叶子节点//检查当前扩展节点的右儿子子节点double wt=cw+w[i];if(wt<=c){if(cp+p[i]>bestp)bestp=cp+p[i];addLiveNode(up,cp+p[i],cw+w[i],i+1,enode,true);}up=bound(i+1);if(up>=bestp)addLiveNode(up,cp,cw,i+1,enode,false);HeapNode node =(HeapNode)heap.removeMax();enode=node.liveNode;cw=node.weight;cp=node.profit;up=node.upperProfit;i=node.level;}for(int j=n;j>0;j--){bestX[j]=(enode.leftChild)?1:0;enode=enode.parent;}return cp;}public static double knapsack(double []pp,double []ww,double cc,int []xx){ //返回最大值,bestx返回最优解c=cc;n=pp.length-1;//定义以单位重量价值排序的物品数组Element[]q=new Element[n];double ws=0.0;double ps=0.0;for(int i=1;i<=n;i++){q[i-1]=new Element(i,pp[i]/ww[i]);ps+=pp[i];ws+=ww[i];}if(ws<=c){for(int i=1;i<=n;i++)xx[i]=1;return ps;}//以单位重量排序MergeSort.mergeSort(q);//初始化数据成员p=new double[n+1];w=new double[n+1];for(int i=1;i<=n;i++){p[i]=pp[q[n-i].id];w[i]=ww[q[n-i].id];}cw=0.0;cp=0.0;bestX = new int[n+1];heap = new MaxHeap(n);double maxp = bbKnapsack();for(int i=1;i<=n;i++)xx[q[n-i].id]=bestX[i];return maxp;}public static void main(String [] args){double w[]={2,2,6,5,4};double v[]={6,3,4,5,6};double c=10;int []x = new int[5];double m = knapsack(v,w,c,x);for(int i=0;i<5;i++)System.out.print(x[i]);}}//子空间中节点类型class BBnode{BBnode parent;//父节点boolean leftChild;//左儿子节点标志BBnode(BBnode par,boolean ch){parent=par;leftChild=ch;}}class HeapNode implements Comparable{BBnode liveNode; // 活节点double upperProfit; //节点的价值上界double profit; //节点所相应的价值double weight; //节点所相应的重量int level; // 活节点在子集树中所处的层次号//构造方法public HeapNode(BBnode node, double up, double pp , double ww,int lev){ liveNode = node;upperProfit = up;profit = pp;weight = ww;level = lev;}public int compareTo(Object o) {double xup = ((HeapNode)o).upperProfit;if(upperProfit < xup)return -1;if(upperProfit == xup)return 0;elsereturn 1;}}class Element implements Comparable{int id;double d;public Element(int idd,double dd){id=idd;d=dd;}public int compareTo(Object x){double xd=((Element)x).d;if(d<xd)return -1;if(d==xd)return 0;return 1;}public boolean equals(Object x){return d==((Element)x).d;}}class MaxHeap{static HeapNode [] nodes;static int nextPlace;static int maxNumber;public MaxHeap(int n){maxNumber = (int)Math.pow((double)2,(double)n);nextPlace = 1;//下一个存放位置nodes = new HeapNode[maxNumber];}public static void put(HeapNode node){nodes[nextPlace] = node;nextPlace++;heapSort(nodes);}public static HeapNode removeMax(){HeapNode tempNode = nodes[1];nextPlace--;nodes[1] = nodes[nextPlace];heapSort(nodes);return tempNode;}private static void heapAdjust(HeapNode [] nodes,int s,int m){ HeapNode rc = nodes[s];for(int j=2*s;j<=m;j*=2){if(j<m&&nodes[j].upperProfit<nodes[j+1].upperProfit)++j;if(!(rc.upperProfit<nodes[j].upperProfit))break;nodes[s] = nodes[j];s = j;}nodes[s] = rc;}private static void heapSort(HeapNode [] nodes){for(int i=(nextPlace-1)/2;i>0;--i){heapAdjust(nodes,i,nextPlace-1);}}}主程序运行结果:。
分支限界法解决01背包问题
分⽀限界法解决01背包问题 分⽀限界法和之前讲的回溯法有⼀点相似,两者都是在问题的解的空间上搜索问题的解。
但是两者还是有⼀些区别的,回溯法是求解在解的空间中的满⾜的所有解,分⽀限界法则是求解⼀个最⼤解或最⼩解。
这样,两者在解这⼀⽅⾯还是有⼀些不同的。
之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有⼀个解的。
下⾯就讲讲分⽀限界法的基本思想。
分⽀限界法常以⼴度优先或以最⼩消耗(最⼤效益)优先的⽅式搜索问题的解空间树。
问题的解空间树是表⽰问题解空间的⼀颗有序树,常见的有⼦集树和排列树。
分⽀限界法和回溯法的区别还有⼀点,它们对于当前扩展结点所采⽤的扩展⽅式也是不相同的。
分⽀限界法中,对于每⼀个活结点只有⼀次机会成为扩展结点。
活结点⼀旦成为了扩展结点,就⼀次性产⽣其所有的⼦结点,⼦结点中,不符合要求的和⾮最优解的⼦结点将会被舍弃,剩下的⼦结点将加⼊到活结点表中。
再重复上⾯的过程,直到没有活结点表中没有结点,⾄此完成解决问题的⽬的。
分⽀限界法⼤致的思想就是上⾯的叙述,现在就可以发现,对于结点的扩展将会成为分⽀限界法的主要核⼼。
所以,分⽀限界法常见的有两种扩展结点的⽅式,1.队列式(FIFO)分⽀限界法,2.优先队列式分⽀限界法。
两种⽅法的区别就是对于活结点表中的取出结点的⽅式不同,第⼀种⽅法是先进先出的⽅式,第⼆种是按优先级取出结点的⽅式。
两中⽅法的区别下⾯也会提到。
在背包问题中还会提到⼀个⼦树上界的概念,其实就是回溯法中的剪枝函数,只不过,分⽀限界法⾥的剪枝函数改进了⼀些,剪枝函数同样也是分⽀限界法⾥⽐较重要的东西。
下⾯就讲⼀讲01背包问题的实现。
01背包问题和前⾯讲的背包问题的区别不⼤,就是01背包问题的物品不可以只放⼊部分,01背包问题的物品只能放⼊和不放⼊两个选择,这也是名字中01的原因。
其他的和背包问题相差不⼤,这⾥也不再累述。
算法的主体是⽐较容易想的,⾸先,将数据进⾏处理,这也是上⾯讲到的第⼆种取结点的⽅式(优先队列式)。
0-1背包问题(回溯法)
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
01背包问题实验心得体会
01背包问题实验心得体会01背包问题是一个经典的动态规划问题,也是算法设计与分析中常见的一个问题。
在这个问题中,有一个容量为C的背包和N个物品,每个物品有一个重量和一个价值,要求选出一些物品放入背包中,使得总重量不超过背包容量且总价值最大。
在实验中,我首先对01背包问题进行了建模和分析,然后使用了两种不同的算法进行求解,分别是基于贪心算法和动态规划算法。
最后,对两种算法进行了对比和分析。
首先,我对01背包问题进行了建模。
根据题目要求,我将问题定义为一个二维表格,表格的行表示物品的索引,列表示背包的容量。
表格中的每个元素表示在考虑前i个物品并且背包容量为j的情况下,可以获得的最大价值。
根据这个定义,我可以通过填充表格中的元素来逐步求解问题。
然后,我使用了两种算法来求解01背包问题。
首先是贪心算法,贪心算法的核心思想是每次选择当前最优解,但是在01背包问题中,贪心算法不一定能够得到最优解。
因此,我使用了一个简单的贪心策略,即每次选择单位价值最高的物品放入背包中。
这个算法的时间复杂度为O(NlogN),因为需要对物品按照单位价值进行排序。
然后是动态规划算法,动态规划算法是一种通过将问题分解为子问题,并且利用子问题的解来求解原问题的方法。
对于01背包问题,动态规划算法的思路是从表格的左上角开始,逐行逐列地填充表格中的元素。
具体的填充方法是,对于第i个物品和第j个背包容量,如果当前物品的重量大于背包容量,则当前元素的值等于上一行相同列的元素的值;否则,当前元素的值等于上一行相同列的元素的值和上一行当前列减去当前物品重量所对应的元素的值的最大值。
这个算法的时间复杂度为O(NC),其中N为物品的个数,C为背包的容量。
实验结果显示,贪心算法的解并不一定是最优解,而动态规划算法的解一定是最优解。
这是因为贪心算法在每一次选择中只考虑了当前最优解,而没有考虑到整体最优解。
而动态规划算法通过填充表格的方式,可以逐步求解出整体最优解,并且保证了子问题的最优解是原问题的最优解。
实验报告-分支限界法01背包
《算法设计与分析》实验报告六学号: 1004091130 姓名:金玉琦日期: 2011-11-17 得分:一、实验内容:运用分支限界法解决0-1背包问题。
二、所用算法的基本思想及复杂度分析:分支限界法分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。
因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。
0-1背包问题1)基本思想给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。
对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:u b = v + ( W - w) × ( vi + 1/ wi + 1 )根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。
2)复杂度分析时间复杂度是O(2n);三、源程序及注释:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;int *x;struct node{//结点表结点数据结构node *parent,//父结点指针*next; //后继结点指针int level,//结点的层bag,//节点的解cw,//当前背包装载量cp;//当前背包价值float ub; //结点的上界值};class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点void addnode(node *nod);//将结点添加到队列中void deletenode(node *nod);//将结点队列中删除struct node *nextnode(); //取下一个void display(); //输出结果void solvebag(); //背包问题求解};Knap::Knap(int *pp,int *ww,int cc,int nn){int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i;}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}float Knap::Bound(int i,int cw,int cp){// 计算上界int cleft=c-cw;float b=(float)cp;while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}if (i<n) b+=1.0*p[i]/w[i]*cleft;return b;}node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}void Knap::addnode(node *no){//将结点加入优先队列node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;}next1=p;p=p->next;}if(p==NULL){next1->next=no;}}node *Knap::nextnode(){//取上限最大结点node *p=front->next;front->next=p->next;return(p);}void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=1.0*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<1.0*p[j]/w[j]){minl=1.0*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}void Knap::display(){int i;cout<<"最大价值是:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值为:"<<endl;for(i=1;i<=n;i++)cout<<"x("<<setw(2)<<i<<")="<<x[i-1]<<endl;}void Knap::solvebag(){//背包问题求解int i;float ubb;node *aa;first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0;first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp){ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}void main(){int c,n;int i=0;int *p;int *w;cout<<"请输入背包容量:"<<endl;cin>>c;cout<<"请输入物品数:"<<endl;cin>>n;x=new int[n];p=new int[n];w=new int[n];cout<<"请输入"<<n<<"个物品的重量:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<"请输入"<<n<<"个物品价值:"<<endl;for(i=0;i<n;i++)cin>>p[i];x=new int[n];Knap knbag(p,w,c,n);knbag.solvebag();getch();return;}四、运行输出结果:五、调试和运行程序过程中产生的问题、采取的措施及获得的相关经验教训:解决该问题首先要确定一个合适的限界函数数, 并根据限界函数确定目标函数的界[down,up],然后按照广度优先策略遍历问题的解空间树,在分支结点上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值,如果某孩子结点的目标函数可能取得的值超出目标函数的界, 则将其丢弃, 因为从这个结点生成的解不会比目前已经得到的解更好; 否则, 将其加入待处理结点表中。
背包问题问题实验报告(3篇)
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
实验报告分支限界法01背包
实验报告分支限界法01背包实验报告:分支限界法01背包问题一、引言01背包问题是计算机科学中经典的问题之一,也是分枝限界法(Branch and Bound)的重要应用之一、本实验旨在通过使用分支限界法求解01背包问题,加深对该算法的理解,并验证其在计算机科学中的实际应用价值。
二、算法原理01背包问题是指在给定容量的背包和一组物品中,求解如何选择物品,使得在背包容量限制下,装入背包的物品总价值最大。
该问题可以使用动态规划方法求解,但这里我们采用分支限界法进行求解。
分支限界法首先将问题划分为多个较小的子问题,然后通过选择最有希望的子问题进行探索,并进行剪枝操作,以避免无效的,最后得到问题的最优解。
在01背包问题中,每个物品可以选择装入背包或不装入背包,因此可以通过对每个物品的选择进行枚举,并使用上界函数(bound function)对每个子问题的解进行估计,去掉必然不是最优解的子问题,从而减少空间。
具体实现中,可以使用一个优先队列(Priority Queue)来存储这些子问题,按照优先级从高到低的顺序进行扩展探索,直到找到最优解或队列为空时停止。
三、实验过程1.根据给定的背包容量和物品价值、重量数组,创建一个优先队列并初始化其第一个子问题。
2.使用循环进行优先队列的遍历,直到队列为空。
3.取出队列中优先级最高的子问题进行扩展探索。
4.对该子问题进行剪枝操作:若当前子问题的上界函数值小于当前最优解,则该子问题无需继续扩展。
5.对没有剪枝的子问题进行扩展操作:分为两种情况,一种是将当前物品放入背包,一种是不放入背包。
6.若扩展的子问题是可行解,则更新当前最优解。
7.将扩展的子问题加入优先队列。
8.重复步骤3-7,直到找到最优解或队列为空。
四、实验结果本次实验使用分支限界法求解了一个01背包问题。
背包的最大容量为W=10,共有5个物品,其重量分别为w={2,3,4,5,9},价值分别为v={3,4,5,8,10}。
背包问题实验报告
一、实验背景背包问题是组合优化领域中经典的NP难问题,具有广泛的应用背景。
背包问题是指在一个背包的容量限制下,如何从一组物品中选择一部分物品,使得所选物品的总价值最大。
背包问题分为0-1背包问题、完全背包问题、多重背包问题等。
本实验旨在比较不同背包问题的算法性能,为实际应用提供参考。
二、实验目的1. 比较不同背包问题的算法性能;2. 分析不同算法的时间复杂度和空间复杂度;3. 为实际应用选择合适的背包问题算法。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 数据集:随机生成的背包问题数据集四、实验方法1. 实验数据:生成不同规模的背包问题数据集,包括物品数量、背包容量和物品价值;2. 算法:比较以下背包问题的算法性能:(1)0-1背包问题的动态规划算法;(2)完全背包问题的动态规划算法;(3)多重背包问题的动态规划算法;3. 性能指标:计算每个算法的运行时间、空间复杂度和最优解价值。
五、实验结果与分析1. 0-1背包问题(1)动态规划算法算法实现:根据0-1背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为198。
(2)回溯法算法实现:根据0-1背包问题的状态转移方程,实现回溯法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据回溯法,得到最优解价值为198。
2. 完全背包问题(1)动态规划算法算法实现:根据完全背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈线性增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为300。
0-1背包问题(分支限界法)
分支限界法——01背包问题12软工028 胡梦颖一、问题描述0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品i。
二、问题分析分支限界法类似于回溯法,也是在问题的解空间上搜索问题解的算法。
一般情况下,分支限界法与回溯法的求解目标不同。
回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。
回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。
分支限界法的搜索策略是,在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一扩展结点。
为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。
这种方式称为分支限界法。
人们已经用分支限界法解决了大量离散最优化的问题。
三.源代码#include <stdio.h>#include<malloc.h>#define MaxSize 100 //结点数的最大值typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode;typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空{if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b) //入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;} qnode DeQueue(SqQueue &sq) //出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild) {qnode b;if (i==n) //可行叶子结点{ if (vt==bestv){ bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列} EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq))break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("最大价值为:%.1f\n",bestv);}void main(){int c;float ewv[MaxSize];printf("请输入背包的最大容量v:");scanf("%d",&c);printf("请输入物品总数n:");scanf("%d",&n);printf("请输入物品的重量和单位重量价值:\n");for(int i=1;i<=n;i++){printf("第%d件物品:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];}maxLoading(w,v,c);}五.实验结果。
实验 4 用分支限界法实现0-1背包问题
实验四用分支限界法实现0-1背包问题一.实验目的1.熟悉分支限界法的基本原理。
2.通过本次实验加深对分支限界法的理解。
??二.实验内容及要求};double MaxBound(int i);double Knap();void AddLiveNode(double up,double cp,double cw,bool ch,int level);//up是价值上界,cp是相应的价值,cw是该结点所相应的重量,ch是tureorfalsestack<HeapNode>High;//最大队Highdouble w[N],p[N];//把物品重量和价值定义为双精度浮点数double cw,cp,c;//cw为当前重量,cp为当前价值,定义背包容量为cint n;//货物数量为int main(){cout<<"请输入背包容量:"<<endl;cin>>c;{double cleft=c-cw;//剩余容量double b=cp;//价值上界while(k<=n&&w[k]<=cleft)//以物品单位重量价值递减装填剩余容量{cleft-=w[k];b+=p[k];k++;}if(k<=n)b+=p[k]/w[k]*cleft;//装填剩余容量装满背包return b;cw=cp=0;double bestp=0;//best为当前最优值double up=MaxBound(1);//价值上界//搜索子集空间树while(1)//非叶子结点{double wt=cw+w[i];if(wt<=c)//左儿子结点为可行结点{if(cp+p[i]>bestp)bestp=cp+p[i];AddLiveNode(up,cp+p[i],cw+w[i],true,i+1);。
《程序设计创新》分支限界法解决01背包问题
《程序设计创新》分支限界法解决01背包问题一、引言分枝限界法通常以广度优先或最小成本(最大收益)优先搜索问题的解空间树。
在分枝限界方法中,每个活动节点只有一次成为扩展节点的机会。
当活动节点成为扩展节点时,将同时生成所有子节点。
这些子节点将丢弃不可执行或非最优解的子节点,并将剩余的子节点添加到活动节点表中。
然后,从活动节点表中选择节点作为当前扩展节点,然后重复上述节点扩展过程。
此过程将持续到所需的解决方案或节点表为空。
二、研究背景在生活或企业活动中,我们常常会遇到一些装在问题。
例如在生活中我们要出去旅游,背包的容量是有限的而要装物品可能很多,但是每个物品的装载优先级肯定是不一样的,那么怎么装更合适一些呢。
在企业活动中,比如轮船集装箱装载问题,集装箱是有限的,那么怎么装载这些货物才能每次都是装载最多的,只有这样企业利润才能最大化。
三、相关技术介绍上述问题就是我们算法中会遇到的背包问题。
而背包问题又分许多。
如背包问题,通常用贪心法解决。
如01背包问题通常用动态规划或者分支限界法解决。
本次我们考虑使用分支限界法来解决01背包问题四、应用示例在01背包问题中,假设有四个物品。
重量W(4,7,5,3),价值V(40,42,25,12),背包重量W为10,试求出最佳装载方案。
定义限界函数: ub = v + (W-w)×(Vi+1/W+1)画出状态空间树的搜索图步骤:①在根结点1,没有将任何物品装入背包,因此,背包的重量和获得的价值均为0,根据限界函数计算结点1的目标函数值为10×10=100;②在结点2,将物品1装入背包,因此,背包的重量为4,获得的价值为40,目标函数值为40 + (10-4)×6=76,将结点2加入待处理结点表PT中;在结点3,没有将物品1装入背包,因此,背包的重量和获得的价值仍为0,目标函数值为10×6=60,将结点3加入表PT 中;③在表PT中选取目标函数值取得极大的结点2优先进行搜索;④在结点4,将物品2装入背包,因此,背包的重量为11,不满足约束条件,将结点4丢弃;在结点5,没有将物品2装入背包,因此,背包的重量和获得的价值与结点2相同,目标函数值为40 + (10-4)×5=70,将结点5加入表PT中;⑤在表PT中选取目标函数值取得极大的结点5优先进行搜索;⑥在结点6,将物品3装入背包,因此,背包的重量为9,获得的价值为65,目标函数值为65 + (10-9)×4=69,将结点6加入表PT中;在结点7,没有将物品3装入背包,因此,背包的重量和获得的价值与结点5相同,目标函数值为40 + (10-4)×4=64,将结点6加入表PT中;⑦在表PT中选取目标函数值取得极大的结点6优先进行搜索;⑧在结点8,将物品4装入背包,因此,背包的重量为12,不满足约束条件,将结点8丢弃;在结点9,没有将物品4装入背包,因此,背包的重量和获得的价值与结点6相同,目标函数值为65;⑨由于结点9是叶子结点,同时结点9的目标函数值是表PT中的极大值,所以,结点9对应的解即是问题的最优解,搜索结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验5 分支界限法解0-1背包问题一、实验要求1.要求用分支界限法求解0-1背包问题;2.要求交互输入背包容量,物品重量数组,物品价值数组;3.要求显示结果。
二、实验仪器和软件平台仪器:带usb接口微机软件平台:WIN-XP + VC++三、源程序#include ""#include<iostream>#include<cstdio>#include<>#include<iomanip>using namespace std;int *x;struct node //结点表结点数据结构{node *parent;//父结点指针node *next; //后继结点指针int level;//结点的层int bag;//节点的解int cw;//当前背包装载量int cp;//当前背包价值float ub; //结点的上界值};//类Knap中的数据记录解空间树中的结点信息,以减少参数传递及递归调用所需的栈空间class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系 long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点void addnode(node *nod);//向队列中添加活结点void deletenode(node *nod);//将结点从队列中删除struct node *nextnode(); //取下一个节点void display(); //输出结果void solvebag(); //背包问题求解};//按物品单位重量的价值排序void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<*p[j]/w[j]){minl=*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}Knap::Knap(int *pp,int *ww,int cc,int nn) {int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i; //用M数组记录大小顺序关系}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}//取上限最大结点node *Knap::nextnode(){node *p=front->next;front->next=p->next;return(p);}//将一个新的结点插入到子集树和优先队列中node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}//将结点加入优先队列void Knap::addnode(node *no){node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;}next1=p;p=p->next;}if(p==NULL){next1->next=no;}}// 计算结点所相应价值的上界float Knap::Bound(int i,int cw,int cp){int cleft=c-cw; //剩余容量float b=(float)cp; //价值上界//以物品单位重量价值减序装填剩余容量while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}//装填剩余容量装满背包if (i<n) b+=*p[i]/w[i]*cleft;return b;}//计算最优值和变量值void Knap::display(){int i;cout<<endl;cout<<"当前最优价值为:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值 x = ";for(i=1;i<=n;i++)cout<<x[i-1];cout<<endl;}//背包问题求解void Knap::solvebag(){int i;float ubb;node *aa; //记录上限最大结点first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0; //用level记录结点的层first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;//当叶子节点处的解>最优解时,更新最优解if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);//将一个新的结点插入到子集树和优先队列中}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}//非叶子结点,递归调用Bound函数计算上界if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp) {ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));//将结点加入到优先队列中}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}int main(){int c,n;int i=0;int *p;int *w;cout<<endl;cout<<"|***********分支限界法解0-1背包问题***********| "<<endl;cout<<endl;cout<<"请输入物品数量 n = ";cin>>n;cout<<endl;cout<<"请输入背包容量 C = ";cin>>c;cout<<endl;x=new int[n]; //变量值p=new int[n]; //物品价值w=new int[n]; //物品重量cout<<"请分别输入这"<<n<<"个物品的重量W:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<endl;cout<<"请输入这"<<n<<"个物品的价值P:"<<endl;for(i=0;i<n;i++)cin>>p[i];Knap knbag(p,w,c,n);();getch();return 0;}四、运行结果五、实验小结回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。
回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。